Nonlinear Differential Equations and Applications NoDEA

Particle approximation of a constrained model for traffic flow

To Prof. Alberto Bressan.

Florent Berthelin and Paola Goatin©

Abstract

We rigorously prove the convergence of the micro-macro limit for particle approximations of the constrained pressureless gas dynamics system. The lack of BV bounds on the density variable is supplied by a compensated compactness argument. Mathematics Subject Classification. Primary 35L87; Secondary 35L75, 35A35.

Keywords. Conservation laws with density constraint, Many-particle system, Traffic flow models.

1. Introduction

Macroscopic traffic flow models usually consist of partial differential equations describing the evolution of aggregated quantities, like traffic density and mean velocity. They express the mass conservation and eventually the traffic acceleration. In this article, we focus on a pressure-less gas dynamics system subject to a maximal density constraint: the constrained pressureless gas dynamics (CPGD) model, which was introduced in [5] and can be derived through a singular limit in the pressure term of a modified Aw-Rascle-Zhang model [2,14]. Indeed, we start from the Aw-Rascle-Zhang (ARZ) model,

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho v)=0 \tag{1.1}\\
\partial_{t}(\rho(v+p(\rho)))+\partial_{x}(\rho v(v+p(\rho)))=0
\end{array}\right.
$$

which is a very well accepted model for traffic flow. We observe that, in this model, upper bounds on the density are not necessarily preserved through the time evolution of the solution. In practice, the density of cars is bounded from above by a maximal density ρ^{*} corresponding to a bumper to bumper situation.

[^0]However, the ARZ model does not exclude cases where, depending on the smallest invariant region which contains the initial data, solutions satisfy the maximal density constraint $\rho \leq \rho^{*}$ initially but evolve in finite time to a state, still uniformly bounded, but which violates this constraint. Then paper [5] presents a model which improves the ARZ model and preserves the constraints. To this end, we consider in (1.1) the pressure

$$
p_{\varepsilon}(\rho)=\varepsilon\left(\frac{1}{\rho}-\frac{1}{\rho^{*}}\right)^{-\gamma} \mathbf{I}_{]-\infty, \rho^{*}\right]}(\rho),
$$

and the corresponding solution $\left(\rho_{\varepsilon}, v_{\varepsilon}\right)$. Assuming that $p_{\varepsilon}\left(\rho_{\varepsilon}\right)$ tends to p when $\varepsilon \rightarrow 0$, which acts only when $\rho=\rho^{*}$, it leads to the system CPGD

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho v)=0 \\
\partial_{t}(\rho(v+p))+\partial_{x}(\rho v(v+p))=0
\end{array}\right.
$$

with the constraints

$$
0 \leq \rho \leq \rho^{*}, \quad p \geq 0, \quad\left(\rho^{*}-\rho\right) p=0
$$

The important new property in the CPGD model is the maximal density constraint.

In the following, we denote by ρ, v the density and velocity of the traffic and by p the "reserve" of velocity acting as an anticipation factor of drivers to the local traffic conditions. Indeed, p can be viewed as the difference between the actual and the desired velocity, see (1.15). We consider the following system of conservation laws

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho v)=0, \tag{1.2}\\
\partial_{t}(\rho(v+p))+\partial_{x}(\rho v(v+p))=0,
\end{array} \quad t>0, x \in \mathbb{R}\right.
$$

subject to the constraints

$$
\begin{equation*}
0 \leq \rho(t, x) \leq \rho^{*}, \quad p(t, x) \geq 0, \quad\left(\rho(t, x)-\rho^{*}\right) p(t, x)=0 \quad \text { a.e. } t, x \tag{1.3}
\end{equation*}
$$

for some $\rho^{*} \in \mathbb{R}^{+}$denoting the maximal density of cars allowed on the road. System (1.2) is equipped with the following initial data

$$
\begin{equation*}
\rho(0, x)=\rho^{0}(x), \quad v(0, x)=v^{0}(x), \quad p(0, x)=p^{0}(x), \quad x \in \mathbb{R} \tag{1.4}
\end{equation*}
$$

Solutions have to be satisfied in the sense of distributions, that is to say equations (1.2) with initial data (1.4) are satisfied in the following sense: for all $\varphi \in C_{c}^{\infty}([0,+\infty[\times \mathbb{R})$,

$$
\begin{aligned}
& \int_{[0,+\infty[} \int_{\mathbb{R}}\left(\rho \partial_{t} \varphi+\rho v \partial_{x} \varphi\right) d x d t+\int_{\mathbb{R}} \rho^{0}(x) \varphi(0, x) d x=0 \\
& \int_{[0,+\infty[} \int_{\mathbb{R}}\left(\rho(v+p) \partial_{t} \varphi+\rho v(v+p) \partial_{x} \varphi\right) d x d t \\
& \quad+\int_{\mathbb{R}} \rho^{0}(x)\left(v^{0}(x)+p^{0}(x)\right) \varphi(0, x) d x=0
\end{aligned}
$$

and the constraints (1.3) are considered in a classical sense.
We assume that
(H1) $\rho^{0} \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ with $0 \leq \rho^{0} \leq \rho^{*}$;
(H2) $v^{0}, p^{0} \in L^{\infty}(\mathbb{R}) \cap \mathrm{BV}(\mathbb{R})$ with $v^{0} \geq 0, p^{0} \geq 0$ and $\left(\rho^{0}(x)-\rho^{*}\right) p^{0}(x)=0$ for a.e. $x \in \mathbb{R}$.
In [5], the authors introduced the following constrained follow-the-leader model to compute numerically approximate solutions of (1.2)-(1.4).

Let us denote by $x_{i}(t), V_{i}(t)$ and $p_{i}(t)$ the position, speed and reserve of velocity, respectively, of the i-th particle at time $t \geq 0$, for $0 \leq i \leq N$. The initial conditions

$$
\begin{equation*}
x_{i}^{N}(0)=\bar{x}_{i}^{N}, \quad V_{i}^{N}(0)=\bar{V}_{i}^{N}, \quad p_{i}^{N}(0)=\bar{p}_{i}^{N} \quad \text { for } i=0, \ldots, N, \tag{1.5}
\end{equation*}
$$

are defined as follows:
we set

$$
\begin{align*}
& l_{N}=\frac{1}{N} \int_{\mathbb{R}} \rho^{0}(x) d x, \quad d_{N}=l_{N} / \rho^{*}, \tag{1.6}\\
& \bar{x}_{1}^{N}=\sup \left\{x \in \mathbb{R} ; \int_{-\infty}^{x} \rho^{0}(x) d x<l_{N}\right\}, \tag{1.7}\\
& \bar{x}_{i}^{N}=\sup \left\{x \in \mathbb{R} ; \int_{\bar{x}_{i-1}^{N}}^{x} \rho^{0}(x) d x<l_{N}\right\}, \text { for } i=2, \ldots, N-1 . \tag{1.8}
\end{align*}
$$

Following [8], we handle the possibly unbounded support of the initial data by defining two extremal artificial particles in the following way:

$$
\begin{equation*}
\bar{x}_{0}^{N}=2 \bar{x}_{1}^{N}-\bar{x}_{2}^{N}, \quad \bar{x}_{N}^{N}=2 \bar{x}_{N-1}^{N}-\bar{x}_{N-2}^{N} . \tag{1.9}
\end{equation*}
$$

They are defined in order that

$$
\bar{x}_{1}^{N}-\bar{x}_{0}^{N}=\bar{x}_{2}^{N}-\bar{x}_{1}^{N}, \quad \bar{x}_{N}^{N}-\bar{x}_{N-1}^{N}=\bar{x}_{N-1}^{N}-\bar{x}_{N-2}^{N},
$$

which allows to only consider the minimum distance between "real" particles to get the control of the minimum distance between all particles.

Notice that we have

$$
\begin{equation*}
l_{N}=\int_{-\infty}^{\bar{x}_{1}^{N}} \rho^{0}(x) d x=\int_{\bar{x}_{i-1}^{N}}^{\bar{x}_{i}^{N}} \rho^{0}(x) d x=\int_{\bar{x}_{N-1}^{N}}^{+\infty} \rho^{0}(x) d x \tag{1.10}
\end{equation*}
$$

for $i=2, \ldots, N-1$. We also define

$$
\begin{equation*}
\bar{V}_{i}^{N}=\sup _{\left[\bar{x}_{i}^{N}, \bar{x}_{i+1}^{N}[\right.} v^{0}, \quad \bar{p}_{i}^{N}=\sup _{\left[\bar{x}_{i}^{N}, \bar{x}_{i+1}^{N}[\right.} p^{0}, \quad \text { for } i=0, \ldots, N-1, \tag{1.11}
\end{equation*}
$$

Notice also that we have

$$
\begin{equation*}
l_{N}=\int_{\bar{x}_{i-1}^{N}}^{\bar{x}_{i}^{N}} \rho^{0}(x) d x \leq\left\|\rho^{0}\right\|_{\infty}\left(\bar{x}_{i}^{N}-\bar{x}_{i-1}^{N}\right) \leq \rho^{*}\left(\bar{x}_{i}^{N}-\bar{x}_{i-1}^{N}\right) \tag{1.12}
\end{equation*}
$$

for all $i=2, \ldots, N-1$, and therefore

$$
\bar{x}_{i}^{N}-\bar{x}_{i-1}^{N} \geq d_{N}, \quad i=1, \ldots, N .
$$

The dynamics of the discrete model is the following: each particle moves freely at its current velocity until it reaches the minimal distance to the preceding one, that is to say $x_{i+1}^{N}(t)-x_{i}^{N}(t)=d_{N}$. At this point, the particle i takes the velocity of the particle $i+1$ and they keep the distance d_{N} forever. For any initial positions and velocities of the $N+1$ particles, these "interactions" can
only happen k times, with $k \leq N$. Let us denote by $t_{1} \leq t_{2} \leq \cdots \leq t_{k}$ the times when an interaction happens and we denotes by i_{m} the number of particle(s) for which at time t_{m}, the collision is between the i_{m}-th and the $\left(i_{m}+1\right)$-th particles. The particle dynamics is therefore described by the following rules

$$
\left\{\begin{array}{lll}
\dot{x}_{i}^{N}(t)=V_{i}^{N}(t), t \geq 0, & \text { for } i=0, \ldots, N, \tag{1.13}\\
V_{N}^{N}(t)=\bar{V}_{N}^{N}, & & \\
\dot{V}_{i}^{N}(t)=0 & t \neq t_{m}, & m=1, \ldots, k, \\
\dot{p}_{i}^{N}(t)=0 & t \neq t_{m}, & m=1, \ldots, k, \\
\text { for } i=0, \ldots, N-1, \\
i=0, \ldots, N-1,
\end{array}\right.
$$

and at times t_{m}, there is a jump such that for $t \geq t_{m}$,

$$
\left\{\begin{array}{l}
V_{i_{m}}^{N}(t):=V_{i_{p}}^{N}+1(t), \tag{1.14}\\
p_{i_{m}}^{N}(t):=V_{i_{m}}^{N}\left(t_{m}-\right)-V_{i_{m}}^{N}\left(t_{m}+\right)+p_{i_{m}}^{N}\left(t_{m}-\right) .
\end{array} \quad t \geq t_{m},\right.
$$

The meaning of this equation can be seen by the relations:

$$
\begin{align*}
V_{i_{m}}^{N}\left(t_{m}+\right)+p_{i_{m}}^{N}\left(t_{m}+\right) & =V_{i_{m}}^{N}\left(t_{m}+\right)+V_{i_{m}}^{N}\left(t_{m}-\right)-V_{i_{m}}^{N}\left(t_{m}+\right)+p_{i_{m}}^{N}\left(t_{m}-\right) \\
& =V_{i_{m}}^{N}\left(t_{m}-\right)+p_{i_{m}}^{N}\left(t_{m}-\right) . \tag{1.15}
\end{align*}
$$

We introduce the variables

$$
\begin{equation*}
y_{i}^{N}(t)=\frac{l_{N}}{x_{i+1}^{N}(t)-x_{i}^{N}(t)}, \quad i=0, \ldots, N-1 \tag{1.16}
\end{equation*}
$$

which satisfy

$$
\begin{equation*}
\dot{y}_{i}^{N}(t)=-\frac{l_{N}\left(\dot{x}_{i+1}^{N}(t)-\dot{x}_{i}^{N}(t)\right)}{\left(x_{i+1}^{N}(t)-x_{i}^{N}(t)\right)^{2}}=-\frac{y_{i}^{N}(t)^{2}}{l_{N}}\left(V_{i+1}^{N}(t)-V_{i}^{N}(t)\right) . \tag{1.17}
\end{equation*}
$$

Since $x_{i}^{N}(t)-x_{i-1}^{N}(t) \geq d_{N}$, we have $y_{i}^{N}(t) \leq l_{N} / d_{N}=\rho^{*}$.
We define the piecewise constant density $\hat{\rho}^{N}$ by

$$
\begin{equation*}
\hat{\rho}^{N}(t, x)=\sum_{i=0}^{N-1} y_{i}^{N}(t) \mathbf{I}_{\left[x_{i}^{N}(t), x_{i+1}^{N}(t)[\right.}(x), \tag{1.18}
\end{equation*}
$$

the velocity \hat{v}^{N} by

$$
\begin{equation*}
\hat{\rho}^{N} \hat{v}^{N}(t, x)=\sum_{i=0}^{N-1} y_{i}^{N}(t) V_{i}^{N}(t) \mathbf{I}_{\left[x_{i}^{N}(t), x_{i+1}^{N}(t)[\right.}(x), \tag{1.19}
\end{equation*}
$$

and the pressure term \hat{p}^{N} by

$$
\begin{equation*}
\hat{\rho}^{N} \hat{p}^{N}(t, x)=\sum_{i=0}^{N-1} y_{i}^{N}(t) p_{i}^{N}(t) \mathbf{I}_{\left[x_{i}^{N}(t), x_{i+1}^{N}(t)[\right.}(x) . \tag{1.20}
\end{equation*}
$$

Remark 1.1. These definitions identify \hat{v}^{N} and \hat{p}^{N} where $\hat{\rho}^{N} \neq 0$, that is to say away from vacuum. Vacuum zones are $]-\infty, x_{0}^{N}(t)[$ and $] x_{N}^{N}(t),+\infty[$ and we need to extend the functions \hat{v}^{N} and \hat{p}^{N} by constants at infinity.

The main result of the present article is the convergence of the microscopic constrained follow-the-leader model to the macroscopic CPGD system as the number of particles tends to infinity. As a byproduct, this proves the
convergence of the numerical method employed in [5]. It can be also viewed as an alternative existence proof.

Theorem 1.2. Let ρ^{0}, v^{0} and p^{0} satisfy (H1)-(H2) and consider the discrete quantities $\left(\hat{\rho}^{N}, \hat{v}^{N}, \hat{p}^{N}\right)$ defined by (1.18)-(1.20) with (1.16) and (1.5)-(1.11). Then there exists (ρ, v, p) with $\rho \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ and $v, p \in L^{\infty}(\mathbb{R}) \cap B V(\mathbb{R})$, solution of (1.2) with the constraints (1.3), with initial data $\left(\rho^{0}, v^{0}, p^{0}\right)$ such that, up to a subsequence,

$$
\hat{\rho}^{N} \rightharpoonup \rho, \quad \hat{\rho}^{N} \hat{v}^{N} \rightharpoonup \rho v, \quad \hat{\rho}^{N} \hat{p}^{N} \rightharpoonup \rho p
$$

in the distributional sense.
The proof is deferred to Sect. 4.3. We recall that previous derivations of macroscopic traffic models from microscopic dynamical systems have been investigated for the classical Lighthill-Whitham-Richards equation [7-9,13] and its non-local version [12], for the Aw-Rascle system [1,10], for a phasetransition model based on a speed bound [6], and for Hughes model of crowd motion [11]. In our case, the main difficulty is represented by the lack of a uniform bound on the density total variation, that cannot be compensated by the compactness of the Riemann invariants like in [10], due to the zeropressure term in the momentum equation. Therefore, the convergence relies on a compensated compactness argument introduced in [3].

The paper is organized as follows. In Sect. 2 we provide the convergence proof for initial data. Section 3 collects the L^{∞} and $B V$ estimates satisfied by the approximate solutions, which allow to show their convergence in Sect. 4.

2. Initial data limit

We start first by proving that the discrete quantities constructed at the previous section are compatible with the initial data.

Proposition 2.1. Let ρ^{0}, v^{0} and p^{0} satisfy (H1)-(H2).
We consider the discrete quantities (1.18)-(1.20) with (1.16) and (1.5)(1.11). Then, for all $\varphi \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$, we have

$$
\begin{align*}
& \int_{\mathbb{R}} \hat{\rho}^{N}(0, x) \varphi(x) d x \underset{N \rightarrow+\infty}{\rightarrow} \int_{\mathbb{R}} \rho^{0}(x) \varphi(x) d x \tag{2.1}\\
& \int_{\mathbb{R}} \hat{\rho}^{N}(0, x) \hat{v}^{N}(0, x) \varphi(x) d x \underset{N \rightarrow+\infty}{\rightarrow} \int_{\mathbb{R}} \rho^{0}(x) v^{0}(x) \varphi(x) d x \tag{2.2}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}} \hat{\rho}^{N}(0, x) \hat{p}^{N}(0, x) \varphi(x) d x \underset{N \rightarrow+\infty}{\rightarrow} \int_{\mathbb{R}} \rho^{0}(x) p^{0}(x) \varphi(x) d x . \tag{2.3}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\int_{\mathbb{R}} \hat{\rho}^{N}(0, x) \varphi(x) d x & =\sum_{i=0}^{N-1} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \frac{l_{N}}{\bar{x}_{i+1}^{N}-\bar{x}_{i}^{N}} \varphi(x) d x \\
& =\sum_{i=0}^{N-1} l_{N} \varphi\left(\bar{x}_{i}^{N}\right)+\sum_{i=0}^{N-1} \frac{l_{N}}{\bar{x}_{i+1}^{N}-\bar{x}_{i}^{N}} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}}\left(\varphi(x)-\varphi\left(\bar{x}_{i}^{N}\right)\right) d x .
\end{aligned}
$$

Using (1.10), we get

$$
\begin{aligned}
\sum_{i=0}^{N-1} l_{N} \varphi\left(\bar{x}_{i}^{N}\right)= & \int_{-\infty}^{\bar{x}_{1}^{N}} \rho^{0}(x) \varphi\left(\bar{x}_{1}^{N}\right) d x+\sum_{i=1}^{N-2} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \rho^{0}(x) \varphi\left(\bar{x}_{i}^{N}\right) d x \\
& +\int_{\bar{x}_{N-1}^{N}}^{+\infty} \rho^{0}(x) \varphi\left(\bar{x}_{N-1}^{N}\right) d x \\
= & \int_{\mathbb{R}} \rho^{0}(x) \varphi(x) d x+\sum_{i=1}^{N-2} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \rho^{0}(x)\left(\varphi\left(\bar{x}_{i}^{N}\right)-\varphi(x)\right) d x \\
& +\int_{-\infty}^{\bar{x}_{1}^{N}} \rho^{0}(x)\left(\varphi\left(\bar{x}_{1}^{N}\right)-\varphi(x)\right) d x \\
& +\int_{\bar{x}_{N-1}^{N}}^{+\infty} \rho^{0}(x)\left(\varphi\left(\bar{x}_{N-1}^{N}\right)-\varphi(x)\right) d x
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \int_{\mathbb{R}} \hat{\rho}^{N}(0, x) \varphi(x) d x-\int_{\mathbb{R}} \rho^{0}(x) \varphi(x) d x \\
& \quad=\sum_{i=1}^{N-2} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \rho^{0}(x)\left(\varphi\left(\bar{x}_{i}^{N}\right)-\varphi(x)\right) d x \\
& \quad+\sum_{i=0}^{N-1} \frac{l_{N}}{\bar{x}_{i+1}^{N}-\bar{x}_{i}^{N}} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}}\left(\varphi(x)-\varphi\left(\bar{x}_{i}^{N}\right)\right) d x \\
& \quad \\
& \quad+\int_{-\infty}^{\bar{x}_{1}^{N}} \rho^{0}(x)\left(\varphi\left(\bar{x}_{1}^{N}\right)-\varphi(x)\right) d x+\int_{\bar{x}_{N-1}^{N}}^{+\infty} \rho^{0}(x)\left(\varphi\left(\bar{x}_{N-1}^{N}\right)-\varphi(x)\right) d x .
\end{aligned}
$$

By assumption, there exists $R>0$ such that the support of φ is a subset of $[-R, R]$. Now

$$
\begin{aligned}
& \left|\int_{\mathbb{R}} \hat{\rho}^{N}(0, x) \varphi(x) d x-\int_{\mathbb{R}} \rho^{0}(x) \varphi(x) d x\right| \\
& \quad \leq\left\|\varphi^{\prime}\right\|_{\infty} \sum_{i=1}^{N-2} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \rho^{0}(x)\left(x-\bar{x}_{i}^{N}\right) \mathbf{I}_{[-R, R]}(x) d x \\
& \quad+\left\|\varphi^{\prime}\right\|_{\infty} \sum_{i=0}^{N-1} \frac{l_{N}}{\bar{x}_{i+1}^{N}-\bar{x}_{i}^{N}} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}}\left(x-\bar{x}_{i}^{N}\right) \mathbf{I}_{[-R, R]}(x) d x+4\|\varphi\|_{\infty} l_{N} \\
& \quad \leq l_{N}\left(3 R\left\|\varphi^{\prime}\right\|_{\infty}+4\|\varphi\|_{\infty}\right) \underset{N \rightarrow+\infty}{ } 0 .
\end{aligned}
$$

Thus we get

$$
\begin{equation*}
\int_{\mathbb{R}} \hat{\rho}^{N}(0, x) \varphi(x) d x \underset{N \rightarrow+\infty}{\rightarrow} \int_{\mathbb{R}} \rho^{0}(x) \varphi(x) d x . \tag{2.4}
\end{equation*}
$$

We consider now the product $\hat{\rho}^{N}(0, x) \hat{v}^{N}(0, x)$. In this case we have the relation

$$
\begin{aligned}
& \int_{\mathbb{R}} \hat{\rho}^{N}(0, x) \hat{v}^{N}(0, x) \varphi(x) d x \\
& =\sum_{i=0}^{N-1} \bar{V}_{i}^{N} \frac{l_{N}}{\bar{x}_{i+1}^{N}-\bar{x}_{i}^{N}} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \varphi(x) d x \\
& =\sum_{i=0}^{N-1} \bar{V}_{i}^{N} l_{N} \varphi\left(\bar{x}_{i}^{N}\right)+\sum_{i=0}^{N-1} \bar{V}_{i}^{N} \frac{l_{N}}{\bar{x}_{i+1}^{N}-\bar{x}_{i}^{N}} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}}\left(\varphi(x)-\varphi\left(\bar{x}_{i}^{N}\right)\right) d x
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i=0}^{N-1} & \bar{V}_{i}^{N} l_{N} \varphi\left(\bar{x}_{i}^{N}\right) \\
= & \int_{\mathbb{R}} \rho^{0}(x) v^{0}(x) \varphi(x) d x+\sum_{i=1}^{N-2} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \rho^{0}(x)\left(\bar{V}_{i}^{N}-v^{0}(x)\right) \varphi(x) d x \\
& +\int_{-\infty}^{\bar{x}_{1}^{N}} \rho^{0}(x)\left(\bar{V}_{1}^{N}-v^{0}(x)\right) \varphi(x) d x+\int_{\bar{x}_{N-1}^{N}}^{+\infty} \rho^{0}(x)\left(\bar{V}_{N-1}^{N}-v^{0}(x)\right) \varphi(x) d x \\
& +\sum_{i=1}^{N-2} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \rho^{0}(x) \bar{V}_{i}^{N}\left(\varphi\left(\bar{x}_{i}^{N}\right)-\varphi(x)\right) d x \\
& +\int_{-\infty}^{\bar{x}_{1}^{N}} \rho^{0}(x) \bar{V}_{1}^{N}\left(\varphi\left(\bar{x}_{1}^{N}\right)-\varphi(x)\right) d x \\
& +\int_{\bar{x}_{N-1}^{N}}^{+\infty} \rho^{0}(x) \bar{V}_{N-1}^{N}\left(\varphi\left(\bar{x}_{N-1}^{N}\right)-\varphi(x)\right) d x
\end{aligned}
$$

Therefore

$$
\begin{align*}
& \int_{\mathbb{R}} \hat{\rho}^{N}(0, x) \hat{v}^{N}(0, x) \varphi(x) d x-\int_{\mathbb{R}} \rho^{0}(x) v^{0}(x) \varphi(x) d x \tag{2.5}\\
& =\sum_{i=0}^{N-1} \bar{V}_{i}^{N} \frac{l_{N}}{\bar{x}_{i+1}^{N}-\bar{x}_{i}^{N}} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}}\left(\varphi(x)-\varphi\left(\bar{x}_{i}^{N}\right)\right) d x \\
& \quad+\sum_{i=1}^{N-2} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \rho^{0}(x)\left(\bar{V}_{i}^{N}-v^{0}(x)\right) \varphi(x) d x \\
& \quad+\sum_{i=1}^{N-2} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \rho^{0}(x) \bar{V}_{i}^{N}\left(\varphi\left(\bar{x}_{i}^{N}\right)-\varphi(x)\right) d x \\
& \quad+\int_{-\infty}^{\bar{x}_{1}^{N}} \rho^{0}(x)\left(\bar{V}_{1}^{N}-v^{0}(x)\right) \varphi(x) d x+\int_{\bar{x}_{N-1}^{N}}^{+\infty} \rho^{0}(x)\left(\bar{V}_{N-1}^{N}-v^{0}(x)\right) \varphi(x) d x
\end{align*}
$$

$$
\begin{aligned}
& +\int_{-\infty}^{\bar{x}_{1}^{N}} \rho^{0}(x) \bar{V}_{1}^{N}\left(\varphi\left(\bar{x}_{1}^{N}\right)-\varphi(x)\right) d x \\
& +\int_{\bar{x}_{N-1}^{N}}^{+\infty} \rho^{0}(x) \bar{V}_{N-1}^{N}\left(\varphi\left(\bar{x}_{N-1}^{N}\right)-\varphi(x)\right) d x
\end{aligned}
$$

Since \bar{V}_{i}^{N} are bounded by $\left\|v^{0}\right\|_{\infty}$, each of the four last terms of the right-hand side is bounded by $2 l_{N}\left\|v^{0}\right\|_{\infty}\|\varphi\|_{\infty}$. Furthermore, we get similarly as for the convergence of $\hat{\rho}^{N}$ the estimate

$$
\begin{aligned}
& \mid \sum_{i=1}^{N-2} \bar{V}_{i}^{N} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \rho^{0}(x)\left(\varphi\left(\bar{x}_{i}^{N}\right)-\varphi(x)\right) d x \\
& \left.\quad+\sum_{i=0}^{N-1} \bar{V}_{i}^{N} \frac{l_{N}}{\bar{x}_{i+1}^{N}-\bar{x}_{i}^{N}} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}}\left(\varphi(x)-\varphi\left(\bar{x}_{i}^{N}\right)\right) d x \right\rvert\, \\
& \quad \leq 3 l_{N}\left\|\varphi^{\prime}\right\|_{\infty}\left\|v^{0}\right\|_{\infty} R \underset{N \rightarrow+\infty}{\rightarrow} 0
\end{aligned}
$$

The second term of the right-hand side of (2.5) is controlled in the following way:

$$
\begin{aligned}
& \left|\sum_{i=1}^{N-2} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \rho^{0}(x)\left(\bar{V}_{i}^{N}-v^{0}(x)\right) \varphi(x) d x\right| \\
& \quad \leq \sum_{i=0}^{N-1} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \rho^{0}(x)\left|\bar{V}_{i}^{N}-v^{0}(x)\right||\varphi(x)| d x \\
& \quad \leq \sum_{i=0}^{N-1} \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \rho^{0}(x)\left(\sup _{\left[\bar{x}_{i}^{N}, \bar{x}_{i+1}^{N}\right]} v^{0}-\inf _{\left[\bar{x}_{i}^{N}, \bar{x}_{i+1}^{N}\right]} v^{0}\right)|\varphi(x)| d x \\
& \quad \leq\|\varphi\|_{\infty} \sum_{i=0}^{N-1}\left(\sup _{\left.\bar{x}_{i}^{N}, \bar{x}_{i+1}^{N}\right]} v^{0}-\inf _{\left[\bar{x}_{i}^{N}, \bar{x}_{i+1}^{N}\right]} v^{0}\right) \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \rho^{0}(x) d x \\
& \quad \leq l_{N}\|\varphi\|_{\infty} T V\left(v^{0}\right) \underset{N \rightarrow+\infty}{ } 0 .
\end{aligned}
$$

Thus we get

$$
\begin{equation*}
\int_{\mathbb{R}} \hat{\rho}^{N}(0, x) \hat{v}^{N}(0, x) \varphi(x) d x \underset{N \rightarrow+\infty}{\rightarrow} \int_{\mathbb{R}} \rho^{0}(x) v^{0}(x) \varphi(x) d x . \tag{2.6}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\int_{\mathbb{R}} \hat{\rho}^{N}(0, x) \hat{p}^{N}(0, x) \varphi(x) d x \underset{N \rightarrow+\infty}{\rightarrow} \int_{\mathbb{R}} \rho^{0}(x) p^{0}(x) \varphi(x) d x . \tag{2.7}
\end{equation*}
$$

3. L^{∞} and $B V$ estimates

The dynamics of $x_{i}^{N}(t), V_{i}^{N}(t)$ and $p_{i}^{N}(t)$ described by (1.13), (1.14), imply the following properties.

Proposition 3.1. Let ρ^{0}, v^{0} and p^{0} satisfy (H1)-(H2). Then we have the following estimates.
(1) The functions $\hat{\rho}^{N}$, \hat{v}^{N} and \hat{p}^{N} are bounded in $L^{\infty}(] 0,+\infty[\times \mathbb{R})$:

$$
\left\|\hat{\rho}^{N}\right\|_{\infty} \leq \rho^{*}, \quad\left\|\hat{v}^{N}\right\|_{\infty} \leq\left\|v^{0}\right\|_{\infty}, \quad\left\|\hat{p}^{N}\right\|_{\infty} \leq\left\|v^{0}\right\|_{\infty}+\left\|p^{0}\right\|_{\infty}
$$

(2) We also have

$$
\begin{gather*}
T V\left(\hat{v}^{N}(t, .)\right) \leq T V\left(v^{0}\right), \tag{3.1}\\
T V\left(\hat{p}^{N}(t, .)\right) \leq T V\left(v^{0}\right)+T V\left(p^{0}\right), \tag{3.2}
\end{gather*}
$$

for all $N \in \mathbb{N}$ and for $t \geq 0$.
Proof. (1) The functions $V_{i}^{N}(t)$ and $p_{i}^{N}(t)$ defined by (1.13) satisfy the maximum principles

$$
\begin{aligned}
& 0 \leq V_{i}^{N}(t) \leq \max _{j} V_{j}^{N}(0) \leq \sup v^{0} \\
& 0 \leq p_{i}^{N}(t) \leq \max _{j}\left(V_{j}^{N}(0)+p_{j}^{N}(0)\right) \leq \sup \left(v^{0}+p^{0}\right),
\end{aligned}
$$

which directly follow from the system dynamics. This implies the following L^{∞} estimates

$$
\begin{equation*}
\left|V_{i}^{N}(t)\right| \leq\left\|v^{0}\right\|_{\infty}, \quad\left|p_{i}^{N}(t)\right| \leq\left\|v^{0}\right\|_{\infty}+\left\|p^{0}\right\|_{\infty} \tag{3.3}
\end{equation*}
$$

These estimates clearly lead to the result.
(2) Estimate (3.1) derives from the fact that between two interaction times t_{m}, the functions $t \mapsto V_{i}^{N}(t)$ are constant. At time t_{m}, for a collision between the i_{m}-th and the $\left(i_{m}+1\right)$-th particles, from (1.14) we have

$$
\begin{aligned}
& T V\left(\hat{v}^{N}\left(t_{m}+, .\right)\right)=\sum_{i=0}^{N-1}\left|V_{i+1}^{N}\left(t_{m}+\right)-V_{i}^{N}\left(t_{m}+\right)\right| \\
& \quad=\sum_{i=0}^{i_{m}-1}\left|V_{i+1}^{N}\left(t_{m}+\right)-V_{i}^{N}\left(t_{m}+\right)\right|+\left|V_{i_{m}+1}^{N}\left(t_{m}+\right)-V_{i_{m}}\left(t_{m}+\right)\right| \\
&+\sum_{i=i_{m}+1}^{N-1}\left|V_{i+1}^{N}\left(t_{m}+\right)-V_{i}^{N}\left(t_{m}+\right)\right| \\
& \quad=\sum_{i=0}^{i_{m}-1}\left|V_{i+1}^{N}\left(t_{m}-\right)-V_{i}^{N}\left(t_{m}-\right)\right|+\sum_{i=i_{m}+1}^{N-1}\left|V_{i+1}^{N}\left(t_{m}-\right)-V_{i}^{N}\left(t_{m}-\right)\right| \\
& \leq T V\left(\hat{v}^{N}\left(t_{m}-, .\right)\right),
\end{aligned}
$$

thus proving (3.1). Notice that the variation which is lost for \hat{v}^{N} is transferred to \hat{p}^{N}, thus giving (3.2).

Finally, notice that for all $x \in \mathbb{R}$ we have

$$
\left(\hat{\rho}^{N}(t, x)-\rho^{*}\right) \hat{p}^{N}(t, x)=0 .
$$

Indeed, this is true at $t=0$. Moreover

1. if $p_{i}^{N}(0, x) \neq 0$ for $x \in\left[\bar{x}_{i}^{N}, \bar{x}_{i+1}^{N}\left[\right.\right.$, then $y_{i}^{N}(t, x)=\rho^{*}$ for $x \in\left[x_{i}^{N}(t), x_{i+1}^{N}(t)[\right.$ for $t>0$;
2. when p_{i}^{N} passes from 0 to non-zero, as described by (1.14), then it is when $y_{i}^{N}=\rho^{*}$ is satisfied.

4. Convergence proofs

4.1. Study of the approximated equations

We first start by studying the limit of the approximated equations.
Proposition 4.1. Let ρ^{0}, v^{0} and p^{0} satisfy (H1)-(H2). Then, for any $\varphi \in$ $C_{c}^{\infty}([0,+\infty[\times \mathbb{R})$, it holds

$$
\begin{equation*}
-<\partial_{t} \hat{\rho}^{N}+\partial_{x}\left(\hat{\rho}^{N} \hat{v}^{N}\right), \varphi>\underset{N \rightarrow+\infty}{\rightarrow} \int_{\mathbb{R}} \rho^{0}(x) \varphi(0, x) d x \tag{4.1}
\end{equation*}
$$

and

$$
\begin{align*}
-<\partial_{t} \hat{\rho}^{N}\left(\hat{v}^{N}+\hat{p}^{N}\right)+ & \partial_{x}\left(\hat{\rho}^{N} \hat{v}^{N}\left(\hat{v}^{N}+\hat{p}^{N}\right)\right), \varphi> \\
& \rightarrow \underset{N \rightarrow+\infty}{ } \int_{\mathbb{R}} \rho^{0}(x)\left(v^{0}+p^{0}\right)(x) \varphi(0, x) d x . \tag{4.2}
\end{align*}
$$

Proof. Let $\varphi \in C_{c}^{1}([0,+\infty[\times \mathbb{R})$. We have

$$
\begin{aligned}
-<\partial_{t} \hat{\rho}^{N} & +\partial_{x}\left(\hat{\rho}^{N} \hat{v}^{N}\right), \varphi> \\
& =\int_{0}^{+\infty} \int_{\mathbb{R}} \hat{\rho}^{N}(t, x) \partial_{t} \varphi(t, x)+\hat{\rho}^{N}(t, x) \hat{v}^{N}(t, x) \partial_{x} \varphi(t, x) d x d t \\
& =\sum_{i=0}^{N-1} \int_{0}^{+\infty} y_{i}^{N}(t) \int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)}\left(\partial_{t} \varphi(t, x)+V_{i}^{N}(t) \partial_{x} \varphi(t, x)\right) d x d t .
\end{aligned}
$$

Notice that

$$
\begin{aligned}
& \frac{d}{d t} \int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)} \varphi(t, x) d x \\
& \quad=\int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)} \partial_{t} \varphi(t, x) d x+\dot{x}_{i+1}^{N}(t) \varphi\left(t, x_{i+1}^{N}(t)\right)-\dot{x}_{i}^{N}(t) \varphi\left(t, x_{i}^{N}(t)\right) \\
& \quad=\int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)} \partial_{t} \varphi(t, x) d x+V_{i+1}^{N}(t) \varphi\left(t, x_{i+1}^{N}(t)\right)-V_{i}^{N}(t) \varphi\left(t, x_{i}^{N}(t)\right),
\end{aligned}
$$

therefore

$$
\begin{align*}
& -<\partial_{t} \hat{\rho}^{N}+\partial_{x}\left(\hat{\rho}^{N} \hat{v}^{N}\right), \varphi> \\
& =\sum_{i=0}^{N-1} \int_{0}^{+\infty} y_{i}^{N}(t)\left(\frac{d}{d t} \int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)} \varphi(t, x) d x-V_{i+1}^{N}(t) \varphi\left(t, x_{i+1}^{N}(t)\right)\right. \\
& \\
& \left.\quad+\quad V_{i}^{N}(t) \varphi\left(t, x_{i}^{N}(t)\right)+V_{i}^{N}(t)\left(\varphi\left(t, x_{i+1}^{N}(t)\right)-\varphi\left(t, x_{i}^{N}(t)\right)\right)\right) d t \tag{4.3}\\
& = \\
& \\
& \quad \sum_{i=0}^{N-1} \int_{0}^{+\infty} y_{i}^{N}(t)\left(\frac{d}{d t} \int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)} \varphi(t, x) d x-\left(V_{i+1}^{N}(t)-V_{i}^{N}(t)\right) \varphi\left(t, x_{i+1}^{N}(t)\right)\right) d t .
\end{align*}
$$

Now

$$
\begin{aligned}
& \int_{0}^{+\infty} y_{i}^{N}(t) \frac{d}{d t} \int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)} \varphi(t, x) d x d t \\
& \quad=-y_{i}^{N}(0) \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \varphi(0, x) d x-\int_{0}^{+\infty} \dot{y}_{i}^{N}(t) \int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)} \varphi(t, x) d x d t
\end{aligned}
$$

which, with (1.17), gives

$$
\begin{align*}
& \int_{0}^{+\infty} y_{i}^{N}(t) \frac{d}{d t} \int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)} \varphi(t, x) d x d t \\
&=-y_{i}^{N}(0) \int_{\bar{x}_{i}^{N}}^{\bar{x}_{i+1}^{N}} \varphi(0, x) d x \\
&+\int_{0}^{+\infty} \frac{y_{i}^{N}(t)^{2}}{l_{N}}\left(V_{i+1}^{N}(t)-V_{i}^{N}(t)\right) \int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)} \varphi(t, x) d x d t \tag{4.4}
\end{align*}
$$

Furthermore

$$
\begin{align*}
\varphi\left(t, x_{i+1}^{N}(t)\right) & =\frac{1}{x_{i+1}^{N}(t)-x_{i}^{N}(t)} \int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)} \varphi\left(t, x_{i+1}^{N}(t)\right) d x \\
& =\frac{y_{i}^{N}(t)}{l_{N}} \int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)} \varphi\left(t, x_{i+1}^{N}(t)\right) d x . \tag{4.5}
\end{align*}
$$

Reporting (4.4) and (4.5) in (4.3), we obtain

$$
\begin{align*}
- & <\partial_{t} \hat{\rho}^{N}+\partial_{x}\left(\hat{\rho}^{N} \hat{v}^{N}\right), \varphi> \\
& =\int_{0}^{T_{\varphi}} \Delta_{N}(t) d t-\sum_{i=0}^{N-1} y_{i}^{N}(0) \int_{x_{i}^{N}(0)}^{x_{i+1}^{N}(0)} \varphi(0, x) d x \\
& =\int_{0}^{T_{\varphi}} \Delta_{N}(t) d t-\int_{\mathbb{R}} \hat{\rho}^{N}(0, x) \varphi(0, x) d x \tag{4.6}
\end{align*}
$$

where

$$
\Delta_{N}(t)=\sum_{i=0}^{N-1} \frac{y_{i}^{N}(t)^{2}}{l_{N}}\left(V_{i+1}^{N}(t)-V_{i}^{N}(t)\right) \int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)}\left(\varphi(t, x)-\varphi\left(t, x_{i+1}^{N}(t)\right)\right) d x
$$

with T_{φ} such that $\varphi(t, x)=0$ for $t \geq T_{\varphi}$. Now we have

$$
\left|\int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)}\left(\varphi(t, x)-\varphi\left(t, x_{i+1}^{N}(t)\right)\right) d x\right| \leq \frac{\left\|\varphi^{\prime}\right\|_{\infty}}{2}\left(x_{i}^{N}(t)-x_{i+1}^{N}(t)\right)^{2}=\frac{\left\|\varphi^{\prime}\right\|_{\infty} l_{N}^{2}}{2\left(y_{i}^{N}(t)\right)^{2}},
$$

thus

$$
\left|\Delta_{N}(t)\right| \leq \frac{\left\|\varphi^{\prime}\right\|_{\infty} l_{N}}{2} \sum_{i=0}^{N-1}\left|V_{i+1}^{N}(t)-V_{i}^{N}(t)\right| \leq \frac{\left\|\varphi^{\prime}\right\|_{\infty} l_{N}}{2} T V\left(v^{0}\right)
$$

and

$$
\left|\int_{0}^{T_{\varphi}} \Delta_{N}(t) d t\right| \leq \frac{\left\|\varphi^{\prime}\right\|_{\infty} l_{N}}{2} T_{\varphi} T V\left(v^{0}\right) \underset{N \rightarrow+\infty}{\rightarrow} 0
$$

Finally, we use Proposition 2.1 to conclude to (4.1).
For the second equation, we have

$$
\begin{align*}
- & <\partial_{t}\left(\hat{\rho}^{N}\left(\hat{v}^{N}+\hat{p}^{N}\right)\right)+\partial_{x}\left(\hat{\rho}^{N} \hat{v}^{N}\left(\hat{v}^{N}+\hat{p}^{N}\right)\right), \varphi> \\
& =\int_{0}^{+\infty} \int_{\mathbb{R}} \hat{\rho}^{N}(t, x)\left(\hat{v}^{N}+\hat{p}^{N}\right)(t, x)\left(\partial_{t} \varphi(t, x)+\hat{v}^{N}(t, x) \partial_{x} \varphi(t, x)\right) d x d t \\
& =\sum_{i=0}^{N-1} \int_{0}^{+\infty} y_{i}^{N}(t)\left(V_{i}^{N}(t)+p_{i}^{N}(t)\right) \int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)}\left(\partial_{t} \varphi(t, x)+V_{i}^{N}(t) \partial_{x} \varphi(t, x)\right) d x d t . \tag{4.7}
\end{align*}
$$

Notice that $V_{i}^{N}(t)+p_{i}^{N}(t)$ is constant with respect to t. Indeed, when there is no collision $\dot{V}_{i}^{N}(t)=0$ and $\dot{p}_{i}^{N}(t)=0$ and at a collision time t_{m}, we have the relation (1.15). Thus we get the convergence (4.2) as for the first equation.

4.2. Compactness estimates for $\hat{\rho}^{N}$

To go further, a key point is to obtain some compactness for $\hat{\rho}^{N}$.
Proposition 4.2. Let ρ^{0} and v^{0} satisfy (H1)-(H2). For any $\phi \in C_{c}^{\infty}(\mathbb{R})$, there exists $C_{\phi}>0$ such that for any $N \in \mathbb{N}$ and any $s, t \in[0, T]$, it holds

$$
\begin{equation*}
\left|\int_{\mathbb{R}}\left(\hat{\rho}^{N}(t, x)-\hat{\rho}^{N}(s, x)\right) \phi(x) d x\right| \leq C_{\phi}|t-s| \tag{4.8}
\end{equation*}
$$

Therefore, up to a subsequence, there exists $\rho \in L^{\infty}(] 0, T[\times \mathbb{R})$ such that $\hat{\rho}^{N} \rightarrow$ ρ in $C\left([0, T], L_{w *}^{\infty}\left(\mathbb{R}_{x}\right)\right)$, i.e.

$$
\forall \Gamma \in L^{1}(\mathbb{R}), \sup _{t \in[0, T]}\left|\int_{\mathbb{R}}\left(\hat{\rho}^{N}-\rho\right)(t, x) \Gamma(x) d x\right| \underset{N \rightarrow+\infty}{\rightarrow} 0
$$

Proof. In the formulation (4.6), we take $\varphi(t, x)=\Gamma_{R}(t) \phi(x)$ with Γ_{R} with a compact support in $] 0,+\infty\left[\right.$ and we make $\Gamma_{R} \rightarrow \mathbf{I}_{[s, t]}$ when $R \rightarrow+\infty$, it gives

$$
\int_{\mathbb{R}}\left(\hat{\rho}^{N}(t, x)-\hat{\rho}^{N}(s, x)\right) \phi(x) d x+\int_{s}^{t} \int_{\mathbb{R}} \hat{\rho}^{N} \hat{v}^{N} \phi^{\prime} d x d \sigma=\int_{s}^{t} \tilde{\Delta}_{N}(\sigma) d \sigma,
$$

where

$$
\tilde{\Delta}_{N}(t)=\sum_{i=0}^{N-1} \frac{y_{i}^{N}(t)^{2}}{l_{N}}\left(V_{i+1}^{N}(t)-V_{i}^{N}(t)\right) \int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)}\left(\phi(x)-\phi\left(x_{i+1}^{N}(t)\right)\right) d x
$$

Similarly as in Sect. 4.1, we have

$$
\left|\int_{s}^{t} \tilde{\Delta}_{N}(\sigma) d \sigma\right| \leq|t-s| \frac{\left\|\phi^{\prime}\right\|_{\infty} l_{N}}{2} T V\left(v^{0}\right) .
$$

Furthermore, from Proposition 3.1,

$$
\left|\int_{s}^{t} \int_{\mathbb{R}} \hat{\rho}^{N} \hat{v}^{N} \phi^{\prime} d x d \sigma\right| \leq|t-s| \rho^{*}\left\|v^{0}\right\|_{\infty}\left\|\phi^{\prime}\right\|_{1}
$$

then

$$
\begin{aligned}
& \left|\int_{\mathbb{R}}\left(\hat{\rho}^{N}(t, x)-\hat{\rho}^{N}(s, x)\right) \phi(x) d x\right| \\
& \quad \leq|t-s|\left(\frac{\left\|\phi^{\prime}\right\|_{\infty}\left\|\rho^{0}\right\|_{1}}{2 N} T V\left(v^{0}\right)+\rho^{*}\left\|v^{0}\right\|_{\infty}\left\|\phi^{\prime}\right\|_{1}\right) .
\end{aligned}
$$

To conclude, we use the following Lemma 4.3 proved in [4].
Lemma 4.3. Let $\left(n_{k}\right)_{k \in \mathbb{N}}$ be a bounded sequence in $L^{\infty}(] 0, T[\times \mathbb{R})$ which satisfies: for all $\phi \in C_{c}^{\infty}(\mathbb{R})$, the sequence $\left(\int_{\mathbb{R}} n_{k}(t, x) \phi(x) d x\right)_{k}$ is uniformly Lipschitz continuous on $[0, T]$, i.e. $\exists C_{\phi}>0$,

$$
\forall k \in \mathbb{N}, \quad \forall s, t \in[0, T], \quad\left|\int_{\mathbb{R}}\left(n_{k}(t, x)-n_{k}(s, x)\right) \phi(x) d x\right| \leq C_{\phi}|t-s|
$$

Then, up to a subsequence, there exists $n \in L^{\infty}(] 0, T[\times \mathbb{R})$ such that $n_{k} \rightarrow n$ in $C\left([0, T], L_{w *}^{\infty}\left(\mathbb{R}_{x}\right)\right)$, i.e.

$$
\forall \Gamma \in L^{1}(\mathbb{R}), \quad \sup _{t \in[0, T]}\left|\int_{\mathbb{R}}\left(n_{k}-n\right)(t, x) \Gamma(x) d x\right|_{k \rightarrow+\infty}^{\rightarrow} 0
$$

We have a similar result from the second equation, that is to say:
Proposition 4.4. Let ρ^{0}, v^{0} and p^{0} satisfy (H1)-(H2). For any $\phi \in C_{c}^{\infty}(\mathbb{R})$, there exists $C_{\phi}>0$ such that for any $N \in \mathbb{N}$ and any $s, t \in[0, T]$, we have

$$
\begin{equation*}
\left|\int_{\mathbb{R}}\left(\left(\hat{\rho}^{N}\left(\hat{v}^{N}+\hat{p}^{N}\right)\right)(t, x)-\left(\hat{\rho}^{N}\left(\hat{v}^{N}+\hat{p}^{N}\right)\right)(s, x)\right) \phi(x) d x\right| \leq C_{\phi}|t-s| \tag{4.9}
\end{equation*}
$$

Then, up to a subsequence, there exists $q \in L^{\infty}(] 0, T[\times \mathbb{R})$ such that $\hat{\rho}^{N}\left(\hat{u}^{N}+\right.$ $\left.\hat{p}^{N}\right) \rightarrow q$ in $C\left([0, T], L_{w *}^{\infty}\left(\mathbb{R}_{x}\right)\right)$, i.e.

$$
\forall \Gamma \in L^{1}(\mathbb{R}), \quad \sup _{t \in[0, T]}\left|\int_{\mathbb{R}}\left(\hat{\rho}^{N}\left(\hat{v}^{N}+\hat{p}^{N}\right)-q\right)(t, x) \Gamma(x) d x\right|_{k \rightarrow+\infty}^{\rightarrow} 0
$$

Proof. This time, we have, for any $\phi \in C_{c}^{\infty}(\mathbb{R})$,

$$
\begin{aligned}
\int_{\mathbb{R}} & \left(\left(\hat{\rho}^{N}\left(\hat{v}^{N}+\hat{p}^{N}\right)\right)(t, x)-\left(\hat{\rho}^{N}\left(\hat{v}^{N}+\hat{p}^{N}\right)\right)(s, x)\right) \phi(x) d x \\
& =-\int_{s}^{t} \int_{\mathbb{R}} \hat{\rho}^{N} \hat{v}^{N}\left(\hat{v}^{N}+\hat{p}^{N}\right) \phi^{\prime} d x d \sigma+\int_{s}^{t} \bar{\Delta}_{N}(\sigma) d \sigma
\end{aligned}
$$

where

$$
\begin{aligned}
\bar{\Delta}_{N}(t)= & \sum_{i=0}^{N-1}\left(V_{i}^{N}(t)+p_{i}^{N}(t)\right) \frac{y_{i}^{N}(t)^{2}}{l_{N}}\left(V_{i+1}^{N}(t)\right. \\
& \left.-V_{i}^{N}(t)\right) \int_{x_{i}^{N}(t)}^{x_{i+1}^{N}(t)}\left(\phi(x)-\phi\left(x_{i+1}^{N}(t)\right)\right) d x .
\end{aligned}
$$

We have now

$$
\left|\int_{s}^{t} \bar{\Delta}_{N}(\sigma) d \sigma\right| \leq|t-s|\left\|\phi^{\prime}\right\|_{\infty} l_{N} T V\left(v^{0}\right)\left(\left\|v^{0}\right\|_{\infty}+\left\|p^{0}\right\|_{\infty}\right)
$$

using furthermore (3.3). Then we get

$$
\begin{aligned}
& \left.\mid \int_{\mathbb{R}}\left(\left(\hat{\rho}^{N}\left(\hat{v}^{N}+\hat{p}^{N}\right)\right)(t, x)-\left(\hat{\rho}^{N}\left(\hat{v}^{N}+\hat{p}^{N}\right)\right)(s, x)\right)\right) \phi(x) d x \mid \\
& \quad \leq|t-s|\left(\left\|\phi^{\prime}\right\|_{\infty} \frac{\left\|\rho^{0}\right\|_{1}}{N} T V\left(v^{0}\right)+2 \rho^{*}\left\|v^{0}\right\|_{\infty}\left\|\phi^{\prime}\right\|_{1} d x\right)\left(\left\|v^{0}\right\|_{\infty}+\left\|p^{0}\right\|_{\infty}\right) .
\end{aligned}
$$

We conclude using the previous Lemma 4.3.

4.3. Convergence to the limit equations

We need now to pass to the limit in the product terms. We recall the following result, which is the key point of the proof to pass to the limit in the products.

Lemma 4.5. Let us assume that $\left(n_{k}\right)_{k \in \mathbb{N}}$ is a bounded sequence in $L^{\infty}(] 0, T[\times \mathbb{R})$ that tends to n in $L_{w *}^{\infty}(] 0, T[\times \mathbb{R})$, and satisfies for any $\phi \in C_{c}^{\infty}\left(\mathbb{R}_{x}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}}\left(n_{k}-n\right)(t, x) \phi(x) d x \underset{k \rightarrow+\infty}{\rightarrow} 0 \tag{4.10}
\end{equation*}
$$

either i) a.e. $t \in] 0, T\left[\right.$ or ii) in $L^{1}(] 0, T[t)$.
Let us also assume that $\left(\omega_{k}\right)_{k \in \mathbb{N}}$ is a bounded sequence in $L^{\infty}(] 0, T[\times \mathbb{R})$ that tends to ω in $L_{w *}^{\infty}(] 0, T[\times \mathbb{R})$, and such that for all compact interval $K=$ $[a, b]$, there exists $C>0$ such that the total variation (in x) of ω_{k} over K satisfies

$$
\begin{equation*}
\forall k \in \mathbb{N}, \quad T V_{K}\left(\omega_{k}(t, .)\right) \leq C . \tag{4.11}
\end{equation*}
$$

Then, $n_{k} \omega_{k} \rightharpoonup n \omega$ in $L_{w *}^{\infty}(] 0, T[\times \mathbb{R})$ as $k \rightarrow+\infty$.
Remark 4.6. This is a result of compensated compactness, which uses the compactness in x for $\left(\omega_{k}\right)_{k}$ given by (4.11) and the weak compactness in t for $\left(n_{k}\right)_{k}$ given by (4.10) to pass to the weak limit in the product $n_{k} \omega_{k}$. We can refer to [3] for a complete proof, even in the case where

$$
\forall k \in \mathbb{N}, \quad T V_{K}\left(\omega_{k}(t, .)\right) \leq C\left(1+\frac{1}{t}\right)
$$

which is more general. Notice that the total variation bound (in x) of ω_{k} over K is also satisfied thanks to the lower semi-continuity to the BV norm.

We are now able to obtain the limit result.
Proof. of Theorem 1.2 Since $\left(\hat{\rho}^{N}\right)_{N},\left(\hat{v}^{N}\right)_{N},\left(\hat{p}^{N}\right)_{N}$ are bounded in L^{∞}, there exists (ρ, v, p) such that

$$
\hat{\rho}^{N} \rightharpoonup \rho, \quad \hat{v}^{N} \rightharpoonup v, \quad \hat{p}^{N} \rightharpoonup p \quad \text { in } L_{w *}^{\infty}(] 0,+\infty[\times \mathbb{R}) .
$$

By Proposition 4.2, we also have $\hat{\rho}^{N} \rightarrow \rho$ in $C\left([0, T], L_{w *}^{\infty}\left(\mathbb{R}_{x}\right)\right)$.
Using Proposition 3.1, we get that the sequences $\left(\hat{v}^{N}(t, .)\right)_{N}$ and $\left(\hat{p}^{N}(t, .)\right)_{N}$ are uniformly bounded in BV with respect to t.

We can then apply Lemma 4.5 , which gives that $\hat{\rho}^{N} \hat{v}^{N} \rightharpoonup \rho v$ in $L_{w *}^{\infty}(] 0, T[\times \mathbb{R})$ and $\hat{\rho}^{N} \hat{p}^{N} \rightharpoonup \rho p$ in $L_{w *}^{\infty}(] 0, T[\times \mathbb{R})$. Therefore the (4.1) of Proposition 4.1 gives that

$$
-<\partial_{t} \rho+\partial_{x}(\rho v), \varphi>=\int_{\mathbb{R}} \rho^{0}(x) \varphi(0, x) d x
$$

By Proposition 4.4, there exists $q \in L^{\infty}(] 0, T[\times \mathbb{R})$ such that, up to a subsequence, $\hat{\rho}^{N}\left(\hat{v}^{N}+\hat{p}^{N}\right) \rightarrow q$ in $C\left([0, T], L_{w *}^{\infty}\left(\mathbb{R}_{x}\right)\right)$. By uniqueness of the limit $q=$ $\rho(v+p)$. We apply now Lemma 4.5 , which gives that $\hat{\rho}^{N} \hat{v}^{N}\left(\hat{v}^{N}+\hat{p}^{N}\right) \rightharpoonup \rho v(v+p)$ in $L_{w *}^{\infty}(] 0, T[\times \mathbb{R})$. Therefore the (4.2) of Proposition 4.1 gives that

$$
-<\partial_{t}(\rho(v+p))+\partial_{x}(\rho v(v+p)), \varphi>=\int_{\mathbb{R}} \rho^{0}(x)\left(v^{0}(x)+p^{0}(x)\right) \varphi(0, x) d x
$$

Now we pass to the limit in $0 \leq \hat{\rho}^{N} \leq \rho^{*}, \hat{p}^{N} \geq 0,\left(\hat{\rho}^{N}-\rho^{*}\right) \hat{p}^{N}=0$ to get the constraints and conclude the proof.

Acknowledgements

This work was achieved while the first author was in secondment at Inria Sophia Antipolis.

References

[1] Aw, A., Klar, A., Materne, T., Rascle, M.: Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J. Appl. Math. 63(1), 259-278 (2002)
[2] Aw, A., Rascle, M.: Resurrection of "second order" models of traffic flow. SIAM J. Appl. Math. 60, 916-938 (2000)
[3] Berthelin, F.: Existence and weak stability for a pressureless model with unilateral constraint. Math. Models Methods Appl. Sci. 12(2), 249-272 (2002)
[4] Berthelin, F., Broizat, D.: A model for the evolution of traffic jams in multi-lane. Kinet. Relat. Models 5(4), 697-728 (2012)
[5] Berthelin, F., Degond, P., Delitala, M., Rascle, M.: A model for the formation and evolution of traffic jams. Arch. Ration. Mech. Anal. 187(2), 185-220 (2008)
[6] Colombo, R.M., Marcellini, F., Rascle, M.: A 2-phase traffic model based on a speed bound. SIAM J. Appl. Math. 70(7), 2652-2666 (2010)
[7] Colombo, R.M., Rossi, E.: On the micro-macro limit in traffic flow. Rend. Semin. Mat. Univ. Padova 131, 217-235 (2014)
[8] Di Francesco, M., Fagioli, S., Rosini, M.D.: Deterministic particle approximation of scalar conservation laws. Boll. Unione Mat. Ital. (2017)
[9] Di Francesco, M., Rosini, M.D.: Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit. Arch. Ration. Mech. Anal. 217(3), 831-871 (2015)
[10] Francesco, M.D., Fagioli, S., Rosini, M.D.: Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic. Math. Biosci. Eng. 14(1), 127-141 (2017)
[11] Francesco, M.D., Fagioli, S., Rosini, M.D., Russo, G.: Deterministic particle approximation of the Hughes model in one space dimension. Kinet. Relat. Models 10(1), 215-237 (2017)
[12] Goatin, P., Rossi, F.: A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit. Commun. Math. Sci. 15(1), 261-287 (2017)
[13] Holden, H., Risebro, N.H.: Continuum Limit of Follow-the-Leader Models. ArXiv e-prints (2017)
[14] Zhang, H.M.: A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. B: Methodol. 36(3), 275-290 (2002)

Florent Berthelin

Laboratoire J. A. Dieudonné, UMR 7351 CNRS
Université Côte d'Azur, LJAD, CNRS, Inria, Université de Nice Sophia-Antipolis Parc Valrose
06108 Nice Cedex 2
France
e-mail: Florent.Berthelin@unice.fr
Paola Goatin
Inria Sophia Antipolis - Méditerranée
Université Côte d'Azur, Inria, CNRS, LJAD
2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex
France
e-mail: paola.goatin@inria.fr
Received: 3 January 2017.
Accepted: 7 August 2017.

[^0]: This article is part of the topical collection "Hyperbolic PDEs, Fluids, Transport and Applications: Dedicated to Alberto Bressan for his 60th birthday" guest edited by Fabio Ancona, Stefano Bianchini, Pierangelo Marcati, Andrea Marson.

