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Abstract. We introduce a class of stochastic Allen–Cahn equations with a
mobility coefficient and colored noise. For initial data with finite free en-
ergy, we analyze the corresponding Cauchy problem on the d-dimensional
torus in the time interval [0, T ]. Assuming that d ≤ 3 and that the poten-
tial has quartic growth, we prove existence and uniqueness of the solution
as a process u in L2 with continuous paths, satisfying almost surely the
regularity properties u ∈ C([0, T ]; H1) and u ∈ L2([0, T ]; H2).
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1. Introduction

The analysis of stochastic perturbations of the Allen–Cahn equation, due to
their relevance both from a theoretical and applied viewpoint, has been a
main topic in the development of the theory of stochastic partial differential
equations. We consider the case in which the space variable belongs to the
d-dimensional torus T

d := R
d/Zd. The typical setting is the following. Fix

a smooth double well potential W : R → R and a filtered probability space
equipped with a cylindrical Wiener process α. A class of stochastic perturba-
tions of the Allen–Cahn equation is then given by

dut =
(
Δut − W ′(ut)

)
dt +

√
2j ∗ dαt. (1.1)

Here, the unknown u = ut(x), (t, x) ∈ [0, T ] × T
d, T > 0, is real-valued and it

represents the local order parameter, Δ is the Laplacian, j = j(x) : Td → R,
and ∗ denotes convolution in the space variable. The case of perturbation
by space-time white noise is formally recovered when j is the Dirac’s delta
function.
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The so-called semigroup approach [9] to the analysis of the stochastic
Allen–Cahn consists in writing the Cauchy problem with initial datum ū0

associated to (1.1) in the mild form, i.e.,

ut = etΔū0 −
∫ t

0

e(t−s)ΔW ′(us) ds +
√

2
∫ t

0

e(t−s)Δj ∗ dαs, (1.2)

where etΔ denotes the heat semigroup. In the one-dimensional case with j = δ
or in d > 1 with j smooth enough, the last term on the right-hand side of (1.2)
is, with probability one, a process in C(Td) with continuos paths. By a fixed
point argument in C([0, T ];C(Td)), it is then possible to prove existence and
uniqueness to (1.2), for almost all realizations of the noise, see, e.g., [6], where
a more general setting is considered. When W ′ is Lipschitz, this approach
applies also to the case in which the state space is L2(Td) instead of C(Td),
and the same holds even when W ′ has polynomial growth, relying on the
one-side Liptschitz property of W ′ [7,9].

Considering still the case with W ′ Lipschitz and with the same restric-
tions on j, the stochastic Allen–Cahn Eq. (1.1) can be also analyzed using the
so-called variational approach [23,30]. This approach relies on the embeddings
H1(Td) ⊂ L2(Td) ⊂ H−1(Td), the Cauchy problem associated to (1.1) is then
understood as the following equality in H−1(Td),

ut = ū0 +
∫ t

0

[
Δus − W ′(us)

]
ds +

√
2j ∗ αt. (1.3)

The main step for existence is an Itô’s formula for the map u �→ ‖u‖2
L2(Td),

which yields the a priori bounds needed to construct the solution u, by com-
pactness arguments, as a process in L2(Td) with continuous paths and u ∈
L2([0, T ];H1(Td)) with probability one. More recently, in [25] the variational
approach has been extended to the case of W ′ with some polynomial growth
again in view of the one-side Liptschitz property.

Approximation of the Allen–Cahn Eq. (1.1) by time discretization has
been considered in [22], in terms of the backward Euler scheme; indeed, as
the time step goes to zero, this method recovers the unique solution discussed
above. Similar time and space discretization of (1.1) were previously investi-
gated first in, e.g., [15] under Lipschitz assumption on the nonlinear term and
extended in [18] when W ′ has polynomial growth.

In the case of perturbation by space-time white noise, j = δ, and d > 1,
the last term in the right-hand side of (1.2) is, with probability one, only
a distribution and the well-posedness of the stochastic perturbation of the
Allen–Cahn equation becomes a major issue. In particular, to make sense of
the equation a proper renormalization of the non linear term W ′ is needed.
In dimension d = 2, when W is a polynomial, this renormalization amounts
to the Wick ordering [2,8,19]. In dimension d = 3, the renormalization of the
non linearity is more involved; for a quartic potential W , a local existence and
uniqueness result is proven in [14], and it has been extended in [28] to arbitrary
time intervals.
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Regarding the choice of the random forcing term in (1.1), we would like to
make the following model remark. The choice of the space-time white noise has
the doubtless appeal of simplicity and universality, and it is really mandatory
when (1.1) is used in the framework of stochastic quantization or to model
dynamical critical fluctuations [16]. In the latter case, the potential W is not
arbitrary but the quartic potential. Indeed, as shown in [4,12] for d = 1 and
in [27] for d = 2, with these choices (1.1) describes the asymptotic of the
fluctuations at the critical point for a Glauber dynamics with local mean field
interaction. On the other hand, if we regard (1.1) as a phenomenological model
for phase segregation and interface dynamics, the choice of a noise with nonzero
spatial correlation length, i.e., a smooth j, is not unsound since we are going to
look at the order parameter on larger space scales. Analogously, any reasonable
double well potential W will yield essentially the same limiting behavior.

The deterministic Allen–Cahn equation, i.e., (1.1) with j = 0, can be
viewed as the L2-gradient flow of the van der Waals free energy functional,

F(u) :=
∫ [1

2
|∇u|2 + W (u)

]
dx. (1.4)

Correspondingly, in the case when j is the Dirac’s delta function, the process
u is (informally) reversible with respect to the (informal) probability measure
P (Du) ∝ exp

{ − F(u)
}Du.

With respect to the setting described above, in this paper we analyze a
stochastic Allen–Cahn equation in which we introduce a mobility coefficient,
that is,

dut = σ(ut)
(
Δut − W ′(ut)

)
dt +

√
2σ(ut) j ∗ dαt, (1.5)

where the mobility σ : R → R+ is smooth, bounded, and uniformly strictly pos-
itive. Moreover, W is convex at infinity with at most quartic growth. In terms
of gradient flows, (1.5) with j = 0 is the gradient flow of F in L2(σ(u)−1dx).
Finally, the choice of the random forcing term in (1.5) is suggested by the case
of constant mobility. Indeed, when σ is constant and j is the Dirac’s delta
function, the process u is still (informally) reversible with respect to the (in-
formal) probability P (Du) ∝ exp

{− F(u)
}Du regardless of the specific value

of σ. In the physical literature, see e.g., [16, Sect. IV.A.1] or [33, Sect. II.7.3],
this choice is usually referred to as the Onsager’s prescription.

A motivation for the introduction of the mobility in the Allen–Cahn
equation relies in the analysis of the corresponding sharp interface limits. For
instance, as well known, for suitably prepared initial data, in this singular limit
the deterministic Allen–Cahn equation (with constant mobility) converges to
the motion by mean curvature, see e.g. [11,17]. As discussed in [34, Sect. 4],
this approximation to motion by mean curvature has the peculiar feature of
exhibiting a trivial transport coefficient in the limiting evolution. On the other
hand, when a non-constant mobility coefficient is introduced as in (1.5), we
expect that the limiting interface evolution is described by motion by mean
curvature with a non-trivial transport coefficient satisfying the corresponding
Einstein’s relation [34, Sect. 3] (see [10,20] for the case of a non-local equation).
As far as the stochastic Allen–Cahn equation is considered, a relevant issue
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is the large deviation asymptotics in such sharp interface limit. In the case
of constant mobility, this analysis is carried out in [3], see also the related
discussion in [21].

To our knowledge, the stochastic Allen–Cahn equation with mobility has
not been discussed in the literature. In this paper, we consider the Cauchy
problem associated to (1.5) with initial datum ū0 ∈ H1(Td) when d ≤ 3,
the potential W is convex at infinity with at most quartic growth, and j
belongs to the Sobolev space H1(Td). We prove the existence and unique-
ness of the solution as a process u in L2(Td) with continuous paths satisfying
u ∈ C([0, T ];H1(Td)) ∩ L2([0, T ];H2(Td)) almost surely and such that the
corresponding norms are random variables whose moments are all finite.

The semigroup approach does not seem to be applicable to equation (1.5),
first because it cannot be recasted in a mild form in terms of a linear semigroup
(the diffusion term is now nonlinear), but also because the reaction term −σW ′

no longer satisfies the one-side Lipschitz property. On the other hand, our
result seems difficult to obtain by the variational approach discussed above
even in the case of constant mobility, see the discussion at the end of Sect. 2.

The restriction d ≤ 3 is connected to the quartic growth of the poten-
tial, allowing to control some non-linear terms via Sobolev embeddings. The
choice of periodic boundary conditions does simplify computations, but the
arguments here presented are robust enough to be adapted to the case of a
bounded domain with either Dirichlet or Neumann boundary conditions.

From a technical viewpoint, existence of solutions to (1.5) will be proven
by a compactness argument on suitable approximate solutions in the same
spirit of the variational approach. More precisely, the approximate solutions are
constructed by time discretization of the mobility coefficient and regularizing
the nonlinear term. The necessary a-priori bounds are obtained, taking full
advantage of the variational structure of the equation, by deriving an Itô’s
formula for suitable approximations of the map u �→ F(u) defined in (1.4).
Uniqueness will be achieved by an H−1 estimate inspired by the one in [1] for
similar deterministic evolution equations, together with a Yamada-Watanabe
type argument.

2. Notation and results

Throughout this paper we shall shorthand Lp = Lp(Td), p ∈ [1,+∞], and
let Hs = Hs(Td), s ∈ R, be the fractional Sobolev space. Moreover, given
T > 0 we also shorthand C(Lp) = C([0, T ];Lp), C(Hs) = C([0, T ];Hs), and
Lp(Hs) = Lp([0, T ];Hs).

We consider the following stochastic partial differential equation,

du = σ(u) [Δu − W ′(u)] dt + dM, (2.1)

where, for ϕ ∈ L2, Mϕ
t := 〈Mt, ϕ〉L2 , t ≥ 0, is a continuous square integrable

martingale with quadratic variation,
[
Mϕ

]
t
=

∫ t

0

∫ [
j ∗ (

√
σ(us) ϕ)

]2 dxds. (2.2)
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Here j ∈ H1 is a fixed function, ∗ denotes the convolution on T
d, and the

following conditions on the potential W and the mobility σ are assumed to
hold.

Assumption 2.1. (Assumptions on W and σ)
(1) W ∈ C2

(
R; [0,+∞)

)
and W is uniformly convex at infinity, i.e., there

exists a constant C ∈ (0,+∞) and a compact K ⊂ R such that W ′′(u) ≥
1
C for any u �∈ K.

(2) W has at most growth 4, i.e., there exists a constant C ∈ (0,+∞) such
that |W (u)| ≤ C(|u|4 + 1) for any u ∈ R.

(3) W ′ has at most growth 3, i.e., there exists a constant C ∈ (0,+∞) such
that |W ′(u)| ≤ C(|u|3 + 1) for any u ∈ R.

(4) There exists a constant C ∈ (0,+∞) such that |W ′′(u)| ≤ C(
√

W (u)+1)
for any u ∈ R.

(5) σ ∈ C2(R), σ is bounded and uniformly strictly positive, i.e., there exists
a constant C ∈ (0,+∞) such that 1

C ≤ σ(u) ≤ C for any u ∈ R.
(6) σ′, σ′′ are bounded.

We prove the existence and uniqueness of the Cauchy problem associated
to (2.1) with a deterministic initial datum ū0 ∈ H1 in space dimensions d ≤ 3.
To formulate the precise result we introduce two different notions of solution.

Given T > 0, we consider C(L2) ≡ C([0, T ];L2), endowed with the norm
topology, the associated Borel σ-algebra B, and the canonical filtration Bt,
t ∈ [0, T ]. The canonical coordinate on C(L2) is denote by u = (ut)t∈[0,T ].

Given ū0 ∈ H1, a probability P on C(L2) solves the martingale problem
associated to (2.1) with initial datum ū0 iff P(u0 = ū0) = 1, P(u ∈ L∞(H1) ∩
L2(H2)) = 1, and for each ψ ∈ C∞([0, T ] × T

d) the process,

Mψ
t :=

∫
utψt dx−

∫
u0ψ0 dx−

∫ t

0

∫ [
us∂sψs+σ(us)

(
Δus−W ′(us)

)
ψs

]
dxds

(2.3)
is a continuous, square integrable P-martingale with quadratic variation,

[
Mψ

]
t
= 2

∫ t

0

∫ [
j ∗ (

√
σ(us)ψs

)]2 dxds. (2.4)

We shall refer to such probability P as a martingale solution to (2.1) with
initial datum ū0. Uniqueness in law (or uniqueness of martingale solutions)
holds whenever there exists at most one probability on C(L2) meeting the
above requirements.

To introduce the notion of strong solution it is first necessary to construct
the martingale in terms of cylindrical Wiener process, whose definition we next
recall. A L2-cylindrical Wiener process on the probability space (Ω,G,P) is a
measurable map α : Ω → C(H−s̄), s̄ > d/2, such that αt, t ∈ [0, T ], is a mean
zero Gaussian process with covariance,

E(αt(φ)αt′(φ′)
)

= t ∧ t′ 〈φ, φ′〉L2 = t ∧ t′ 〈φ, (Id − Δ)−s̄φ′〉H s̄ , φ, φ′ ∈ H s̄,

where E denotes the expectation with respect to P. A L2-cylindrical Wiener
process can be constructed as αt =

∑
k βk

t ek, where {ek} is an orthonormal
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basis in L2 and {βk} are independent standard Brownian processes on R. Note
that, since the embedding L2 ↪→ H−s is Hilbert-Schmidt for s > d/2, (Id −
Δ)−s̄ is trace-class on H−s̄. We refer to [9] for a general overview on infinite
dimensional stochastic calculus. We denote by {Gα

t } the filtration generated
by α completed with respect to P.

Given v ∈ L2, we let B(v) : L2 → L2 be the linear operator defined
by B(v)ψ =

√
2σ(v) j ∗ ψ. Since j ∈ H1, B(v) is Hilbert-Schmidt, i.e.,

TrL2(B(v)B(v)∗) < ∞.
Given ū0 ∈ H1, a measurable map u : Ω → C(L2) is a strong solution

to (2.1) with initial datum ū0 iff u is a Gα
t -adapted process, P(u0 = ū0) = 1,

P(u ∈ L∞(H1)∩L2(H2)) = 1, and, for each ψ ∈ C∞(
[0, T ]×T

d
)

and t ∈ [0, T ],
the following equality holds P-a.s.,

〈ut, ψt〉L2 = 〈u0, ψ0〉L2 +
∫ t

0

〈us, ∂sψs〉L2 ds

+
∫ t

0

〈σ(us)(Δus − W ′(us)), ψs〉L2 ds +
∫ t

0

〈ψs, B(us) dαs〉L2 ,

(2.5)

where the last term is understood as an Itô stochastic integral, see [9]. Note
that (2.5) corresponds to (1.5) tested with the function ψ. Uniqueness of strong
solutions holds if any two such solutions u, u′ satisfy P(ut =u′

t ∀ t ∈ [0, T ])=1.
It is worthwhile to observe that the requirement that strong solutions are

adapted to the filtration generated by α means that they can be obtained as
non-anticipative functions of α.

In the analysis of (2.1) two specific functionals play an essential role,
the aforementioned van der Waals’ free energy functional F : L2 → [0,+∞],
defined by

F(u) :=

⎧
⎨

⎩

∫ [1
2
|∇u|2 + W (u)

]
dx if u ∈ H1,

+∞ otherwise,
(2.6)

and the Wilmore functional W : L2 → [0,+∞], defined by

W(u) :=

⎧
⎨

⎩

∫
σ(u)

[
Δu − W ′(u)

]2

dx if u ∈ H2.

+∞ otherwise.
(2.7)

Observe that since W has at most quartic growth and d ≤ 3, by Sobolev embed-
ding, u ∈ H1 implies W (u) ∈ L1, and, more precisely, F(u) ≤ C(1 + ‖u‖4

H1).
Similarly, since W ′ has at most cubic growth, again by Sobolev embedding, if
u ∈ H2 then W ′(u) ∈ L2 and W(u) ≤ C(1 + ‖u‖2

H2 + ‖u‖6
H1).

Theorem 2.2. Given ū0 ∈ H1, there exists a unique martingale solution P

to (2.1). Moreover, P(u ∈ C(H1)) = 1 and for p ∈ [1,∞) there exists C =
C(ū0, T, p) > 0 such that

E

(
sup

t∈[0,T ]

F(ut) +
∫ T

0

W(ut) dt
)p

≤ C. (2.8)
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In addition, given a probability space (Ω,G,P) equipped with a L2-
cylindrical Wiener process α, there exists a unique strong solution u to (2.1)
with initial condition ū0. The law of u is the martingale solution P.

In view of the bounds on F and W discussed above, we notice that if P is
a martingale solution then the integrand in (2.8) is P-a.s. finite; the estimate
(2.8) states that its moments are finite. We remark that this bound relies on
the assumption that the function j in (2.2) belongs to H1. In particular, in one
dimension, the case of space-time white noise is not covered by the previous
theorem. In the case of constant mobility the corresponding solution u exists,
e.g., in C([0, T ];C(T)), but the H1 norm of ut is infinite almost surely for each
t ∈ [0, T ].

The proof of Theorem 2.2 is structured through the following steps, in
the same spirit of [26]. The existence of a martingale solution is obtained in
Sect. 4 by means of compactness estimates on the laws of a sequence of adapted
processes in C(L2). In order to handle the mobility, these processes are con-
structed by introducing a time discretization and solving in each time interval
a suitable semilinear approximated versions of (2.1) obtained by freezing the
mobility and regularizing the reaction term. The actual construction of these
approximated processes requires an existence result for semilinear equations in
C(H1), which is the content of Sect. 3. To prove compactness, the key ingredi-
ent is the apriori estimate in Lemma 4.2 which basically states that the bound
(2.8) holds uniformly in the approximation parameters. This estimate relies
on the variational structure of (2.1) and its proof is achieved by applying Itô’s
formula to a suitable approximation of F . To prove uniqueness of martingale
solutions, in Sect. 5 we introduce the notion of weak solution to (2.1); by a
martingale representation lemma we show that martingale solutions produce
weak solutions. Then, after proving the regularity properties of solutions, we
show pathwise uniqueness of weak solutions via H−1 estimates. Finally, by
adapting the argument in the Yamada-Watanabe theorem, we obtain the exis-
tence and uniqueness result as stated in Theorem 2.2. Some generation results
on a class of C0-semigroups, needed to the theory developed in Sect. 3, are
stated and proved in Appendix A by applying the Lumer-Phillips theorem.

As stated before, the Allen–Cahn equation with mobility does not ap-
pear to have been considered in the mathematical literature and it does not
seem directly analyzable by the variational method. For instance, the one-side
Lipschitz condition (see, e.g., [24, Condition (H3)]) fails for the Gelfand triple
H1(Td) ⊂ L2(Td) ⊂ H−1(Td) even in the case of W with quadratic growth.
On the other hand, in the case of constant mobility the method applies, as
shown in [25] and in the subsequent paper [24], with a dimensional dependent
growth condition on the reaction term. In the one dimensional case the cubic
growth is covered, however, Theorem 2.2 provides better regularity properties
of the solution u, in particular, u ∈ L2([0, T ];H2) almost surely. In principle,
the latter regularity property could be deduced by working with the Gelfand
triple H2(Td) ⊂ H1(Td) ⊂ L2(Td), but this would require strong restrictions
on the nonlinearity.
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Still in the case of constant mobility, an abstract existence result for sto-
chastic partial differential equation of gradient type is proven in [13], using an
approximation argument relying on apriori bounds analogous to the ones in the
present paper. When applied to the Allen–Cahn equation, see [13, Rem. 4.9],
the regularity properties are slightly weaker than the ones in Theorem 2.2. It
would be interesting to generalize the approach of [13] to cover the case of
nonconstant mobility.

3. An auxiliary semilinear equation

In this section, we provide an existence result for a semilinear equation that
will be used to construct an approximation of the stochastic Allen–Cahn equa-
tion. The arguments below follow the semigroup approach in [9], it is however
possible to obtain the same result by the variational approach in [30] choosing
the Gelfand triple H2 ⊂ H1 ⊂ L2.

Recall that (Ω,G,Gt,P) is a standard filtered probability space equipped
with a cylindrical Wiener process α : Ω → C(H−s̄), s̄ > d/2, such that Gt = Gα

t

is the filtration generated by α completed with respect to P. Let f : R → R be
globally Lipschitz. Fix a subinterval [t0, t1] ⊂ [0, T ], a Gt0 -measurable random
variable w : Ω → H1 and a Gt0 -measurable random variable v : Ω → H2. Let
η > 0 and Rη = (Id − ηΔ)−1. Consider the following Cauchy problem on the
time interval [t0, t1],

{
dut = σ(v)

[
Δut + Rηf(Rηut)

]
dt +

√
2σ(v)j ∗ dαt,

ut0 = w.
(3.1)

We say that u is a strong solution to (3.1) if u : Ω → C([t0, t1];H1) is Gt-
adapted, P(ut0 = w) = 1, P(u ∈ L2([t0, t1];H2)) = 1, and, for each ψ ∈
C∞(

[t0, t1] × T
d
)

and t ∈ [0, T ], the following equality holds P-a.s.,

〈ut, ψt〉L2 = 〈w,ψt0〉L2 +
∫ t

t0

〈us, ∂sψs〉L2 ds

+
∫ t

t0

〈σ(v)(Δus + Rηf(Rηus)), ψs〉L2 ds +
∫ t

t0

〈ψs, B(v) dαs〉L2 ,

(3.2)

where we recall B(v) : L2 → L2 is defined by B(v)ψ =
√

2σ(v) j ∗ ψ.

Proposition 3.1. Assume the initial datum w in (3.1) satisfies E(‖w‖2
H1) < ∞.

Then, the Cauchy problem (3.1) has a strong solution u. Moreover, there exists
C > 0 depending only on η, Lip(f), and E(‖w‖2

H1) such that

E(‖u‖2
C([t0,t1];H1) + ‖u‖2

L2([t0,t1];H2)) ≤ C. (3.3)

Furthermore, if E(‖w‖2p
H1) < ∞ for some p > 1 then there exists C > 0

depending only on η, Lip(f), E(‖w‖2p
H1), and p such that

E(‖u‖2p
C([t0,t1];H1)) ≤ C. (3.4)
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Proof. By Lemma A.1, the operator A = σ(v)Δ generates a C0-semigroup S(t)
on the Hilbert space H1. As in Lemma A.1, σ(v) ∈ H2 and it is a bounded
multiplier on H1. Moreover, the function f induces a Lipschitz map Fη : H1 →
H1 given by Fη(u) := σ(v)Rηf(Rηu), in view of the simple estimate,

‖Fη(u1) − Fη(u2)‖H1 ≤ C‖σ(v)‖H2‖Rη‖
L2→H1 ‖f(Rηu1) − f(Rηu2)‖L2

≤ C‖σ(v)‖H2‖Rη‖
L2→H1 Lip(f)‖u1 − u2‖L2 .

Finally, by a direct computation, the operator B̃ : L2 → H1 defined by B̃ψ =√
2σ(v)j ∗ ψ, ψ ∈ L2, is an Hilbert-Schmidt operator with norm bound

‖B̃‖2
HS ≤ C‖√σ(v)‖2

H2‖j‖2
H1 .

In view of the previous statements, we can apply [9, Thm. 7.4] and
deduce the existence of a unique Gt-progressively measurable map u : Ω →
C([t0, t1];H1) satisfying the mild formulation of (3.1), i.e.,

ut = S(t − t0)w +
∫ t

t0

S(t − s)Fη(us) ds +
∫ t

t0

S(t − s)B̃ dαs, (3.5)

and the estimate supt∈[t0,t1] E(‖ut‖2
H1) ≤ C(1 + E(‖w‖2

H1)).
In order to obtain the bound (3.3) we would like to apply Itô’s formula

to Φ(u) := 1
2

∫ |∇u|2 dx. However, since Φ is not C2 on L2, to accomplish this
step we first introduce a suitable approximation scheme. For δ > 0 let Aδ be
as in Lemma A.1, and consider the following linear Cauchy problems,

{
dzt =

[
Aδzt + Fη(ut)

]
dt + B̃dαt,

zt0 = w,
(3.6)

where u is the unique solution to (3.5). By Lemma A.1, Aδ generates a C0-
semigroup Sδ and there exists constants m0 and C such that,

∫ t1

t0

‖Sδ(r − t0)B̃‖2
HS dr ≤ C(t1 − t0)em0(t1−t0)‖

√
σ(v)‖2

H2‖j‖2
H1 .

Therefore, the process uδ
t defined by

uδ
t := Sδ(t − t0)w +

∫ t

t0

Sδ(t − s)Fη(us) ds +
∫ t

t0

Sδ(t − s)B̃ dαs (3.7)

is a P-a.s. well defined H1-valued with continuous trajectories and Gt-
progressively measurable. By Fubini’s Theorem (see [9, Thm. 4.18] for the
stochastic case) a direct computation shows that uδ solves (3.6) in the sense
that, P-a.s.,

uδ
t = w +

∫ t

t0

[
Aδu

δ
s + Fη(us)

]
ds + B̃αt, t ∈ [t0, t1]. (3.8)

Observe that, for each t ∈ [t0, t1],

E
(∥∥
∥
∥

∫ t

t0

[
Sδ(t − s) − S(t − s)

]
B̃ dαs

∥
∥
∥
∥

2

H1

)
=

∫ t

t0

∥
∥
∥
[
Sδ(t − s) − S(t − s)

]
B̃
∥
∥
∥
2

HS
ds.



54 Page 10 of 38 L. Bertini et al. NoDEA

Combining the previous identity with Lemma A.1, items (2) and (3), equation
(3.7) and dominated convergence easily imply that for each t ∈ [t0, t1] uδ

t → ut

in L2(Ω;H1) and, in addition, uδ → u in L2(Ω;L2([t0, t1] × T
d)) as δ → 0.

Let Φδ : L2 → R be defined by

Φδ(u) :=
∫

1
2
|∇Rδu|2 dx = −1

2
〈u,RδΔRδu〉L2 ,

so that for u ∈ H1 we have Φδ(u) → ∫
1
2 |∇u|2 dx = Φ(u) as δ → 0.

Since Φδ is C2 with locally bounded and uniformly continuous first and
second derivatives, we can apply Itô’s formula, see, e.g., [9, Thm. 4.17]. Then,
in view of (3.6), we get,

Φδ(uδ
t ) +

∫ t

t0

∫
σ(Rδv)

∣
∣RδΔRδu

δ
s

∣
∣2 dxds

= Φδ(w) +
∫ t

t0

∫
Rδ(−Δ)Rδu

δ
sFη(us) dxds

+
t − t0

2
Tr

L2 (Rδ(−Δ)RδBB∗) +
∫ t

t0

〈Rδ(−Δ)Rδu
δ
s, B dαs〉L2 ,

(3.9)

where B := B(v) = Id
H1→L2 B̃.

We next estimate separately the terms on the right-hand side of (3.9).
By Young’s inequality, for each ζ > 0 there exists Cζ > 0 such that

∫ t

t0

∫
Rδ(−Δ)Rδu

δ
sFη(us) dxds ≤ ζ

∫ t

t0

∫ ∣
∣RδΔRδu

δ
s

∣
∣2 dxds

+ Cζ‖σ‖∞

(
|f(0)|2 + Lip(f)2

∫ t

t0

‖us‖2
L2 ds

)
.

Clearly, if {e�} ⊂ L2 is an orthonormal basis we have,

Tr
L2 (Rδ(−Δ)RδBB∗) =

∑

�

‖Rδ∇Be�‖2
L2 ≤ C‖

√
σ(v)‖2

H2‖j‖2
H1 .

Let Nt, t ∈ [t0, t1], be the continuous martingale Nt =
∫ t

t0

〈Rδ(−Δ)Rδu
δ
s, B dαs〉L2 . Since B∗ψ = j ∗ (

√
2σ(v)ψ), the quadratic varia-

tion of N can be estimated as follows,

[N ]t =
∫ t

t0

∥
∥B∗Rδ(−Δ)Rδu

δ
s

∥
∥2

L2 ds ≤ C‖σ‖∞‖j‖2
L1

∫ t

t0

∫ ∣
∣RδΔRδu

δ
s

∣
∣2 dxds.

By taking the supremum for t ∈ [t0, t1] in (3.9), using again Young’s inequality,
taking the expectation, and gathering the above bounds together with the L2-
Doob’s inequality,

E
(

sup
t∈[t0,t1]

Nt

)2

≤ 4 E([N ]t1),
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we conclude that there exists C > 0 such that

E
(

sup
t∈[t0,t1]

Φδ(uδ
t ) +

∫ t1

t0

∫ ∣∣
∣RδΔRδu

δ
s

∣∣
∣
2

dx ds

)

≤ C

(
E(‖w‖2

H1) + ‖σ‖∞‖j‖2
L1

+ ‖σ‖∞
(
|f(0)|2 + Lip(f)2

∫ t1

t0

E(‖us‖2
L2) ds

)
+ (t1 − t0)‖

√
σ(v)‖2

H2‖j‖2
H1

)
.

Since supt∈[t0,t1] E(‖ut‖2
H1) ≤ C(1 + E(‖w‖2

H1)) we finally get,

E
(

sup
t∈[t0,t1]

Φδ(uδ
t ) +

∫ t1

t0

∫ ∣
∣RδΔRδu

δ
s

∣
∣2 dxds

)

≤ C
(
1 + E(‖w‖2

H1)
)
, (3.10)

for some C = C(t1 − t0, σ, ‖v‖H2 ,Lip(f)) > 0.
Since u ∈ C([t0, t1];H1), P-a.s. we can take a countable dense set S ⊂

[t0, t1] and a subsequence still denoted by δ → 0 such that, P-a.s., uδ
s → us,

s ∈ S, in H1 as δ → 0. Thus, as Φδ → Φ pointwise in H1, we get, P-a.s.,
Φ(us) ≤ limδ→0 Φδ(uδ

s) for all s ∈ S. Then, the continuity t �→ ut implies that,
P-a.s., supt∈[t0,t1] Φ(ut) ≤ limδ→0 supt∈[t0,t1] Φδ(uδ

t ). By Fatou’s’ Lemma and
(3.10) we conclude E(‖u‖2

C([t0,t1];H1)) ≤ C
(
1 + E(‖w‖2

H1)
)
.

Again by Fatou’s Lemma and (3.10) we have,

E
(

lim
δ→0

‖ΔRδRδu
δ‖2

L2([t0,t1]×Td)

)
≤ C

(
1 + E(‖w‖2

H1)
)
.

In particular, P-a.s. we have limδ→0 ‖ΔRδRδu
δ‖2

L2([t0,t1]×Td) < ∞. As Rδ

Rδu
δ → u in L2(Ω×[t0, t1]×T

d), by elliptic regularity and lower semicontinuity
we get u ∈ L2(Ω × [t0, t1];H2) and E(‖u‖2

L2(H2)) ≤ C
(
1 + E(‖w‖2

H1)
)
.

Next, we show that u satisfies (3.2). Fix ψ ∈ C∞([t0, t1]×T
d) and consider

the function Ψ: [t0, t1] × L2 → R given by Ψ(t, u) := 〈ψt, ut〉L2 . Clearly Ψ is
C2 with locally uniformly continuous first and second derivatives, hence Itô’s
formula and (3.6) give, for any t ∈ [t0, t1],

〈uδ
t , ψt〉L2 = 〈w,ψt0〉L2 +

∫ t

t0

[
〈uδ

s, ∂sψs〉L2 + 〈Aδu
δ
s + Fη(us), ψs〉L2

]
ds

+
∫ t

t0

〈ψs, B(v)dαs〉L2 P-a.s.

(3.11)

Recalling that uδ → u in L2(Ω× [t0, t1]×T
d) and uδ

t → ut in L2(Ω;L2), up to
subsequences we have uδ → u in L2([t0, t1] × T

d) and uδ
t → ut in L2 P-a.s. In

order to take the limit as δ → 0 in (3.11), it remains to show that P-a.s. we
have Aδu

δ ⇀ σ(v)Δu in L2([t0, t1] × T
d). To this end, notice that for P-a.s.

ω ∈ Ω there exists a subsequence depending on ω such that ΔRδRδu
δ ⇀ Δu

in L2([t0, t1] × T
d). Since Rδv → v in H2, by Sobolev embedding we have

σ(Rδv) → σ(v) uniformly, hence the desired statement follows.
Finally, the bound (3.4) is the content of [9, Thm. 7.4, item (iii)]. �
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4. Existence of martingale solutions

In this section we prove the following existence result.

Theorem 4.1. Given ū0 ∈ H1, there exists a martingale solution P to (2.1)
with initial condition ū0. Furthermore, for any p ∈ [1,∞) there exists C > 0
such that

E

(

sup
t∈[0,T ]

‖ut‖2p
H1 + ‖u‖2p

L2(H2)

)

≤ C. (4.1)

The martingale solution will be obtained as a weak limit point of an ap-
proximating sequence of probabilities on C(L2), that are the laws of a sequence
of processes recursively defined according to the following scheme.

Let (Ω,G,Gt,P) be a standard filtered probability space equipped with
a L2-cylindrical Wiener process α : Ω → C(H−s̄), s̄ > d/2, such that Gt = Gα

t

is the filtration generated by α completed with respect to P. Given � > 0 let
also W� : R → R be the C2 function defined by

W�(u) :=

{
W (u) if |u| ≤ �,

W (�) + W ′(�)(|u| − �) + 1
2W ′′(�)(|u| − �)2 if |u| > �.

(4.2)

Observe that, for any � large enough, the function W� has quadratic growth
at infinity both from above and below. Moreover, W ′

� is globally Lipschitz.
Fix η > 0 and a smooth approximation ın of the Dirac δ-function with

‖ın‖L1 = 1. Given n ∈ N, consider the partition 0 = tn0 < tn1 < . . . < tnn = T
with tni+1 − tni = T/n for i = 0, . . . , n − 1. In each time step of this partition,
we recursively construct a sequence of Gt-adapted continuous processes un and
a sequence of Gt-adapted processes vn which is constant on each time interval
[tni , tni+1) as follows. Define,

vn
t := ın ∗ ū0 ∈ H2(Td) for t ∈ [tn0 , tn1 ) (4.3)

and set σn
0 = σ(vn

tn
0
). According to Proposition 3.1 we define un

t , t ∈ [tn0 , tn1 ),
as a solution to

{
dun

t = σn
0

(
Δun

t − RηW ′
�(Rηun

t )
)
dt +

√
2σn

0 j ∗ dαt,

un
0 = ū0.

(4.4)

By induction, for 1 ≤ i ≤ n − 1 we define,

vn
t :=

1
tni − tni−1

∫ tn
i

tn
i−1

un
s ds, t ∈ [tni , tni+1) (4.5)

and σn
i := σ(vn

tn
i
). Again by Proposition 3.1, we let un

t , t ∈ [tni , tni+1), be the
solution to

{
dun

t = σn
i

(
Δun

t − RηW ′
�(Rηun

t )
)
dt +

√
2σn

i j ∗ dαt,

un
tn
i

= lims↑tn
i

un
s .

(4.6)

We finally set un
tn
n

= lims↑tn
n

un
s . Notice that, by recursively using Proposi-

tion 3.1 and (4.5), we get P-a.s. vn ∈ L∞(H2) and un ∈ C(H1) ∩ L2(H2).
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Note that, although not indicated in the notation, the process un also depends
on η and �.

The proof of Theorem 4.1 is split into three lemmata.

Lemma 4.2. (A priori bounds) Let un be the process constructed by solving
(4.4)–(4.6) and F�,η : H1 → R be the functional defined by

F�,η(u) =
∫

1
2
|∇u|2 + W�(Rηu) dx. (4.7)

Then, for any p ∈ [1,+∞),

E
(

sup
t∈[0,T ]

F�,η(un
t )

)p

+
1
2
E
(∫ T

0

∫
σ(vn

t )
(
Δun

t − RηW ′
�(Rηun

t )
)2 dxdt

)p

≤ C,

(4.8)
where C > 0 depends only on ‖ū0‖H1 , T , and p but is independent of n, �,
and η.

Proof. The lemma is essentially achieved by applying Itô’s formula to F�,η,
however we need to introduce a suitable approximation scheme to actually
carry out the computation. Given δ > 0, let Fδ

�,η : L2 → R be defined by

Fδ
�,η(u) =

∫
1
2
|∇Rδu|2 + W�(Rηu) dx. (4.9)

By straightforward computations, Fδ
�,η is C2 with locally bounded and

uniformly continuous first derivative
(
DFδ

�,η

)
u

∈ L2 and second derivative(
D2Fδ

�,η

)
u
: L2 → L2 given by

(
DFδ

�,η

)
u

= RδΔRδu − RηW ′
�(Rηu),

(
D2Fδ

�,η

)
u

= Rδ(−Δ)Rδ + RηW ′′
� (Rηu)Rη.

Hence, by Itô’s formula, for each t ∈ [tni , tni+1] we have,

Fδ
�,η(un

t ) +

∫ t

tn
i

∫
σn

i

(
RδΔRδu

n
s − RηW ′

�(Rηun
s )
) (

Δun
s − RηW ′

�(Rηun
s )
)

dx ds

= Fδ
�,η(un

tn
i
) +

1

2

∫ t

tn
i

TrL2
(
B∗

n,i

[
Rδ(−Δ)Rδ+RηW ′′

� (Rηun
s )Rη

]
Bn,i

)
ds + Nn,i,δ

t ,

(4.10)

where Bn,i : L2 → L2 and is defined as Bn,iψ =
√

2σn
i j ∗ ψ and Nn,i,δ, t ∈

[tni , tni+1], is the martingale

Nn,i,δ
t =

∫ t

tn
i

〈Rδ(−Δ)Rδu
n
s + RηW ′

�(Rηun
s ), Bn,i dαs〉L2 . (4.11)
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Letting {ek}, k ∈ Z
d, be the standard orthonormal Fourier basis in L2,

we bound the trace terms as follows,

TrL2
(
B∗

n,iRδ(−Δ)RδBn,i

)
=

∑

k

‖Rδ∇Bn,iek‖2
L2 ≤

∑

k

‖∇
(√

2σn
i j ∗ ek

)
‖2

L2

≤ 4
∑

k

(
‖(∇√

σn
i ) j ∗ ek‖2

L2 + ‖√σn
i (∇j) ∗ ek‖2

L2

)

≤ C
∑

k

(‖σ′‖2
∞

4 inf σ
|ĵ(k)|2‖∇vn

tn
i
‖2

L2 + ‖σ‖∞|∇̂j(k)|2
)

≤ C(σ)‖j‖2
H1(1 + ‖∇vn

tn
i
‖2

L2)

and

TrL2

(
B∗

n,iRηW ′′
� (Rηun

s )RηBn,i

)
=

∑

k

∫
|RηBn,iek|2W ′′

� (Rηun
s ) dx

≤
∑

k

‖RηBn,iek‖2
L∞

∫
|W ′′

� (Rηun
s )| dx ≤ ‖σ‖∞‖j‖2

L2

∫
|W ′′

� (Rηun
s )| dx,

where we used that ‖j ∗ ek‖L∞ ≤ |̂j(k)| and ‖∇j ∗ ek‖L∞ ≤ |∇̂j(k)|.
As un ∈ L2(Ω;L2([tni , tni+1];H

2)) then Rδ(−Δ)Rδu
n − (−Δ)un → 0 in

L2(Ω× [tni , tni+1]×T
d). This implies Nn,i,δ

t → Nn,i
t in L2(Ω), where Nn,i is the

martingale

Nn,i
t =

∫ t

tn
i

〈−Δun
s + RηW ′

�(Rηun
s ), Bn,i dαs〉L2 . (4.12)

Indeed,

E(Nn,i,δ
t − Nn,i

t

)2 = E
∫ t

tn
i

‖Bn,i [Rδ(−Δ)Rδu
n
s − (−Δ)un

s ] ‖2
L2 ds

δ→0−→ 0.

Using that P-a.s. un ∈ C([tni , tni+1];H
1) ∩ L2([tni , tni+1];H

2) we can take
the limit as δ → 0 in the first three terms of (4.10) by dominated conver-
gence. As Nn,i,δ

t → Nn,i
t P-a.s. for a suitable subsequence, combining with the

previous bound on the trace terms we finally get, for each t ∈ [tni , tni+1],

F�,η(un
t ) +

∫ t

tn
i

∫
σn

i (Δun
s − RηW ′

�(Rηun
s ))2 dxds

≤ F�,η(un
tn
i
) + C(σ)‖j‖2

H1

∫ t

tn
i

∫ (
1 + |∇vn

s |2 + |W ′′
� (Rηun

s )|) dxds + Nn,i
t ,

(4.13)

where we used that vn is constant in the time interval [tni , tni+1).
Fix t ∈ [0, T ] and let in(t) be such that t ∈ [tnin(t), t

n
in(t)+1), by summing

(4.13) in all the time intervals [tnj , tnj+1), j ≤ in(t), we deduce,

F�,η(un
t ) +

∫ t

0

∫
σ(vn

s )
(
Δun

s − RηW ′
�(Rηun

s )
)2dxds

≤ F�,η(ū0) + C(σ)‖j‖2
H1

∫ t

0

∫ (
1 + |∇vn

s |2 + |W ′′
� (Rηun

s )|) dxds + Nn
t ,

(4.14)
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where Nn is the continuous P-martingale Nn
t =

∑
j<in(t) Nn,j

tn
j+1

+ N
n,in(t)
t . In

particular, the quadratic variation of Nn is

[Nn]t = 2
∫ t

0

∫ {
j ∗ [

√
σ(vn

s )
( − Δun

s + RηW ′
�(Rηun

s )
)]}2 dxds. (4.15)

By the assumptions on W and the definition of W�, (4.2), there exists
C > 0 independent of � such that |W ′′

� (·)| ≤ C(1 + W�(·)). Moreover, for each
s ∈ [tni , tni+1) with i ≥ 1 we have,

‖∇vn
s ‖2

L2 ≤ 1
tni − tni−1

∫ tn
i

tn
i−1

‖∇un
s′‖2

L2 ds′ ≤ sup
s′≤s

‖∇un
s′‖2

L2 .

Since vn
0 ≡ in ∗ ū0, the previous bound yields ‖∇vn

s ‖L2 ≤ sup0≤s′≤s ‖∇un
s′‖L2

for any 0 ≤ s ≤ T . Thus, combining the two estimates above we have,

∫ (
1 + |∇vn

s |2 + |W ′′
� (Rηun

s )|) dx ≤ C(1 + sup
s′≤s

F�,η(un
s′)),

hence, taking the supremum over time in (4.14) we obtain,

sup
s≤t

F�,η(un
s ) +

∫ t

0

∫
σ(vn

s )
(
Δun

s − RηW ′
�(Rηun

s )
)2dxds

≤ 2
{

F�,η(ū0) + C

∫ t

0

1 + sup
s′≤s

F�,η(un
s′) ds + sup

s≤t
Nn

s

}
.

(4.16)

Given p ≥ 1, the previous inequality implies,

(
sup
s≤t

F�,η(un
s )
)p

+
(∫ t

0

∫
σ(vn

s )
(
Δun

s − RηW ′
�(Rηun

s )
)2dxds

)p

≤ C
{

(F�,η(ū0))
p +

∫ t

0

1 +
(

sup
s′≤s

F�,η(un
s′)

)p

ds +
(

sup
s≤t

Nn
s

)p }
,

(4.17)

for some C = Cp > 0.
By Young’s and BDG’s inequalities (see, e.g., [31] for the latter) there

exists a constant C = Cp > 0 such that for each γ > 0 we have,

E
((

sup
s≤t

Nn
s

)p)
≤ γ

2
E
((

sup
s≤t

Nn
s

)2p
)

+
1
2γ

≤ 2Cγ E([Nn]pt ) +
1
2γ

≤ 4Cγ E
((∫ t

0

∫
σ(vn

s )
( − Δun

s + RηW ′
�(Rηun

s )
)2 dxds

)p
)

+
1
2γ

,



54 Page 16 of 38 L. Bertini et al. NoDEA

where we used (4.15). Choosing γ > 0 small enough and taking the expectation
in (4.17) we have,

E
(

sup
s≤t

F�,η(un
s )
)p

+
1
2
E
((∫ t

0

∫
σ(vn

s )
(
Δun

s − RηW ′
�(Rηun

s )
)2dxds

)p
)

≤ C
{

(F�,η(ū0))
p +

∫ t

0

1 + E
(

sup
s′≤s

F�,η(un
s′)

)p

ds
}

(4.18)

As F�,η(·) ≤ C(1+‖ · ‖4
H1) for some C independent of � and η, applying recur-

sively (3.3) and (3.4) on each time interval [tni , tni+1] we get E(
supt∈[0,T ] F�,η(un

t )
)p

< ∞. Thus, the bound (4.8) follows from (4.18) by
Gronwall’s inequality. �

Lemma 4.3. (Tightness of the approximating sequence) Let Pn
�,η be the law of

the process un constructed by solving (4.4)–(4.6). Then (Pn
�,η) is a tight family

of probabilities on C(L2).

Proof. In view of compact embedding H1 ↪→ L2, a sufficient condition for a
subset A of C(L2) to be precompact is that

sup
u∈A

sup
0≤t≤T

‖ut‖H1 < +∞, lim
δ→0

sup
u∈A

ω(u; δ) = 0, (4.19)

where ω(u; δ) is the modulus of continuity of the element u ∈ C(L2), i.e.,

ω(u; δ) := sup
t,s∈[0,T ]
|t−s|≤δ

‖ut − us‖L2 . (4.20)

The family (Pn
�,η) is tight if the following conditions are fulfilled.

(i) For each ζ > 0 there exists a > 0 such that

P
n
�,η

(
sup

0≤t≤T
‖ut‖2

H1 > a
)

≤ ζ ∀n, �, η.

(ii) For each ε > 0 and ζ > 0 there exists δ ∈ (0, T ) such that

P
n
�,η

(
ω(u; δ) > ε

) ≤ ζ ∀n, �, η.

Indeed, if (i) and (ii) are verified, given any ζ > 0 we can find a > 0 and
δk, k ∈ N0, such that

P
n
�,η

(
sup

0≤t≤T
‖ut‖2

H1 ≤ a
)

> 1 − ζ

2
, P

n
�,η

(
ω(u; δk) ≤ 1

k

)
> 1 − ζ

2k+1
.

Therefore, the closure Kζ of the set
{

u : sup
0≤t≤T

‖ut‖2
H1 ≤ a, ω(u; δk) ≤ 1

k
∀ k ∈ N0

}

is compact in view of (4.19) and has probability P
n
�,η(Kζ) > 1 − ζ.

Now, we claim that, for any p ≥ 1,

sup
�,η,n

E
(

sup
0≤t≤T

‖un
t ‖2p

H1

)
< ∞ (4.21)
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and, for each p > 1,

lim
δ→0

sup
�,η,n

sup
s∈[0,T−δ]

1
δ
E
(

sup
t∈[s,s+δ]

‖ut − us‖2p
L2

)
= 0. (4.22)

By Chebyshev’s inequality, (4.21) implies (i) and, by a simple inclusion of
events, see, e.g., [5, Eq. (8.9)], and again Chebyshev’s inequality, (4.22) implies
(ii).

The estimate (4.21) is a direct consequence of (4.8) since it can be easily
checked that, in view of the assumptions on W , there exists C > 0 such that
‖u‖2

H1 ≤ C
(
1 + F�,η(u)

)
for any �, η.

To prove (4.22) we observe that by (4.4)–(4.6) and Itô’s formula, for each
s ∈ [0, T − δ] and t ∈ [s, s + δ],

‖un
t − un

s ‖2
L2 = As,n

t + Rs,n
t + Ms,n

t , (4.23)

where

As,n
t := 2

∫ t

s

∫
σ(vn

r )
[
Δun

r − RηW ′
�(Rηun

r )
]
(un

r − un
s ) dxdr,

and

Rs,n
t =

∫ t

s

∫ (
j ∗

√
σ(vn

r )
)2 dxdr ≤ ‖σ‖∞‖j‖2

L2 δ; (4.24)

finally, Ms,n,φ
t , t ∈ [s, s + δ], is a continuous square integrable P-martingale

with quadratic variation,

[
Ms,n

]
t
= 4

∫ t

s

∫ [
j ∗ (

√
σ(vn

r )(un
r − un

s )
)]2 dxdr

≤ 4‖σ‖∞ sup
r∈[s,s+δ]

‖un
r − un

s ‖2
L2 δ,

(4.25)

By Cauchy-Schwartz inequality,

|As,n
t | ≤ 2‖σ‖∞

(∫ t

s

‖un
r − un

s ‖2
L2 dr

) 1
2

×
(∫ t

s

∫
σ(vn

r )
(
Δun

r − RηW ′
�(Rηun

r )
)2 dxdr

) 1
2

≤ 2 δ
1
2 ‖σ‖∞ sup

r∈[s,s+δ]

‖un
r − un

s ‖L2

×
(∫ T

0

∫
σ(vn

r )
(
Δun

r − RηW ′
�(Rηun

t )
)2dxdr

) 1
2
,

so that, by Young’s inequality, there exists C > 0 such that

|As,n
t | ≤ 1

2
sup

r∈[s,s+δ]

‖un
r − un

s ‖2
L2 + Cδ

∫ T

0

∫
σ(vn

r )
(
Δun

r − RηW ′
�(Rηun

t )
)2

dx dr.
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Therefore, taking the supremum for t ∈ [s, s + δ] in (4.23) we deduce,

sup
t∈[s,s+δ]

‖un
t − un

s ‖2
L2 ≤ 2 sup

t∈[s,s+δ]

Ms,n
t + 2 sup

t∈[s,s+δ]

Rs,n
t

+ 2Cδ

∫ T

0

∫
σ(vn

r )
(
Δun

r − RηW ′
�(Rηun

t )
)2dxdr.

(4.26)

By BDG inequality, see, e.g., [31], for any p > 1 there exists C = Cp such
that

E
(

sup
t∈[s,s+δ]

(Ms,n
t )p

)
≤ C E([Ms,n]p/2

s+δ

) ≤ 1

2p+1
E
(

sup
r∈[s,s+δ]

‖un
r − un

s ‖2p

L2

)
+ Cδp,

where we used the bound (4.25) and Young’s inequality in the second step.
By taking the p-th power and then the expectation value in (4.26), the last
bound, together with (4.8) and (4.24) implies the claim (4.22). �

Lemma 4.4. (Properties of the cluster points) Let P be a cluster point of the
sequence (Pn

�,η). Then P is a martingale solution to (2.1) with initial condition
ū0. Furthermore, P satisfies the bound (4.1).

Proof. Let P be a cluster point of the sequence (Pn
�,η), so that, passing to a

subsequence, Pn
�,η → P weakly.

We start by proving the estimate (4.1). In view of the assumptions on W
and the definition (4.2) of W�, there is C > 0 such that ‖u‖2

H1 ≤ C(1+F�,η(u))
and, by Sobolev embedding, ‖RηW ′

�(Rηu)‖2
L2 ≤ C(1+‖u‖6

H1) for any u ∈ H1,
where C > 0 is independent of � and η.

Hence, the bound (4.8) combined with Calderon-Zygmund inequality
readily implies, for any p ≥ 1,

E
n
�,η

(

sup
t∈[0,T ]

‖ut‖2p
H1 + ‖u‖2p

L2(H2)

)

≤ C, (4.27)

where C > 0 depends only on ‖ū0‖H1 , T and p but is independent of n, �,
and η. Since both the norms in (4.27) are lower semicontinuous under C(L2)-
convergence, by Portmanteau’s Theorem we infer that for any p ≥ 1 the bound
(4.1) holds with the same constant C > 0 in (4.27).

Now, we show that P is a martingale solution to (2.1) with initial con-
dition ū0. By construction, Pn

�,η(u0 = ū0) = 1 for any n, �, η so that P(u0 =
ū0) = 1. Furthermore, by (4.1), P(u ∈ L∞(H1) ∩ L2(H2)) = 1.

It remains to prove that for any ψ ∈ C∞([0, T ] × T
d) the process Mψ as

defined in (2.3) is a continuous square integrable P-martingale with quadratic
variation as in (2.4).

Fix 0 ≤ s < t ≤ T , ψ ∈ C∞([0, T ] × T
d), and for u ∈ L∞(H1) ∩ L2(H2)

let
Gn,�,η(u) := 〈ut, ψt〉L2 − 〈us, ψs〉L2

−
∫ t

s

{〈ur, ∂rψr〉L2 + 〈σ(vn
r )
[
Δur − RηW ′

�(Rηur)
]
, ψr〉L2

}
dr,

(4.28)
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with vn the average of u defined as in (4.3), (4.5). Similarly, let

G(u) := 〈ut, ψt, 〉L2 − 〈us, ψs〉L2

−
∫ t

s

{〈ur, ∂rψr〉L2 + 〈σ(ur)
[
Δur − W ′(ur)

]
, ψr〉L2

}
dr,

(4.29)

and, for δ > 0 and u ∈ C(L2), we define the regularized version of (4.29) as

Gδ(u) = G(Rδu). (4.30)

Observe that the function defined in (4.30) is continuous on C(L2) since Rδ :
L2 → H2 continuously. Furthermore, by Sobolev and Hölder inequalities and
since Rη contracts any Lp norm,

|Gn,�,η(u)| + |G(u)| + |Gδ(u)| ≤ C(1 + ‖u‖L2(H2) + ‖u‖3
L∞(H1)), (4.31)

where C > 0 does not depend on n, �, η, and δ. As a consequence, by (4.27)
and (4.1) we get, for any p ≥ 1,

E
n
�,η

(|Gδ|p + |Gn,�,η|p) + E
(|G|p + |Gδ|p) ≤ C, (4.32)

where C > 0 does not depend on n, �, η, and δ.
In view of (4.3)–(4.6), for any F : C(L2) → R continuous, bounded, and

measurable with respect to the canonical filtration at time s we have,

E
n
�,η(F (u)Gn,�,η(u)) = 0 (4.33)

and

E
n
�,η

(
F (u)

[
Gn,�,η(u)2 −

∫ t

s

∫ (
j ∗ (

√
2σ(vn

r )ψr)
)2

dxdr

])
= 0. (4.34)

We would like to pass to the limit in (4.33)–(4.34) as n, � → +∞ and η → 0
in order to conclude that

E(F (u)G(u)) = 0 (4.35)
and

E

(
F (u)

[
G(u)2 −

∫ t

s

∫ (
j ∗ (

√
2σ(ur)ψr)

)2

dxdr

])
= 0, (4.36)

which, by the arbitrariness of F and 0 ≤ s < t ≤ T , shows that Mψ as defined
in (2.3) is a continuous P-martingale with quadratic variation as in (2.4).

In order to prove (4.35) and (4.36) we use an approximation scheme based
on (4.30). We fix a decreasing sequence δk ↘ 0 and, for each a > 0 we define
Da as the closure in C(L2) of the following set,
⋂

k∈N

{
u ∈ L∞(H1) ∩ L2(H2) : ‖u‖2

L∞(H1) + ‖u‖2
L2(H2) ≤ a, ω(u; δk) <

1
k

}
,

(4.37)
where ω is defined in (4.20).

We observe that in view of (4.19) the set Da is compact for any a > 0.
Moreover, by Lemma 4.2 and the argument in the proof of Lemma 4.3, we can
choose δk ↘ 0 such that

lim
a→+∞ sup

n,�,η
P

n
�,η(Dc

a) = 0, lim
a→+∞P(Dc

a) = 0. (4.38)
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We claim that, for each a > 0,

lim
δ→0

lim
n,�,η

sup
u∈Da

|Gn,�,η(u) − Gδ(u)| = 0, lim
δ→0

sup
u∈Da

|G(u) − Gδ(u)| = 0.

(4.39)
Postponing the proof of this claim we first derive (4.35). We write,

E
n
�,η(FGn,�,η) = E

n
�,η(FGδ) + E

n
�,η(1IDaF (Gn,�,η − Gδ)) + E

n
�,η(1IDc

a
F (Gn,�,η − Gδ)).

(4.40)
Since F is bounded, by (4.39), for any a > 0,

lim
δ→0

lim
n,�,η

E
n
�,η(1IDa

|F (Gn,�,η − Gδ)|) = 0

and, in view of (4.32), (4.38), and Chebyshev’s inequality,

lim
a→∞ lim

δ→0
lim
n,�,η

E
n
�,η(1IDc

a
|F (Gn,�,η − Gδ)|) = 0,

hence, by (4.33) and (4.40),

lim
δ→0

lim
n,�,η

E
n
�,η(F (u)Gδ(u)) = 0.

Since Gδ : C(L2) → R is continuous and satisfies (4.32) we get,

0 = lim
δ→0

E(FGδ) = E(FG) + lim
δ→0

E(F (Gδ − G)).

Finally, writing

E(F (Gδ − G)) = E(1IDa
F (Gδ − G)) + E(1IDc

a
F (Gδ − G)),

by using (4.32), (4.38), and (4.39) as before we obtain (4.35).
In order to prove (4.39), first notice that for u ∈ C(L2) and vn the average

of u defined as in (4.3), (4.5) we have,

‖u − vn‖L∞(L2) ≤ sup
0≤t< T

n

‖ut − ın ∗ u0‖L2 ∨ max
i=1,...,n−1

sup
t∈[tn

i
,tn

i+1)

∥∥
∥
∥∥
ut − n

T

∫ tn
i

tn
i−1

us ds

∥∥
∥
∥∥

L2

≤ ω(u; 2T/n) + ‖ın ∗ u0 − u0‖L2 .

Thus, by definition of Da, for each a > 0,

lim
n→∞ sup

u∈Da

‖u − vn‖L∞(L2) = 0. (4.41)

We define

G�,η(u) :=
∫

utψt dx −
∫

usψs dx

+
∫ t

s

∫ {
ur∂rψr + σ(ur)

[
Δur − RηW ′

�(Rηur)
]
ψr

}
dxdr.

(4.42)

Since σ is Lipschitz and by Sobolev embedding ‖RηW ′
�(Rηu)‖2

L2 ≤ C(1 +
‖u‖6

H1) for any u ∈ H1, where C > 0 is independent of � and η, by definition
of Da and (4.41) we easily obtain,

lim
n,�,η

sup
u∈Da

|Gn,�,η(u) − G�,η(u)|

≤ lim
n,�,η

sup
u∈Da

C‖u − vn‖L∞(L2)(1 + ‖u‖L2(H2) + ‖u‖3
L∞(H1)) = 0.

(4.43)



NoDEA Stochastic Allen–Cahn equation with mobility Page 21 of 38 54

We are going to show that

lim
�,η

sup
u∈Da

|G�,η(u) − G(u)| = 0, lim
δ→0

sup
u∈Da

|G(u) − Gδ(u)| = 0, (4.44)

which clearly imply (4.39) by (4.43).
Since ψ is bounded and Rη contracts also the L1-norm we estimate,

|G�,η(u) − G(u)| ≤C

∫ t

s

∫ ∣
∣W ′(ur) − RηW ′

�(Rηur)
∣
∣ dxdr,

≤C

∫ t

s

∫ ∣
∣W ′(ur) − RηW ′(ur)

∣
∣ +

∣
∣W ′(ur) − W ′

�(ur)
∣
∣ dxdr

+ C

∫ t

s

∫ ∣
∣W ′

�(ur) − W ′
�(Rηur)

∣
∣ dxdr = I + II + III.

(4.45)

Notice that ‖Rηv−v‖2
L2 ≤ η‖v‖2

H1 for any v ∈ H1 and, by Sobolev and Holder
inequalities, for any v ∈ H2 we have,

‖W ′(v)‖H1 ≤ C‖1 + |v|3‖H1 ≤ C(1 + ‖v‖3
H1 + ‖v‖H2‖v‖2

H1),

hence,

I ≤ C

∫ t

s

‖W ′(ur)−RηW ′(ur)‖L2 dr ≤ Cη

∫ t

s

(1+‖ur‖3
H1 +‖ur‖H2‖ur‖2

H1) dr.

(4.46)
On the other hand, by the assumptions on W and the definition (4.2) of W�, we
have |W ′(u)|+ |W ′

�(u)| ≤ C(1+ |u|3) for a C > 0 independent of �. Combining
Cauchy-Schwartz, Sobolev, Chebyschev, and Young inequalities we get,

II ≤ C

∫ t

s

∫

|ur|>l

(1 + |ur|3) dr ≤ C

∫ t

s

(1 + ‖ur‖3
L6)|{|ur| > l}|1/2 dr

≤ C

∫ t

s

(1 + ‖ur‖3
H1)‖ur‖1/2

L2 �−1/2 dr ≤ C�−1/2(1 + ‖u‖4
L∞(H1)).

(4.47)

Finally, noticing that |W ′
�(u) − W ′

�(u
′)| ≤ C(1 + |u|2 + |u′|2)|u − u′| for an

absolute constant C > 0 independent of τ, τ ′, and �, by Cauchy-Schwartz,
Holder, and Sobolev inequalities, arguing as above we get,

III ≤ C

∫ t

s

∫
(1 + |ur|2 + |Rηur|2)|ur − Rηur|dxdr

≤ C

∫ t

s

(1 + ‖ur‖2
L4)‖ur − Rηur‖L2 dr

≤ Cη1/2

∫ t

s

(1 + ‖ur‖2
H1)‖ur‖H1 dr ≤ Cη1/2(1 + ‖u‖3

L∞(H1)).

(4.48)

Combining (4.45)–(4.48) the first claim in (4.44) follows. The proof of the
second claim in (4.44) is entirely similar. Indeed, first recall that σ and ψ are
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bounded and that Rδ and Δ commute on H2. Thus, in view of (4.29) and
(4.30),

|Gδ(u) − G(u)| ≤ C

(
‖ut − Rδut‖L1 + ‖us − Rδus‖L1 +

∫ t

s

‖ur − Rδur‖L1 dr

)

+ C

∫ t

s

‖W ′(ur) − W ′(Rδur)‖L1 dr

+

∣
∣∣
∣

∫ t

s

∫
(Rδσ(Rδur)Δur − σ(ur)Δur) ψr dx dr

∣
∣∣
∣ = I ′ + II ′ + III ′.

(4.49)

Since ‖Rδv − v‖2
L2 ≤ δ‖v‖2

H1 for any v ∈ H1, we have,

I ′ ≤ C‖u − Rδu‖L∞(L2) ≤ Cδ1/2‖u‖L∞(H1), (4.50)

and arguing as in (4.47) we also obtain,

II ′ ≤ Cδ1/2(1 + ‖u‖3
L∞(H1)). (4.51)

Combining (4.49)–(4.51), the second claim in (4.44) follows once we prove that,
for each a > 0,

lim
δ→0

sup
u∈Da

∣
∣
∣
∣

∫ t

s

〈Rδσ(Rδur)Δur − σ(ur)Δur, ψr〉L2 dr

∣
∣
∣
∣ = 0. (4.52)

We argue by contradiction and suppose that (4.52) fails. Then, there exists
a > 0, ρ > 0, δk → 0, and a sequence {u(k)} ⊂ Da such that, for each k ≥ 1,

∣
∣
∣
∣

∫ t

s

〈Rδk
σ(Rδk

uk
r )Δuk

r − σ(uk
r )Δuk

r , ψr〉L2dr

∣
∣
∣
∣ ≥ ρ > 0. (4.53)

It is easy to check that {uk} ⊂ Da ⊂ C(L2) is equicontinuous and {uk
t } ⊂ H1

is equibounded; in view of the compact embedding H1 ↪→ L2 we can apply
the Ascoli-Arzelà theorem to infer that, up to subsequences, uk → u ∈ C(L2)
as k → ∞. Moreover, by standard lower semicontinuity argument is easy to
check that u ∈ Da and in addition Δuk ⇀ Δu in L2([0, T ] × T

d) as k → ∞.
Since uk → u in C(L2) and σ is bounded and continuous we have

Rδk
uk → u, σ(uk) → σ(u), σ(Rδk

uk) → σ(u) and Rδk
σ(Rδk

uk) → σ(u) in
C(L2) and in turn in L2([0, T ] × T

d) as k → ∞. As ψ is bounded and smooth
and Δuk ⇀ Δu in L2([0, T ] × T

d), as k → ∞ we have,

lim
k→∞

∫ t

s

〈Rδk
σ(Rδk

uk
r )Δuk

r − σ(uk
r )Δuk

r , ψr〉L2 dr = 0,

which contradicts (4.53) and proves (4.52).
To deduce (4.36) from (4.34) we first notice that

lim
n,�,η

E
n
�,η

(
F (u)

∫ t

s

∫ (
j ∗ (

√
2σ(vn

r )ψr)
)2

dxdr

)

= E

(
F (u)

∫ t

s

∫ (
j ∗ (

√
2σ(ur)ψr)

)2

dxdr

)
.

(4.54)
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Indeed, as u �→ F (u)
∫ t

s

∫ (
j∗(

√
2σ(ur)ψr)

)2 dxdr is bounded and continuous,
restricting the expectations to Da and its complement the conclusion follows
from (4.38) and (4.41).

Finally, arguing as in the proof of (4.35) and using (4.32) for some p > 2
we have,

lim
n,�,η

E
n
�,η

(
F (u)Gn,�,η(u)2

)
= E

(
F (u)G(u)2

)
,

which together with (4.34) and (4.54) yields (4.36). �

5. Uniqueness results and strong existence

In this section we conclude the proof of Theorem 2.2. To connect the notions of
martingale and strong solutions we first introduce the notion of weak solution.

A pair ((Ω,G,Gt,P), (u, α)), where (Ω,G,Gt,P) is a standard filtered
probability space and (u, α) are Gt-adapted processes, is a weak solution to
(2.1) with initial datum ū0 iff

(i) α : Ω → C(H−s̄), s̄ > d/2, is a L2-cylindrical Wiener process with respect
to Gt, i.e., it is a L2-cylindrical Wiener process and its increments αt −αs

are independent of Gs for 0 ≤ s < t ∈ [0, T ];
(ii) u : Ω → C(L2), P(u0 = ū0) = 1, and P(u ∈ L∞(H1) ∩ L2(H2)) = 1;
(iii) for each ψ ∈ C∞(

[0, T ] × T
d
)

and t ∈ [0, T ], the identity (2.5) holds
P-a.s.

Pathwise uniqueness of weak solutions holds if whenever ((Ω,G,Gt,P),
(u, α)) and ((Ω,G,Gt,P), (u′, α′)) are two weak solutions on the same filtered
space with α = α′ then P(ut = u′

t ∀ t ∈ [0, T ]) = 1.
We remark that if a weak solution ((Ω,G,Gt,P), (u, α)) is such that u is

Gα
t -adapted (recall that Gα

t denotes the filtration generated by α completed
with respect to P) then the map u : Ω → C(L2) is a strong solution on the
probability space (Ω,G,P) equipped with the cylindrical Wiener process α.

By a martingale representation lemma, we first show that existence of
weak solutions can be deduced from the existence of martingale solutions.

Lemma 5.1. Given ū0 ∈ H1, let P be a martingale solution to (2.1) with initial
condition ū0. There exists a weak solution ((Ω,G,Gt,P), (u, α)) to (2.1) such
that P ◦ u−1 = P.

Proof. Let P be a martingale solution. Recall (2.3) and let {ek}, k ∈ Z
d, be an

orthonormal basis in L2. We claim that the process M = (Mt)t∈[0,T ] defined
by Mt :=

∑
k Mek

t ek is a L2-valued, continuous square integrable P-martingale
with quadratic variation,

[M ]t =
∫ t

0

B(us)B(us)∗ ds, (5.1)

where we recall B(u) : L2 → L2 is the Hilbert-Schmidt operator given by
B(u)ψ =

√
2σ(u)j ∗ ψ.
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The martingale property of M is obvious and (5.1) is a direct consequence
of (2.4). Since ‖B(u)‖HS is bounded uniformly w.r.t. u ∈ L2, M is square
integrable. Moreover, by (2.3),

Mt = ut − u0 −
∫ t

0

σ(us)
(
Δus − W ′(us)

)
ds ∀ t ∈ [0, T ] P-a.s.,

where the identity has to be understood between elements of L2. Since P(u ∈
L∞(H1) ∩ L2(H2)) = 1 we deduce the P-a.s. continuity of M .

In view of the previous claim, we can apply the representation theorem [9,
Thm. 8.2] and deduce the existence of an enlargement of the filtered probability
space (C(L2),B,Bt,P), denoted by (Ω,G,Gt,P), equipped with a cylindrical
Wiener process α : Ω → C(H−s̄), s̄ > d/2, and a Gt-progressively measurable
map u : Ω → C(L2) such that P ◦ u−1 = P and Mt =

∫ t

0
B(us) dαs. In par-

ticular, ((Ω,G,Gt,P), (u, α)) is a weak solution to (2.1) with initial condition
ū0. �

By the previous lemma and Itô formula we next show the continuity
property of the trajectories for martingale solutions.

Lemma 5.2. Given ū0 ∈ H1, let P be a martingale solution to (2.1) with initial
condition ū0. Then, P(u ∈ C(H1)) = 1.

Proof. Since P(u ∈ C(L2)∩L∞(H1)) = 1, we already know that P-a.s. the tra-
jectories are H1-weak continuous, so we have only to show the P-a.s. continuity
of the real-valued process t �→ ‖ut‖H1 . To this end, let ((Ω,G,Gt,P), (u, α))
be the weak solution associated to P as constructed in Lemma 5.1. We shall
prove the P-a.s. continuity of the map t �→ F(ut), where F : H1 → R is the
functional,

F(u) =
∫

1
2
|∇u|2 + W (u) dx. (5.2)

Note indeed the map [0, T ] � t �→ ∫
W (ut) dx is P-a.s. continuous since P(u ∈

C(L2) ∩ L∞(H1)) = 1.
In order to apply Itô’s formula to F , we proceed by approximation as

in the proof of Lemma 4.2. Given δ > 0 and � > 0, let Fδ
� : L2 → R be the

regularized version of F defined by

Fδ
� (u) =

∫
1
2
|∇Rδu|2 + W�(Rδu) dx, (5.3)

where, as usual, Rδ = (Id − δΔ)−1 and W� is defined in (4.2). Since Fδ
� is C2

with locally uniformly continuous first and second derivatives, we can apply
Itô’s formula and deduce,

Fδ
� (ut) +

∫ t

0

∫
σ(us)(Δus − W ′(us))(RδΔRδu

n
s − RηW ′

�(Rδu
n
s )) dxds

= Fδ
� (u0) +

1
2

∫ t

0

TrL2(B(us)∗ [Rδ(−Δ)Rδ + RδW
′′
� (Rδus)Rδ] B(us)) ds

+
∫ t

0

〈Rδ(−Δ)Rδus + RδW
′
�(Rδus), B(us) dαs〉L2 ∀ t ∈ [0, T ] P-a.s..
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Recall that, by definition of martingale solution, P(u ∈ L∞(H1)∩L2(H2)) = 1.
Given κ > 0 let

τκ := inf
{

t ∈ [0, T ] :
∫ t

0

‖us‖2
H2 ds > κ

}
,

setting τκ = T if the set in the right-hand side is empty. Note that τκ ↑ T
as κ → ∞ P-a.s. By stopping at τκ the Itô ’s formula above, straightforward
estimates (similar to those in the proof of Lemma 4.2) allow to take the limit
δ → 0 and � → ∞. By taking afterwards the limit as κ → ∞ we finally get,

F(ut) +
∫ t

0

∫
σ(us)(Δus − W ′(us))2 dxds

= F(u0) +
1
2

∫ t

0

TrL2(B(us)∗[−Δ + W ′′(us)]B(us)) ds

+
∫ t

0

〈−Δus + W ′(us), B(us) dαs〉L2 ∀ t ∈ [0, T ] P-a.s.

Since P(u ∈ L∞(H1) ∩ L2(H2)) = 1, P-a.s. the second term on the left-hand
side is P-a.s. continuous and the trace in the second term on the right-hand
side is P-a.s. bounded uniformly in time. Indeed, arguing as in (4.10)–(4.14)
we deduce the inequality,

TrL2(B(us)∗[−Δ + W ′′(us)]B(us)) ≤ Cσ‖j‖2
H1

∫
(1 + |∇us|2 + |W ′′(us)|) dx

≤ Cσ‖j‖2
H1(1 + F(us)).

Combining these facts with the a.s. continuity of the stochastic integral we get
the P-a.s. continuity of the map t �→ F(ut). �

By means of an H−1 estimate inspired by [1], we next prove pathwise
uniqueness of weak solutions.

Proposition 5.3. Let ((Ω,G,Gt,P), (u, α)) and ((Ω,G,Gt,P), (v, α′)) be two
weak solutions to (2.1) with initial condition ū0 ∈ H1 defined on the same
filtered space. If α′ = α then P(ut = vt ∀ t ∈ [0, T ]) = 1.

Proof. We observe that by P-a.s. continuity it is enough to show that P(ut =
vt) = 1 for any t ∈ [0, T ]. For κ > κ0 := 2‖ū0‖H1 we introduce the stopping
time τκ : Ω → R+ defined by

τκ := inf{t ∈ [0, T ] : ‖ut‖H1 + ‖vt‖H1 > κ},

setting τκ = T if the set in the right-hand side is empty. Note that, P-a.s. the
H1-continuity yields τκ > 0 and τκ ↑ T as κ → ∞. Therefore, it is enough to
prove that P(ut∧τκ

= vt∧τκ
) = 1 for any κ > κ0 and t ∈ [0, T ]. This will be

achieved by showing that the real random variable Ψt : Ω → R defined by

Ψt :=
1
2

∥
∥h(ut∧τκ

) − h(vt∧τκ
)
∥
∥2

H−1 , h(u) :=
∫ u

0

1
σ(r)

dr,

is P-a.s. vanishing for any κ > κ0 and t ∈ [0, T ]. To this purpose, we estimate
the evolution in time of Ψt via Itô’s calculus.
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Since the function Ψ: L2 × L2 → R defined by Ψ(u, v) := 1
2

∥
∥h(u) −

h(v)
∥
∥2

H−1 is not twice differentiable, we proceed by approximation. We in-
troduce the regularized version of Ψ defined by Ψδ(u, v) := 1

2

∥
∥h(Rδu) −

h(Rδv)
∥
∥2

H−1 . Since h : R → R is C3, Rδ : L2 → H2 is bounded, and H2

is compactly embedded in C(Td), it is easy to show that Ψδ is C2. Setting
fδ(u, v) := R1(h(Rδu) − h(Rδv)), the first derivative (DΨδ)u,v ∈ L2 × L2 is
given by

(DΨδ)u,v = Rδ

(
h′(Rδu)fδ(u, v)
h′(Rδv)fδ(u, v)

)
,

and the second derivative (D2Ψδ)u,v : L2 × L2 → L2 × L2 reads,

(D2Ψδ)u,v = Rδ

(
h′′(Rδu)fδ(u, v) 0

0 −h′′(Rδv)fδ(u, v)

)
Rδ

+ Rδ

(
h′(Rδu)R1h

′(Rδu) −h′(Rδu)R1h
′(Rδv)

−h′(Rδv)R1h
′(Rδu) h′(Rδv)R1h

′(Rδv)

)
Rδ.

As h is Lipschitz we have ‖(DΨδ)u,v‖L2×L2 ≤ C(‖u‖L2 + ‖v‖L2) hence
the first derivative is bounded on bounded subsets of L2 × L2. As Rδ : L2 ↪→
C(Td) is compact, L2 � u �→ h′(Rδu) ∈ C(Td) is uniformly continuous on
bounded subset, hence the uniform continuity of DΨδ on bounded subset fol-
lows. Concerning the second derivative, notice that since h′ and h′′ are bounded
and ‖fδ(u, v)‖L∞ ≤ C(‖u‖L2 + ‖v‖L2) with a constant independent of δ, for
each φ1, φ2 ∈ L2 we have
∣
∣
∣
∣
∣

〈(
φ1

φ2

)
, (D2Ψδ)u,v

(
φ1

φ2

)〉

L2×L2

∣
∣
∣
∣
∣
≤ C(‖u‖L2 +‖v‖L2 +1)(‖φ1‖2

L2 +‖φ2‖2
L2),

(5.4)
where the constant C does not depend on δ, φ1, and φ2. The same argument
used for the first derivative entails that the second derivative D2Ψδ is uniformly
continuous on bounded subsets of L2 × L2.

By Itô’s formula (notice Ψδ(u0, v0) = Ψδ(ū0, ū0) = 0),

Ψδ(ut, vt) =
∫ t

0

〈
(DΨδ)us,vs

,

(
σ(us)(Δus − W ′(us))
σ(vs)(Δvs − W ′(vs))

)〉

L2×L2

ds

+
∫ t

0

TrL2×L2

(
(D2Ψδ)us,vs

B(us, vs)B(us, vs)∗) ds

+
∫ t

0

〈
(DΨδ)us,vs

,B(us, vs) dαs

〉
L2×L2 ,

(5.5)

where B is the Hilbert-Schmidt operator on L2 × L2 defined by

B(us, vs) =
(

B(us)
B(vs)

)
.
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In order to take the limit as δ → 0 in the previous identinty, notice that
for u, v ∈ C(L2) we have Ψδ(ut, vt) → Ψ(ut, vt) and

lim
δ→0

(DΨδ)ut,vt
=

(
h′(ut)R1(h(ut) − h(vt))
h′(vt)R1(h(ut) − h(vt))

)
,

in L2 × L2 uniformly for t ∈ [0, T ], as h, h′ are Lipschitz and R1 : L2 ↪→ L∞.
Since P-a.s. u, v ∈ C(H1)∩L2(H2), this allows to pass to the limit also in the
first term on the r.h.s. of (5.5) by dominated convergence. Moreover, the same
uniform convergence together with the computation of the quadratic variation
allows to pass to the limit (up to subsequences) in the stochastic integral.
Finally, we rewrite the trace term in (5.5) as

TrL2×L2

(
(D2Ψδ)us,vs

B(us, vs)B(us, vs)∗)

=
∑

k

〈
B(us, vs)ek, (D2Ψδ)us,vs

B(us, vs)ek

〉
L2×L2 ,

where {ek} ⊂ L2 is an orthonormal basis. Since B is Hilbert-Schmidt and the
bound (5.4) holds, in order to take the limit in the trace term by dominated
convergence w.r.t. to k it is enough to show that

lim
δ→0

(D2Ψδ)us,vs
=

(
h′′(us)R1(h(us) − h(vs)) 0

0 −h′′(vs)R1(h(us) − h(vs))

)

+
(

h′(us)R1h
′(us) −h′(us)R1h

′(vs)
−h′(vs)R1h

′(us) h′(vs)R1h
′(vs)

)
,

(5.6)

in the weak operator topology on L2 × L2, uniformly for s ∈ [0, T ], as h, h′,
h′′ are Lipschitz and R1 : L2 ↪→ L∞.

By stopping at τκ and recalling that h′ ≡ 1/σ, we finally get

Ψt =

∫ t∧τκ

0

〈
R1(h(us) − h(vs)), Δ(us − vs) − W ′(us) + W ′(vs)

〉
L2 ds

+
1

2

∫ t∧τκ

0
TrL2

([
R1(h(us) − h(vs))

][
h′′(us)B(us)B(us)

∗ − h′′(vs)B(vs)B(vs)
∗]

+ (B(us)
∗h′(us) − B(vs)

∗h′(vs))R1(h
′(us)B(us) − h′(vs)B(vs))

)
ds

+

∫ t∧τκ

0

〈
R1[h(us) − h(vs)],

[ 1

σ(us)
B(us) − 1

σ(vs)
B(vs)

]
dαs

〉

L2
.

Let {ek} ⊂ L2 be the Fourier orthonormal basis and define

fs = R1(h(us) − h(vs)), βs :=
1

√
σ(us)

− 1
√

σ(vs)
.

By using that R1Δ = −Id+R1, and recalling the definitions of h(u) and B(u),
after some simple algebraic computations evaluating the trace by Fourier series
the above identity reads,

Ψt +
∫ t∧τκ

0

〈
h(us) − h(vs), us − vs

〉
L2 ds = I1

t + I2
t + I3

t + Mt∧τκ
, (5.7)
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where

I1
t :=

∫ t∧τκ

0

〈
fs, us − vs − W ′(us) + W ′(vs)

〉
L2 ds,

I2
t := ‖j‖2

L2

∫ t∧τκ

0

∫
fs(x)

(
σ′(vs(x))
σ(vs(x))

− σ′(us(x))
σ(us(x))

)
dx,

I3
t :=

∫ t∧τκ

0

∑

k∈Zd

〈
βsj ∗ ek, R1βsj ∗ ek

〉
L2 ,

and Mt∧τκ
is the stochastic integral (the last term in the previous Itô’s for-

mula).
By Assumption 2.1, Hölder inequality, and the Sobolev embedding H1 ↪→

L6 we have,

|I1
t | ≤

∫ t∧τκ

0

〈|fs|, |us − vs|(1 + u2
s + v2

s)
〉

L2 ds

≤
∫ t∧τκ

0

‖fs‖L6‖us − vs‖L2‖1 + u2
s + v2

s‖L3 ds

≤ C

∫ t∧τκ

0

‖fs‖H1‖us − vs‖L2

(
1 + ‖us‖2

H1 + ‖vs‖2
H1

)
ds

≤ C(1 + κ2)
∫ t∧τκ

0

√
Ψs ‖us − vs‖L2 ds,

where in the last inequality we used that ‖fs‖H1 =
√

2Ψs and ‖us‖2
H1 +

‖vs‖2
H1 ≤ 2κ2 for any s ≤ τκ.
To estimate I2

t we observe that by Assumption 2.1 there is C > 0 for
which

∣
∣σ(a)−1σ′(a) − σ(b)−1σ′(b)

∣
∣ ≤ C|a − b|, so that, from Cauchy-Schwartz

inequality and arguing as before,

|I2
t | ≤ C‖j‖2

L2

∫ t∧τκ

0

∫
fs(x)|us(x) − vs(x)|dxds≤C

∫ t∧τκ

0

‖fs‖H1‖us−vs‖L2

≤ C

∫ t∧τκ

0

√
Ψs ‖us − vs‖L2 ds.

In view of the definition of h(u) and Assumption 2.1, it is easy to show
that, for a suitable C > 0,

max{(a − b)2; (h(a) − h(b))2} ≤ C(h(a) − h(b))(a − b). (5.8)

Therefore, by the previous estimates and Young inequality,

|I1
t |+|I2

t | ≤ 1
2

∫ t∧τκ

0

〈
h(us)−h(vs), us−vs

〉
L2 ds+C(1+κ2)

∫ t∧τκ

0

Ψs ds. (5.9)

To estimate I3
t , we first notice that there is C > 0 such that, for any

f ∈ H1 and g ∈ H−1/2,

‖fg‖H−1 ≤ C‖f‖H1‖g‖H−1/2 . (5.10)
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Indeed, by Fourier expansion and Parseval identity,

‖fg‖2
H−1 =

∑

k∈Zd

∣∣f̂g(k)
∣∣2

1 + |k|2 =
∑

k∈Zd

1

1 + |k|2
∣
∣
∣∣

1

(2π)d/2

∑

k′∈Zd

f̂(k − k′)ĝ(k′)

∣
∣
∣∣

2

≤
∑

k∈Zd

1

1 + |k|2
( ∑

k′∈Zd

|f̂(k − k′)||ĝ(h)|
)2

≤
∑

k∈Zd

1

1 + |k|2
∑

k′∈Zd

|f̂(k − k′)|2(1 + |k − k′|2)
∑

k′∈Zd

|ĝ(k′)|2
1 + |k − k′|2

= ‖f‖2
H1

∑

k′∈Zd

|ĝ(k′)|2
∑

k∈Zd

1

(1 + |k|2)(1 + |k − k′|2) ≤ C‖f‖2
H1‖g‖2

H−1/2 ,

where we used that there is C > 0 such that, for d = 1, 2, 3,

∑

k∈Zd

1
(1 + |k|2)(1 + |k − k′|2) ≤ C

√
1 + |k′|2 .

By (5.10) and standard interpolation,
∑

k∈Zd

〈
βsj ∗ ek, R1βsj ∗ ek

〉
L2 =

∑

k∈Zd

‖βsj ∗ ek‖2
H−1

≤ C
∑

k∈Zd

‖j ∗ ek‖2
H1‖βs‖2

H−1/2 ≤ C‖j‖2
H1‖βs‖2

H−1/2 ≤ C‖βs‖L2‖βs‖H−1 .

(5.11)

By the definition of h(·) and Assumption 2.1 it is straightforward to
verify that |βs| ≤ C|h(us) − h(vs)|. Moreover, we claim that γs := (h(us) −
h(vs))−1βs ∈ L∞ ∩ H1 and that, for a suitable C > 0, ‖γs‖H1 ≤ C(1 +
‖us‖H1 + ‖vs‖H1). To see this, notice that the function σ̃(r) := σ(h−1(r))−1/2

is C2 with bounded derivatives, and satisfies

γs =
∫ 1

0

σ̃′(h(vs(x)) + λ(h(us(x)) − h(vs(x)))) dλ,

from which the claim follows.
By using (5.10), for any s ≤ τκ,

∥
∥βs

∥
∥

H−1 ≤ C
∥
∥γs

∥
∥

H1

∥
∥h(us) − h(vs)

∥
∥

H−1/2 ≤ C(1 + 2κ)
∥
∥h(us) − h(vs)

∥
∥

H−1/2 ,

hence, by (5.11), interpolation and Young inequality, for any ε > 0,

|I3
t | ≤ C(1 + 2κ)

∫ t∧τκ

0

∥∥h(us) − h(vs)
∥∥

L2

∥∥h(us) − h(vs)
∥∥

H−1/2 ds

≤ C(1 + 2κ)

∫ t∧τκ

0

∥∥h(us) − h(vs)
∥∥3/2

L2

∥∥h(us) − h(vs)
∥∥1/2

H−1 ds

≤ ε

∫ t∧τκ

0

∥
∥h(us) − h(vs)

∥
∥2

L2 ds + Cε(1 + κ2)

∫ t∧τκ

0

∥
∥h(us) − h(vs)

∥
∥2

H−1 ds.
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Since by (5.8)
∥
∥h(us) − h(vs)

∥
∥2

L2 ≤ 〈
h(us) − h(vs), us − vs

〉
L2 , by choosing ε

small enough we conclude that there is C > 0 such that,

|I3
t | ≤ 1

2

∫ t∧τκ

0

〈
h(us) − h(vs), us − vs

〉
L2 ds + C(1 + κ2)

∫ t∧τκ

0

Ψs ds. (5.12)

By (5.7), (5.9), and (5.12) we get,

Ψt ≤ C

∫ t∧τκ

0

Ψs ds + Mt∧τκ
≤ C

∫ t

0

Ψs ds + Mt∧τκ
.

By the optional stopping theorem E(Mt∧τκ
) = E(M0) = 0; therefore, by taking

the expectation in both sides and applying Gronwall’s inequality we conclude
that E(Ψt) = 0, and therefore P-a.s. Ψt = 0. �

By the Yamada-Watanabe argument [36] (see also [31,32]) we next deduce
uniqueness of the law of weak solutions.

Proposition 5.4. Given ū0 ∈ H1, the following holds.
1. The law Q = P ◦ (u, α)−1 on C(L2) × C(H−s̄) is the same for any weak

solution ((Ω,G,Gt,P), (u, α)) to (2.1) with initial datum ū0.
2. There exists a Borel map Θ: C(H−s̄) → C(L2), Bt(C(H−s̄))/Bt measur-

able, and such that for any weak solution ((Ω,G,Gt,P), (u, α)) we have
u = Θ ◦ α P-a.s.

Proof. The proof can be easily achieved by adapting the argument in [31] for
finite dimensional diffusions. However, for the reader’s convenience, we present
the complete strategy.
1. Fix ū0 ∈ H1 and let ((Ωi,Gi,Gi

t ,Pi), (ui, αi)), i = 1, 2, be two weak solutions
to (2.1) with initial condition ū0. To take advantage of the pathwise uniqueness
proved in Proposition 5.3, we need to bring them on a same filtered probability
space.

Denote by P
∗ the law of the cylindrical Wiener process on C(H−s̄). Set

also Q
i = Pi ◦ (ui, αi)−1 be the probabilities on C(L2) × C(H−s̄) induced by

the pair (ui, αi). As the spaces involved are Polish, these probabilities can be
disintegrated w.r.t. P∗ so that

Q
i(dv,dv′) = Q

i
v′(dv)P∗(dv′), i = 1, 2,

where P
∗-a.s. Qi

v′ is a probability on C(L2). Moreover, v′ �→ Q
i
v′(A) is a Borel

map for any A ∈ B(C(L2)). In the sequel, we need the following result, which
is a straightforward adaptation to the present context of [31, Chap. 4, Lemma
(1.6)].

Lemma 5.5. If A ∈ Bt(C(L2)), t ∈ [0, T ], the map w3 �→ Q
i
w3(A) is

Bt(C(H−s̄))-measurable up to a negligible set.

Consider now the product space W := C(L2) × C(L2) × C(H−s̄), whose
elements are denoted by w = (w1, w2, w3). On W we define the probability
measure,

Π(dw1,dw2,dw3) := Q
1
w3(dw1)Q2

w3(dw2)P∗(dw3),
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and we endow W with the filtration Gt defined as the completion with respect
to Π of the canonical filtration Bt(W ).

We now claim that, for i = 1, 2, ((W ,G,Gt,Π), (wi, w3)) are weak solu-
tions to (2.1) with initial condition ū0 on the same filtered space, and such
that Pi = Pi ◦ (ui)−1 is the law of wi. The latter assertion, which is immediate
by construction, clearly implies condition ii) in the definition of weak solution,
hence it remains to verify conditions i) and iii).

To prove that w3 is a L2-cylindrical Wiener process with respect to Gt,
we only need to check that for any 0 ≤ s < t ∈ [0, T ] the process w3

t − w3
s

is independent of Gs. This property follows by noticing that, letting A1, A2 ∈
Bs(C(L2)), B ∈ Bs(C(H−s̄)), by Lemma 5.5, for any ψ ∈ C∞(Td),

E
Π
[
exp

(
i〈ψ,w3

t − w3
s〉)1Iw1∈A11Iw2∈A21Iw3∈B

]

=
∫

B

exp
(
i〈ψ,w3

t − w3
s〉)Q1

w3(A1)Q2
w3(A2)P∗(dw3)

=
∫

B

[ ∫
exp

(
i〈ψ, w̄t − w̄s〉

)
P

∗
t,w3(dw̄)

]
Q

1
w3(A1)Q2

w3(A2)P∗(dw3)

= exp
( − (t − s)‖ψ‖2

L2

) ∫

B

Q
1
w3(A1)Q2

w3(A2)P∗(dw3)

= exp
( − (t − s)‖ψ‖2

L2

)
Π(A1 × A2 × B),

where P
∗
t,w3 is a regular version of the conditional probability P

∗( · |w3
s , s ∈

[0, t]).
Let ψ ∈ C∞([0, T ] × T

d) and t ∈ [0, T ]. Since Pi-a.s.,

〈ui
t, ψt〉L2 = 〈ū0, ψ0〉L2 +

∫ t

0

〈ui
s, ∂sψs〉L2 ds

+
∫ t

0

〈σ(ui
s)(Δui

s − W ′(ui
s)), ψs〉L2 ds +

∫ t

0

〈ψs, B(ui
s) dαi

s〉L2 ,

then, as follows from, e.g., [31, Chap. 4, Ex. (5.16)], Π -a.s.,

〈wi
t, ψt〉L2 = 〈ū0, ψ0〉L2 +

∫ t

0

〈wi
s, ∂sψs〉L2 ds

+
∫ t

0

〈σ(wi
s)(Δwi

s − W ′(wi
s)), ψs〉L2 ds +

∫ t

0

〈ψs, B(wi
s) dw3

s〉L2 ,

which is property iii) in the definition of weak solutions.
By the pathwise uniqueness in Proposition 5.3, Π((w1

t , w3
t ) = (w2

t , w3
t )

∀ t ∈ [0, T ]) = 1, which implies Q
1 = Q

2, i.e., the uniqueness of the law of
weak solutions.
2. Let ((Ω,G,Gt,P), (u, α)) be a weak solution of (2.1) with initial condition ū0,
whose existence is ensured by Lemma 5.1. We apply the previous construction
with ((Ωi,Gi,Gi

t ,Pi), (ui, αi)) = ((Ω,G,Gt,P), (u, α)) for i = 1, 2. Thus, for

P ◦ (u, α)−1 = Q, Q(dwi,dw3) = Qw3(dwi)P∗(dw3), i = 1, 2,

Π(dw1,dw2,dw3) = Qw3(dw1)Qw3(dw2)P∗(dw3),
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pathwise uniqueness yields Π(w1
t = w2

t ∀ t ∈ [0, T ]) = 1. As a consequence,
the processes w1 and w2 are simultaneously equal and independent under the
measure Qw3(dw1)Qw3(dw2) for P∗-a.s w3. This is possible only if there exists
a Borel map Θ: C(H−s̄) → C(L2) such that Qw3 = δΘ(w3) for P

∗-a.s w3.
Furthermore, in view of Lemma 5.5, Θ is Bt(C(H−s̄))/Bt(C(L2)) measurable.
Therefore, Q(dw1,dw3) = δΘ(w3)(dw1)P∗(dw3), whence u = Θ ◦ α P-a.s. �

Proof of Theorem 2.2. By Theorem 4.1, for each initial datum ū0 ∈ H1 there
exists a martingale solution P to (2.1) satisfying (4.1), which implies (2.8) in
view of the growth assumptions of the potential W . Moreover, P(u ∈ C(H1)) =
1 in view of Lemma 5.2. By Lemma 5.1 and item a) of Proposition 5.4, the
uniqueness of the martingale solution P follows.

The pathwise uniqueness proved in Proposition 5.3 clearly implies the
uniqueness of strong solutions. Therefore, we are left with the proof of existence
of strong solutions.

Given ū0 ∈ H1 and a probability space (Ω,G,P) equipped with a cylin-
drical Wiener process α, we claim that the process u = Θ ◦ α, with Θ as
given in item b) of Proposition 5.4, is a strong solution to (2.1) with initial
datum ū0. To show this, we observe that the law of (u, α) is equal to the
law Q of weak solutions, uniquely determined according to Proposition 5.4. In
addition, as seen in the proof of that proposition, denoting by (w1, w2) the
elements of C(L2) × C(H−s̄) and by G̃ [resp. G̃t] the σ-algebra B(C(L2) ×
C(H−s̄)) [resp. filtration Bt(C(L2) × C(H−s̄))] completed under Q, the pair
((C(L2) × C(H−s̄), G̃, G̃t,Q), (w1, w2)) is a weak solution to (2.1) with initial
datum ū0. Therefore, setting Gt = (u, α)−1(G̃t), the same reasoning as in the
proof of Proposition 5.4, based on [31, Chap. 4, Ex. (5.16)], implies that the
pair ((Ω,Gt,G,P), (u, α)) is a weak solution to (2.1) with initial datum ū0.
Since Θ is Bt(C(H−s̄))/Bt(C(L2)) measurable, the process u is Gα

t -adapted,
hence u is a strong solution. �
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Appendix A. A class of C0-semigroups

In this appendix we prove the following lemma, concerning the generation of
C0-semigroups on the Sobolev space H1. Here we set H := H1 and denote the
norm and inner product in H simply by ‖ · ‖ and 〈·, ·〉.
Lemma A.1. Let H = H1, d = 2, 3, v ∈ H2 and A : H3 ⊂ H → H defined by
Au = σ(v)Δu. Then the following holds.

(1) A is closed, densely defined, and it generates a C0-semigroup S(t), t ≥ 0,
on H satisfying ‖S(t)‖ ≤ em0t for any t ≥ 0 for some m0 > 0 (depending
only on σ).
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(2) Given δ > 0 let Rδ := (Id−δΔ)−1 and Aδ : H → H be defined by Aδu :=
σ(Rδv)RδΔRδu. Then Aδ is a bounded (indeed compact) operator on H
and generates a uniformly continuous (semi)group of linear operators
Sδ(t), t ≥ 0. Moreover, ‖Sδ(t)‖ ≤ em0t for any δ > 0 small enough
(depending only on σ(v)) and any t ≥ 0.

(3) Consider the linear operator limδ→0 Aδ defined on {u ∈ H :
∃ limδ→0 Aδu} as (limδ→0 Aδ)u := limδ→0 Aδu. Then limδ→0 Aδ = A
as unbounded operators and Sδ(t)u → S(t)u in H for every u ∈ H and
every t ≥ 0.

Proof. (1) The operator A is densely defined and closed. Indeed, let Aun =
fn → f in H and {un} ⊂ H3, un → u in H. Since v ∈ H2 and d ≤ 3, it
is easy to check that multiplication by σ(v)−1 is a bounded operator on H,
hence Δun = σ(v)−1fn → σ(v)−1f in H. By elliptic regularity {un} ⊂ H3 is
bounded, hence u ∈ H3. In addition, un → u in H2 and therefore Au = f in
L2 and in turn in H.

The rest of statement (1) follows from the Lumer-Phillips theorem [29]
once we prove that there exists m0 > 0 such that

a) ‖((m + m0)Id − A)u‖ ≥ m‖u‖ for any m > 0 and u ∈ H3;
b) A − (m + m0)Id is surjective for each m > 0.
To prove a) it is clearly enough to show that 〈(m0Id − A)u, u〉 ≥ 0 for

some m0 > 0 and any u ∈ H3. We have,

〈(m0Id − A)u, u〉 = m0‖u‖2 −
∫

σ(v)uΔu dx +
∫

σ(v) (Δu)2 dx

≥ m0‖u‖2 + (inf σ)
∫

(Δu)2 dx − (supσ)
∫

|u||Δu|dx

≥
(

m0 − (sup σ)2

2(inf σ)

)
‖u‖2 +

1
2
(inf σ)

∫
(Δu)2 dx,

where we used Young’s inequality in the last step. Claim a) follows for m0

large enough.
To prove b), for λ ∈ [0, 1] we consider the family of bounded operators

Aλ : H3 → H defined by Aλu = −(m+m0)u+(λσ(v) + 1 − λ) Δu. Notice that
[0, 1] � λ → Aλ ∈ L(H3;H) is norm continuous and A0 = −(m + m0)Id + Δ
is surjective (actually a Banach space isomorphism). Thus, by the continuity
method, claim b) follows once we prove that there exists c > 0 such that
‖u‖H3 ≤ c‖Aλu‖ for any u ∈ H3 and λ ∈ [0, 1]. Arguing as in the last displayed
formula we get,
(

m+m0− (max{1, sup σ})2

2min{(1, inf σ)}
)

‖u‖2 +
1
2

min{1, inf σ}
∫

(Δu)2 dx ≤ ‖Aλu‖‖u‖,

and, by Young’s inequality, ‖u‖ ≤ c‖Aλu‖ for a suitable c > 0 depending only
on m0,m and σ.

Finally, notice that Δu = (λσ(v) + 1 − λ)−1 (
Aλu + (m + m0)u

) ∈ H,
which together with the previous inequality gives ‖Δu‖ ≤ C(m0,m, σ, v)‖Aλu+
(m+m0)u‖ ≤ C ′(m0,m, σ, v)‖Aλu‖ and the conclusion follows by elliptic reg-
ularity.



54 Page 34 of 38 L. Bertini et al. NoDEA

(2) First we notice that Rδ : Hs → Hs+2 is continuous (a linear isomor-
phism), ΔRδu = RδΔu, ‖Rδu‖Hs ≤ ‖u‖Hs , and Rδu → u in Hs as δ → 0 for
any u ∈ Hs and s ∈ R. Note also that Rδv ∈ H4 ⊂ C2 for d = 2, 3, hence
σ(Rδv) ∈ C2. Since RδΔRδ : H → H3 is bounded, H3 ↪→ H2 is compact,
and multiplication by σ(Rδv) is bounded on H2 we see that Aδ : H → H2 is
compact, hence Aδ : H → H is a compact operator. Therefore, Aδ generates a
uniformly continuous (semi)group of linear operators Sδ(t), t ≥ 0. As in part
(1) above, in view of the Lumer-Phillips theorem, the exponential estimate
follows once we prove that there exists m0 > 0 such that, for any δ > 0 small
enough,
a) ‖((m + m0)Id − Aδ)u‖ ≥ m‖u‖ for any m > 0 and u ∈ H3;
b) Aδ − (m + m0)Id is surjective for each m > 0.

To prove a), again it is enough to check that there exists m0 > 0 such that
for any δ > 0 small enough 〈(m0Id − Aδ)u, u〉 ≥ 0 for any u ∈ H3. Integrating
by parts,

〈(m0Id − Aδ)u, u〉 = m0‖u‖2 + Iδ + IIδ,

where

Iδ := −
∫

σ(Rδv)uRδΔRδu dx, IIδ :=
∫

Δuσ(Rδv)RδΔRδu dx .

Now, using Sobolev inequality,

Iδ =
∫ (

σ(Rδv)∇u∇R2
δu + uσ′(Rδv)∇Rδv∇R2

δu
)

dx

≥ − (supσ + C‖σ′‖∞‖v‖H2) ‖u‖2,

which leads to chose m0 = supσ + C‖σ′‖∞‖v‖H2 . On the other hand, as
Id = (Id − δΔ)Rδ we have,

IIδ =
∫

σ(Rδv)|ΔRδu|2 dx +
∫

ΔRδu
(
Id − δΔ

)
[σ(Rδv), Rδ] ΔRδu dx

≥
(

inf σ − ∥
∥(Id − δΔ

)
[σ(Rδv), Rδ]

∥
∥

L2
0→L2

)∫
|ΔRδu|2 dx,

since ΔRδu ∈ L2
0, the closed subspace of functions with zero average, and

claim a) follows once we show that
∥
∥(Id − δΔ

)
[σ(Rδv), Rδ]

∥
∥

L2
0→L2 = o(1) as

δ → 0.
To estimate the commutator, notice that for w ∈ L2

0, g = Rδw and
f = Rδ(σ(Rδv)w), we have f, g ∈ H2, g − δΔg = w, f − δΔf = σ(Rδv)w and
(
Id − δΔ

)
[σ(Rδv), Rδ] w =

(
Id − δΔ

)
(−f + σ(Rδv)g)

= −δ
(
gΔσ(Rδv) + 2∇g∇σ(Rδv)

)

= −δ
[
σ′(Rδv)gRδΔv + σ′′(Rδv)g|∇Rδv|2 + 2σ′(Rδv)∇g∇Rδv

]
.

If ϕ ∈ L2
0 and ψ = Rδϕ ∈ H2 solves ψ − δΔψ = ϕ, then

∫
ψ2 + δ|∇ψ|2 ≤

‖ϕ‖L2‖ψ‖L2 , whence ‖∇ψ‖L2 ≤ δ−1/2‖ϕ‖L2 and, by Hölder and Sobolev em-
bedding H1 ↪→ L6, we have ‖ψ‖Lp ≤ Cδ(6−3p)/4p‖ϕ‖L2 for any 2 ≤ p ≤
6. Analogously,

∫
δ|∇ψ|2 + δ2|Δψ|2 ≤ δ‖ϕ‖L2‖Δψ‖L2 , whence ‖Δψ‖L2 ≤
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δ−1‖ϕ‖L2 and by Holder, Sobolev and Calderon-Zygmund inequalities we have
‖∇ψ‖Lp ≤ Cδ(6−5p)/4p‖ϕ‖L2 for any 2 ≤ p ≤ 6. Applying these estimates to
ϕ = w and ϕ = Δv ∈ L2

0 we have,

∥
∥(Id − δΔ

)
[σ(Rδv), Rδ] w

∥
∥

L2 ≤ δ‖σ‖C2

(‖g‖L4‖RδΔv‖L4 + ‖g‖L6‖∇Rδv‖2
L6

+ ‖∇g‖L4‖∇Rδv‖L4) ≤ Cδ1/8‖σ‖C2(1 + ‖v‖2
H2)‖w‖L2 ,

so that
∥
∥(Id − δΔ

)
[σ(Rδv), Rδ]

∥
∥

L2
0→L2 ≤ Cδ1/8 and the claim follows.

To prove b), notice that Aδ is a compact operator, hence Aδ −(m+m0)Id
is Fredholm of index zero. Since it is injective by part a), then it is surjective.

(3) Concerning the first statement, we notice that limδ→0 Aδu = Au for
any u ∈ H3 because RδΔRδu → Δu in H1, σ(Rδv) → σ(v) in H2 and the
product is jointly continuous for d = 2, 3. Conversely, suppose limδ→0 Aδu
exists for some u ∈ H, we claim that u ∈ H3 and the limit is Au. To see
this, notice that Aδu is bounded in H, hence RδΔRδu = σ(Rδv)−1Aδu is also
bounded in H, which implies Δu ∈ H, where the Laplacian is taken in the
sense of distributions. Then u ∈ H3 by elliptic regularity and the conclusion
follows from the initial observation.

To finish the proof it is enough to apply [35, Thm. 5.2] to infer convergence
of semigroups from convergence of the corresponding resolvent operators at
some common point. Fix m0 > 0 as in part (1) and (2) above and m > 0
so that both (m + m0)Id − A and (m + m0)Id − Aδ are injective on their
respective domains and onto. We claim that uδ := ((m + m0)Id − Aδ)

−1
f →

((m + m0)Id − A)−1
f =: u as δ → 0 for any f ∈ H. Indeed, by definition

(m + m0)uδ − Aδuδ = f and in view of the dissipativity inequality (part (2)
of the proof, claim a)), we have m‖uδ‖ ≤ ‖f‖ but indeed even ‖ΔRδuδ‖L2 ≤
C(m,m0, ‖v‖H2)‖f‖ for δ > 0 small enough. Thus, by elliptic regularity Rδuδ

is bounded in H2 and, up to subsequences, Rδuδ → ū strongly in H1 and
weakly in H2 as δ → 0 for some ū ∈ H2 possibly depending on the subsequence.
Observe that uδ − Rδuδ = δΔRδuδ → 0 in L2, hence uδ ⇀ ū weakly in H1.
Since ΔRδRδuδ = σ(Rδv)−1 ((m + m0)uδ − f) is also bounded in H, hence
RδRδuδ is bounded in H3 by elliptic regularity, RδRδuδ → ū in H1, which in
turn gives ū ∈ H3 and RδΔRδuδ ⇀ Δu weakly in H1.

Since H2 ↪→ C0 for d = 2, 3 and σ(Rδv) → σ(v) uniformly, taking L2

scalar product of the equation for uδ with some g ∈ L2, as δ → 0 we get
〈(m + m0)ū − Aū, g〉L2 = 〈f, g〉L2 , which in turn gives (m + m0)ū − Aū = f
because g is arbitrary. By injectivity, ū = u is independent of the chosen
subsequence and so far we get uδ ⇀ u weakly in H and the proof is complete
once we show that ‖uδ‖ → ‖u‖ as δ → 0. In order to conclude, we argue as in
part (2) above and and we write,

(m0 + m)‖uδ‖2 +
∫

σ(Rδv)|ΔRδuδ|2 dx = 〈f, uδ〉

+
∫

σ(Rδv)uδRδΔRδu dx −
∫

ΔRδuδ

(
Id − δΔ

)
[σ(Rδv), Rδ] ΔRδuδ dx.
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Since
∥
∥(Id − δΔ

)
[σ(Rδv), Rδ]

∥
∥

L2
0→L2 = o(1) as δ → 0, the previous conver-

gence properties yields,

lim
δ→0

[
(m0 + m)‖uδ‖2 +

∫
σ(Rδv)|ΔRδuδ|2 dx

]
= 〈f, uδ〉 +

∫
σ(v)uΔu dx

= (m0 + m)‖u‖2 +
∫

σ(v)|Δu|2 dx.

On the other hand, by L2-weak lower semicontinuity,

lim
δ→0

(m0 + m)‖uδ‖2 +

∫
σ(v)|Δu|2 dx ≤ lim

δ→0
(m0 + m)‖uδ‖2

+ lim
δ→0

∫
σ(Rδv)|ΔRδuδ|2 dx ≤ lim

δ→0

[
(m0 + m)‖uδ‖2 +

∫
σ(Rδv)|ΔRδuδ|2 dx

]
,

hence limδ→0 ‖uδ‖2 ≤ ‖u‖2 and therefore ‖uδ‖ → ‖u‖ as δ → 0 as claimed. �
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