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1. Introduction

Let u ∈ C2(R2), |u| < 1 be a solution to the problem

Δu = W ′(u) (1.1)

where W is a standard double-well potential, i.e. W ∈ C2([−1, 1]) satisfying
W > 0 in (−1, 1), W (±1) = 0 and W ′′(±1) > 0.

Assume the energy of u grows linearly, i.e. there exists a constant C > 0
such that ˆ

BR(0)

[
1
2
|∇u|2 + W (u)

]
≤ CR, ∀R > 0. (1.2)

For ε → 0, let the blowing down sequence be

uε(x, y) := u(ε−1x, ε−1y).

By (1.2), we can assume that, up to a subsequence of ε → 0,

ε|∇uε|2dxdy ⇀ μ1,

1
ε
W (uε)dxdy ⇀ μ2,

weakly as Radon measures on any compact set of R2. Denote μ = μ1/2 + μ2

and Σ = spt(μ) the support of μ.
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We can also assume the matrix valued measures

ε∇uε ⊗ ∇uεdxdy ⇀ [ταβ ]μ1,

where [ταβ ], 1 ≤ α, β ≤ 2, is measurable with respect to μ1. Moreover, τ is
nonnegative definite μ1-almost everywhere and it satisfies

2∑
α=1

ταα = 1, μ1 − a.e.

By [4,5] and [6], we have the following characterization about the con-
vergence of uε:

Theorem 1.1. (i) uε → ±1 uniformly on any compact set of R2 \ Σ;
(ii) there exists N ∈ N and N unit vectors eα, 1 ≤ α ≤ N , such that Σ =

∪N
α=1Lα, where

Lα := {teα : t ≥ 0};

(iii) μ1 = 2μ2 = σ0

∑N
α=1 nαH1
Lα

, where σ0 is a constant and nα ∈ N;
(iv) I − τ = eα ⊗ eα on Lα \ {0};
(v)

∑N
α=1 nαeα = 0.

In the above, the constant σ0 is defined as follows. There exists a function
g ∈ C2(R) satisfying ⎧⎪⎪⎨

⎪⎪⎩

g′′ = W ′(g), on R,

g(0) = 0,

lim
t→±∞ g(t) = ±1.

(1.3)

Moreover, the following identity holds for g:

g′(t) =
√

2W (g(t)) > 0, on R. (1.4)

As t → ±∞, g(t) converges to ±1 exponentially. Hence the following quantity
is finite:

σ0 :=
ˆ +∞

−∞

[
1
2

∣∣g′(t)
∣∣2 + W (g(t))

]
dt =

ˆ +∞

−∞

∣∣g′(t)
∣∣2dt.

In Theorem 1.1, we do not claim the uniqueness of Σ as well as (nα),
because they are obtained by a compactness argument. They may depend
on the choice of subsequences of ε → 0. This is similar to the problem on
uniqueness of tangent cones to generalized minimal submanifolds (stationary
varifolds, minimizing currents). Our first main result is

Theorem 1.2. Σ and (n1, . . . , nN ) are uniquely determined by u.

This uniqueness comes from a convexity structure, first discovered in
Smyrnelis [11]. This convexity is basically a consequence of the Modica in-
equality [10]. Note that in higher dimensions it is expected that the Modica
inequality implies a kind of mean convexity.
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Next we further assume that u has finite Morse index, i.e. the maximal
dimension of linear subspaces of{

ϕ ∈ C∞
0 (R2) :

ˆ
R2

[|∇ϕ|2 + W ′′(u)ϕ2
] ≤ 0

}

is finite. This is equivalent to the fact that u is stable outside a compact set
(see [1]), i.e. there exists a compact set K such that for any ϕ ∈ C∞

0 (R2 \K),ˆ
R2

[|∇ϕ|2 + W ′′(u)ϕ2
] ≥ 0.

Our second result is a multiplicity one property on the blowing down
limit.

Theorem 1.3. Let u be a solution of (1.1) with finite Morse index. Then in
the blowing down limit, nα = 1 for every α = 1, . . . , N .

As in [2], we introduce the following notations. Assume eα are in clockwise
order. For each α = 1, . . . , N , let L±

α be the rays generated by the vector
(eα + eα+1)/2 and (eα + eα−1)/2 respectively (with obvious modification at
the end points α = 1, N). Denote Ωα to be the sector bounded by L±

α . Our
final result says

Theorem 1.4. Let u be a solution of (1.1) in R
2 with finite Morse index, and

Ωα be defined as above. In each Ωα, which we assume to be the sector {(x, y) :
−λ−x < y < λ+x, x ≥ 0} for two positive constants λ±, there exist three
constants C, R0 and tα such that

sup
−λ−x<y<λ+x

∣∣u(x, y) − g(y − tα)
∣∣ ≤ Ce− x

C , ∀x > R0.

If we have known Theorem 1.3, this theorem will follow from the refined
asymptotic result in [2] or [4, Lemma 4.3]. Here the point is, we can prove
Theorem 1.3 and Theorem 1.4 at the same time. This will be achieved by
generalizing Gui’s method in [4] to the multiple interface setting.

In [4] the multiplicity one case was treated. The method amounts to
viewing the equation as an evolution problem in the form

d2u

dt2
= ∇J (u).

Let M be the manifold of one dimensional solutions. (This mainfold is the
real line R, formed by translations of the one dimensional solution g.) Take
the nearest point P (u) on M to u. Then u − P (u) almost lies in the subspace
orthogonal to the first eigenfunction of P (u). By some more computations we
get

d2

dt2
‖u − P (u)‖2 ≥ μ‖u − P (u)‖2 + R, (1.5)

where μ is a positive constant. The norm ‖ · ‖ is usually taken to be a L2 one.
The remainder term R is of the order O(e−ct) for some constant c > 0. This
then implies the exponential convergence of ‖u − P (u)‖2, and the exponential
convergence of u(t) with some more work.
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The existence of the positive constant μ is related to the positivity of
the second eigenvalue of the linearized problem at g (the first eigenvalue is 0
due to the translation invariance of (1.1)), which is a nondegeneracy condition
for g.

Our main contribution is to show that a similar phenomena holds in
the multiple interface case. Here we have to choose several pieces of the one
dimensional solution g, patched together suitably, to approximate u. Then
some boundary terms appear in the process of deducing (1.5). But fortunately
all of these boundary terms give a positive term, hence (1.5) still holds and
the exponential convergence follows.

The above three results show that the main results in [2,7–9] hold for
finite Morse index solutions with linear energy growth.

It is conjectured that finite Morse index solutions of (1.1) satisfy the
energy growth bound (1.2). This conjecture has recently been proved by the
author and Wei [13], where results of the current paper is also used. On the
other hand, if a solution satisfies the conclusion of Theorem 1.4, it has finite
Morse index (see [7]).

Finally, concerning the multiplicity one property established in Theorem
1.4, we refer the reader to one interesting conjecture in [3], which says that in
some cases there is no interfaces clustering (that is, there is only one transition
layer) for solutions of the singularly perturbed Allen–Cahn equation

εΔuε =
1
ε
W ′(uε),

provided uε satisfies some stability condition. Whether this conjecture is true
still remains open.

In this paper, a point in R
2 is denoted by X = (x, y).

The organization of this paper is as follows. In Section 2 we prove The-
orem 1.2. Theorem 1.3 and Theorem 1.4 is proved in Section 3 at the same
time.

2. Uniqueness of the blowing down limit

By direct integration by parts, we get the stationary conditionˆ
R2

[(
1
2
|∇u|2 + W (u)

)
divY − DY (∇u,∇u)

]
= 0, ∀Y ∈ C∞

0 (R2,R2).

Following [11], this condition implies the existence of a function U ∈ C3(R2)
satisfying

∇2U =
[
u2

x − u2
y + 2W (u) 2uxuy

2uxuy u2
y − u2

x + 2W (u)

]
.

Moreover, by the Modica inequality (see [10])
1
2
|∇u|2 ≤ W (u), in R

2,

U is convex. After subtracting an affine function, we can assume U(0) = 0 and
∇U(0) = 0. Hence by the convexity of U , U ≥ 0 in R

2.
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Lemma 2.1. There exists a constant C such that,

U(x, y) ≤ C (|x| + |y|) , in R
2.

Proof. By definition,
ΔU = 4W (u). (2.1)

Then for any R > 0,
 

∂BR(0)

U =
ˆ R

0

d

dr

( 
∂Br(0)

U

)
=
ˆ R

0

(
1

2πr

ˆ
Br(0)

4W (u)

)
≤ CR,

where we have used (1.2).
The conclusion follows from this integral bound and the convexity of U .

�

By this linear growth bound and the convexity of U , as ε → 0,

Uε(x, y) := εU(ε−1x, ε−1y) → U∞(x, y)

uniformly on compact sets of R2. Here U∞ is a 1-homogeneous, nonnegative
convex function. By convexity, this limit is independent of subsequences of
ε → 0.

Take a sequence εi → 0 such that the blowing down limit of uεi
is Σ =

∪N
α=1{teα : t ≥ 0} and the density on {teα : t ≥ 0} is nα. Then outside Σ, by

the strict convexity of W near ±1,

|∇uεi
(X)|2 + W (uεi

(X)) ≤ Ce−cε−1
i dist(X,Σ).

Because

∇2Uεi
=

[
εiu

2
εi,x − εiu

2
εi,y + 2

εi
W (uεi,) 2εiuεi,xuεi,y

2εiuεi,xuεi,y εiu
2
εi,y − εiu

2
εi,x + 2

εi
W (u)

]
,

we also have

|∇2Uεi
(X)|2 ≤ Ce−cε−1

i dist(X,Σ).

Hence ∇2U∞ ≡ 0 in R
2\Σ, that is, U∞ is linear in every connected component

of R2 \ Σ. Thus the set {U∞ < 1} is a convex polygon with its vertex points
lying on Σ. Now it is clear that Σ is uniquely determined by U∞. Since U∞ is
independent of the choice of subsequences of ε → 0, Σ also does not depend
on the choice of subsequences of ε → 0.

In a neighborhood of {teα : t > 0}, using the (eα, e⊥
α ) coordinates, the

matrix valued measure ∇2Uεi
dxdy can be written as

∇2Uεidxdy =

[
εiu

2
εi,eα

− εiu
2
εi,e⊥

α
+ 2

εi
W (uεi,) 2εiuεi,eαuεi,e⊥

α

2εiuεi,eαuεi,e⊥
α

εiu
2
εi,e⊥

α
− εiu

2
εi,eα

+ 2
εi

W (u)

]
dxdy,

By Theorem 1.1, after passing to the limit, we obtain that in a neighborhood
of {teα : t > 0}, the limit of ∇2Uεi

dxdy equals[
0 0
0 2nασ0H1
{teα:t≥0}

]
.
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Hence across the ray {teα : t ≥ 0}, ∇U∞ has a jump 2nασ0e
⊥
α . In other words,

let e± = ∇U∞ on each side of {teα : t ≥ 0}, then

e+ − e− = 2nασ0e
⊥
α .

Thus nα is uniquely determined by U∞. This finishes the proof of Theorem 1.2.

3. The multiplicity one property

Since u is assumed to have finite Morse index, it is stable outside a compact
set. Then standard argument using the stable De Giorgi theorem gives the
following

Lemma 3.1. For any Xi = (xi, yi) ∈ u−1(0) → ∞,

ui(x, y) := u(xi + x, yi + y)

converges to a one dimensional solution g(e ·X) in C2
loc(R

2), where e is a unit
vector.

Recall the sector Ωα introduced in Section 1. The nodal set of u in Ωα

can be described in the following way.

Lemma 3.2. There exists an R1 > 0 large such that, for each α, in Ωα\BR1(0),
{u = 0} consists of nα curves, which can be represented by the graph of func-
tions defined on Lα, with their C1 norm converging to 0 at infinity.

Proof. Take an Ωα, which we assume to be the sector {(x, y) : −λ−x < y <
λ+x, x > 0} for two constants λ± > 0. Lα is assumed to be the ray {x > 0, y =
0}. By [12, Theorem 5], for all ε small, there exists a constant tε ∈ (−1/2, 1/2),
such that

{uε = tε} ∩ (B2(0) \ B1/2(0)) ∩ Ωα

consists of nα curves in the form

y = hi
ε(x), for 1/2 ≤ x ≤ 2, 1 ≤ i ≤ nα,

where ‖hi
ε‖C1,1/2([1/2,2]) is uniformly bounded. By [6], for each i, hi

ε converges
to 0 in C1([1/2, 2]) as ε → 0.

By Lemma 3.1, for each t ∈ [−3/4, 3/4], {uε = t} consists of nα curves,
in the form

y = hi
ε(x, t), for 1/2 ≤ x ≤ 2, 1 ≤ i ≤ nα,

which lies in an O(ε) neighborhood of {uε = tε}. Moreover, after a scaling and
using Lemma 3.1, we get

lim
ε→0

sup
1/2≤x≤2

∣∣∣ d

dx
hi

ε(x, t)
∣∣∣ = 0.

Rescaling back to u we conclude the proof. �

Now we are in the following situation:
(H1) There are two positive constants R > 0 large and λ > 0.
(H2) The domain D := {(x, y) : |y| < λx, x > R}.
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(H3) u ∈ C2(D) satisfies (1.1) in D.
(H4) {u = 0} consists of N curves {y = fi(x)}, 1 ≤ i ≤ N , where fi ∈

C∞([R,+∞)) satisfying

f1 < f2 < · · · < fN ,

lim
x→+∞ f ′

i(x) = 0, ∀1 ≤ i ≤ N.

The last condition implies that

lim
x→+∞

|fi(x)|
|x| = 0, ∀1 ≤ i ≤ N.

The main goal in this section is to prove

Theorem 3.3. We must have N = 1. Moreover, there exists a constant t such
that for all x > R, ∣∣f(x) − t

∣∣ ≤ Ce− x
C ,

and

sup
−λx<y<λx

∣∣u(x, y) − g(y − t)| ≤ Ce− x
C ,

where the constant C depends only on W .

Theorem 1.3 and 1.4 follow by combining this theorem with Theorem 1.1,
Theorem 1.2 and Lemma 3.2.

Possibly by a change of sign, assume u < 0 in {y < f1(x)}.

Lemma 3.4. For any 1 ≤ i ≤ N and t → +∞,

ut(x, y) := u(t + x, fi(t) + y)

converges to g(y) in C2
loc(R

2).

Proof. This is a consequence of Lemma 3.1 and Lemma 3.2. Note that {ut =
0} = {y = f t(x)} where f t(x) := fi(x + t) − fi(t). As t → +∞, dft

dx converges
to 0 uniformly on any compact set of R. Hence by noting that f t(0) = 0, f t

also converges to 0 uniformly on any compact set of R. This implies that the
limit u∞ = 0 on {y = 0}. From this we see u∞(x, y) ≡ g(y). Since this limit is
independent of subsequences of t → +∞, we finish the proof. �

Lemma 3.5. In D,

1 − u(x, y)2 ≤ Ce−c mini |y−fi(x)|.

Proof. By the previous lemma, for any M > 0, if we have chosen R large
enough, u2 > 1 − σ(M) in {(x, y) : |y − fi(x)| > M,∀i}, where σ(M) is a
constant depending on M satisfying limM→+∞ σ(M) = 0. By choosing M
large (then σ(M) can be made small so that W is strictly convex in (−1,−1+
σ(M)) ∪ (1 − σ(M), 1)), in {(x, y) : |y − fi(x)| > M,∀i},

ΔW (u) ≥ cW (u).
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From this we deduce the exponential decay

W (u) ≤ Ce−cdist(X,∪i{(x,y):|y−fi(x)|<M}).

Finally, because |f ′
i(x)| < 1, the distance to {y = fi(x)} is comparable to

|y − fi(x)|. This finishes the proof. �

As a consequence,

1 − u(x, y)2 ∼ O(e−cx) on {y = ±λx, x > R}. (3.1)

Another consequence of this exponential decay is:

Corollary 3.6. In D,

|ux(x, y)| + |uxx(x, y)| ≤ Ce−mini |y−fi(x)|
C .

This follows from standard gradient estimates.
This exponential decay implies thatˆ λx

−λx

[
ux(x, y)2 + uxx(x, y)2

]
dy ≤ C, ∀x > R. (3.2)

Next we show that different components of {u = 0} are O(1) separated.

Lemma 3.7. For any 1 ≤ i ≤ N − 1,

lim
x→+∞ (fi+1(x) − fi(x)) = +∞.

Proof. By Lemma 3.4, for any t → +∞,

ut(x, y) := u(x + t, y + fi(t))

converges uniformly to g(y) on any compact set of R2.
From this we see, for any L > 0, if t is large enough, ut > 0 on {x =

0, 0 < y < L} and ut < 0 on {x = 0,−L < y < 0}. The conclusion follows
from this claim directly. �

The following identity is the Hamiltonian identity of [4]. For completeness
we include a proof here.

Proposition 3.8. For any x > R,
ˆ λx

−λx

[
u2

y − u2
x

2
+ W (u)

]
dy = Nσ0 + O(e−cx).

Proof. First, differentiating in x, integrating by parts and using (3.1) leads to

d

dx

ˆ λx

−λx

[
u2

y − u2
x

2
+ W (u)

]
dy = O(e−cx). (3.3)

Next, by Lemma 3.5, for any δ > 0, there exists an L > 0 such that for all
x > R, ˆ

{y∈(−λx,λx):|y−fi(x)|>L,∀i}

[
u2

y − u2
x

2
+ W (u)

]
dy ≤ δ. (3.4)
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While for each i = 1, . . . , N , by Lemma 3.4, we have

lim
x→+∞

ˆ fi(x)+L

fi(x)−L

[
u2

y − u2
x

2
+ W (u)

]
dy

=
ˆ L

−L

[
1
2
g′(y)2 + W (g(y))

]
dy = σ0 + O(δ), (3.5)

where in the last step we have used the exponential convergence of g at infinity.
Combining (3.4) and (3.5), by noting that δ can be arbitrarily small, we

get

lim
x→+∞

ˆ λx

−λx

[
u2

y − u2
x

2
+ W (u)

]
dy = Nσ0.

The conclusion of this lemma follows by combining this identity and (3.3). �

We need the following form of nondegeneracy of the one dimensional
solution g.

Proposition 3.9. There exist two constants L0 > 0 and μ > 0 so that the fol-
lowing holds. For any constants L+ > L0 and L− > L0 and v∈H1((−L−, L+))
satisfying ˆ L+

−L−
v(t)g′(t)dt = 0, (3.6)

we have ˆ L+

−L−

[∣∣∣dv

dt
(t)

∣∣∣2 + W ′′(g(t))v(t)2
]

dt ≥ μ

ˆ L+

−L−
v(t)2dt. (3.7)

Proof. Assume by the contrary, there exist L±
j → +∞ and vj ∈H1((−L−

j , L+
j ))

satisfying ˆ L+
j

−L−
j

vj(t)g′(t)dt = 0, (3.8)

and ˆ L+
j

−L−
j

vj(t)2dt = 1, (3.9)

but ˆ L+
j

−L−
j

[∣∣∣dvj

dt
(t)

∣∣∣2 + W ′′(g(t))vj(t)2
]

dt ≤ 1
j
. (3.10)

From the last two assumptions we deduce that
ˆ L+

j

−L−
j

∣∣∣dvj

dt
(t)

∣∣∣2dt ≤ C, (3.11)

for some constant C depending only on sup |W ′′|. Hence the 1/2-Hölder semi-
norm of vj is uniformly bounded. Then by (3.9), sup |vj | is also uniformly
bounded. Assume vj converges to v∞ in Cloc(R).
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By the exponential decay of g′ at infinity, (3.8) can be passed to the limit,
which gives ˆ +∞

−∞
v∞(t)g′(t)dt = 0. (3.12)

(3.9) and (3.11) can also be passed to the limit, leading to
ˆ +∞

−∞

[
v∞(t)2 +

∣∣∣dv∞
dt

(t)
∣∣∣2

]
dt ≤ C + 1. (3.13)

Because g converges to ±1 at ±∞ respectively, there exists an R2 such
that

W ′′(g(t)) ≥ c0 :=
1
2

min {W ′′(−1),W ′′(1)} > 0, in {|t| ≥ R2}. (3.14)

Thus for any R ≥ R2,
ˆ R

−R

[∣∣∣dv∞
dt

(t)
∣∣∣2 + W ′′(g(t))v∞(t)2

]
dt ≤ lim inf

j→+∞

ˆ R

−R

[∣∣∣dvj

dt
(t)

∣∣∣2 + W ′′(g(t))vj(t)
2

]
dt

≤ lim inf
j→+∞

ˆ L+
j

−L−
j

[∣∣∣dvj

dt
(t)

∣∣∣2 + W ′′(g(t))vj(t)
2

]
dt

≤ 0.

By (3.13), we can let R → +∞, which leads to
ˆ +∞

−∞

[∣∣∣dv∞
dt

(t)
∣∣∣2 + W ′′(g(t))v∞(t)2

]
dt ≤ 0.

Then by the spectrum theory for − d2

dt2 +W ′′(g(t)) (see for example [2, Lemma
1.1]) and (3.12), v∞ ≡ 0.

By the convergence of vj in Cloc(R),

lim
j→+∞

ˆ R2

−R2

vj(t)2dt = 0. (3.15)

Substituting this into (3.10), by noting (3.14), we get
ˆ

(−L−
j ,−R2)∪(R2,L+

j )

vj(t)2dt ≤ C

(
1
j

+
ˆ R2

−R2

vj(t)2dt

)
→ 0.

Combining this with (3.15) we get a contradiction with (3.9). Thus under the
assumptions (3.8) and (3.9), (3.10) cannot hold. �

With these preliminaries, we come to the proof of Theorem 3.3.

Proof of Theorem 3.3. Given a tuple (t1, . . . , tN ) with t1 < · · · < tN , define

G(y; t1, . . . , tN ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(y − t1), y < t+1 ,

min{g(y − t1),−g(y − t2)}, t+1 = t−2 < x < t+2 ,

min{−g(y − t2), g(y − t3)}, t+2 = t−3 < x < t+3 ,

· · · .
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In the above,

t+i :=
ti + ti+1

2
, t−i :=

ti−1 + ti
2

,

and we adopt the convention that t−1 = −λx and t+N = λx.
Note that G(y; ti) is continuous, while its derivative in y has a jump at

t+i . (In fact, the left and right derivatives at each t+i only differ by a sign.)
Next we define

F (x; t1, . . . , tN ) :=
ˆ λx

−λx

∣∣u(x, y) − G(y; t1, . . . , tN )
∣∣2dy.

We divide the proof into three steps.
Step 1 As x → +∞,

´ λx

−λx

∣∣u(x, y) − G(y; fi(x))
∣∣2dy → 0.

This follows from Lemma 3.4 and Lemma 3.5.
Step 2 By Step 1,

lim
x→+∞ F (x; f1(x), . . . , fN (x)) = 0.

Moreover, for any ε > 0, there exists a δ > 0 such that, if |ti − fi(x)| > δ for
some i, then

lim inf
x→+∞ F (x; t1, . . . , tN ) ≥ ε. (3.16)

Direct calculations give

∂F

∂ti
(x; t1, . . . , tN ) = 2(−1)i

ˆ t+i

t−
i

[
u(x, y) − (−1)i−1g(y − ti)

]
g′(y − ti)dy.

(3.17)

∂2F

∂t2i
(x; t1, . . . , tN ) = 2

ˆ t+i

t−
i

g′(y − ti)2dy

+2(−1)i+1

ˆ t+i

t−
i

[
u(x, y) − (−1)i−1g(y − ti)

]
g′′(y − ti)dy

+O(e−c min{ti−ti−1,ti+1−ti}). (3.18)

By Step 1, Lemma 3.5 and the exponential decay of g′′ at infinity, there exists a
σ > 0 such that, for any (t1, . . . , tN ) satisfying |ti − fi(x)| < σ, ∂2F

∂t2i
(x; ti) > σ.

Finally, ∂2F
∂ti∂tj

(x; ti) = 0 if |i − j| > 1 and
∣∣∣ ∂2F

∂ti∂ti+1
(x; ti)

∣∣∣ ≤ Ce−c(ti+1−ti).

Combining this with (3.18) we see the matrix [ ∂2F
∂ti∂tj

(x; ti)] is positively definite
for those (t1, . . . , tN ) satisfying the condition that |ti − fi(x)| is small enough
for all i.

Combining the above analysis, we see for all x large, there exists a unique
tuple (ti(x)) such that

F (x; ti(x)) = min
(ti)∈RN

F (x; ti).
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Moreover,

lim
x→+∞ |ti(x) − fi(x)| = 0, ∀1 ≤ i ≤ N. (3.19)

By the implicit function theorem, for each i, ti(x) is twice differentiable in x.
Lemma 3.7 and (3.19) imply that for any 1 ≤ i ≤ N − 1,

ti+1(x) − ti(x) → +∞, as x → +∞. (3.20)

Let

v(x, y) := u(x, y) − G(y; ti(x)).

Clearly

lim
x→+∞ ‖v‖L2(−λx,λx) = lim

x→+∞ F (x; ti(x)) = 0. (3.21)

In the following we denote g∗ := G(y; ti(x)) and

gi(y) := (−1)i−1g(y − ti(x)), for y ∈ (t−i , t+i ).

By definition,

0 =
∂F

∂ti
(x; ti(x)) = 2

ˆ t+i (x)

t−
i (x)

(u − gi) g′
i. (3.22)

Differentiating (3.22) with respect to x leads to
[ˆ t+i (x)

t−
i (x)

|g′
i|2 − (u − gi) g′′

i

]
t′i(x) +

ˆ t+i (x)

t−
i (x)

uxg′
i

= − [
u(x, t+i (x)) − gi(t+i (x))

]
g′

i(t
+
i (x))

t′i(x) + t′i+1(x)
2

(3.23)

+
[
u(x, t−i (x)) − gi(t−i (x))

]
g′

i(t
−
i (x))

t′i(x) + t′i−1(x)
2

.

Note that by the result in Step 1 and the exponential decay of g′′ at
infinity,

lim
x→+∞

ˆ t+i (x)

t−
i (x)

(u − gi) g′′ ≤ lim
x→+∞

[ˆ t+i (x)

t−
i (x)

(u − gi)
2

] 1
2

[ˆ t+i (x)

t−
i (x)

∣∣g′′∣∣2
]1/2

= 0,

while by (3.20), there exists a constant c > 0 such that

ˆ t+i (x)

t−
i (x)

|g′
i|2 ≥ c, for all x large.

By Lemma 3.5 and (3.20), u(x, t±i (x)) and gi(t±i (x)) all converge to 0 as x →
+∞. Thus by (3.23) we obtain
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t′i(x) = −
´ t+i (x)

t−
i (x)

uxg′
i[´ t+i (x)

t−
i (x)

|g′
i|2

]
+ o(1)

+ o(1)
∑
j �=i

∣∣∣ ´ t+j (x)

t−
j (x)

uxg′
j

∣∣∣[´ t+j (x)

t−
j (x)

|g′
j |2

]
+ o(1)

+O(e−cx) → 0, as x → +∞. (3.24)

Differentiating this once again we see t′′i (x) also converges to 0 as x → +∞.
Similar to the calculation in [4, page 927], we have

ˆ t+i (x)

t−
i (x)

[(
u2

y − u2
x

2
+ W (u)

)
− |g′

i|2
2

− W (gi)

]

=
ˆ t+i (x)

t−
i (x)

(
u2

y − |g′
i|2

2
+ W (u) − W (gi) − u2

x

2

)
(3.25)

=
ˆ t+i (x)

t−
i (x)

[
W (u) − W (gi) − W ′(u) + W ′(gi)

2
(u − gi)

]

+
1
2

ˆ t+i (x)

t−
i (x)

[
(u − gi) uxx − u2

x

]
+ B,

where B is the boundary terms coming from integrating by parts. In the above
we have usedˆ t+i (x)

t−
i (x)

u2
y − |g′

i|2 =
ˆ t+i (x)

t−
i (x)

(uy − g′
i) (uy + g′

i)

= −
ˆ t+i (x)

t−
i (x)

(u − gi) (uyy + g′′
i )

+
[
u(x, t+i (x)) − gi(t+i (x))

] [
uy(x, t+i (x)) + g′

i(t
+
i (x))

]
− [

u(x, t−i (x)) − gi(t−i (x))
] [

uy(x, t−i (x)) + g′
i(t

−
i (x))

]

= −
ˆ t+i (x)

t−
i (x)

(u − gi) [W ′(u) + W ′(gi)] +
ˆ t+i (x)

t−
i (x)

uxx (u − gi)

+
[
u(x, t+i (x)) − gi(t+i (x))

] [
uy(x, t+i (x)) + g′

i(t
+
i (x))

]
− [

u(x, t−i (x)) − gi(t−i (x))
] [

uy(x, t−i (x)) + g′
i(t

−
i (x))

]
.

Summing (3.25) in i and using the Hamiltonian identity (Proposition 3.8), we
obtain

ˆ λx

−λx

[
uxx (u − g∗) − u2

x

]
=

∑
i

ˆ t+i (x)

t−
i (x)

[
(u − gi) uxx − u2

x

]

= −2
∑

i

[
u(x, t+i (x)) − gi(t

+
i (x))

]
g′

i(t
+
i (x)) + o(‖v‖2)

+2
∑

i

[ˆ +∞

t+i (x)

|g′
i|2 +

ˆ t−
i (x)

−∞
|g′

i|2
]

+ O(e−cx).

(3.26)
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On the other hand, similar to [4, Eq. (4.35)], we have

ˆ t+i (x)

t−
i (x)

uxx (u − gi) =
ˆ t+i (x)

t−
i (x)

(W ′(u) − uyy) (u − gi)

=
ˆ t+i (x)

t−
i (x)

[W ′(u) − W ′(gi) − W ′′(gi) (u − gi)] (u − gi)

+
ˆ t+i (x)

t−
i (x)

(g′′
i − uyy) (u − gi) + W ′′(gi) (u − gi)

2

= o(‖v‖2) +
ˆ t+i (x)

t−
i (x)

∣∣ (u − gi)y

∣∣2 + W ′′(gi) (u − gi)
2

− [
u(x, t+i (x)) − gi(t+i (x))

] [
uy(x, t+i (x)) − g′

i(t
+
i (x))

]
+

[
u(x, t−i (x)) − gi(t−i (x))

] [
uy(x, t−i (x)) − g′

i(t
−
i (x))

]
.

(3.27)

Summing (3.27) in i we get

ˆ λx

−λx

uxx (u − g∗) = o(‖v‖2) +
∑

i

ˆ t+i (x)

t−
i (x)

∣∣ (u − gi)y

∣∣2 + W ′′(gi) (u − gi)
2

+ 2
∑

i

[
u(x, t+i (x)) − gi(t+i (x))

]
g′

i(t
+
i (x)) + O(e−cx).

(3.28)

By (3.22) and (3.20), Proposition 3.9 applies to u − gi in (t−i (x), t+i (x)),
which gives

ˆ t+i (x)

t−
i (x)

∣∣ (u − gi)y

∣∣2 + W ′′(gi) (u − gi)
2 ≥ μ

ˆ t+i (x)

t−
i (x)

(u − gi)
2
. (3.29)

Hence
ˆ λx

−λx

uxx (u − g∗) ≥ (μ + o(1)) ‖v‖2

+2
∑

i

[
u(x, t+i (x)) − gi(t+i (x))

]
g′

i(t
+
i (x)) + O(e−cx). (3.30)

Combining this with (3.26), we deduce that
ˆ λx

−λx

u2
x ≥ (μ + o(1)) ‖v‖2 + 4

∑
i

[
u(x, t+i (x)) − gi(t+i (x))

]
g′

i(t
+
i (x))

− 2
∑

i

[ˆ +∞

t+i (x)

|g′
i|2 +

ˆ t−
i (x)

−∞
|g′

i|2
]

+ O(e−cx). (3.31)
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Differentiating ‖v‖2 twice in x leads to

1
2

d

dx
‖v‖2 =

∑
i

ˆ t+i (x)

t−
i (x)

(u − gi) [ux + g′
it

′
i(x)]

=
∑

i

ˆ t+i (x)

t−
i (x)

(u − gi) ux, (by (3.22))

and

1
2

d2

dx2
‖v‖2 =

∑
i

ˆ t+i (x)

t−
i (x)

[
u2

x + uxg′
it

′
i(x) + uxx (u − gi)

]

≥ 2
∑

i

ˆ t+i (x)

t−
i (x)

u2
x − 3

2

∑
i

(´ t+i (x)

t−
i (x)

uxg′
i

)2

´ t+i (x)

t−
i (x)

∣∣g′
i

∣∣2 (by (3.26) and (3.24))

− 2
∑

i

[
u(x, t+i (x)) − gi(t+i (x))

]
g′

i(t
+
i (x))

+2
∑

i

[ˆ +∞

t+i (x)

|g′
i|2 +

ˆ t−
i (x)

−∞
|g′

i|2
]

≥
∑

i

1
2

ˆ t+i (x)

t−
i (x)

u2
x − 2

∑
i

[
u(x, t+i (x)) − gi(t+i (x))

]
g′

i(t
+
i (x))

(by Cauchy-Schwarz)

+
∑

i

[ˆ +∞

t+i (x)

|g′
i|2 +

ˆ t−
i (x)

−∞
|g′

i|2
]

≥ 1
2

[μ + o(1)] ‖v‖2. (by (3.31))

By noting (3.21), from this inequality we deduce that

‖v‖2 ≤ Ce−cx, for all x large. (3.32)

Step 3 Note that

gi(t+i (x))g′
i(t

+
i (x)) =

ˆ +∞

t+i (x)

∣∣g′
i

∣∣2 + gig
′′
i ≤

ˆ +∞

t+i (x)

∣∣g′
i

∣∣2,
because gi is close to 1 in (t+i (x),+∞) (see (3.20)) and hence g′′

i = W ′(gi) < 0
in this interval. We also have gi(t+i (x))g′

i(t
+
i (x)) > 0, because gi(t+i (x)) > 0

and g′
i(t

+
i (x)) > 0.

Then for all x large, by noting that gi(t+i (x)) is close to 1 and u(x, t+i (x))−
gi(t+i (x)) is close to 0, we obtain∣∣∣ [

u(x, t+i (x)) − gi(t+i (x))
]
g′

i(t
+
i (x))

∣∣∣ ≤ 1
2
gi(t+i (x))g′

i(t
+
i (x))

≤ 1
2

ˆ +∞

t+i (x)

∣∣g′
i

∣∣2.
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Substituting this into (3.26), we getˆ λx

−λx

u2
x ≤

ˆ λx

−λx

uxx (u − g∗) + o(‖v‖2) + O(e−cx)

≤
[ˆ λx

−λx

u2
xx

] 1
2

‖v‖ + o(‖v‖2) + O(e−cx) (3.33)

≤ Ce−cx. (by (3.2) and (3.32))

Then by (3.24) and the Cauchy-Schwarz inequality, we get

|t′i(x)| ≤ Ce−cx, ∀i.

Thus for all 1 ≤ i ≤ N , limx→+∞ ti(x) exists and it is finite. By noting (3.19),
for each i, the limit limx→+∞ fi(x) also exists. In particular, this limit is finite.
Then for all 1 ≤ i ≤ N − 1,

lim
x→+∞ (fi+1(x) − fi(x))

also exists and it is finite. However, this is a contradiction with Lemma 3.7 if
N ≥ 2. Hence we must have N = 1.

Finally, the exponential convergence of u(x, ·) follows from (3.33), and
the exponential convergence of fi(x) follows from this exponential convergence
and the (uniform) positive lower bound on g′ and uy(x, ·) in the part where
|g| < 1/2 and |u| < 1/2. �
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