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1. Introduction

Let us start by recalling the classical Caffarelli–Kohn–Nirenberg inequality [3]:

Theorem 1.1. Let n ∈ N and let p, q, r, a, b, d, δ ∈ R be such that p, q ≥ 1,
r > 0, 0 ≤ δ ≤ 1, and

1
p

+
a

n
,

1
q

+
b

n
,

1
r

+
c

n
> 0, (1.1)

where
c = δd + (1 − δ)b. (1.2)

Then there exists a positive constant C such that

‖|x|cf‖Lr(Rn) ≤ C‖|x|a|∇f |‖δ
Lp(Rn)‖|x|bf‖1−δ

Lq(Rn) (1.3)
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holds for all f ∈ C∞
0 (Rn), if and only if the following conditions hold:

1
r

+
c

n
= δ

(
1
p

+
a − 1

n

)
+ (1 − δ)

(
1
q

+
b

n

)
, (1.4)

a − d ≥ 0 if δ > 0, (1.5)

a − d ≤ 1 if δ > 0 and
1
r

+
c

n
=

1
p

+
a − 1

n
. (1.6)

Since the paper [3] the subject of such inequalities has been actively
investigated. See, for instance, [5] for sharpness results, [17] for radially sym-
metric functions and [25] for the generalised Baouendi–Grushin vector field.
We also refer to [14] for the Heisenberg group results that go back to the paper
of Garofalo and Lanconelli [12] (see also [8] and references therein), in which
Hardy-type inequalities on the Heisenberg group were presented. For a short
review in this direction and some further discussions we refer to recent papers
[19,24] and [23] as well as to references therein. We can also refer to [4] for
discussions related to the Heisenberg group. For a recent review of some results
concerning Hardy inequality on stratified groups we can refer to [6], and also to
[7]. Some results on Hardy inequalities on homogeneous groups have appeared
in [22] and on Caffarelli–Kohn–Nirenberg inequalities in [24]. We refer to [15]
for the original Hardy inequality, and to [11] for the theory of homogeneous
groups.

Since we are also interested in Sobolev inequality, let us recall it briefly.
If 1 < p, p∗ < ∞ and

1
p

=
1
p∗ − 1

n
, (1.7)

then the (Euclidean) Sobolev inequality has the form

‖g‖Lp(Rn) ≤ C(p)‖∇g‖Lp∗ (Rn), (1.8)

where ∇ is the standard gradient in R
n.

The following Sobolev type inequality with respect to the operator x · ∇
instead of ∇ has been considered in [18]:

‖g‖Lp(Rn) ≤ C ′(p)‖x · ∇g‖Lq(Rn). (1.9)

For any λ > 0, by substituting g(x) = h(λx) into (1.9), one easily observes
that p = q is a necessary condition to have (1.9).

In this paper we are interested in these inequalities in the setting of gen-
eral stratified groups (or homogeneous Carnot groups). Such groups have been
historically investigated by Folland [10], with numerous subsequent contribu-
tions by many people. This class includes the Heisenberg group as the main
example, as well as more general H-type (see e.g. [13]) and other groups.

The Sobolev inequality (1.8) is well known on stratified Lie groups ([10])
and, in fact, even on general graded Lie groups, see e.g. [9, Theorem 4.4.28].
So, here we are more interested in the Sobolev type inequalities (1.9). The
Cafarelli–Kohn–Nirenberg inequalities on the stratified groups have been also
recently investigated in [20] but only in the case of p = q = r. Here we extend
it to a more general range of p, q and r.
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For the convenience of the reader we summarise briefly the results of
this paper: let G be a stratified group with N being the dimension of the
first stratum and let |·| be the Euclidean norm on R

N . We denote by x′ the
variables from the first stratum of G. Then we have

• (Sobolev type inequality) Let α ∈ R. Then for any f ∈ C∞
0 (G\{x′ = 0}),

and all 1 < p < ∞, we have

|N − αp|
p

∥∥∥∥ f

|x′|α
∥∥∥∥

Lp(G)

≤
∥∥∥∥x′ · ∇Hf

|x′|α
∥∥∥∥

Lp(G)

,

where ∇H is the horizontal gradient on G and |·| is the Euclidean norm
on R

N . If N �= αp, then the constant |N−αp|
p is sharp.

• (Equivalence of Hardy and Sobolev type inequalities in L2(G)) Let N ≥
3. Then the following two statements are equivalent:
(a) For any f ∈ C∞

0 (G\{x′ = 0}), we have

‖f‖L2(G) ≤ 2
N

‖x′ · ∇Hf‖L2(G).

(b) For any g ∈ C∞
0 (G\{x′ = 0}), we have∥∥∥∥ g

|x′|
∥∥∥∥

L2(G)

≤ 2
N − 2

∥∥∥∥ x′

|x′| · ∇Hg

∥∥∥∥
L2(G)

.

• (Caffarelli–Kohn–Nirenberg inequalities) Let N �= p(1 − a). Let 1 <
p, q < ∞, 0 < r < ∞ with p + q ≥ r and δ ∈ [0, 1] ∩ [

r−q
r , p

r

]
and a, b,

c ∈ R. Assume that δr
p + (1−δ)r

q = 1 and c = δ(a − 1) + b(1 − δ). Then
we have the following Caffarelli–Kohn–Nirenberg type inequality for all
f ∈ C∞

0 (G\{0}):

‖|x′|cf‖Lr(G) ≤
∣∣∣∣ p

N + p(a − 1)

∣∣∣∣
δ

‖|x′|a∇Hf‖δ
Lp(G)

∥∥|x′|bf∥∥1−δ

Lq(G)
.

The constant
∣∣∣ p
N+p(a−1)

∣∣∣δ is sharp for p = q with a − b = 1 or p �= q with
p(1 − a) + bq �= 0, or δ = 0, 1.
Note that these inequalities with weights from the first stratum of G also

give new insights (proofs) in the Euclidean setting. By using this idea in the
paper [20] a new general inequality (see [20, Proposition 3.2]) was obtained
in the Euclidean case, in particular, whose proof gave a new (simple) proof of
the Badiale–Tarantello conjecture. Obtained versions may also have applica-
tions to linear and nonlinear equations of mathematical physics (see, e.g. [1]).
In addition, to the best of our knowledge, the Caffarelli–Kohn–Nirenberg in-
equalities above on a (general) stratified group G are new even in the Abelian
case, that is, in the Euclidean case these extend the classical Caffarelli–Kohn–
Nirenberg inequalities with respect to ranges of parameters, see Example 4.3.
Hardy inequalities for different operators is a topic with many investigations.
For example, for sub-Laplacians with lower regularity, see [16].

In Sect. 2 we briefly recall the main concepts of stratified groups and
fix the notation. In Sect. 3 the Lp-weighted Sobolev type inequality and its



56 Page 4 of 12 M. Ruzhansky, D. Suragan, and N. Yessirkegenov NoDEA

equivalence to the Hardy inequality in L2 are proved. Finally, in Sect. 4 we ob-
tain the Caffarelli–Kohn–Nirenberg type inequalities on stratified Lie groups.

2. Preliminaries

In this section we very briefly recall the necessary notation concerning the
setting of stratified groups.

A Lie group G = (Rn, ◦) is called a stratified group (or a homogeneous
Carnot group) if it satisfies the following two conditions:

• For some natural numbers N + N2 + · · · + Nr = n, that is N = N1, the
decomposition R

n = R
N × · · · × R

Nr is valid, and for every λ > 0 the
dilation δλ : Rn → R

n given by

δλ(x) = δλ(x′, x(2), . . . , x(r)) := (λx′, λ2x(2), . . . , λrx(r))

is an automorphism of the group G. Here x′ ≡ x(1) ∈ R
N and x(k) ∈ R

Nk

for k = 2, . . . , r.
• Let N be as in above and let X1, . . . , XN be the left invariant vector

fields on G such that Xk(0) = ∂
∂xk

|0 for k = 1, . . . , N . Then

rank(Lie{X1, . . . , XN}) = n,

for every x ∈ R
n, i.e. the iterated commutators of X1, . . . , XN span the

Lie algebra of G.
That is, we say that the triple G = (Rn, ◦, δλ) is a stratified group. Such groups
have been thoroughly investigated by Folland [10]. A more general approach
without identifying them with R

n is possible but then it can be shown to
reduce to the definition above, so we may work with it from the beginning.
We refer to e.g. [9] for more detailed discussions from the Lie algebra point of
view.

Here the left invariant vector fields X1, . . . , XN are called the (Jacobian)
generators of G and r is called a step of G. The number

Q =
r∑

k=1

kNk, N1 = N,

is called the homogeneous dimension of G. We also recall that the standard
Lebesgue measure dx on R

n is the Haar measure for G (see, e.g. [9, Proposition
1.6.6]). For more details on stratified groups we refer to [2] or [9].

The left invariant vector fields Xj have an explicit form and satisfy the
divergence theorem, see e.g. [21] for the derivation of the exact formula: more
precisely, we can write

Xk =
∂

∂x′
k

+
r∑

�=2

N1∑
m=1

a
(�)
k,m(x′, . . . , x�−1)

∂

∂x
(�)
m

, (2.1)

see also [9, Section 3.1.5] for a general presentation. Throughout this paper,
we will also use the following notations:

∇H := (X1, . . . , XN )
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for the horizontal gradient,

divHυ := ∇H · υ

for the horizontal divergence, and

|x′| =
√

x
′2
1 + · · · + x

′2
N

for the Euclidean norm on R
N .

The explicit representation of the left invariant vector fields Xj (2.1)
allows us to verify the identities

|∇H |x′|γ | = γ|x′|γ−1, (2.2)

and

divH

(
x′

|x′|γ
)

=

∑N
j=1 |x′|γXjx

′
j − ∑N

j=1 x′
jγ|x′|γ−1Xj |x′|

|x′|2γ
=

N − γ

|x′|γ (2.3)

for any γ ∈ R, |x′| �= 0.

3. Hardy and Sobolev type inequalities on stratified Lie groups

In this section we investigate Lp-weighted Sobolev type inequality and show
its equivalence to the Hardy inequality in L2.

Theorem 3.1. Let G be a stratified group with N being the dimension of the
first stratum, and let α ∈ R. Then for any f ∈ C∞

0 (G\{x′ = 0}), and all
1 < p < ∞, we have

|N − αp|
p

∥∥∥∥ f

|x′|α
∥∥∥∥

Lp(G)

≤
∥∥∥∥x′ · ∇Hf

|x′|α
∥∥∥∥

Lp(G)

, (3.1)

where |·| is the Euclidean norm on R
N . If N �= αp, then the constant |N−αp|

p

is sharp.

Remark 3.2. In the abelian case G = (Rn,+), we have N = n, ∇H = ∇ =
(∂x1 , . . . , ∂xn

), so (3.1) implies the Lp-weighted Sobolev type inequality (see
[18]) for G = R

n with the sharp constant:

|n − αp|
p

∥∥∥∥ f

|x|α
∥∥∥∥

Lp(Rn)

≤
∥∥∥∥x · ∇f

|x|α
∥∥∥∥

Lp(Rn)

, (3.2)

for all f ∈ C∞
0 (Rn\{0}), and |x| =

√
x2

1 + · · · + x2
n.

The proof is a simple argument, giving the result also related to [8, The-
orem 2.12].

Proof of Theorem 3.1. We may assume that αp �= N since for αp = N the in-
equality (3.1) is trivial. By using the identity (2.3) and the divergence theorem
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one calculates∫
G

|f(x)|p
|x′|αp

=
1

N − αp

∫
G

|f(x)|pdivH

(
x′

|x′|αp

)
dx

= − p

N − αp
Re

∫
G

pf(x)|f(x)|p−2 x′ · ∇Hf

|x′|αp
dx

≤
∣∣∣∣ p

N − αp

∣∣∣∣
∫
G

|f(x)|p−1

|x′|αp
|x′ · ∇Hf |dx

≤
∣∣∣∣ p

N − αp

∣∣∣∣
∫
G

|f(x)|p−1

|x′|α(p−1)

|x′ · ∇Hf |
|x′|α dx

≤
∣∣∣∣ p

N − αp

∣∣∣∣
( |f(x)|p

|x′|αp
dx

) p−1
p

( |x′ · ∇Hf |p
|x′|αp

dx

) 1
p

,

which implies (3.1). Here we have used Hölder’s inequality in the last line. Now
let us prove the sharpness of the constant. We note that the function

h1(x) =
1

|x′| |N−αp|
p

, N �= αp,

satisfies the following equality condition in Hölder’s inequality∣∣∣∣ p

N − αp

∣∣∣∣
p |x′ · ∇Hh1(x)|p

|x′|αp
=

|h1(x)|p
|x′|αp

.

Thus we have showed that the constant |N−αp|
p is sharp if we approximate this

function by smooth compactly supported functions. �
Using Schwarz’s inequality in the right hand side of (3.1) we see that

(3.1) is a refinement of the Lp-weighted Hardy inequality on stratified groups
from [20]:

Corollary 3.3. Let G be a stratified group with N being the dimension of the
first stratum, and let α ∈ R. Then for any f ∈ C∞

0 (G\{x′ = 0}), and all
1 < p < ∞, we have

|N − αp|
p

∥∥∥∥ f

|x′|α
∥∥∥∥

Lp(G)

≤
∥∥∥∥ ∇Hf

|x′|α−1

∥∥∥∥
Lp(G)

, (3.3)

where |·| is the Euclidean norm on R
N . If N �= αp then the constant |N−αp|

p

is sharp.

Thus, (3.1) can be regarded as a refinement of (3.3). The above also gives
a simple proof of a part of [8, Theorem 2.12].

Now let us show the equivalence of the Sobolev type inequality and Hardy
inequality on stratified groups in L2 case:

Theorem 3.4. Let G be a stratified group with N being the dimension of the
first stratum with N ≥ 3. Then the following two statements are equivalent:
(a) For any f ∈ C∞

0 (G\{x′ = 0}), we have

‖f‖L2(G) ≤ 2
N

‖x′ · ∇Hf‖L2(G). (3.4)
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(b) For any g ∈ C∞
0 (G\{x′ = 0}), we have
∥∥∥∥ g

|x′|
∥∥∥∥

L2(G)

≤ 2
N − 2

∥∥∥∥ x′

|x′| · ∇Hg

∥∥∥∥
L2(G)

. (3.5)

Proof. Let us first show that the statement (a) gives (b). We put g = |x′|f .
Then one has

‖x′ · ∇Hf‖2
L2(G) =

∥∥∥∥− g

|x′| +
x′

|x′| · ∇Hg

∥∥∥∥
2

L2(G)

=
∥∥∥∥ g

|x′|
∥∥∥∥

2

L2(G)

− 2Re
∫
G

g(x)
|x′|

x′

|x′| · ∇Hg(x)dx

+
∥∥∥∥ x′

|x′| · ∇Hg

∥∥∥∥
2

L2(G)

. (3.6)

By (2.3), one calculates

−2Re
∫
G

g(x)
|x′|

x′

|x′| · ∇Hg(x)dx = −
∫
G

x′

|x′|2 ∇H |g(x)|2dx

=
∫
G

divH

(
x′

|x′|2
)

|g(x)|2dx = (N − 2)
∫
G

|g(x)|2
|x′|2 dx.

We see from the statement (a) and (3.6) that

∥∥∥∥ g

|x′|
∥∥∥∥

2

L2(G)

≤ 4
N2

(
(N − 1)

∥∥∥∥ g

|x′|
∥∥∥∥

2

L2(G)

+
∥∥∥∥ x′

|x′| · ∇Hg

∥∥∥∥
2

L2(G)

)
,

which implies (3.5).
Conversely, assume that (b) holds. Put f = g/|x′|. Then we obtain

∥∥∥∥ x′

|x′| · ∇H(|x′|f)
∥∥∥∥

2

L2(G)

= ‖f + x′ · ∇Hf‖2
L2(G)

= ‖f‖2
L2(G) + 2Re

∫
G

x′f(x)∇Hfdx + ‖x′ · ∇Hf‖2
L2(G).

Using (2.3), we have

2Re
∫
G

x′f(x)∇Hfdx = −N‖f‖2
L2(G).

It follows from the statement (b) that

‖f‖2
L2(G) ≤ 4

(N − 2)2
(‖x′ · ∇Hf‖2

L2(G) − (N − 1)‖f‖2
L2(G)),

which implies (3.4). �
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4. Caffarelli–Kohn–Nirenberg inequalities

In this section, we introduce new Caffarelli–Kohn–Nirenberg type inequalities
in the setting of stratified groups. The proof is quite simple relying on weighted
Hardy inequalities and the Hölder inequality. However, we note that already
in the Euclidean setting of Rn it also gives an extension of Theorem 1.1 from
the point of view of indices.

Theorem 4.1. Let G be a stratified group with N being the dimension of the
first stratum with N �= p(1 − a). Let 1 < p, q < ∞, 0 < r < ∞ with p + q ≥ r
and δ ∈ [0, 1] ∩ [

r−q
r , p

r

]
and a, b, c ∈ R. Assume that

δr

p
+

(1 − δ)r
q

= 1 and c = δ(a − 1) + b(1 − δ).

Then we have the following Caffarelli–Kohn–Nirenberg type inequality for all
f ∈ C∞

0 (G\{0}):

‖|x′|cf‖Lr(G) ≤
∣∣∣∣ p

N + p(a − 1)

∣∣∣∣
δ

‖|x′|a∇Hf‖δ
Lp(G)

∥∥|x′|bf∥∥1−δ

Lq(G)
. (4.1)

The constant in the inequality (4.1) is sharp for p = q with a − b = 1 or p �= q
with p(1 − a) + bq �= 0, or for δ = 0, 1.

Remark 4.2. In the abelian case G = (Rn,+), we have N = n, ∇H = ∇ =
(∂x1 , . . . , ∂xn

), so (4.1) implies the Caffarelli–Kohn–Nirenberg type inequality
for G = R

n: Let 1 < p, q < ∞, 0 < r < ∞ with p+q ≥ r and δ ∈ [0, 1]∩[
r−q

r , p
r

]
and a, b, c ∈ R. Assume that δr

p + (1−δ)r
q = 1 and c = δ(a−1)+ b(1− δ). Then

we have

‖|x|cf‖Lr(Rn) ≤
∣∣∣∣ p

n + p(a − 1)

∣∣∣∣
δ

‖|x|a∇f‖δ
Lp(Rn)

∥∥|x|bf∥∥1−δ

Lq(Rn)
, (4.2)

for all f ∈ C∞
0 (Rn\{0}), |x| =

√
x2

1 + · · · + x2
n and n �= p(1−a). The constant

in the inequality (4.2) is sharp for p = q with a − b = 1 or p �= q with
p(1 − a) + bq �= 0, or for δ = 0, 1.

We now indicate that the inequalities (4.2) give an extension of Theorem
1.1 with respect to the range of indices.

Example 4.3. Let us take 1 < p = q = r < ∞, a = −n−2p
p , b = −n

p and
c = −n−δp

p . Then by (4.2), for all f ∈ C∞
0 (Rn\{0}) we have the inequality

∥∥∥∥∥
f

|x|n−δp
p

∥∥∥∥∥
Lp(Rn)

≤
∥∥∥∥∥

∇f

|x|n−2p
p

∥∥∥∥∥
δ

Lp(Rn)

∥∥∥∥ f

|x|n
p

∥∥∥∥
1−δ

Lp(Rn)

, 1 < p < ∞, 0 ≤ δ ≤ 1,

(4.3)
where ∇ is the standard gradient in R

n. Since we have

1
q

+
b

n
=

1
p

+
1
n

(
−n

p

)
= 0,
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we see that (1.1) fails, so that the inequality (4.3) is not covered by Theorem
1.1. Moreover, in this case, p = q with a−b = 1 hold true, so that the constant∣∣∣ p
n+p(a−1)

∣∣∣δ = 1 in the inequality (4.3) is sharp.

Proof of Theorem 4.1. Case δ = 0. In this case, we have q = r and b = c by
δr
p + (1−δ)r

q = 1 and c = δ(a − 1) + b(1 − δ), respectively. Then, the inequality
(4.1) is reduces to the trivial estimate

‖|x′|bf‖Lq(G) ≤ ∥∥|x′|bf∥∥
Lq(G)

.

Case δ = 1. Notice that in this case, p = r and a − 1 = c. By (3.3), we have
for N + cp �= 0 the inequality

‖|x′|cf‖Lr(G) ≤
∣∣∣∣ p

N + cp

∣∣∣∣ ‖|x′|c+1∇Hf‖Lr(G).

In this case, the constant in (4.1) is sharp, since the constants in (3.3) is sharp.
Case δ ∈ (0, 1) ∩ [

r−q
r , p

r

]
. Taking into account c = δ(a − 1) + b(1 − δ), a

direct calculation gives

‖|x′|cf‖Lr(G) =
(∫

G

|x′|cr|f(x)|rdx

) 1
r

=
(∫

G

|f(x)|δr

|x′|δr(1−a)

|f(x)|(1−δ)r

|x′|−br(1−δ)
dx

) 1
r

.

Since we have δ ∈ (0, 1) ∩ [
r−q

r , p
r

]
and p + q ≥ r, then by using Hölder’s

inequality for δr
p + (1−δ)r

q = 1, we obtain

‖|x′|cf‖Lr(G) ≤
(∫

G

|f(x)|p
|x′|p(1−a)

dx

) δ
p

(∫
G

|f(x)|q
|x′|−bq

dx

) 1−δ
q

=
∥∥∥∥ f

|x′|1−a

∥∥∥∥
δ

Lp(G)

∥∥∥∥ f

|x′|−b

∥∥∥∥
1−δ

Lq(G)

. (4.4)

Here we note that when p = q and a − b = 1, Hölder’s equality condition is
satisfied for any function. We also note that in the case p �= q the function

h2(x) = |x′| 1
(p−q) (p(1−a)+bq) (4.5)

satisfies Hölder’s equality condition:

|h2|p
|x′|p(1−a)

=
|h2|q

|x′|−bq
.

If N �= p(1 − a), then by (3.3), we have
∥∥∥∥ f

|x′|1−a

∥∥∥∥
δ

Lp(G)

≤
∣∣∣∣ p

N + p(a − 1)

∣∣∣∣
δ ∥∥∥∥ ∇Hf

|x′|−a

∥∥∥∥
δ

Lp(G)

. (4.6)

Putting this in (4.4), one has

‖|x′|cf‖Lr(G) ≤
∣∣∣∣ p

N + p(a − 1)

∣∣∣∣
δ ∥∥∥∥ ∇Hf

|x′|−a

∥∥∥∥
δ

Lp(G)

∥∥∥∥ f

|x′|−b

∥∥∥∥
1−δ

Lq(G)

.
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When we prove (4.6), in exactly the same way as in the proof of Theorem 3.1,
we note that

h3(x) = |x′|C , C �= 0, (4.7)

satisfies the Hölder equality condition. Therefore, in the case p = q, a − b =
1 Hölder’s equality condition of the inequalities (4.4) and (4.6) holds true
for h3(x) in (4.7). Moreover, in the case p �= q, p(1 − a) + bq �= 0 Hölder’s
equality condition of the inequalities (4.4) and (4.6) holds true for h2(x) in
(4.5). Therefore, the constant in (4.1) is sharp when p = q, a − b = 1 or p �= q,
p(1 − a) + bq �= 0. �

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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