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Abstract. If the vector fields f1, f2 are locally Lipschitz, the classical Lie
bracket [f1, f2] is defined only almost everywhere. However, it has been
shown that, by means of a set-valued Lie bracket [f1, f2]set (which is
defined everywhere), one can generalize classical results like the Commu-
tativity theorem and Frobenius’ theorem, as well as a Chow–Rashevski’s
theorem involving Lie brackets of degree 2 (we call ‘degree’ the number
of vector fields contained in a formal bracket). As it might be expected,
these results are consequences of the validity of an asymptotic formula
similar to the one holding true in the regular case. Aiming to more ad-
vanced applications—say, a general Chow–Rashevski’s theorem or higher
order conditions for optimal controls—we address here the problem of
defining, for any m > 2 and any formal bracket B of degree m, a Lie
bracket B(f1, . . . , fm) corresponding to vector fields (f1, . . . , fm) lacking
classical regularity requirements. A major complication consists in finding
the right extension of the degree 2 bracket, namely a notion of bracket
which admits an asymptotic formula. In fact, it is known that a mere iter-
ation of the construction performed for the case m = 2 is not compatible
with the validity of an asymptotic formula. We overcome this difficulty
by introducing a set-valued bracket x �→ Bset(f1, . . . , fm)(x), defined at
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each point x as the convex hull of the set of limits along suitable d-tuples
of sequences of points converging to x. The number d depends only on
the formal bracket B and is here called the diff-degree of B. It counts
the maximal order of differentiations involved in B(g1, . . . , gm) (for any
smooth m-tuple of vector fields (g1, . . . , gm)). The main result of the paper
is an asymptotic formula valid for the bracket Bset(f1, . . . , fm)(x).

Mathematics Subject Classification. Primary 34A26, 49J52; Secondary
34H05.

Keywords. Nonsmooth vector fields, Iterated Lie brackets, Asymptotic
formulas.

1. Introduction

1.1. The problem and the main result

As soon as soon as f1 =
∑n

i=1
f i
1

∂

∂xi
and f2 =

∑n

i=1
f i
2

∂

∂xi
are C1 vector

fields on an Euclidean space R
n,1 the Lie bracket [f1, f2] is defined as

[f1, f2](x) :=
n∑

i,j=1

(
∂f i

2

∂xj
f j
1 − ∂f i

1

∂xj
f j
2

)
∂

∂xi
∀x ∈ R

n.

The Lie bracket turns out to be an intrinsic object. Precisely, though it is
constructed by a linear combination of second order differential operators, is a
continuous first order differential operator, namely a continuous vector field.

As it is well-known, the Lie bracket [f1, f2] gauges the noncommutativ-
ity of the flows of f1 and f2. Indeed, on the one hand the Commutativity
Theorem states that the flows of a family f1, . . . , fm commute locally if and
only if [fi, fj ] ≡ 0, for all i, j = 1, . . . , k. Furthermore, Frobenius’ Theorem es-
tablishes that the involutivity condition—namely [fi, fj ] ∈ span{f1, . . . , fk},
i, j = 1, . . . , n (plus a constant rank hypothesis)—is equivalent to the fact
that the flows of f1, . . . , fk give rise to local foliations of dimension k. On
the other hand, if f1, . . . , fk are vector fields of class C∞, one can regard
the Lie bracket as a (non-commutative) product, so obtaining the Lie alge-
bra Lie{f1, . . . , fk}—over the ring of C∞ functions–generated by {f1, . . . , fk}.
Chow–Rashevski’s theorem states that the assumption Lie{f1, . . . , fk}(y) =
R

n ∀y ∈ R
n, called full rank condition—or, in the PDE’s literature, Hörmander

condition—guarantees small-time local controllability.2

The cornerstone of the mentioned results is an asymptotic formula con-
necting the bracket with a suitable composition of flows of the involved vector

1 The definitions and results in this paper are valid on a differentiable manifold as well, but,
since they involve only local notions and estimates it is not restrictive to consider just the
case of an Euclidean space.
2 A k-tuple (f1, . . . , fk) is called small-time local controllable from x if, for any t > 0, the
set of points reachable at t from x via concatenations of forward or backward integral curves
of the fi, i = 1, . . . k, is a neighborhood of x.
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fields. Let us use the exponential notation for the flows, namely, if g is a lo-
cally Lipschitz vector field, etg(y) is the solution at t of the Cauchy problem
ẋ = g(x), x(0) = y.
Asymptotic Formula for [f1, f2]. For every x∗ ∈ R

n there exists a modulus
γ(·) : [0,+∞[→ [0,+∞[, i.e., γ(·) is a nondecreasing function with γ(0+) :=
limρ→0 γ(ρ) = 0, such that

dist
(
e−t2f2 ◦ e−t1f1 ◦ et2f2 ◦ et1f1(x) − x , t1t2[f1, f2](x∗)

)

≤ |t1t2|
(
γ
(|(t1, t2

)| + |x − x∗|)
)

for all t1, t2 ∈ R, x ∈ R
n.

1.1.1. Lie brackets of non-regular vector fields. Notice that there is a discrep-
ancy between the hypotheses on the vector fields needed to construct the Lie
bracket and those guaranteeing the existence (and possibly the uniqueness)
of local flows. Indeed the asymptotic formula holds true for C1 vector fields
f1, f2, while local flows exist unique provided the vector fields are just locally
Lipschitz continuous. Therefore, aiming at weakening the regularity hypothe-
ses on the vector fields, one has to address the problem of an extended notion
of Lie bracket. Some steps in this direction were taken in [8]3 through the use
of the following notion of set-valued Lie bracket: if f1, f2 are locally Lipschitz
vector fields, the set-valued Lie bracket [f, g]set(·) is defined by setting, for
every y ∈ R

n,

[f1, f2]set(y)

:= co
{

w = lim
k→∞

[f1, f2](yk): yk → ȳ, yk ∈ Diff (f1) ∩ Diff (f2)
}

, (1.1)

where, if h is a vector field, we use Diff (h) ⊂ R
n to denote the subset of

points of differentiability of h. By Rademacher’s theorem, Diff (f) ∩ Diff (g)
has full measure—hence, it is dense—in R

n. It is straightforward to show that
the set-valued map ȳ �→ [f, g]set(y) is upper semi-continuous4 with compact
convex values. Moreover, {[f1, f2](y)} ⊆ [f1, f2]set(y), at each y ∈ R

n where
f1, f2 are both differentiable, the equality holding true if both Df1 and Df2

are continuous at y. By the use of this set-valued bracket, in [7,9] the Com-
mutativity Theorem and Frobenius’ Theorem have been extended to families
of locally Lipschitz continuous vector fields. For this same class of vector fields
an extension of step-2 Chow–Rashevski’s Theorem was proved in [8]. Let us
point out that set-valued Lie brackets are likely to be useful also for second
order necessary conditions to nonsmooth optimal control problems.

There are at least two crucial reasons why the notion of set-valued bracket
[·, ·]set works well: first, it is sufficiently small for proving the Commutativity
Theorem and Frobenius’ Theorem for the case of locally Lipschitz vector fields,
as in [7,9]; secondly , it is large enough for applying an open mapping argument
in the non-smooth extension of step-2 Chow–Rashevski’s theorem [8]. As in

3 But see also [2] and references therein.
4 See below the definition of upper semi-continuity of a set-valued map.



61 Page 4 of 43 E. Feleqi and F. Rampazzo NoDEA

the smooth case the main ingredient to prove these results is an formula, which
in this case is expressed as follows:
Asymptotic Formula for [f1, f2]set. For every x∗ ∈ R

n there exists a modulus
γ(·) : [0,+∞[→ [0,+∞[, such that

dist
(
e−t2f2 ◦ e−t1f1 ◦ et2f2 ◦ et1f1(x) − x, t1t2[f1, f2]set(x∗)

)

≤ |t1t2|
(
γ
(|(t1, t2

)| + |x − x∗|)
)
. (1.2)

1.2. The main result

The number m of vector fields formally involved in the construction of a
bracket B will be called the degree of B. In this case we also say that B
is a degree-m bracket. For instance, the brackets

[
[X1,X2], [X3,X4]

]
, [X1,X2],

and [[X1,X2],X3] have degree 4, 2, and 3, respectively. In the smooth case,
asymptotic formulas for bracket of degree ≥ 3 can obviously be deduced by
induction. So a natural issue is: can we do the same in the “non-smooth”
case? Let us consider degree-3 brackets: if f1, f2 are of class C1,1—i.e., their
derivatives are locally Lipschitz—then g := [f1, f2] is a locally Lipschitz vector
field, so, if f3 is another locally Lipschitz vector field, one might be lead to use
the set-valued vector field [g, f3]set as a (set-valued) definition of the iterated
bracket [[f1, f2], f3]set. Yet, an example built in [9] shows that an asymptotic
formula for the multi-flows associated with [g, f3]set fails to be true. Actually,
this example suggests that the bracket [g, f3]set is too small.

In the present paper we propose a generalization of the notion of (set-
valued) Lie bracket to the cases when the degree is greater than 2, in such a
way that an asymptotic formula holds true. Therefore, in view of the above-
mentioned example, this bracket cannot simply be obtained by iteration of
the construction performed for degree-2 brackets. In particular, as soon as
the degree is greater than 2, a certain number of independent sequences are
needed in the definition of the set-valued bracket. This number turns out to
coincide with what we call diff-degree of the bracket under consideration. Let
us anticipate that the diff-degree is strictly smaller than the degree and is not
a function of the degree, although it increases with it (see the degree-4 cases
below in which the diff-degree is either 3 or 2).

At this introductory level, we prefer avoiding too technical definitions and
give the bracket definition and the main result only for the degrees 3 and 4.
This, however, will be enough for illustrating the main features of the general.

1.2.1. The degree-3 case. For every x∗ ∈ R
n, we set

[
[f1, f2], f3

]
set

(x∗)

:= co
{

w = lim
xj→x∗
zj→x∗

Df3(xj) · [f1, f2](zj) − D[f1, f2](zj) · f3(xj),
}

, (1.3)

where the sequences (xj) and (zj) take values in Diff (f3) and Diff ([f1, f2]),
respectively, and both (xj) and (zj) converge to x∗.

The chief difference from the case of the classical bracket consists in the
occurrence of two independent sequences instead of a single one, i.e. we do not
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assume (xj) = (zj). For this reason, we say that the diff-degree of the formal
bracket [[X1,X2],X3] is 2. With reference to the above-mentioned “negative”
example, notice that, setting g := [f1, f2], one has

[g, f3]set(x∗) ⊆ [[f1, f2], f3]set(x∗),

and the inclusion is possibly strict. Together with the asymptotic formula
below, this somehow explains the negative result illustrated by the example in
[9]. To state the asymptotic formula let us set

ψ(t1, t2) := e−t2f2 ◦ e−t1f1 ◦ et2f2 ◦ et1f1

ψ(t1, t2, t3) := e−t3f3 ◦ (ψ(t1, t2))−1 ◦ et3f3 ◦ ψ(t1, t2).

Asymptotic Formula for
[
[f1, f2], f3

]
set

. For every x∗ ∈ R
n there exists a

modulus γ(·) such that

dist
(
ψ(t1, t2, t3)(x) − x∗, t1t2t3

[
[f1, f2], f3

]
set

(x∗)
)

≤ |t1t2t3| γ
(|(t1, t2, t3)| + |x − x∗|

)

for all (t1, t2, t3) ∈ R
3 and x ∈ R

n. Furthermore, the modulus γ(·) can be
chosen to be the same for all x∗ in a compact subset of Rn.

1.2.2. Two degree-4 cases. If f1, f2, f3, f4 are vector fields of class C1,1 (so
that, in particular, the brackets [f1, f2], [f3, f4] are locally Lipschitz), we set

[
[f1, f2], [f3, f4]

]
set

(x∗)

:= co

{
w = lim

xj→x∗
zj→x∗

D[f3, f4](xj) · [f1, f2](zj) − D[f1, f2](zj) · [f3, f4](xj)

}
,

where the sequences (xj) and (zj) take values in Diff ([f1, f2]) and Diff ([f3, f4]),
respectively, and they both converge to x∗.

On the other hand, if the vector fields f1 and f2 are of class C2,1, f3 is
of class C1,1, and f4 is of class C0,1, we set

[
[[f1, f2], f3], f4

]
set

(x∗)

:= co

{
w = lim

xj→x∗
yj→x∗
zj→x∗

Df4(yj) ·
(
Df3(xj) · [f1, f2](zj) − D[f1, f2](zj) · f3(xj)

)

−D
(
Df3(xj) · [f1, f2](zj) − D[f1, f2](zj) · f3(xj)

)
· f4(yj)

)}
,5
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where the sequences (xj) , (yi), and (zj) take values in the (full measure)
subsets Diff (2)(f3), Diff (f4), and Diff (2)([f1, f2]),6 respectively, and they all
converge to x∗.

Let us remark an important difference between the above brackets: the
formal bracket

[
[[X1,X2],X3], X4

]
has diff-degree equal to 3, so in the defini-

tion of
[
[[f1, f2], f3], f4]set(x∗) limits are taken along sequences of triples con-

verging to (x∗, x∗, x∗). Instead, the formal bracket
[
[X1,X2], [X3,X4]

]
has diff-

degree equal to 2, and, accordingly, the definition of
[
[f1, f2], [f3, f4]

]
set

(x∗)
involves sequences of pairs converging to (x∗, x∗).

If one sets

ψ(t1, t2, t3, t4)(x) :=
(
ψ(t3, t4)

)−1 ◦ (ψ(t1, t2)
)−1 ◦ ψ(t3, t4) ◦ ψ(t1, t2)

and

ψ̃(t1, t2, t3, t4)(x) :=
(
ψ(t1, t2, t3)

)−1 ◦ e−t4f4 ◦ et4f4 ◦ ψ(t1, t2, t3) ,

then one obtains the following result:

Asymptotic Formula for
[
[[f1, f2], f3

]
, f4

]
set

. For every x∗ ∈ R
n there exists

a modulus γ(·) such that

dist
(
ψ(t1, t2, t3, t4)(x) − x∗, t1t2t3t4

[
[[f1, f2], f3], f4]set(x∗)

)

≤ |t1t2t3t4|
(
γ(|(t1, t2, t3t4)| + |x − x∗|)

)

for all (t1, t2, t3, t4) ∈ R
4 and x ∈ R

n. Furthermore, the modulus γ(·) can
be chosen to be the same for all x∗ in a compact subset of Rn.

An akin result holds for the bracket
[
[f1, f2], [f3, f4]

]
set

in relation to the flow
ψ̃.

Asymptotic Formula for
[
[f1, f2], [f3, f4]

]
set

. For every x∗ ∈ R
n there exists

a modulus γ(·) such that

dist
(
ψ̃(t1, t2, t3, t4)(x) − x, t1t2t3t4

[
[f1, f2], [f3, f4]

]
set

(x∗)
)

≤ |t1t2t3t4|
(
γ(|(t1, t2, t3t4)| + |x − x∗|)

)

for all (t1, t2, t3, t4) ∈ R
4 and x ∈ R

n.

5 The expression

D
(
Df3(xj) · [f1, f2](zj) − D[f1, f2](zj) · f3(xj)

)
· f4(yj)

)

here denotes the quantity

D2f3(xj) · [f1, f2](zj) − D2[f1, f2](zj) · f3(xj) + Df3(xj) · D[f1, f2](zj)

−D[f1, f2](zj) · Df3(xj) .

6 Diff (2)(f3), and Diff (2)([f1, f2]) denote the set of points where f3 and [f1, f2] are twice
differentiable, respectively.



NoDEA Iterated Lie brackets for nonsmooth vector fields Page 7 of 43 61

1.3. Organization of the paper

Sections 1.4 and 1.5 are concerned with basic material which will be used
throughout the paper. In Sect. 2 we introduce formal Lie brackets of degree
m ≥ 1. In particular, given a bracket B, we define the family of basic subbrack-
ets of B, whose cardinality is here called the diff-degree of B. Moreover, we
consider notions of B-regularity for m-tuples of vector fields. Section 3 contains
the definition of set-valued iterated bracket, which is obtained as a suitable limit
of twisted Lie brackets. In the main result of the paper, namely the Asymptotic
Formula (Theorem 3.7), the set-valued iterated bracket is shown to be related
with the infinitesimal behavior of the corresponding multi-flows. In Sect. 4
we give the proof of the Asymptotic Formula. In turn, this proof is based on
both the Exact Integral Formula for iterated Lie brackets, which is recalled in
Sect. 5, and the technical estimates proved in Sect. 6. The latter mainly con-
cern the approximation of twisted Lie brackets by certain shift-twisted brackets
and, moreover, an error bound for the difference between set-valued brackets
and iterated brackets of regularized vector fields.

1.4. Preliminary definitions and notation

Let us use N0 to denote the set of nonnegative integers, i.e, N0 := N ∪ {0}.

1.4.1. Set-valued maps and vector fields.

Definition 1.1. By a set-valued map F : M � N from a set M to another set
N we mean any map from M to P(N), the family of the subsets of N . If
M,N are topological spaces, one says that F is upper semi-continuous at a
point x∗ ∈ M if, for every neighborhood V of the subset F (x∗) there exists a
neighborhood U of x∗ such that

F (U) :=
⋃

x∈U

F (x) ⊂ V.

One says that F is upper semi-continuous if F is upper semi-continuous at x∗
for every x∗ ∈ M .

In the case when M,N are metric spaces, we have (see e.g. [1]):

Proposition 1.2. Assume that M,N are metric spaces and F has closed values
(i.e., F (x) is a closed set in N for every x ∈ M). Also, let the graph gr(F ) :=
{(x, y): x ∈ M y ∈ F (x)} be locally compact.

Then F is upper semi-continuous at x∗ if and only if, for every sequence
(xk)k∈N in M such that (xk, yk) → (x∗, y) for some y ∈ N , with yk ∈ F (xk)(⊆
N), one has y ∈ F (x∗). That is, to say, F is upper semi-continuous if and
only if gr(F ) is closed.

1.4.2. Spaces of vector fields. We recall that a vector field f is said to be of
class C0 if it is continuous. Furthermore, for k ≥ 1, a vector field f is said to be
of class Ck if the derivatives Djf are continuous for every j = 0, . . . , k, while f
is said to be of class Ck−1,1 if it is of class Ck−1 and Dk−1f is locally Lipschitz
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continuous.7 As it is customary, for every integer k ≥ 0, we shall use Ck
0 [resp.

Ck−1,1
0 , if k > 1] to denote the subset of Ck [resp. Ck−1,1] whose elements

have compact support. If f is of class Ck−1,1, by Rademacher’s theorem, the
derivative Dkf exists almost everywhere and is locally bounded. If f ∈ Ck−1,1

0

we shall consider the usual norm

‖f‖k−1,1 =
k∑

j=0

‖Djf‖∞,

‖ · ‖∞ denoting the L∞ norm. Clearly, as soon as f ∈ Ck,

‖f‖k−1,1 = ‖f‖k :=
k∑

j=0

‖Djf‖∞.

1.5. Faà di Bruno’s formula

We will make use of the standard multi-index notation, according to which,
for a function φ : Rn → R

q and multi-indexes α, β ∈ (N0)n one sets

∂αφ :=
∂α1

∂x1
· · · · · ∂αn

∂xn
φ,

where β ≤ α means βj ≤ αj for every j = 1, . . . , n, and

|α| := α1 + · · · + αn, α − β := (α1 − β1, . . . , αn − βn),
(

α

β

)
:=

(
α1

β1

)
·
(

α2

β2

)
· · ·

(
αn

βn

)
.

We recall the identity
∑

|α|=k

∑

β≤α

(
α

β

)
= 2k ·

(
k + n − 1

k

)
, (1.4)

which can be found in [6, Problem 2.58].
Let us remind Faà di Bruno’s chain rule for higher-order derivatives (see,

e.g., [6] for the single-variable case and [3,5] for the many-variable case). We
now need some additional notation. For x = (x1, . . . , xn) ∈ R

n and α =
(α1, . . . , αn), xα stands for xα1

1 xα2
2 · · · xαn

n . We introduce an order relation on
the set of multi-indices Nn

0 . For α, β ∈ N
n
0 we write β ≺ α if one of the following

holds:

1. |β| < |α|; or
2. |β| = |α|, β1 < α1; or
3. |β| = |α| and there is i ∈ {1, . . . , n − 1} such that β1 = α1, . . . , βi = αi

and βi+1 < αi+1.

7 This definition is intrinsic, i.e., the notion of class Ck and of class Ck−1,1 are not affected
by local coordinate changes of classes Ck+1 and Ck,1 respectively. In particular, this notion
can be equally given on a manifold of class Ck+1 and Ck,1, respectively.
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Let Ω ⊂ R
n and D ⊂ R

p be open sets and let g : Ω → R
p, f : D → R

q be
k times differentiable functions such that g(Ω) ⊂ D, where n, p, q, k ∈ N. Then
f ◦ g is also k times differentiable and for all α ∈ N

n
0 (where N0 = N ∪ {0})

with 1 ≤ |α| ≤ k

∂α(f ◦ g) =
|α|∑

|γ|=1

(∂γf) ◦ g

|α|∑

s=1

∑

Ps(α,γ)

α!
s∏

j=1

(∂βj

g)γj

γj !(βj !)|γj | , (1.5)

where, for all s = 1, . . . , |α|, γ ∈ N
p
0 with 1 ≤ |γ| ≤ |α|, we let

Ps(α, γ) :=
{

(β1, . . . , βs; γ1, . . . , γs) ∈ (Nn
0 × N

p
0)

s : |γj | ≥ 1, ∀j = 1, . . . , s,

0 ≺ β1 ≺ · · · ≺ βs,

s∑

j=1

γj = γ,

s∑

j=1

|γj |βj = α

}
. (1.6)

In the above expression, βj , like α, is an n-dimensional multi-index. Similarly,
γj , like γ, is a p-dimensional multi-index.

2. Formal brackets and bracket-regularity of vector fields

2.1. Formal brackets

Given a fixed sequence X = (X1,X2, . . .) of distinct objects called variables,
or indeterminates, we call words the finite ordered strings consisting of the
Xi, the left bracket [ and the right bracket ],8 and the comma. We shall use
W (X) to denote the set of words. For instance, X2X5X4 and X3, [X13[, ]]X61[
are words (but we will be mainly concerned with special words, the iterated
brackets—see Definition 2.1—like [[X3,X4],X5] or [[[X4,X6],X7], [X8,X9]]).

Given any word W ∈ W (X), we use Seq(W ) to denote the word obtained
from W by deleting all left and right brackets and all commas. The degree
deg(W ) of a word W ∈ W (X) is the cardinality of Seq(W ). For instance, if
W = [[[X4,X6],X7], [X8,X9]], Seq(W ) = X4X6X7X8X9 and deg(W ) = 5.

Let us give the definition of formal bracket by iteration.

Definition 2.1. We will call formal bracket of degree 1 any word of degree one
and we will say that the bracket of two members W1, W2 of W (X) is the word
[W1,W2] obtained by writing first a left bracket, then W1, then a comma, then
W2, and then a right bracket.

We call formal iterated brackets (or, simply, brackets) of X the elements
of the smallest subset IB(X) ⊂ W (X) such that:

1. IB(X) contains the brackets of degree 1;
2. whenever W1 and W2 belong to IB(X) it follows that [W1,W2] ∈ IB(X);

8 In this passage the terms “left bracket” and “right bracket” refer to the square parentheses
] and [, respectively. They should not be confused with the notion of formal bracket—or
simply bracket—which is introduced below as a special kind of word and is modeled on the
Lie bracket.
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3. For every element B ∈ IB(X) one has seq(B) = Xμ+1, . . . , Xμ+m, for
some μ ≥ 0 and m > 0.9

Notice that the degree is additive by bracketing operation, i.e.,

deg([B1, B2]) = deg(B1) + deg(B2)

for every pair of brackets B1, B2.
For every bracket B of degree m > 1 there exists a unique pair (B1, B2)

of brackets such that B = [B1, B2]. The pair (B1, B2) is the factorization of
B, and the brackets B1, B2 are known, respectively, as the left factor and the
right factor of B.

If B is an iterated bracket of degree m, then any substring of B which
is itself an iterated bracket is called a subbracket of B. We will use Sbb(B) to
denote the set of subbrackets of B. Brackets have a nested structure: if S1, S2

are subbrackets of B, then either S1 is a subbracket of S2, or S2 is a subbracket
of S1, or S1 and S2 are disjoint (in the sense that their letter sequences are
disjoint).

2.2. Basic brackets and diff-degree

Special subbrackets of degree ≤ 2, here called basic subbrackets, will be crucial
in establishing the kind of limiting procedure needed for defining set-valued it-
erated Lie brackets (Sect. 3). The cardinality of the family of basic subbrackets
of a bracket B will be called the diff-degree of B.

Definition 2.2. Let B be a bracket. A subbracket S ⊂ Sbb(B) is a basic sub-
bracket of B if either deg(S) = 2 or deg(S) = 1, i.e., S = Xi for some i, and
neither [Xi−1,Xi] nor [Xi,Xi+1] is a subbracket of B. We will call diff-degree
of B, and write Deg(B) the number of basic subbracket of B.

For instance, the subbrackets [X2,X3] and X4 of [[X2,X3],X4] are basic,
while X2 and X3 are not, so that Deg([[X2,X3],X4]) = 2. Observe that

Deg(B) = 1 ⇐⇒ deg(B) ≤ 2.

Notice that, for every bracket such that deg(B) ≥ 2, one has

Deg(B) ≤ deg(B) − 1.

For instance,

2 = Deg([[X3,X4], [X5,X6]]) = deg([[X3,X4], [X5,X6]]) − 2

and

3 = Deg([[[X3,X4],X5],X6]) = deg([[[X3,X4],X5],X6]) − 1.

Notice also that, as soon as deg(B) > 2, the diff-degree is additive with
respect to factorization: if B = [B1, B2], then

Deg(B) = Deg(B1) + Deg(B2). (2.1)

9 We might eliminate the third condition, which, up to renaming variables, is not restrictive.
However, it is convenient to retain it for practical reasons connected with factorizations and
proofs based on recursion.
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The name diff-degree refers to the fact that it coincides with the highest
order of differentiation showing up in any coordinate representation when the
variables of B are replaced by vector fields. Let us see this more precisely. If
we plug in smooth vector fields fj for the indeterminates Xj of a bracket B
and interpret the result as a classical Lie bracket—see Definition 2.8—every re-
peated bracketing of a subbracket involves a certain number of differentiations,
and this number depends only on the formal bracket B.

Definition 2.3. If B is a bracket and S ∈ Sbb(B), let us define Deg(S;B) by a
backward recursion on S:

Deg(B;B) := 0, Deg(S1;B) := Deg(S2;B) := 1 + Deg([S1, S2];B).

We shall refer to Deg(S;B) as the the number of differentiations of S in B.

It is easy to prove that Deg(S;B) is equal to the number of right brack-
ets that occur in B to the right of S minus the number of left brackets
that occur in B to the right of S. For example, if B =

[
X3, [X4,X5]

]
, then

Deg([X4,X5];B) = 1, Deg(X4;B) = 2, Deg(X5;B) = 2, Deg(X3;B) = 1.
Clearly, if (B1, B2) is the factorization of B, and seq(B1) = Xμ+1, . . . ,

Xμ+m1 , seq(B2) = Xμ+m1+1, . . . , Xμ+m2 for some μ ≥ 0, m1,m2 ≥ 1,

Deg(Xj ;B) =
{
Deg(Xj ;B1) + 1 if j ∈ {μ + 1, . . . , μ + m1}
Deg(Xj ;B2) + 1 if j ∈ {μ + m1 + 1, . . . , μ + m1 + m2}.

Moreover, if Xj is a subbracket of S and S is a subbracket B, one has

Deg(Xj ;B) = Deg(Xj ;S) + Deg(S;B).

The relation between the numbers Deg(Xj ;B) and the diff-degree Deg(B)
is as follows:

Lemma 2.4. For any bracket B one has

Deg(B) = max
{
Deg(Xj ;B): Xj is an indeterminate of B

}
.

Remark 2.5. The diff-degree Deg(B) will be the number of (n-dimensional)
variables that have to be used in the limiting procedure for defining Lie brack-
ets of vector fields which satisfy weaker regularity hypotheses (see Sect. 3.1).
So n ·Deg(B) might be regarded as the right dimension of the space where one
can define the new bracket by a density approach. One might say that Deg(B)
reveals a dimension of the bracket which is hidden in the ordinary, i.e., the
smooth case.

Finally, let us point out that the diff-degree of a bracket should not be
confused with the order of the corresponding Lie bracket as a differential
operator. Actually, all iterated Lie brackets of smooth vector fields are vector
fields, namely differential operators of the first order.
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2.3. Bracket-regularity for families of vector fields

To each bracket B with seq(B) = Xμ+1 . . . Xμ+m, (μ ≥ 0,m ≥ 1), and each
finite sequence f = (f1, . . . , fν) of vector fields such that ν ≥ m + μ, we want
to associate the expression B(f) obtained by replacing indeterminates with
vector fields. For vector fields sufficiently regular, B(f) is obviously the usual
iterated Lie bracket. Let us make the required regularity conditions precise:

Definition 2.6. (Classes CB+k and CB+k−1,1) Let B be a bracket of degree
m(≥ 1), with seq(B) = Xμ+1 . . . Xμ+m, (μ ≥ 0). Let f = (f1, . . . , fν) be a
finite sequence of vector fields, with ν ≥ μ + m, and let k be a nonnegative
integer. We say that:

• f is of class CB+k if fj is of class CDeg(Xj ,B)+k for each j ∈ {1+μ, . . . , m+
μ};

• f is of class CB+k−1,1 if fj is of class CDeg(Xj ,B)+k−1,1 for each
j ∈ {1 + μ, . . . , m + μ}.

We also write f ∈ CB+k and f ∈ CB+k−1,1, to indicate, respectively, that f is
of class CB+k and f is of class CB+k−1,1.

For example, if B =
[
[X3,X4], [[X5,X6],X7]

]
and f = (f1, . . . , f8) (so

m = 5, ν = 8, μ = 2), then f ∈ CB+3 if and only if f3, f4, f7 ∈ C5 and
f5, f6 ∈ C6, while f ∈ CB−1,1 if and only if f3, f4, f7 ∈ C4,1, and f5, f5 ∈ C6,1.
It is easy to verify the following result:

Proposition 2.7. Assume that we are given B, k, and f = (f1, . . . , fν) as in
Definition 2.6. Let (B1, B2) be the factorization of B. Then:

• f ∈ CB+k if and only if f ∈ CB1+k+1 and f ∈ CB2+k+1;
• f ∈ CB+k−1,1 if and only if f ∈ CB1+k,1 and f ∈ CB2+k,1.

We are now ready to plug vector fields in place of indeterminates in a
bracket:

Definition 2.8. For integers μ ≥ 0, m, ν ≥ 1, such that μ + m ≤ ν, let B be a
formal bracket such that Seq(B) = Xμ+1 . . . Xμ+m and let f = (f1, . . . , fν) be
a ν-tuple of continuous vector fields.

• If S ∈ Sbb(B) has degree 1, i.e., S = Xj for some j = μ + 1, . . . , μ + m,
we define the vector field S(f) by setting

S(f) := Xj(f) := fj ;

• If S has degree > 1, so that S = [S1, S2], and either S �= B10 or S = B
and f ∈ CB , we set

S(f) := [S1(f), S2(f)].

Remark 2.9. There is a slight (and not confusing) abuse of the notation
[·, ·] in the above definition and throughout the whole paper. Indeed, while
[S1(f), S2(f)] is a Lie bracket of vector fields, [S1, S2] is just a formal bracket.

10 If S is a proper subbracket of B (i.e., S ∈ Sbb(B)\{B}) then Deg(S; B) > 0, so
Deg(S; B) + k − 1 ≥ 0 even if k = 0.
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The resulting vector field S(f) has the following regularity:

S(f) ∈ CDeg(S;B)+k if f ∈ CB+k ;

S(f) ∈ CDeg(S;B)+k−1,1 if f ∈ CB+k−1,1.

If S is a proper subbracket of B (i.e., S ∈ Sbb(B)\{B}) then Deg(S;B) > 0,
so Deg(S;B) + k − 1 ≥ 0 even if k = 0. However, the inductive construction
of S(f) can be pursued even for S = B as soon as f ∈ CB , in which case we
obviously set

B(f)(x) = [B1(f), B2(f)](x), (2.2)

(B1, B2) being the factorization of B. On the other hand, when f is just of
class CB−1,1, we still adopt definition (2.2) for B(f) at the points where both
B1(f) and B2(f) are differentiable, i.e., almost everywhere.

Let us collect the results we already have, based on classical, single-
valued, Lie brackets:

Proposition 2.10. Assume that we are given data B, k, ν, and f = (f1, . . . , fν)
as in Definition 2.6. Then:

• If f ∈ CB+k, then B(f) is a vector field of class Ck;
• If f ∈ CB+k−1,1 and k ≥ 1 then B(f) is a vector field of class Ck−1,1;
• If f ∈ CB+k−1,1 and k = 0 then B(f) is bounded measurable vector field

(defined almost everywhere).

On ν-tuples of f ∈ CB+k−1,1 having compact support, we will consider
the norms:

‖f‖B+k := ‖f‖B+k−1,1 :=
∑

S∈Sbb(B)

‖S(f)‖Deg(S,B)+k.11

Set-valued brackets If f = (f1, . . . , fν) is of class CB−1,1 and B = [B1, B2],
so that B1(f) and B2(f) are locally Lipschitz vector fields, one might expect
that the correct defn of “set-valued bracket” at a point x would be obtained
by
(a) Observing that B(f)(x) is defined almost everywhere (by Rademacher’s

theorem);
(b) Taking the limits of B(f)(x + h) as h goes to 0;
(c) Defining the bracket to be the convex hull of the set of these limits.

However, such a definition, while proving quite effective for brackets of
degree 2 (see the Introduction and [7–9]), would encounter a serious objec-
tion: the asymptotic formula for the multi-flows corresponding to brackets of
degree > 2 (see Definition 3.6 and Theorem 3.7) would fail to be valid, as it is
illustrated by an example in [9, Section 7].

11 Of course, we set

‖B(f)‖Deg(B,B)+k = ‖B(f)‖k :=

k−1∑

j=0

‖Dj(|B(f))‖0 + ‖Dk(B(f))‖L∞ .
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In particular, the limits obtained by the above procedure are not enough:
we will see that step (b) should be extended to suitable limiting processes
performed along k-tuples of sequences, where k is the diff-degree of B. Let us
make this precise by first introducing the notion of twisting of a bracket.

2.4. Twistings, shift-twistings, basic twistings

Let DIFF∞(Rn ,Rn) and IdRn denote the family of C∞ diffeomorphisms of
R

n and the identity map on R
n, respectively.

Definition 2.11. Let B be a bracket of degree m. A twisting θ of B is any map

θ: Sbb(B) → DIFF∞(Rn,Rn)

such that θ(Xj) = IdRn if Xj is not a basic subbracket of B.
Let us define the identity twisting as the twisting ι : Sbb(B) → DIFF∞

(Rn,Rn) such that

ι(S) = IdRn

for every subbracket S of B.

Definition 2.12. For any h ∈ R
n, let us define the shift τh : R

n → R
n by

setting

τh(x) = x + h forall x ∈ R
n.

A twisting Θ of B is called a shift-twisting if, for any subbracket S of B there
exists h ∈ R

n such that

Θ(S) = τh.

In particular, by taking h = 0 one obtains

ι(S) = τ0(S) = IdRn

for every subbracket S of B.
In the proof of the asymptotic formula for multi-flows we will make use

of particular shift-twistings one builds by considering, for a chosen x ∈ R
n,

the increments of a particular twisting θ at x. Precisely:

Definition 2.13. For any bracket B, any twisting θ of B, and any x ∈ R
n, we

consider the shift-twisting θx defined as follows:

1. If S = B, we set θx(B) := τ(
θ(B)(x)−x

). Namely,

θx(B)(y) := τ(
θ(B)(x)−x

)(y) = y +
(
θ(B)(x) − x

)
for all y ∈ R

n.

2. Let S be a subbracket of B with factorization (S1, S2), namely S =
[S1, S2]. We set

θx(Si) := τ(
θ(Si)◦θ(S)(x)−x

), i = 1, 2.

The shift-twisting θx will be called the shift-twisting approximation of θ based
on x.



NoDEA Iterated Lie brackets for nonsmooth vector fields Page 15 of 43 61

The asymptotic formula is concerned with an estimate holding true in
a neighborhood of a given point x∗. Therefore in what follows we shall need
a notion of convergence of twistings, which we define by introducing a metric
structure on twistings as follows.

Let A ⊂ R
n be a bounded set. We set for every θ, η twistings of B and

every integer k ≥ 0,

dB+k(θ, η) :=
∑

S∈Sbb(B)

(
‖θ(S) − η(S)‖Deg(S,B)+k, A

+ ‖(θ(S))−1 − (η(S))−1 ‖Deg(S,B)+k, θ(S)(A)∪η(S)(A)

)
(< +∞)

(2.3)

where, for every integer j ≥ 0 and every C∞ map Φ: Rn → R
n, we have used

the notation

‖Φ‖j,A :=
j∑

	=0

‖D	Φ‖∞,A (< +∞),

where

‖D	Φ‖∞,A = sup
x∈A

|D	Φ(x)|.

Remark 2.14. Clearly dB+k depends on the subset A, but we are going to
keep A fixed in the sequel. Typically, given a point x∗, we shall think of A as
the ball of unit radius centered at x∗. Let us point out that dB+k enjoys the
properties of a pseudometric. However, if we introduce an equivalence relation
on twistings by declaring equivalent two twistings that coincide on A, then
dB+k is a distance on the quotient set.

Definition 2.15. We will say that a sequence (θ	)	∈N of twistings of B CB+k-
converges (on a given bounded set A) to a twisting θ if

dB+k

(
θ	, θ

) → 0

as � → ∞.

Since diffeomorphisms act on vectors through their derivatives, we will
also make use of the notion of the derivative of a given twisting θ of a bracket
B:

Definition 2.16. Let θ be a twisting of a bracket B. The derivative of θ, which
is here denoted by Dθ, is the function on Sbb(B) × R

n defined by

Dθ(S)(x) := D(θ(S))(x)

for each subbracket S of B and each x ∈ R
n. In particular, Dθ(S)(x) is a

linear isomorphism of Rn.

Notice that if Θ is a shift-twisting, one has

DΘ(S)(x) := IdRn

for any subbracket S of B and any x ∈ R
n.
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We will make use also of a notion of convergence for derivatives of twist-
ings, by setting, for every pair of twistings θ, η and every non-negative integer
k,

d̂B+k(Dθ, Dη) :=
∑

S∈Sbb(B)

(
‖D(θ(S)) − D(η(S))‖Deg(S,B)+k, K

+ ‖D(θ−1(S)) − D(η−1(S))‖Deg(S,B)+k, θ(S)(K)∪η(S)(K)

)

(< +∞). (2.4)

Definition 2.17. Let (θ	)	∈N be a sequence of twistings of a given bracket B.
We say that the sequence (Dθ	)	∈N CB+k-converges to the derivative Dθ of a
twisting θ if

d̂B+k

(
Dθ	, Dθ

) → 0

as � → ∞.

We will be mostly interested in sequences (θ	)	∈N of twistings of B such
that, for some k ≥ 0,

dB+k(θ	, ι) → 0 and d̂B+k(Dθ	,Dι) → 0,

as � tends to infinity.

Remark 2.18. For any shift-twisting Θ of B and any integer k ≥ 0, one has

dB(Θ, ι) = dB+k(Θ, ι) =
∑

S∈Sbb(B)

|Θ(S)(0)|,

d̂B(DΘ, ι) = d̂B+k(DΘ, ι) = 0.

2.5. Twisted Lie brackets of vector fields

Let us recall the notion of action of a diffeomorphism on a C1 vector field:

Definition 2.19. (Action of diffeomorphisms on vector fields) Given a vector
field f : Rn → R

n and Ψ ∈ DIFF (Rn,Rn, we define Ψ#f , the action of Ψ on
f , to be the vector field given by

x �→ Ψ#f(x) := DΨ−1(Ψ(x)) · (f ◦ Ψ(x)) for all x ∈ R
n.

Remark 2.20. Notice that a vector field f is defined almost everywhere if and
only if Ψ#f is defined almost everywhere.

As it is well-known, the above defined action preserves the Lie bracket:

Ψ#[f, g](x) = [Ψ#f,Ψ#g](x) (2.5)

for all vector fields f, g of class C1. Of course this extends to less regular vector
fields, provided one considers only the points x such that both sides of (2.5)
are classically defined.

Remark 2.21. If Ψ is a shift, i.e., Ψ = τh for some h ∈ R
n, then DΨ(x) = IdRn ,

for all x ∈ R
n, so that

(Ψ#f)(x) = f ◦ τh(x) = f(x + h) for all x ∈ R.
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We may deform, or twist, a Lie bracket B(f) as follows:

Definition 2.22. (Twisted Lie bracket) Let m ≥ 1 and let B be a bracket of
degree m. Let μ ≥ 0 be an integer such that Seq(B) = Xμ+1 . . . Xμ+m, and
consider a ν-tuple f = (f1, . . . , fν), ν ≥ m + μof vector fields of class CB−1,1.
For every x ∈ R

n and every twisting θ, let us define the θ-twisted Lie bracket
Bθ(f)(x) through recursion on the degree m:

(i) if m = 1, we set

Bθ(f)(x) := D(θ(B)−1) · B(f)(θ(B)(x)) = θ(B)#B(f)(x);

(ii) If m > 1, and (B1, B2) is the factorization of B, using θi to denote the
restriction of θ on Sbb(Bi) for i = 1, 2, we set

Bθ(f) := θ(B)#[Bθ1
1 (f), Bθ2

2 (f)].

Remark 2.23. From Remark 2.20 it follows that Bθ(f) is defined almost ev-
erywhere.

Example. Let B = [[X1,X2],X3] and let θ be a twisting of B. Let us set
Ψi = θ(Xi), i = 1, 2, 3, Ψ12 = θ([X1,X2]), and Ψ = θ(B), so that, in particular,
θ(X1) = θ(X2) = IdRn since X1,X2 are not basic subbrackets of B.

Then

Bθ(f) = Ψ#
[
Ψ#

12

[
Ψ#

1 f1, Ψ#
2 f2

]
, Ψ#

3 f3

]

=
(
D(Ψ)−1 ◦ Ψ

) ·
([ (

D(Ψ12)−1 ◦ Ψ12

) · ([f1, f2] ◦ Ψ12) ,

(
D(Ψ3)−1 ◦ Ψ3

) · (f3 ◦ Ψ3)
]

◦ Ψ
)
.

In order to construct set-valued Lie brackets, it will be sufficient to con-
sider only the subclass of basic twistings, that are defined as follows:

Definition 2.24. We say that a twisting θ : Sbb(B) → DIFF∞(Rn,Rn) is a
basic twisting if its restriction to the non-basic subbrackets coincides with the
identity twisting (i.e., θ(S) = IdRn as soon as S is not a basic subbracket.

Furthermore, in the proof of the asymptotic formula we will replace the
twisting θ appearing in the integral exact formula (see (5.4)) with the basic
twisting θb associated with θ, which acts only on basic subbrackets and is
equivalent to θ, by which we mean that

Bθ(f)(x) = B θb(f)(x). (2.6)

for any ν-tuple f = (f1, . . . , fν) ∈ CB−1,1 and almost every x ∈ R
n. Let us

point out that an equality like (2.6) turns out to be a manifestation of the
bracket-preserving property of actions of diffeomorphisms on vector fields.

Let us define the basic twisting θb associated with θ in the general case.
For this purpose, if B is a bracket of degree m, for each subbracket S ∈ Sbb(B),
let us define ΣS , the subbracket chain of S in B, to be the finite sequence of
subbrackets

ΣS =
(
BS,0, . . . , BS,Deg(S,B)

)
,
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where, if we let, for r = 0, . . . ,Deg(S,B), BS,r be the unique subbracket of
B such that BS,r ∈ Sbb(B) and Deg(BS,r, B) = r (notice that BS,0 = S and
BS,Deg(S,B) = B).

Definition 2.25. For a given twisting θ let us define the basic twisting θb
associated with θ by letting

1. θb(S) = IdRn as soon S is a subbracket of B which is not basic12;
2. θb(S) := θ(BS,Deg(S,B)) ◦ · · · ◦ θ(BS,0) for any basic subbracket S.

Notice that a twisting θ is a basic twisting if and only if θ = θb.
Proposition 2.26 below will be essential in the proof of the Asymptotic

Formula (Theorem 3.7). Its trivial proof is omitted.

Proposition 2.26. If B is a bracket and θ is a twisting of B, then θ is
equivalent to its associated basic twisting θb, by which we mean that

Bθ(f)(x) = B θb(f)(x) (2.7)

for all f ∈ CB−1,1 and x such that both members are defined.13

Example. Consider the formal bracket B = [[X1,X2],X3], and let θ be a
twisting of B. So θb is defined by setting

θb(X1) = θ(X2) = IdRn , θb(X3) = θ([[X1,X2],X3]) ◦ θ(X3),
θb([X1,X2]) = θ([[X1,X2],X3]) ◦ θ([X1,X2]), θb([[X1,X2],X3]) = IdRn

It is straightforward to verify directly that θb is equivalent to θ, namely
Bθ(f)(x) = B θb(f)(x).

Indeed, if f ∈ CB−1,1 and Ψ3 := θ(X3), Ψ12 := θ([X1,X2]), and Ψ :=
θ(B), one has

Bθ(f)(x)

= D
(
Ψ)−1(Ψ(x)

) ·
([

(
D(Ψ12)−1 ◦ Ψ12

) ·
([

f1, f2

]
◦ Ψ12

)
,

(
D(Ψ3)−1 ◦ Ψ3

) · (f3 ◦ Ψ3)

]
◦ Ψ(x)

)

=

[
(
D(Ψ12 ◦ Ψ)−1 ◦ Ψ12 ◦ Ψ

) ·
([

f1, f2

]
◦ (Ψ12 ◦ Ψ)

)
,

(
D(Ψ3 ◦ Ψ)−1

) ·
(
f3 ◦ (Ψ3 ◦ Ψ)

)]
(x) = B θb(f)(x).

When one considers a basic shift-twisting of a bracket B (instead of a gen-
eral twisting), the notion of twisted Lie bracket simplifies into that of “shifted
Lie bracket”. In particular, unlike a general twisted Lie bracket, a shifted Lie
bracket depends only on d parameters in R

n, where d := Deg(B).

12 Either S has degree > 2, or S = Xj for some j and Xj is not a factor of a subbracket of

degree 2 of S.
13 We remind that the set of such x has full measure.
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Definition 2.27. Let B be a bracket of degree m ≥ 1 and let us order the basic
subbrackets of B, e.g., lexicographically: we use S1, . . . , Sd to denote them. For
every (h1, . . . , hd) ∈ (Rn)d, let Θ(h1,...hd) denote the shift-twisting given by

Θ(h1,...hd)(Sj)(x) = τhj
(x) = x + hj , for all j = 1, . . . , d, for all x ∈ R

n.

If μ ≥ 0 is the integer such that Seq(B) = Xμ+1 . . . Xμ+m, let f = (f1, . . . , fν),
ν ≥ m+μ, be an ν-tuple of vector fields of class CB−1,1. For x ∈ R

n and almost
every value of the parameter (h1, . . . , hd) ∈ (Rn)d, the twisted bracket at x

BΘ(h1,...hd)
(f)(x)

will be called the (h1, . . . hd)-shifted bracket at x.

By merely applying Definition 2.22 (and keeping in mind the additivity
of the diff-degree) it turns out that BΘ(h1,...hd)

(f)(x) can be defined through
recursion on the diff-degree:

Proposition 2.28. For all x ∈ R
n one has

BΘ(h)
(f)(x) :=

(
Θ(h)(B)

)#
B(f)(x) =B(f)(x + h)

if Deg(B) = 1 and h ∈ R
n. Moreover, if 1 < d := Deg(B) and B has factor-

ization (B1, B2), with d1 := Deg(B1), d2 := Deg(B2) (so that d1 + d2 = d),
one has

BΘ(h1,...hd)
(f)(x) =

[
BΘ

(h1,...hd1
)

1 (f), BΘ
(hd1+1,...hd)

2 (f)
]
(x)

for all (h1, . . . , hd) in a full measure subset of (Rn)d depending on x.

Example.

1. Let us consider the formal bracket B = [X2, [X3,X4]], and f = (f1, . . . ,
f6), with f2 a vector field of class C0,1 (i.e., locally Lipschitz) and f3, f4

vector fields of class C1,1. One has Deg(B) = 2, and the basic subbrackets
are S1 = X2 and S2 = [X3,X4]. So, for every value of the parameter
(h1, h2) ∈ (Rn)2 one has Θ(h1,h2)(S1) = τh1 and Θ(h1,h2)(S2) = τh2 .
Finally, for all (h1, h2) such that (Df2(x+h1),D[f3, f4](x+h2)) is defined
(i.e., almost everywhere, see Remark 2.20), one has

[
X2, [X3,X4]

]Θ(h1,h2)

(f)(x) =
[
f2 ◦ τh1 , [f3, f4] ◦ τh2

]
(x)

= D[f3, f4](x + h2) · f2(x + h1)
−Df2(x + h1) · [f3, f4](x + h2).

2. Similarly, if f2, f3, f4, f5 are vector fields of class C1,1,
[
[X2,X3], [X4,X5]

]Θ(h1,h2)

(f)(x) =
[
[f2, f3] ◦ τh1 , [f4, f5] ◦ τh2

]
(x)

= D[f4, f5](x + h2) · [f2, f3](x + h1)
−D[f2, f3](x + h1) · [f4, f5](x + h2).

Notice that Deg
([

[X2,X3], [X4,X5]
])

= 2, i.e., in this case the diff-degree
is 2, so that the shifted bracket depends on 2n parameters.



61 Page 20 of 43 E. Feleqi and F. Rampazzo NoDEA

3. One more n-dimensional parameter is needed for the bracket
[
[X2, [X3,

X4]],X5

]
, . More precisely, Deg

([
[X2, [X3,X4]],X5]

])
= 3, and, if f2 is

of class C1,1, f3, f4 are of class C2,1, and f5 is of class C0,1, for every
(h1, h2, h3) ∈ (Rn)3 one has

[
[X2, [X3, X4]], X5

]Θ(h1,h2,h3)

(f)(x) =
[
[f2 ◦ τh1 , [f3, f4] ◦ τh2 ], f5 ◦ τh3

]
(x)

= Df5(x + h3) ·
(
D[f3, f4](x + h2) · f2(x + h1)

−Df2(x + h1) · [f3, f4](x + h2)
)

−D
(
D[f3, f4](x + h2) · f2(x + h1)

−Df2(x + h1) · [f3, f4](x + h2)
)

· f5(x + h3).

3. Set-valued brackets and the Asymptotic Formula

3.1. The set-valued bracket

For every x ∈ R
n, we will obtain the set-valued bracket as the convex hull of

the limits of the shift-twisted brackets as the shift (h1, . . . , hd) goes to zero. If
E is a subset of a R-linear space, let us use co(E) to denote the convex hull of
E.

Definition 3.1. (SET-VALUED BRACKET ) Let B be a bracket and let m :=
deg(B), d := Deg(B). If μ ≥ 0 and m ≥ 1 are integers such that Seq(B) =
Xμ+1 . . . Xμ+m and f = (f1, . . . , fν), where ν ≥ m + μ is a ν-tuple of vector
fields of class CB−1,1, we define the set-valued bracket Bset(f) at a point
x ∈ R as the convex hull of all limits of “shift-twisted” brackets at x as the
nd-dimensional parameter (hj1, . . . , hjd) goes to zero. Expressly,

Bset(f)(x) := co
{

lim
(hj1,...,hjd)→0

BΘ
(hj1

,...hjd
)

(f)(x)
}

(3.1)

where, for any x ∈ R
n, limits are taken along all sequences

(
(hj1, . . . , hjd)

)
j∈N

⊂ (Rn)d converging to zero and such that the vector BΘ
(hj1

,...,hjd
)
(f)(x) is

defined.14

Example. In view of Example 2.5 we have that, if B = [X2, [X3,X4]] and
f = (f1, . . . , f6), with f2 of class C0,1 and f3, f4 of class C1,1,

[
f2, [f3, f4]

]
set

(x) = co
{

lim
(hj1,hj2)→0

D[f3, f4](x + hj2) · f2(x + hj1)

−Df2(x + hj1) · [f3, f4](x + hj2)
}

,

where, we have written [f2, [f3, f4]]set(x) in place of
[
X2, [X3,X4]

]
set

(f)(x).

14 As remarked above, BΘ
(hj1

,...,hjd
)
(f)(x) is defined for almost every (hj1, . . . , hjd).
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Similarly, if f2, f3, f4, f5 are vector fields of class C1,1 and B =
[
[X2,X3],

[X4,X5]
]
,

[
[f2, f3], [f4, f5]

]
set

(x) = co
{

lim
(hj1,hj2)→0

D[f4, f5](x + h2) · [f2, f3](x + hj1)

−D[f2, f3](x + hj1) · [f4, f5](x + hj2)
}

.

Furthermore, if f2 is of class C1,1, f3, f4 are of class C2,1, and f5 is of class
C0,1, for every (h1, h2, h3) ∈ (Rn)3 one has

[
[f2, [f3, f4]], f5

]
set

(x)

= co

{
lim

(hj1,hj2,hj3)→0

(
Df5(x + hj3) ·

(
D[f3, f4](x + hj2) · f2(x + hj1)

−Df2(x + hj1) · [f3, f4](x + hj2)
)
D
(
D[f3, f4](x + hj2) · f2(x + hj1)

−Df2(x + hj1) · [f3, f4](x + hj2)
)

· f5(x + hj3)
)}

.

Example. Let f1, f2 be the vector fields in R
2 defined by

f1(x, y) :=
(

1
0

)
, f2(x, y) :=

(
0

α(x)

)
for all (x, y) ∈ R

2, (3.2)

where, for some m ≥ 2 α : R → R is a function of class Cm−2,1.
At differentiability points of Dm−2α one has

[f1, [f1, [· · · , [f1, f2]]]]︸ ︷︷ ︸
bracket of degree m

(x, y) = Dm−1α(x)
(

0
1

)
.

Therefore,

[f1, [f1, [· · · , [f1, f2]]]]set︸ ︷︷ ︸
bracket of degree m

(x, y) = ∂C

(
Dm−2α

)
(x)

(
0
1

)

:=
{

λ

(
0
1

)
: λ ∈ ∂C

(
Dm−2α

)
(x)

}
,

where, for any locally Lipschitz function φ : R → R, ∂Cφ(x) denotes Clarke’s
generalized derivative15 Needless to say that if α is of class Cm−1 in some
neighborhood of a point x deprived of x itself, then

[f1, [f1, [· · · , [f1, f2]]]]set︸ ︷︷ ︸
bracket of degree m

(x, y) = [a, b]
(

0
1

)
:=

{(
0
λ

)
: λ ∈ [a, b]

}
,

15 We remind that for a locally Lipschitz map φ : R → R the Clarke’s generalized derivative
at a point x ∈ R is

∂Cφ(x) :=co
{

lim
j→∞

Dφ(xj):

(xj)j∈N sequence of differentiability points of φ such that xj → x as j → ∞
}

.
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a := min
{

α(m−1)(x−), α(m)(x+)
}

, b := max
{

α(m−1)(x−), α(m−1)(x+)
}

.

Proposition 3.2. The set-valued map x �→ Bset(f)(x) is upper semi-continuous
with convex, compact, non-empty values.

Proof. The fact that for every x ∈ R
n is compact convex follows directly from

the definition (and by the fact that the set-valued map is x �→ B(f)(x) is
locally bounded). Furthermore, let us observe that the map

(x, h1, . . . , hd) �→ BΘ(h1,...hd)
(f)(x)

is defined almost everywhere and bounded measurable. More precisely, this
map is defined on a set of the form

⋃

x∈Rn

(
{x} × Ex

)
,

where, for every x ∈ R, Ex ⊂ (Rn)d has full Lebesgue measure. Moreover,
since τh(x) = τh+x−y(y) for all x, y, h ∈ R

n, one easily obtains that

Bset(f)(x) = co
{

v: v = lim
(hj1,...,hjd)→0

BΘ
(hj1

,...hjd
)

(f)(x)
}

= co
{

v: v = lim
(y,hj1,...,hjd)→(x,0)

BΘ
(hj1

,...hjd
)

(f)(x)
}

which, in turn, implies that the map x �→ Bset(f)(x) is upper semi-continuous
on R

n. �

Remark 3.3. Notice that as soon as f is of class CB at x̄ ∈ R
n, one recovers

the classical, single-valued bracket, namely Bset(f)(x̄) = {B(f)(x̄)}.

Remark 3.4. On one hand, the set-valued bracket Bset(f)(x) is small enough:
for instance, it is contained in the set one would obtain by formally replac-
ing the classical derivatives with Clarke’s generalized derivatives. This allows
idempotency, namely the fact that for every locally Lipschitz vector field f one
has

[f, f ]set ≡ {0}
to hold true (which would be not the case if we used Clarke’s generalized
derivatives, as one can easily check by considering the vector field f(x) = |x|
in R). This same “smallness of the bracket” allows to prove a “Frobenius type
Theorem” (see [7]), namely the characterization of local integrability through
(suitably rephrased) involutivity.

However, for degree > 2, a too small bracket16 would not be fit for gener-
ating sufficient conditions giving controllability, as in Chow–Rashevski’s Theo-
rem. This explains why the definition of set-valued bracket involves limits along
d-tuples of Rn-sequences, where d is the diff-degree of the bracket, rather than

16 For instance, the “bracket” one would obtain by mimicking the case of the degree 2.
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along limits of single R
n-sequences (as in the degree two case). Among the

consequences of such a construction one has that
[
[g, h], [g, h]

]
set

⊇ [f, f ]set = {0} (3.3)

for any pair of vector fields g, h of class C1,1 (so that f := [g, h] is locally
Lipschitz). Furthermore, one can exhibit examples (see [9, Section 7]) where
the inclusion is strict.

Remark 3.5. A relation between the set-valued bracket and Clarke’s general-
ized derivative is recovered as soon as one of the two terms of the factorization
is slightly more regular. Precisely, if B = [B1, B2], f1 is of class CB1+1, and f2
is of class CB2, 1, then:

1. The vector fields F1 = B1(f1) and F2 = B1(f2) are of class C1 and C0,1,
respectively;

2. The pair of vector fields f = (f1, f2) is of class CB−1,1;
3. One has

B(f) = ∂CF2 · F1 − ∇F1 · F2 =
{

M · F1 − ∇F1 · F2 : M ∈ ∂CF2

}
,

where ∂CF2 denotes the Clarke’s generalized derivative of F2.

3.2. The asymptotic formula

We will now state the main result of the paper, an asymptotic formula, namely
an approximation at a point x of a certain composition of flows related to a
given bracket B(f) and to times t1, . . . , tm by t1 · · · tmB(f)(x).

To begin with, let us establish the multi-flows we will be interested in.

Definition 3.6. Let B be a bracket of degree m ≥ 1 and let μ ≥ 0 be an integer
such that Seq(B) = Xμ+1 . . . Xμ+m. For some ν ≥ m + μ, let f = (f1, . . . , fν)
be an ν-tuple of Lipschitz vector fields of class CB−1,1. For every (t1, . . . , tm) ∈
R

m we define the multi-flow x �→ Ψf
B(t1, . . . , tm)(x) recursively as follows:

(i) if deg(B) = m = 1, i.e., B = Xj for some j ∈ N, we set

Ψf
B(t)(x) := etfj (x), for all x ∈ R

n,

i.e., Ψf
B(t)(x) is the value at t of the solution to the Cauchy problem

ẏ = fj(y), y(0) = x;
(ii) if deg(B) = m > 1 and (B1, B2) is the factorization of B, we set

Ψf
B(t1, . . . , tm)(x) :=

(
Ψf

B2
(tm1+1, . . . , tm)

)−1 ◦ (Ψf
B1

(t1, . . . , tm1)
)−1

◦ Ψf
B2

(tm1+1, . . . , tm) ◦ Ψf
B1

(t1, . . . , tm1)(x)

for all x ∈ R
n, where m1 := deg(B1)(< m).

Example.

1. If B = [X1,X2] and f = (f, g), then

Ψf
B(t1, t2)(x) = e−t2g ◦ e−t1f ◦ et2g ◦ et1f (x).
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2. If B = [X1, [X2,X3]] and f = (f, g, h), then

Ψf
B(t1, t2, t3)(x) = e−t2g ◦ e−t3h ◦ et2g ◦ et3h ◦ e−t1f ◦ e−t3h ◦ e−t2g

◦ et3h ◦ et2g ◦ et1f (x)

3. if B = [[X1,X2], [X3,X4]] and f = (f, g, h, k), then

Ψf
B(t1, t2, t3, t4)(x) = e−t3h ◦ e−t4k ◦ et3h ◦ et4k ◦ e−t1f ◦ e−t2g ◦ et1f ◦ et2g

◦ e−t4k ◦ e−t3h ◦ et4k ◦ et3h ◦ e−t2g ◦ e−t1f ◦ et2g ◦ et1f (x).

Theorem 3.7. (ASYMPTOTIC FORMULA) Let B a bracket of degree m ≥ 2
and let n ∈ N. Then there exists a number K, depending only on m and n,
such that, for every f = (f1, . . . , fμ) ∈ CB−1,1

0 , one has

dist
(
Ψf

B(t1, . . . , tm)(x) − x, t1 · · · tm · Bset(f)(x∗)
)

≤ |t1 · · · tm|
(

γ
(
K‖f‖B−1,1|(t1, . . . , tm)| + |x − x∗|

)

+K · ‖f‖m+1
B−1,1 · |(t1, . . . , tm)|

)
(3.4)

for all x, x∗ ∈ R
n and (t1, . . . , tm) ∈ R

m with |(t1, . . . , tm)|‖f‖B−1,1 ≤ 1, where
γ is the modulus of continuity of the map x �→ B(f)(x) at x∗ defined by formula
(4.6) below. In particular,

lim
(t1,...,tm,x)→(0,x∗)

dist
(

Ψf
B(t1, . . . , tm)(x) − x

t1 · · · tm , Bset(f)(x∗)
)

= 0. (3.5)

4. Proof of Theorem 3.7 (asymptotic formula)

The proof of Theorem 3.7 will be based on the exact integral formula, recalled
in Sect. 5, and on a series of technical estimates which are proved in Sect. 6.
We will subdivide the proof in four successive steps. First, we will apply the
integral exact formula proved in [4] to some regularizations of the vector fields
f1, . . . , fm. Secondly, we will approximate the twisted brackets contained in
the integral formulas with shift-twisted brackets. This will be utilized in the
third step, where we will obtain an estimate for the distance of the multi-flows
relative to the regularized vector fields from the set-valued Lie brackets. The
proof will be finalized by letting the regularization parameter go to zero.

Step 1. The integral formula for the regularized vector fields.
Let φ : Rn → [0,+∞[ be a mollifier—i.e., φ is a C∞, compactly supported

function with L1-norm equal to 1—and, for every ζ ≥ 0, let us consider the
regularized vector fields

fζ
i (x) :=

∫

Rn

fi(x + ζh)φ(h) dh ∀x ∈ R
n.

Correspondingly, let Ψfζ

B be the multi-flow associated with the bracket B and
the m-tuple f ζ = (fζ

1 . . . , fζ
m) of regularized vector fields, as in Definition 3.6.
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Since the vector fields fζ
i , i = 1, . . . , m are of class C∞

0 , we can apply the exact
integral formula (5.7) below (see Sect. 5), which gives

Ψfζ

B (t1, . . . , tm)(x) − x

=
∫ t1

0

· · ·
∫ tm

0

Bθζ

(f ζ)
(
Ψfζ

B (t1, . . . , tm−1, sm) (x)
)

ds1 . . . dsm. (4.1)

Here, in connection with the choice (g1, . . . , gm) = (fζ
1 , . . . , fζ

m), θζ stands for
the (basic) twisting utilized in Theorem 5.10 below, namely

θζ := θb
(t1,...,tm1−1,tm1+1,...,tm−1,sm,s1,...,sm−1).

Step 2. Approximations through shift-twistings.
When, on the right hand-side of (4.1), the twisting θζ is replaced by

the shift approximation θζ
xζ

of θζ at the point xζ = Ψfζ

B (t1, . . . , tm−1, sm) (x),
sm ∈ [0, tm] for tm ≥ 0 and sm ∈ [tm, 0] for tm < 0 (see Definition 2.13) one
obtains the integral

∫ t1

0

· · ·
∫ tm

0

B
θζ

xζ (f ζ)(xζ) ds1 . . . dsm.

We wish to estimate the corresponding error, namely the quantity
∣∣∣∣Ψ

fζ

B (t1, . . . , tm)(x) − x −
∫ t1

0

· · ·
∫ tm

0

B
θζ

xζ (f ζ)(xζ)ds1 . . . dsm

∣∣∣∣ .

Making use of Proposition 6.6 below for k = 0 and for the m-tuple g
given by the regularization f ζ , we get

∣∣Bθζ

(f ζ)(xζ) − Bθζ
x(f ζ)(xζ)

∣∣ ≤ c0(m)‖f ζ‖m
B · dB+1(θ, ι), 17 (4.2)

where c0(m) is the number defined in (6.21) below.
Hence, for xζ = Ψfζ

B (t1, . . . , tm−1, sm) (x),
∣∣∣∣Ψ

fζ

B (t1, . . . , tm)(x) − x −
∫ t1

0

· · ·
∫ tm

0

B
θζ

xζ (f ζ)(xζ)ds1 . . . dsm

∣∣∣∣

≤
∣∣∣∣Ψ

fζ

B (t1, . . . , tm)(x) − x −
∫ t1

0

· · ·
∫ tm

0

Bθζ

(f ζ) (xζ) ds1 . . . dsm

∣∣∣∣

+
∫ t1

0

· · ·
∫ tm

0

∣∣∣Bθζ

(f ζ) (xζ) − Bθζ
x(f ζ)(xζ)

∣∣∣ ds1 . . . dsm

=
∫ t1

0

· · ·
∫ tm

0

∣∣∣Bθζ

(f ζ) (xζ) − Bθζ
x(f ζ)(xζ)

∣∣∣ ds1 . . . dsm

≤ c0(m) · ‖f ζ‖m
B · d̂B(Dθ,Dι)|t1| · · · |tm|

≤ c0(m)k(m) · ‖f ζ‖m+1
B · |(t1, . . . , tm)| · |t1| · · · |tm|, (4.3)

where k(m) denotes the least number such that, for every bracket B of degree
m, f ∈ CB−1,1, ζ > 0, the estimate

dB+1(θζ , ι) ≤ k(m)‖f ζ‖B |(t1, . . . , tm)| (4.4)

17 See (2.3) for the definition of dB+1(θ, ι).
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holds true for all (t1, . . . , tm) ∈ R
m with ‖f ζ‖B |(t1, . . . , tm)| ≤ 1. Notice

that the existence of k(m) follows, in particular, from the fact that θζ(S) =
θζ(t1, . . . , tm1−1, tm1+1, . . . , tm−1, sm, s1, . . . , sm1)(S), S ∈ Sbb(B), are prod-
ucts of flows of the vector fields fζ

1 , . . . , fζ
m as defined by (5.1), (5.2) and by

Lemma 6.1.
Therefore we obtain

∣∣∣∣Ψ
fζ

B (t1, . . . , tm)(x) − x −
∫ t1

0

· · ·
∫ tm

0

B
θζ

xζ (f ζ)(x) ds1 . . . dsm

∣∣∣∣

≤ c0(m)k(m) · ‖f ζ‖m+1
B · |(t1, . . . , tm)| · |t1| · · · |tm|. (4.5)

Step 3. Approximation of the regularized multi-flow through a set-valued bracket.
Now we wish to utilize (4.5) to estimate the distance

dist
(
ΨB(fζ)(t1, . . . , tm)(x) − x, t1 · · · tmBset(f)(x∗)

)

for all x, x∗ ∈ R
n and (t1, . . . , tm) ∈ R

m; we will make (x, ζ) tend to (x∗, 0) and
get the thesis). For this purpose, let us introduce the function γ : [0,+∞[ →
[0,+∞[,

γ(ρ) := sup
Θ

{
dist

(
BΘ(f)(x), Bset(f)(x∗)

)}
, (4.6)

where the supremum is taken over all basic shift-twistings Θ of B and all points
x ∈ R

n such that
(a) x lies in the domain of BΘ(f) ;
(b) |x − x∗| + dB(Θ, ι) ≤ ρ.18

According to Lemma 6.5 below, the function γ is a modulus, i.e., γ is
nondecreasing and

lim
ρ→0+

γ(ρ) = 0.

Furthermore, by Proposition 6.8, there exists a constant C0 ≥ 0 such that, for
all basic shift-twistings Θ and all ζ > 0, one has

dist
(
BΘ(f ζ)(x), Bset(f)(x∗)

) ≤ γ
(
dBΘ, ι) + |x − x∗| + ζ

)
+ C0ζ ∀x ∈ R

n.
(4.7)

By applying (4.7) to the shift-twisting Θ = θζ
xζ

and using (4.5), we obtain

dist
(
Ψfζ

B (t)(x) − x, t1 · · · tmB(f)(x∗)
)

≤ |t1 · · · tm|
(
γ
(
dB(θζ

xζ
, ι) + |x − x∗| + ζ

)
+ C0ζ

+ c0(m)k(m) · ‖f‖m+1
B−1,1 · |(t1, . . . , tm)|

)
. (4.8)

Since in view of (4.4) one has

dB(θζ
xζ

, ι) ≤ dB(θζ , ι) ≤ k(m)‖f ζ‖B |(t1, . . . , tm)|,

18 See Remark 2.18 for the definition of dB(Θ, ι).
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from (4.8) one gets

dist
(
ΨB(fζ)(t)(x) − x, t1 · · · tmB(f)(x∗)

)

≤ |t1 · · · tm|
(

γ
(
k(m)‖f ζ‖B |(t1, . . . , tm)| + |x − x∗| + ζ

)

+C0ζ + c0(m)k(m) · ‖f‖m+1
B−1,1 · |(t1, . . . , tm)|

)
(4.9)

for all x ∈ R
n, (t1, . . . , tm) ∈ R

m, ζ > 0 with ‖f ζ‖B |(t1, . . . , tm)| ≤ 1.

Step 4. Conclusion of the proof.
Taking the limit on both sides of (4.9) as the parameter ζ goes to zero,

we get the thesis of the theorem, with K = k(m) + c0(m)k(B). �

5. Integral formulas for bracket-generating C∞ multi-flows

Let us briefly recall the (exact) integral formulas for bracket-generating multi-
flows of C∞ vector fields, which were established in [4] by generalizing to the
degree > 2 the results in [8]. When not otherwise specified in this section we
shall assume that all vector fields are of class C∞ and complete (by which we
mean that their flows are globally defined, a hypothesis which can be recovered
by means of standard “cut-off” arguments).

5.0.1. Integrating brackets. If a bracket B of degree m ≥ 1 is given together
with a m-tuple g = (g1, . . . , gm) of smooth vector fields, the integrating bracket
of B(g) is a twisted bracket, depending on 2(m − 1) parameters, obtained
through suitable diffeomorphisms which are compositions of the gi’s flows.

Let m be an integer ≥ 1, and let B be a bracket of degree m, which means
Seq(B) = X1 . . . Xm. Let g = (g1, . . . , gm) be an m-tuple of C∞ complete
vector fields.

Definition 5.1. Let us choose

(t1, . . . , tm1−1, tm1+1, . . . , tm−1, sm, s1, . . . , sm−1) ∈ R
2m−2,

and let us consider the (2m − 2)-parameter twisting

θg = θ
(t1,...,tm1−1,tm1+1,...,tm−1,sm,s1,...,sm−1)
g

defined as follows:
• For all j = 1, . . . , m, we set

θg(Xj) := IdRn . (5.1)

• If S ∈ Sbb(B), with k := deg(S) ≥ 2, S = (S1, S2), k1 := deg(S1)(< k),
and Seq(S) = (Xr+1, . . . , Xr+k) for some r ∈ {0, 1, . . . ,m − 2}, we set

θg(S)
:= Ψg

S2
(tr+k1+1, . . . , tr+k−1, sr+k) ◦ Ψg

S1
(tr+1, . . . , tr+k1−1, sr+k1). (5.2)

Remark 5.2. Notice that θg = ι when m = 1. Moreover, when one of the
indexes m1,m2 is equal one, formula (5.2) has to be interpreted as follows:
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• If m1 = m2 = 1 ,

θg = θs2,s1
g := es2g2 ◦ es1g1 .

• If m1 > 1 and m2 = 1,

θg := esm1+1gm1+1 ◦ Ψg
B1

(t1, . . . , tm1−1, sm1)

• If m1 = 1 and m2 > 1,

θg := Ψg
B2

(t2 . . . , tm2 , s1+m2) ◦ es1f1

Definition 5.3. For every value of the parameter

(t1, . . . , tm1−1, tm1+1, . . . , tm−1, sm, s1, . . . , sm−1) ∈ R
2m−2,

the vector field B(t1,...,tm1−1,tm1+1,...,tm−1,sm,s1,...,sm−1)(g) defined by setting,
for every x ∈ R

n,

B(t1,...,tm1−1,tm1+1,...,tm−1,sm,s1,...,sm−1)(g)(x)

:= Bθ
(t1,...,tm1−1,tm1+1,...,tm−1,sm,s1,...,sm−1)
g (g)(x)

is called the integrating bracket corresponding to B and g.

Example 5.4. If B = X1,

B(g)(x) = g1(x).

Example 5.5. If B = [X1,X2],

B(g)(s2,s1)(x) = [g1, g2](s2,s1)(x)

= D (es1g1 ◦ es2g2)−1 · [g1, g2] (es1g1 ◦ es2g2)(x).

Example 5.6. If B =
[
[X1,X2],X3

]
,

B(g)(t1,s3,s1,s2)(x) =
[
[g1, g2], g3

](t1,s3,s1,s2)

(x)

= Ψ#
[
[g1, g2](s2,s1), g3

]
(x)

= DΨ−1 ·
[
D
(
Ψ−1

12

) · [g1, g2

] ◦ Ψ12, g3

]
(Ψ(x)) , (5.3)

where we have set

Ψ := e−s2g2 ◦ e−t1g1 ◦ es2g2 ◦ et1g1 ◦ es3g3 ,

Ψ12 := es1g1 ◦ es2g2 .

Example 5.7. If B =
[
[X1,X2], [X3,X4]

]
,

B(g)(t1,t3,s4,s1,s2,s3)(x) =
[
[g1, g2], [g3, g4]

](t1,t3,s4,s1,s2,s3)

(x)

= Ψ#
[
[g1, g2](s2,s1), [g3, g4](s4,s3)

]
(x)

= DΨ−1 ·
[
D
(
Ψ−1

12

) · [g1, g2] ◦ Ψ12,D
(
Ψ−1

34

)

· [g3, g4] ◦ Ψ34

]
(Ψ(x)) ,
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where

Ψ := e−s2g2 ◦ e−t1g1 ◦ es2g2 ◦ et1g1 ◦ e−s4g4 ◦ e−t3g3 ◦ es4g4 ◦ et3g3 ,

Ψ12 := es1g1 ◦ es2g2 , Ψ34 := es3g3 ◦ es4g4 .

5.0.2. Integral formulas. Let B be a formal bracket of degree m ≥ 1, let m1 be
the degree of the first bracket of the factorization of B, and let g = (g1, . . . , gm)
be a m-tuple of C∞ vector fields.

Theorem 5.8. (Integral representation) For every m-tuple t = (t1, . . . , tm) ∈
R

m one has

Ψg
B(t1, . . . , tm)(x) − x

=
∫ t1

0

· · ·
∫ tm

0

B(t1,...,tm1−1,tm1+1,...,tm−1,sm,s1,...,sm−1)(g)
(
Ψg

B (t1, . . . , tm−1, sm) (x)
)
ds1 . . . dsm. (5.4)

Remark 5.9. These formulas generalize the familiar integral representation of
ODE’s. Indeed, if B = X1, g = g1 one gets

et1g1(x) − x = Ψg
B(t1)(x) − x =

∫ t1

0

B(g)(Ψg
B(s)(x))ds =

∫ t1

0

g1(esg1(x))ds.

Furthermore, in relation with the brackets considered in the previous three
examples, the general formulas read

Ψg
[X1,X2](t1, t2)(x) = x +

∫ t1

0

∫ t2

0

[g1, g2]
(s2,s1)

(
Ψg

[X1,X2](t1, s2)(x)
)

ds1 ds2, (5.5)

Ψg
[[X1,X2],X3](t1, t3, t3)(x)

= x +

∫ t1

0

∫ t2

0

∫ t3

0

[[g1, g2], g3]
(t1,s3,s1,s2)

(
Ψg

[[X1,X2],X3](t1, t2, s3)(x)
)

ds1 ds2 ds3,

(5.6)

and

Ψg
[[X1,X2],[X3,X4]]

(t1, t2, t3, t4))(x) − x

=
∫ t1

0

∫ t2

0

∫ t3

0

∫ t4

0

[[g1, g2], [g3, g4]](t1,t3,s4,s1,s2,s3)

(
Ψg

[[X1,X2],[X3,X4]]
(t1, t2, t3, s4)(x)

)
ds1 ds2 ds3 ds4,

respectively.

One can replace the twisting

θ(t1,...,tm1−1,tm1+1,...,tm−1,sm,s1,...,sm−1)

with the corresponding basic twisting

θb
(t1,...,tm1−1,tm1+1,...,tm−1,sm,s1,...,sm−1),
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so to obtain the (parametrized) vector field

y �→ B
(t1,...,tm1−1,tm1+1,...,tm−1,sm,s1,...,sm−1)

b (g)(y)

:= B θ
(t1,...,tm1−1,tm1+1,...,tm−1,sm,s1,...,sm−1)

b (g)(y).

By Proposition 2.26 and Theorem 5.8 one gets an integral formula in-
volving only basic twistings:

Theorem 5.10. (Integral representation with basic twistings) For every m-tuple
(t1, . . . , tm) ∈ R

m one has

Ψg
B(t1, . . . , tm)(x) − x

=
∫ t1

0

· · ·
∫ tm

0

B
(t1,...,tm1−1,tm1+1,...,tm−1,sm,s1,...,sm−1)

b (g)(x)
(
Ψg

B (t1, . . . , tm−1, sm) (x)
)
ds1 . . . dsm. (5.7)

6. Some estimates

In this section we state and prove a few technical results which have been
utilized in the proof of the Theorem 3.7.

Lemma 6.1. Let k, n be positive integers. Let f be a vector field on R
n of class

Ck and having compact support. Then, for every t ∈ R, the flow map x �→
etf (x) is (well-defined and) of class Ck. In addition, there exists a constant L
depending only on k and n such that, for every � = 0, . . . , k,

|D	
x

(
etf (x) − ι

)
(x, t)| ≤ L‖f‖k|t| (6.1)

for all (x, t) ∈ R
n × R verifying ‖f‖k|t| ≤ 1.

The regularity of the flow-map is a classical result, while the proof of (6.1)
can be easily deduced from standard arguments of the theory of o.d.e.’s.

Lemma 6.2. Let Rn � x �→ A(x) ∈ R
n×n and R

n � x �→ g(x) ∈ R
n be, respec-

tively, a matrix-valued smooth function and a vector-valued smooth function.
Then for all k ∈ N0

‖Dk(A · g)‖∞ ≤ (k + 1)2k

(
k + n − 1

k

)
‖A‖k‖g‖k. (6.2)

The norm ‖A‖k of a matrix- or a vector-valued function R
n ⊃ Ω � x �→

A(x) = (Aij(x))1≤i≤m, 1≤j≤n ∈ R
m×n, m,n ∈ N, defined on some open set Ω,

is by definition

‖A‖k :=
k∑

	=0

‖D	A‖∞,

where, for 0 ≤ � ≤ k,

‖D	A‖∞ := sup
x∈Ω

⎛

⎜⎜⎝
∑

|α|=	

∑

1≤i≤m
1≤j≤n

|∂αAij(x)|

⎞

⎟⎟⎠ .
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Clearly, with these notation, ‖A‖0 and ‖A‖∞ denote the same quantity.

Proof. For k = 0 the proof is easy so let k ≥ 1. We have

∑

|α|=k

∣∣∣∣∣∣
∂α

⎛

⎝
n∑

j=1

(
α

β

)
Aij(x)gj(x)

⎞

⎠

∣∣∣∣∣∣
≤

n∑

i,j=1

∑

|α|=k

∑

β≤α

(
α

β

) ∣∣∂α−βAij(x)∂βgj(x)
∣∣

≤
∑

|α|=k

∑

β≤α

(
α

β

)
‖A‖k‖g‖k

= 2k

(
k + n − 1

k

)
‖A‖k‖g‖k,

where the last equality follows from the combinatorial identity (1.4). �
Lemma 6.3. Let g : Ω ⊂ R

n → R
p, f : D ⊂ R

p → R
q be functions of class Ck

and g(Ω) ⊂ D, where n, p, q, k ∈ N and Ω,D are open sets. Then f ◦ g is of
class Ck as well, and moreover, the estimate

‖Dk(f ◦ g)‖0 ≤ k(k + 1)(n+p)(k+1) ‖Df‖k−1(1 + ‖Dg‖k−1)k. (6.3)

holds true. In particular,

‖f ◦ g‖k ≤ (k + 1)(n+p)(k+1)+1 ‖f‖k(1 + ‖Dg‖k−1)k. (6.4)

Proof. By FÃăa di Bruno’s formula (see (1.5)), for every natural number k ≥ 1,
we have

|Dk(f ◦ g)| =
∑

|α|=k

|∂α(f ◦ g)|

=
∑

|α|=k

|α|∑

|γ|=1

|(∂γf) ◦ g|
|α|∑

s=1

∑

Ps(α,γ)

α!
s∏

j=1

|(∂βj

g)γj |
γj !(βj !)|γj | , (6.5)

where, for all α ∈ N
n
0 , γ ∈ N

p
0 with 1 ≤ |γ| ≤ |α| and for all s = 1, . . . , k, the

set Ps(α, γ) ⊂ (Nn
0 × N

p
0)

s is defined by (1.6).
Let us observe that, provided |βj | ≤ k for whatever γj , one has

|(∂βj

g)γj | ≤ (1 + |∂βj

gj |)|γj | ≤ (1 + |D|βj |g|)|γj | ≤ (1 + ‖Dg‖k−1)|γj |.

Hence, for every (β1, . . . , βs; γ1, . . . , γs) ∈ Ps(α, γ), since
s∑

j=1

|γj | = |γ|, we

have
s∏

j=1

|(∂βj

g)γj | ≤ (1 + ‖Dg‖k−1)|γ|.

Continuing with the estimate in (6.5), we obtain

|Dk(f ◦ g)| ≤ Ck ‖Df‖k−1(1 + ‖Dg‖k−1)k, (6.6)

where

Ck :=
∑

|α|=k

|α|∑

|γ|=1

|α|∑

s=1

∑

Ps(α,γ)

1.



61 Page 32 of 43 E. Feleqi and F. Rampazzo NoDEA

Since the cardinality |Ps(α, γ)| of Ps(α, γ) verifies

|Ps(α, γ)| ≤ (|α| + 1)(n+p)s ≤ (k + 1)(n+p)k,

we get

Ck ≤ k(k + 1)(n+p)(k+1), (6.7)

which, together with (6.6), implies (6.3). �

In order to state Lemma 6.4 below we set, for every nonnegative integer
k,

pk(1) := akbk
2(n + 2)2k, ck := pk(1)(k + 1), 22k+n−1 (6.8)

and, for every natural number m ≥ 2,

pk(m) := (2ck+m)m−1pk+m(1)m, (6.9)

where ak, bk are the constants appearing, respectively, in estimates (6.2) and
(6.4) for p = n, i.e.,

ak = (k + 1)2k

(
k + n − 1

k

)
, bk := (k + 1)2n(k+1)+1. (6.10)

Lemma 6.4. Let m ≥ 1 be an integer. For every bracket B of degree m, integer
k ≥ 0, m-tuple g = (g1, . . . , gm) ∈ CB+k and every twisting θ, one has

‖Bθ(g)‖k ≤ pk(m) · ‖g‖m
B+k (6.11)

provided dB+k(θ, ι) ≤ 1.

Proof. We prove the result by induction on m = deg(B).
Consider the case m = 1, so that B = Xi for some i ∈ N. Since the

twisting θ consists of a single diffeomorphism, we write simply θ instead of
θ(B). If g = (g1, . . . , gm) for some m ≥ i, we have Bθ(g) = θ#g = θ#g − g ◦
θ + g ◦ θ =

(
D(θ−1 − IdR) ◦ θ

) · g ◦ θ + g ◦ θ.
By Lemma 6.2, we obtain

‖Bθ(g)‖k ≤ ‖ (D(θ−1 − IdRn) ◦ θ
) · (g ◦ θ) ‖k + ‖g ◦ θ‖k

≤ ak ‖(D(θ−1 − IdRd)
) ◦ θ‖k ‖g ◦ θ‖k + ‖g ◦ θ‖k,

(6.12)

while, by applying by Lemma 6.3, we get

‖D
(
θ−1 − IdRn

) ◦ θ‖k ≤ bk ‖D(θ−1 − IdRn)‖k(1 + ‖Dθ‖k−1)k, (6.13)

‖g ◦ θ‖k ≤ bk ‖g‖k(1 + ‖Dθ‖k−1)k, (6.14)

where ak, bk are the constants defined in (6.10). In addition

‖Dθ‖k−1 ≤ ‖D(θ − IdRn)‖k−1 + ‖D(IdRn)‖k−1 ≤ dB+k(θ, ι) + n, (6.15)
‖D(θ−1 − IdRn)‖ ≤ dB+k+1(θ, ι) (6.16)

(see (2.3) for the definitions of dB+k(θ, ι), dB+k+1(θ, ι)). Combining together
the estimates (6.12), (6.13), (6.14), (6.15), (6.16) we deduce (6.11) with pk(1)
given by (6.8).

Now let m > 1. We shall prove that, assuming the thesis to hold true
for the brackets of degree < m, it holds true also for brackets of degree m. So
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let B be a bracket of deg(B) = m and let (B1, B2) the canonical factorization
of B, i.e., B = [B1, B2]. Let the subbrackets B1, B2 have degree m1 and
m2, respectively, so that, in particular m1 + m2 = m. Let θ be a twisting of
B verifying dB+k(θ, 0) ≤ 1. We denote by θi, i = 1, 2, the restrictions of θ
to Subb(Bi), respectively. Let Ψ = θ(B). Let also g ∈ CB+k. We have (see
Definitions 2.22 and 2.19)

Bθ(g)(x) = DΨ−1(Ψ(x)) ·
[
Bθ1

1 (g), Bθ2
2 (g)

]
(Ψ(x)).

For the sake of brevity let us set ĝ1 = Bθ1
1 (g), ĝ2 = Bθ2

2 (g).
As in the case m = 119 one has

‖Bθ(g)‖k ≤ pk(1)‖[ĝ1, ĝ2]‖k. (6.17)

Since [ĝ1, ĝ2] = Dĝ2 · ĝ1 − Dĝ1 · ĝ2, by Lemma 6.2, it follows that

‖[ĝ1, ĝ2]‖k ≤ (k + 1)22k+n−1 (‖ĝ1‖k+1 ‖ĝ2‖k + ‖ĝ2‖k+1 ‖ĝ1‖k.) (6.18)

By the inductive hypothesis, for i = 1, 2,

‖ĝi‖k ≤ pk(mi) (‖g‖Bi+k)mi ,

‖ĝi‖k+1 ≤ pk+1(mi) (‖g‖Bi+k+1)
mi

since dBi+k(θi, ι) ≤ dBi+k+1(θi, ι) ≤ dB+k(θ, ι) ≤ 1.
By these estimates and by (6.18), since ‖g‖Bi+k ≤ ‖g‖Bi+k+1 ≤ ‖g‖B+k,

dBi+k+1(θi, ι) ≤ dBi+k+2(θi, ι) ≤ dB+k+1(θ, ι), it follows that

‖[ĝ1, ĝ2]‖k ≤ (k + 1)22k+n−1 (pk+1(m1)pk(m2) + pk+1(m2)pk(m1)) (‖g‖B+k)m1+m2

From this estimate, (6.17), m1 + m2 = m, and the fact that

pk(m) ≥ pk(1)(k + 1)22k+n−1 (pk+1(m1)pk(m2) + pk+1(m2)pk(m1)) �

it follows that (6.11) holds true.

6.1. Shift-brackets and set-valued brackets

Consider the function γ : [0,+∞[ → [0,+∞[ defined by setting

γ(ρ) := sup
Θ

dist
(
BΘ(f)(x), Bset(f)(x∗)

)
, ∀ρ ≥ 0

where the supremum is taken over all basic shift-twistings Θ of B and all points
x ∈ R

n such that

(a) x lies in the domain of BΘ(f) (which has full measure, since f ∈ CB−1,1);
(b) |x − x∗| + dB(Θ, ι) ≤ ρ.

Namely, γ(·) gives the largest error in the evaluation of the set-valued
bracket at x∗ by any Θ-shifted bracket when the latter is evaluated at x such
that |x − x∗| + dB(Θ, ι) ≤ ρ.

19 Notice that if a twisting, say η, of a degree-1 bracket Xi maps Xi into the diffeomorphism
Ψ, one has dXi+k(η, ι) ≤ dXi+k(θ, ι) ≤ 1) for every k.
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Lemma 6.5. The function γ is a modulus, i.e.,

γ(0+) := lim
ρ→0+

γ(ρ) = 0.

dB(Θ, ι) =
∑

S ∈ Sbb(B)
S is basic

|Θ(S)(0)|,

Proof. Though this lemma is a nothing but a manifestation of the definition
and upper semi-continuity of the set-valued map x �→ BΘ(f)(x), for the sake of
self-consistency we provide a proof. Clearly the right-limit γ(0+) exists, for γ
is a nondecreasing function. If we had γ(0+) > 0, then we could find an ε > 0
and a sequence ρj → 0+ such that γ(ρj) > ε > 0 for all j ∈ N. Therefore, for
each j ∈ N, there would exist a basic shift-twisting Θj and xj ∈ R

n such that

dist
(
BΘj (f)cl(xj), Bset(f)(x∗)

)
> ε, (6.19)

while

|x − x∗| + dB(Θj , ι) ≤ ρj .

Clearly the sequence
{
BΘj (f)cl(xj)

}
j∈N

is bounded. Thus, there exists a subse-
quence, still denoted

{
BΘj (f)cl(xj)

}
j∈N

, such that BΘj (f)(xj) → v as j → ∞.

We now slightly change the sequence (Θj) into (Θ̃j) by setting Θ̃j(S) =
Θj(S) + τxj−x∗ for all j ∈ N and any basic subbracket S of B. One has
dB(Θ̃j , ι) → 0 as j → ∞. Therefore, by the definition of set-valued bracket
(see Def. 3.1), v ∈ B(f)(x∗). This gives a contradiction, for, passing to the
limit in (6.19) one gets

0 = dist
(
v, Bset(f)(x∗)

) ≥ ε > 0.

�

6.2. Approximation of twisted brackets by shifted brackets

If B is a bracket, for any twisting θ of B and any m-tuple of vector fields
g = (g1, . . . , gm) of class CB , we have

Bθx(g)(x), x ∈ R
n, (6.20)

is obtained by shifting B(g) through the shift-twisting approximation θx of
θ based on x (see Definition 2.13). Informally, we can say that Bθx(g)(x) is
obtained from the expression of the twisted bracket Bθ(g) evaluated at x by
removing all terms containing derivatives of θ(S) and θ(S)−1.

If (B1, B2) is the factorization of B and θ1, θ2 are the restrictions of θ
on, resp., Subb(B1), Subb(B2), we have

Bθx(g)(x) =
[
B

(θ1)x

1 (g), B
(θ2)x

2 (g)
]
(θ(B)(x)).

In order to state Proposition 6.6, we need to define the following numbers
ck(m), m ∈ N, k ∈ Z, k ≥ 0:

ck(1) := 2k(k − 1)k2nk(2 + n)k−1 + k(k + 1)2n(k+1)(n + 2)n+k
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ck(m) := max
{

2k

(
k + n − 1

k

)
2ck+1(m1)ck+1(m2) + ck(1)pk(m)

}
∀m ≥ 2,

(6.21)

where the maximum is computed over all pairs (m1,m2) ∈ N
2 such that m1 +

m2 = m.

Proposition 6.6. Let us choose m ∈ N and an integer k ≥ 0. Let B be a bracket
of degree m and let θ be a basic twisting verifying

dB+k+1(θ, ι) ≤ 1.

Then, for each m-tuple g = (g1, . . . , gm) ∈ CB+k, one has
∣∣D	Bθ(g)(x) − D	Bθx(g)(x)

∣∣ ≤ ck(m)‖g‖m
B+k · dB+k (θ, ι) (6.22)

for all 0 ≤ � ≤ k, where ck(m) has been defined in (6.21), and distances
dB+k (θ, ι) are defined as in (2.3) on a compact neighborhood K of x.

Proof. The result will be proved by induction on the degree m of B. First let
us examine the case when m is equal to 1.

If m = deg(B) = 1, then B = Xi for some natural number i. Since the
twisting θ consists of one single diffeomorphism, it is not confusing to write θ
instead of θ(B). In addition we observe that

∂α
(
Bθx(g)

)
(x) = ∂αgi(θ(x)).

Since by Leibniz’s rule

∂αBθ(g) =
∑

0 	=β≤α

(
α

β

)
∂α−β

(
Dθ−1 ◦ θ

) · ∂β
(
g ◦ θ

)
+ ∂α

(
g ◦ θ

)
,

by Lemma 6.3, and in particular, by estimate (6.3), we have
∣∣∂αBθ(x) − ∂α

(
g ◦ θ

)
(x)

∣∣

≤ 2k(k − 1)k2nk‖Dθ−1‖k−1 (1 + ‖Dθ‖k−1)k−1 ‖g‖k

≤ 2k(k − 1)k2nk(2 + n)k−1 dB+k+1(θ, ι) ‖g‖k, (6.23)

where we have used the fact ‖Dθ‖k−1 ≤ dB+k+1(θ, ι) + n ≤ 1 + n.
By Fàa di Bruno’s formula (1.5)

∂α
(
g ◦ θ

)
(x) − ∂αg(θ(x))

=
∑

|γ|=|α|
(∂γg) ◦ θ

∑

p|α|(α,γ)

α!

⎛

⎝
|α|∏

j=1

(
∂βj

θ
)γj

γj !(βj !)γj !
−

|α|∏

j=1

(
∂βj

IdRn

)γj

γj !(βj !)γj !

⎞

⎠ .

(6.24)

By the elementary inequality
∣∣∣∣∣

n∏

i=1

ai −
n∏

i=1

bi

∣∣∣∣∣ ≤
(

max
i=1,...,n

(|ai| + |bi|)
)n−1 n∑

i=1

|ai − bi| (6.25)
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valid for all (a1, . . . , an, b1, . . . , bn) ∈ R
2n, and from (6.24), we deduce that

∣∣∂α
(
g ◦ θ

)
(x) − ∂αg(θ(x))

∣∣

≤
|α|∑

|γ|=1

∣∣∂γg
(
θ(x)

)∣∣
|α|∑

s=1

∑

Ps(α,γ)

α!

∣∣∣∣∣∣

s∏

j=1

(
∂βj

θ(x)
)γj

γj !(βj !)γj !
−

s∏

j=1

(
∂βj

IdRn

)γj

γj !(βj !)γj !

∣∣∣∣∣∣

≤ ‖g‖B+k+1

(
dB+k+1(θ, ι) + n

)n−1·

×
|α|∑

|γ|=1

|α|∑

s=1

∑

Ps(α,γ)

n∑

j=1

∣∣(∂βj

θ(x)
)γj

− (
∂βj

IdRn

)γj ∣∣.

Since
∣∣xγ − yγ

∣∣ ≤ (|x| + |y| + 1)|γ| for all x, y ∈ R
n, γ ∈ N

n
0 ,

we obtain
∣∣∂α

(
g ◦ θ

)
(x) − ∂αg(θ(x))

∣∣

≤ ‖g‖B+k+1

(
dB+k+1(θ, ι) + n

)n−1(
dB+k+1(θ, ι) + n + 1

)k

·dB+k+1(θ, ι)
|α|∑

|γ|=1

|α|∑

s=1

∑

Ps(α,γ)

n∑

j=1

1.

As in the proof of Lemma 6.3 and using the fact that dB+k+1(θ, ι) ≤ 1 we
obtain
∣∣∂α(g ◦ θ

)
(x) − ∂αg(θ(x))

∣∣ ≤ k(k + 1)2n(k+1)(n + 2)n+k dB+k+1(θ, ι) ‖g‖B+k+1.

(6.26)

From estimates (6.23) and (6.26) we deduce (6.22) for m = 1.
So let us assume the result true for all brackets of degree ≤ m− 1, where

m ≥ 2, and prove it for brackets of degree m. Let B be a bracket of degree
m with factorization (B1, B2) for some brackets B1, B2 with deg(B1) = m1,
deg(B2) = m2, m1 + m2 = m. Let g = (g1, . . . , gm) ∈ CB+k, let θ be a
twisting of B and let θx denote the corresponding shift-twisting of B, see
Definition 2.13.

For i = 1, 2, let θi denote the restriction of θ to Bi, hi = Bθi
i (g) and

h̃i = B
(θi)x

i (g).
Clearly, hi, h̃i ∈ Ck+1 and by the inductive hypothesis, for all j ∈

{0, . . . , k + 1},
∣∣Djhi(x) − Dj h̃i(x)

∣∣ ≤ ck+1(mi)dBi+k+1(θi, ι) (6.27)

for i = 1, 2 because dBi+k+1(θi, ι) ≤ dB+k+2(θi, ι) ≤ dB+k+1(θ, ι) ≤ 1.
Since we can write

[h1, h2] − [h̃1, h̃2] = [h1 − h̃1, h2] + [h̃1, h2 − h̃2]

= Dh2 · (h1 − h̃1) − D(h1 − h̃1) · h2 + D(h2 − h̃2) · h̃1

−Dh̃1 · (h2 − h̃2),
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using Leibniz’s product differentiation rule and (6.27) we conclude that for all
j = 0, . . . , k

∣∣Dj [h1, h2](x) − Dj [h̃1, h̃2](x)
∣∣

≤ 2k

(
k + n − 1

k

)
2 ck+1(m1) ck+1(m2)dBi+k+1(θ, ι).

Thus we have
∣∣Dj [h1, h2](Φ(x)) − DjBθx(g)(x)

∣∣

≤ 2k

(
k + n − 1

k

)
2ck+1(m1)ck+1(m2)dBi+k+1(θ, ι). (6.28)

From the case m = 1 we have
∣∣Dj

(
Φ#[h1, h2]

)
(x) − Dj [h1, h2](Φ(x))

∣∣ ≤ ck(1)dB+k+1(θ, ι) ‖[h1, h2]‖k.

This together with Lemma 6.4 gives
∣∣Dj

(
Φ#[h1, h2]

)
(x) − Dj [h1, h2](Φ(x))

∣∣ ≤ ck(1)pk(m)dB+k+1(θ, ι) ‖g‖B+k.
(6.29)

Estimates (6.28), (6.29) imply (6.22). �

6.3. Estimating the noncommutativity of bracket twisting and vector field
regularization

For every pair of integers m ≥ 1 and k ≥ 0 , let us define the numbers
rk(m), sk(m), and wk(m) inductively by setting:

(i) sk(1) = rk(1) = 0;
(ii) sk(2) = rk(2);
(iii) wk(1) = wk(2) = 0;
(iv) r0(m) = max{4p1(m1) · p1(m2) : (m1,m2) ∈ N

2, m1 + m2 = m} if
m ≥ 2.

Furthermore, for every m ≥ 2 and every k ≥ 0, we set

rk(m) := max

{
n2 · 2k ·

(
k + n − 1

k

)
·
(

4pk+1(m1) · pk+1(m2)

)}
,

where the maximum is taken over all pairs (m1,m2) ∈ N
2 such that m1+m2 =

m, while, for any m ≥ 3, wk(m) sk(m) are defined recursively by

wk(B) := max
{

n2k

(
k + n − 1

k

)
· (pk+1(m2) · sk(m1)

+pk(m2) · sk+1(m1) + pk(m1) · sk+1(m2) + pk+1(m1) · sk(m2))
}

,

(6.30)

where the maximum is taken over all pairs (m1,m2) ∈ N
2 such that m1+m2 =

m,
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sk(m) := wk(m) + rk(m);

here the pk(m)’s are defined as in (6.8), (6.9).

Lemma 6.7. For any bracket B of degree m, any integer k ≥ 0, any basic
shift-twisting Θ and for any m-tuples f = (f1, . . . , fμ) of vector fields on R

n

of class CB−1+k,1 and with compact support, one has
∥∥DkBΘ(f ζ) − (

DkBΘ(f)
)ζ∥∥ ≤ sk(m) · ‖f‖m

B+k · ζ ∀ζ > 0. (6.31)

Proof. We shall prove the result by recursion on the degree of B. The first
step of induction relies on basic properties of convolution. Indeed, assume
m = deg(B) = 1, namely B = Xj for some j = 1 . . . , m. Let f ∈ CB−1+k,1 for
some integer k ≥ 0, which means nothing but B(f) = fj and fj ∈ Ck,1. The
diffeomorphism Θ(B) is a translation, so that Θ(B)(x) = x+h for all x ∈ R

n,
where h := Θ(B)(0). Since both translation and differentiation commute with
convolution, one has

DkBΘ(f ζ)(x) = Dk(fζ
j (· + h))(x) = (Dkfζ

j )(x + h)

= (Dkfj(· + h))ζ(x) = (DkBΘ(f))ζ(x)

for every x ∈ R. Hence (6.31) holds true when m = 1, with sk(1) = 0 for all
k ≥ 0.

Now let m be an integer > 1 and let us assume the result true for all
brackets of degree ≤ m − 1: we shall prove that it holds true for brackets of
degree m as well. Let B a bracket of degree m and let B = (B1, B2) be its
factorization. Let m1 = deg(B1), m2 = deg(B2); clearly m1 + m2 = m. Since
f is of class CB−1+k,1, f is also of class CBi+k,1 for every i = 1, 2. Therefore,
in view of the inductive hypothesis, for every integer k ≥ 0, i = 1, 2, one has

∥∥∥D	BΘi
i ((f ζ)) − D	

(
BΘi

i (f)
)ζ
∥∥∥ ≤ s	(mi)

∥∥∥ ·
∥∥∥f
∥∥∥

mi

B+	
· ζ

i = 1, 2, � = 0, . . . , k + 1 (6.32)

for all ζ > 0, where sk(mi) are positive constants depending only on mi, k, n,
and Θi is the shift-twisting of Bi obtained by restricting B to Subb(Bi).

Furthermore,20

BΘ(f)(x) = D(Θ(B))−1(Θ(B(x)) · [BΘ
1 (f), BΘ

2 (f)](Θ(B)(x))

= [BΘ1
1 (f), BΘ2

2 (f)](x + h), ∀x ∈ R
n,

where h := Θ(B)(0), and, similarly,

BΘ(f ζ)(x) = [BΘ1
1 (f ζ), BΘ2

2 (f ζ)](x + h) ∀x ∈ R
n.

For every integer k ≥ 0, let us consider the inequality
∥∥∥DkBΘ(f ζ) − Dk

(
BΘ(f)

)ζ
∥∥∥

=
∥∥∥Dk[BΘ1

1 (f ζ), BΘ2
2 (f ζ)] − Dk[BΘ1

1 (f), BΘ2
2 (f)]ζ

∥∥∥

20 We remind that Θ(B) is a translation, for Θ is a shift-twisting. Actually, since Θ is a also
basic twisting, Θ(B) is the identity on R

n (so h = 0) as soon as deg(B) = m > 2.
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≤
∥∥∥Dk[BΘ1

1 (f ζ), BΘ2
2 (f ζ)] − Dk[(BΘ1

1 (f))ζ , (BΘ2
2 (f))ζ

]∥∥∥
︸ ︷︷ ︸

(I)

+
∥∥∥Dk[(BΘ1

1 (f))ζ , (BΘ2
2 (f))ζ

]− Dk[BΘ1
1 (f), BΘ2

2 (f)]ζ
∥∥∥

︸ ︷︷ ︸
(II) (6.33)

Claim: one has

(I) =
∥∥∥Dk[BΘ1

1 (f ζ), BΘ2
2 (f ζ)] − Dk[(BΘ1

1 (f))ζ , (BΘ2
2 (f))ζ

]∥∥∥

≤ wk(m) ·
∥∥∥f
∥∥∥

m

B+k
· ζ, (6.34)

and

(II) =
∥∥∥Dk[(BΘ1

1 (f))ζ , (BΘ2
2 (f))ζ

]− Dk[BΘ1
1 (f), BΘ2

2 (f)]ζ
∥∥∥

≤ rk(m) ·
∥∥∥f
∥∥∥

m

B+k
· ζ (6.35)

where wk(m), rk(m) ≥ 0 has been defined above.

To prove (6.34), observe that by Leibniz rule we have

(I) =
∥∥∥Dk[BΘ1

1 (f ζ), BΘ2
2 (f ζ)] − Dk[(BΘ1

1 (f))ζ , (BΘ2
2 (f))ζ

]∥∥∥

=
∑

|α|=k

∥∥∥∥∥∂
α

(
DBΘ2

2 (f ζ) · (BΘ1
1 (f ζ) − (BΘ1

1 (f))ζ)

−D
(
BΘ1

1 (f ζ
)

−
(
BΘ1

1 (f))ζ
)

· BΘ2
2 (f ζ)

+D
(
BΘ2

2 (f ζ) − (BΘ2
2 (f))ζ

)
· (BΘ1

1 (f))ζ − D
(
(BΘ1

1 (f))ζ
)

·
(
BΘ2

2 (f ζ) − (BΘ2
2 (f))ζ

))∥∥∥∥∥

≤
∑

|α|=k

∥∥∥∥∥
∑

β≤α

(
α

β

)(
∂α−β

(
DBΘ2

2 (f ζ
)

· ∂β
(
BΘ1

1 (f ζ) − (BΘ1
1 (f))ζ

)

− ∂α−β
(
D
(
BΘ1

1 (f ζ
)

− (BΘ1
1 (f))ζ

)
· ∂β

(
BΘ2

2 (f ζ
)

+ ∂α−β
(
D
(
BΘ2

2 (f ζ
)

− (BΘ2
2 (f))ζ

)
· ∂β

(
(BΘ1

1 (f))ζ
)
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− ∂α−β
(
D
(
BΘ1

1 (f)
)ζ )

· ∂β
(
BΘ2

2 (f ζ) − (BΘ2
2 (f))ζ

))∥∥∥∥∥

=
∑

|α|=k

∑

β≤α

(
α

β

)(
pk+1(m2) ·

∥∥∥f
∥∥∥

m2

B2+k+1
· sk(m1) ·

∥∥∥f
∥∥∥

m1

B1+k

+ pk(m2)
∥∥∥f
∥∥∥

m2

B2+k
sk+1(m1)

∥∥∥f
∥∥∥

m1

B1+k+1

+ pk(m1) ·
∥∥∥f
∥∥∥

m2

B1+k
· sk+1(m2) ·

∥∥∥f
∥∥∥

m1

B2+k+1

+ pk+1(m1) ·
∥∥∥f
∥∥∥

m2

B1+k+1
· sk(m2) ·

∥∥∥f
∥∥∥

m1

B2+k

)
· ζ

≤ n

(
k + n − 1

k

)
2k

(
pk+1(m2) + pk(m2) + pk(m1) + pk+1(m1)

)

·
∥∥∥f
∥∥∥

m

B+k
· ζ

≤ wk(m) ·
∥∥∥f
∥∥∥

m

B+k
· ζ,

where wk(m) is defined in (6.30).
Now let us prove estimate (6.35). For notational simplicity let us set

Vi(x) := BΘ
i (f)(x), i = 1, 2, x ∈ R

n. One easily checks that

Eζ(x) :=
[
V ζ

1 , V ζ
2

]
(x) −

[
V1, V2

]ζ

(x)

=
∫

Rn

φ(h)
(

DV2(x + ζh)
(
V ζ

1 (x) − V1(x + ζh)
)

+ DV1(x + ζh)
(
V ζ

2 (x) − V2(x + ζh)
))

dh

for all x ∈ R
n. The estimate (6.35) when k = 021 is promptly obtained, because

|V ζ
i (x) − Vi(x + ζh)| ≤ 2‖Vi‖1 · ζ, i = 1, 2, so, by Lemma 6.4,

‖Eζ(x)‖ ≤ 4‖V1‖1‖V2‖1ζ ≤ 4p1(m1)p1(m2)‖f‖m
B · ζ.

Now let k ≥ 1. If Vi(x) =
n∑

j=1

V j
i (x)

∂

∂xj
, i = 1, 2, by Leibniz’s product differ-

entiation rule and the fact that convolution commutes with differentiation, we
obtain, for every multi-index α = (α1, . . . , αn) such that |α| = k,

21 See also [8] for the case when m = 2 and k = 0.
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∂αEζ(x)

=

∫

R
n

φ(h)
∑

β≤α

n∑

j=1

(
α

β

)(
∂α−β ∂V2

∂xj
(x + ζh) ·

(
(∂βV j

1 )ζ(x) − ∂βV j
1 (x + ζh)

)

−∂α−β ∂V1

∂xj
(x + ζh) ·

(
(∂βV j

2 )ζ(x) − ∂βV j
2 (x + ζh)

))
dh.

Then, by Lemma 6.4,
∣∣∣(∂βV j

i )ζ(x) − ∂βV j
i (x + ζh)

∣∣∣ ≤ 2 ‖Vi‖k,1 · ζ ≤ 2pk+1(mi)‖(f)‖mi

Bi+k+1

and
∥∥∥∥∂

α−β ∂Vi

∂xj

∥∥∥∥ ≤ pk+1(mi)‖(f)‖mi

Bi+k+1

for i = 1, 2, j ∈ {1, . . . , n}, |α| ≤ k, β ≤ α, from which we obtain

(II) =
∥∥∥D	[(BΘ1

1 (f))ζ , (BΘ2
2 (f))ζ

]− D	[BΘ1
1 (f), BΘ2

2 (f)]ζ
∥∥∥

≤
∑

|α|=k

∑

β≤α

n∑

j=1

(
α

β

)(
2pk+1(m2)‖(f)‖m2

B2+k+1pk+1(m1)‖(f)‖m1
B1+k+1

+2pk+1(m1)‖(f)‖m1
B2+k+1pk+1(m2)‖(f)‖m1

B2+k+1‖
)

· ζ

≤ n2 · 2k ·
(

k + n − 1
k

)
·
(

4pk+1(m1) · pk+1(m2)

)
· ‖(f)‖m

B+k · ζ

= rk(m) · ‖(f)‖m
B+k · ζ, (6.36)

for some rk(m) ≥ 0 depending only on k,m, n, so the estimate (6.35) for (II)
is proved as well. Putting (6.33), (6.34), and (6.35) together, one gets the
thesis. �

6.4. Approximation of the set-valued bracket by shifted brackets of regular-
ized fields

Proposition 6.8. Let B be an iterated bracket of degree m ≥ 1, and let f =
(f1, . . . , fm) be of class CB−1,1 with compact support. Let γ be the function
defined in (4.6) and consider a point x∗ ∈ R

n. Then, for all shift twistings Θ
and all x ∈ R

n, and ζ > 0, one has

dist
(
BΘ(f ζ)(x), B(f)(x∗)

) ≤ γ
(
dB(Θ, ι) + |x − x∗| + ζ

)
+ Cζ (6.37)

where C := s0(B)(‖f‖B)m



61 Page 42 of 43 E. Feleqi and F. Rampazzo NoDEA

Proof. By Lemma 6.7
∣∣BΘ(f ζ)(x) − (

BΘ(f)
)ζ(x)

∣∣ ≤ s0(B)‖f‖m
B · ζ (6.38)

for all shift -twistings Θ. On the other hand
(
BΘ(f)

)ζ(x) is an average of
vectors of the form BΘ(f)(z) for points z = x + ζh, |h| ≤ 1. Therefore, by
|z − x∗| ≤ |x − x∗| + ζ and by the definition of γ it follows that

dist
((

BΘ(f)
)ζ(x), B(f)(x∗)

) ≤ γ(dB(Θ, ι) + |x − x∗| + ζ). (6.39)

By (6.38) and (6.39) we finally obtain the thesis. �
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