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Abstract. The chemotaxis system

{
ut = Δu − χ∇ · (u

v
∇v
)
,

vt = Δv − v + u,

is considered in a bounded domain Ω ⊂ R
n with smooth boundary, where

χ > 0. An apparently novel type of generalized solution framework is
introduced within which an extension of previously known ranges for the
key parameter χ with regard to global solvability is achieved. In particu-
lar, it is shown that under the hypothesis that

χ <

⎧⎨
⎩

∞ if n = 2,√
8 if n = 3,
n

n−2
if n ≥ 4,

for all initial data satisfying suitable assumptions on regularity and posi-
tivity, an associated no-flux initial-boundary value problem admits a glob-
ally defined generalized solution. This solution inter alia has the property
that

u ∈ L1
loc(Ω × [0, ∞)).
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1. Introduction

We consider the Keller–Segel system with logarithmic sensitivity, as given by
the initial-boundary value problem⎧⎪⎨

⎪⎩
ut = Δu − χ∇ ·

(
u
v ∇v
)
, x ∈ Ω, t > 0,

∂u
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

coupled to the parabolic problem⎧⎪⎨
⎪⎩

vt = Δv − v + u, x ∈ Ω, t > 0,
∂v
∂ν = 0, x ∈ ∂Ω, t > 0,

v(x, 0) = v0(x), x ∈ Ω,

(1.2)

where Ω is a bounded domain in R
n, n ≥ 2, with smooth boundary, χ is a pos-

itive parameter and the given initial data u0 and v0 satisfy suitable regularity
and positivity assumptions.

This system can be viewed as a prototypical parabolic model for self-enhanced
chemotactic migration processes in which cross-diffusion occurs in accordance
with the Weber–Fechner law of stimulus perception [9,15], and accordingly a
considerable literature is concerned with its mathematical analysis. However,
up to now it seems yet unclear to which extent the particular mechanism of
taxis inhibition at large signal densities in (1.1) is sufficient to prevent phe-
nomena of blow-up, known as the probably most striking qualitative feature
of the classical Keller–Segel system: Indeed, in its fully parabolic version, as
determined by the choice τ := 1 in{

ut = Δu − χ∇ · (u∇v),
τvt = Δv − v + u,

(1.3)

the latter admits solutions blowing up in finite time for any choice of χ > 0
whenever n ≥ 2 [8,22], and in the simplified parabolic–elliptic case obtained
on choosing τ := 0 it is even known that some radial solutions to an associated
Cauchy problem in the whole plane collapse into a persistent Dirac-type singu-
larity in the sense that a globally defined measure-valued solution exists which
has a singular part beyond some finite time and asymptotically approaches a
Dirac measure (cf. e.g. [19] or also [12]).

As opposed to this, the literature has identified various circumstances under
which phenomena of this type are ruled out in (1.1)–(1.2): For instance, when

χ < χ0(n) with some χ0(2) > 1.015 and χ0(n) :=
√

2
n for n ≥ 3, global

bounded classical solutions exist for all reasonably regular positive initial data
[2,4,11,13,21,24]; in the corresponding parabolic–elliptic analogue, the same
conclusion holds with χ0(2) = ∞ [5] and with χ0(n) := 2

n−2 when n ≥ 3 and
the spatial setting is radially symmetric ([14], cf. also [6] for a related result
addressing a variant with its second equation being τvt = Δv −v +u for small
τ > 0), whereas it is known that some exploding solutions exist if n ≥ 3 and
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χ > 2n
n−2 [14]. As for larger values of χ in the fully parabolic problem (1.1)–

(1.2), in some cases at least certain global generalized solutions can be found
which satisfy

u ∈ L1
loc(Ω × [0,∞)) (1.4)

and thereby indicate the absence of strong singularity formation of the flavor
described above. Such constructions are possible in the context of natural weak
solution concepts if

χ <

√
n + 2
3n − 4

(1.5)

[21] and within a slightly more generalized framework if merely

χ <

√
n

n − 2
(1.6)

but in addition the solutions are supposed to be radially symmetric [17]. To
the best of our knowledge, however, the question how far (1.5) is optimal with
respect to the existence of not necessarily radial solutions fulfilling (1.4) is yet
unsolved; in particular, it appears to be unknown whether in nonradial planar
settings such solutions do exist also beyond the range χ <

√
2 determined by

(1.5).

Main results. The purpose of this work is to design a novel concept of gener-
alized solvability which is yet suitably strong so as to require (1.4), but which
on the other hand is mild enough so that it enables us to construct correspond-
ing global solutions without any symmetry hypotheses and under conditions
somewhat weaker than (1.5) and actually also than (1.6). More precisely, con-
sidering (1.1)–(1.2) under the assumptions that{

u0 ∈ C0(Ω) is such that u0 ≥ 0 in Ω and u0 �≡ 0, and that
v0 ∈ W 1,∞(Ω) satisfies v0 > 0 in Ω,

(1.7)

we can state our main results as follows.

Theorem 1.1. Let n ≥ 2 and Ω ⊂ R
n be a bounded domain with smooth

boundary, and let χ > 0 be such that

χ <

⎧⎪⎨
⎪⎩

∞ if n = 2,√
8 if n = 3,
n

n−2 if n ≥ 4.

(1.8)

Then for any u0 and v0 fulfilling (1.7), the problem (1.1)–(1.2) has at least
one global generalized solution (u, v) in the sense of Definition 2.4 below. In
particular, this solution satisfies (1.4), and moreover we have∫

Ω

u(·, t) =
∫

Ω

u0 for a.e. t > 0. (1.9)

Plan of the paper. A first substantial task will be related to the design
of a suitable family of approximate versions of (1.1)–(1.2) in which, on the
one hand, the crucial nonlinear interaction is regularized in such an effective
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manner that even global classical solutions exist, but which on the other hand
retains, as far as possible, a fundamental dissipative property of (1.1)–(1.2). As
is essentially well-known, namely, the functional

∫
Ω

upvq enjoys certain quasi-
entropy features along trajectories of (1.1)–(1.2), provided that the crucial
positive parameter p therein satisfies p < 1

χ2 and q > 0 is chosen adequately.
After introducing the regularization (3.1) of (1.1)–(1.2) appropriate for our
purposes, in Sect. 4 we will derive a rigorous counterpart of this entropy-like
property for the corresponding approximate solutions. The main challenge
now consists in taking appropriate advantage of accordingly implied a priori
estimates obtained in Sects. 5, 6 and 7, which inter alia seem far from sufficient
to warrant L1 bounds for the cross-diffusive flux χu

v ∇v especially in cases when
χ is large and hence p needs to be chosen small.

In the preparatory Sect. 3, we will therefore resort to a solution framework
involving certain sublinear powers of u rather than u itself, thus reminiscent
of the celebrated concept of renormalized solutions [3]. This idea has partially
been adapted to the present context in [17] already, but in the present work we
shall further weaken the requirements on solutions to a considerable extent:
Namely, for the crucial first sub-problem (1.1) to be solved we shall only require
that the coupled quantity upvq, with certain positive p and q, satisfies a para-
bolic inequality associated with (1.1)–(1.2) in a weak form, and that moreover∫
Ω

u(·, t) ≤ ∫
Ω

u0 for a.e. t > 0; a key observation, to be made in Lemma 2.5,
will reveal that if we furthermore assume the component v to fulfill (1.2) in a
natural weak sense, then we indeed obtain a concept consistent with that of
classical solvability in (1.1)–(1.2) for all suitably smooth functions.

As seen in Sect. 8 by means of appropriate compactness arguments, the
previously gained estimates in fact enable us to construct a global solution
within this framework.

2. A concept of generalized solvability

In specifying the subsequently pursued concept of weak solvability, we first
require certain products upvq to satisfy an inequality which can be viewed as
generalizing a classical supersolution property of this quantity with regard to
(1.1)–(1.2).

Definition 2.1. Let p ∈ (0, 1) and q ∈ (0, 1), and suppose that u and v are
measurable functions on Ω×(0,∞) such that u > 0 and v > 0 a.e. in Ω×(0,∞),
that

upvq ∈ L1
loc(Ω × [0,∞)) and up+1vq−1 ∈ L1

loc(Ω × [0,∞)), (2.1)

and that ∇u
p
2 and ∇v

q
2 belong to L1

loc(Ω × (0,∞)) and are such that

v
q
2 ∇u

p
2 ∈ L2

loc(Ω × [0,∞)) and u
p
2 ∇v

q
2 ∈ L2

loc(Ω × [0,∞)). (2.2)

Then (u, v) will be called a global weak (p, q)-supersolution of (1.1) if

−
∫ ∞

0

∫
Ω

upvqϕt −
∫

Ω

up
0v

q
0ϕ(·, 0)
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≥ 4(1 − p)q − 4q2 − p(1 − p)2χ2

pq(pχ + 1 − q)

∫ ∞

0

∫
Ω

vq|∇u
p
2 |2ϕ

+
4(pχ + 1 − q)

q

∫ ∞

0

∫
Ω

∣∣∣u p
2 ∇v

q
2 − (1 − p)χ + 2q

2(pχ + 1 − q)
v

q
2 ∇u

p
2

∣∣∣2ϕ
− 2pχ

q

∫ ∞

0

∫
Ω

u
p
2 vq∇u

p
2 · ∇ϕ

+
(
1 − pχ

q

)∫ ∞

0

∫
Ω

upvqΔϕ

− q

∫ ∞

0

∫
Ω

upvqϕ + q

∫ ∞

0

∫
Ω

up+1vq−1ϕ (2.3)

for all nonnegative ϕ ∈ C∞
0 (Ω × [0,∞)) such that ∂ϕ

∂ν = 0 on ∂Ω × (0,∞) and
if moreover

upvq > 0 a.e. on ∂Ω × (0,∞). (2.4)

Remark 2.2. (i) Observing that (2.1) in particular ensures that u
p
2 v

q
2 ∈

L2
loc(Ω × [0,∞)), and that hence (2.1) and (2.2) warrant that

u
p
2 vq∇u

p
2 =
(
u

p
2 v

q
2

)
·
(
v

q
2 ∇u

p
2

)
∈ L1

loc(Ω × [0,∞))

and similarly upv
q
2 ∇v

q
2 ∈ L1

loc(Ω×[0,∞)), it follows that under the above
requirements all integrals in (2.3) are indeed well-defined.

(ii) According to (2.1) and (2.2), for a.e. t > 0, u
p
2 (·, t)v q

2 (·, t) ∈ W 1,2(Ω) so
that u

p
2 v

q
2 (·, t)∣∣

∂Ω
∈ L2(∂Ω) exists in the sense of traces, giving meaning

to the positivity requirement in (2.4).

Apart from that, we will require the second problem (1.2) to be satisfied in
the following rather natural weak sense.

Definition 2.3. A pair (u, v) of functions{
u ∈ L1

loc(Ω × [0,∞)),
v ∈ L1

loc([0,∞);W 1,1(Ω))
(2.5)

will be named a global weak solution of (1.2) if

−
∫ ∞

0

∫
Ω

vϕt −
∫

Ω

v0ϕ(·, 0) = −
∫ ∞

0

∫
Ω

∇v · ∇ϕ −
∫ ∞

0

∫
Ω

vϕ +
∫ ∞

0

∫
Ω

uϕ

(2.6)

for all ϕ ∈ C∞
0 (Ω × [0,∞)).

Following an approach already pursued in [23] in a considerably less involved
related context, in order to complete our solution concept we will complement
the above two requirements by merely postulating an upper bound for the
mass functional

∫
Ω

u in terms of
∫
Ω

u0:

Definition 2.4. A couple of nonnegative measurable functions u and v defined
on Ω × (0,∞) will be said to be a global generalized solution of (1.1)–(1.2) if
(u, v) is a global weak solution of (1.2) according to Definition 2.3, if there exist



49 Page 6 of 33 J. Lankeit and M. Winkler NoDEA

p ∈ (0, 1) and q ∈ (0, 1) such that (u, v) is a global weak (p, q)-supersolution of
(1.1) in the sense of Definition 2.1, and if moreover∫

Ω

u(·, t) ≤
∫

Ω

u0 for a.e. t > 0. (2.7)

This is indeed consistent with the concept of classical solvability in the follow-
ing sense.

Lemma 2.5. Let χ > 0, and suppose that (u, v) ∈ (C0(Ω × [0,∞)) ∩ C2,1(Ω ×
(0,∞)))2 is such that (u, v) is a global generalized solution of (1.1)–(1.2) in
the sense of Definition 2.4. Then (u, v) satisfies (1.1)–(1.2) classically in Ω ×
(0,∞).

Proof. By means of standard arguments relying on the assumed regularity
properties of v, it can easily be verified that v solves (1.2) classically. According
to the maximum principle, v hence is strictly positive in Ω × [0,∞) and vq−1

is uniformly bounded in every set Ω × [0, T ) for T ∈ (0,∞). Positivity of v
ensures that by (2.4) u > 0 on a dense subset of ∂Ω × (0,∞) which moreover
is open in ∂Ω × (0,∞) by continuity of u.

For arbitrary ψ ∈ C∞(Ω) with ψ ≥ 0 and ∂ψ
∂ν

∣∣
∂Ω

= 0, testing (2.3) by
ϕ(x, t) := ψ(x)(1 − 1

ε t)+, ε ∈ (0, 1), which is permissible by Weierstrass’ theo-
rem, and invoking Lebesgue’s dominated convergence theorem and continuity
of t �→ ∫

Ω
up(·, t)vq(·, t) at t = 0 in taking ε ↘ 0 we readily achieve

∫
Ω

up(·, 0)vq(·, 0)ψ ≥
∫

Ω

up
0v

q
0ψ for all ψ ∈ C∞(Ω), ψ ≥ 0,

∂ψ

∂ν

∣∣
∂Ω

= 0,

showing that up(·, 0)vq(·, 0) ≥ up
0v

q
0 throughout Ω. Because of v(·, 0) = v0 > 0

and the monotonicity of (·) 1
p we obtain u(·, 0) ≥ u0 in Ω and from continuity

of u and (2.7) we can conclude that u(·, 0) = u0 in Ω.
In the first two integrals on the right of (2.3) straightforward computa-

tions yield

4(1 − p)

p
vq|∇u

p
2 |2 −

(4(1 − p)χ

q
+ 8
)
u

p
2 v

q
2 ∇u

p
2 ∇v

q
2

+
4(pχ + 1 − q)

q
up|∇v

q
2 |2 =

4(pχ + 1 − q)

q
·

·
{

up|∇v
q
2 |2 − (1 − p)χ + 2q

pχ + 1 − q
u

p
2 v

q
2 ∇u

p
2 ∇v

q
2 +

(χ − pχ + 2q)2

4(pχ + 1 − q)2
vq|∇u

p
2 |2
}

+

{
4(1 − p)

p
− ((1 − p)χ + 2q)2

q(pχ + 1 − q)

}
vq|∇u

p
2 |2

=
4(pχ + 1 − q)

q

∣∣∣∣u p
2 ∇v

q
2 − (1 − p)χ + 2q

2(pχ + 1 − q)
v

q
2 ∇u

p
2

∣∣∣∣
2

+
4(1 − p)q − 4q2 − p(1 − p)2χ2

pq(pχ + 1 − q)
vq|∇u

p
2 |2, (2.8)

since
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4(1 − p)
p

− ((1 − p)χ + 2q)2

q(pχ + 1 − q)
=

4(1 − p)q(pχ + 1 − q) − −((1 − p)χ + 2q)2p
pq(pχ + 1 − q)

=
4(1 − p)q − 4q2 − p(1 − p)2χ2

pq(pχ + 1 − q)
.

In preparation of the following calculations we also note that for each positive
function w ∈ C2(Ω) and any r > 0, we have the pointwise identities

w
r
2 Δw

r
2 = w

r
2 ∇ ·
(r

2
w

r−2
2 ∇w

)
= w

r
2

(r(r − 2)
4

w
r−4
2 |∇w|2 +

r

2
w

r−2
2 Δw

)

=
r(r − 2)

4
wr−2|∇w|2 +

r

2
wr−1Δw =

r − 2
r

|∇w
r
2 |2 +

r

2
wr−1Δw

(2.9)

and

Δwr = ∇ · (rwr−1∇w) = r(r − 1)wr−2|∇w|2 + rwr−1Δw

=
4(r − 1)

r
|∇w

r
2 |2 + rwr−1Δw (2.10)

The positivity requirement on w in (2.9) and (2.10) prompts us to perform
the following calculations only for test functions ϕ compactly supported in
{u > 0} := {(x, t) ∈ Ω × [0,∞) : u(x, t) > 0}, ensuring strict positivity of u
and boundedness of up−1 on suppϕ.

Accordingly, for all nonnegative ϕ ∈ C∞
0 (Ω×(0,∞)) with suppϕ ⊂ {u >

0} and ∂ϕ
∂ν

∣∣
∂Ω×(0,∞)

= 0, by (2.9) applied to u and p, an integration by parts
in the integral in (2.3) containing ∇ϕ yields

−2pχ

q

∫ ∞

0

∫
Ω

u
p
2 vq∇u

p
2 ·∇ϕ =

2pχ

q

∫ ∞

0

∫
Ω

vq|∇u
p
2 |2ϕ

+
4pχ

q

∫ ∞

0

∫
Ω

u
p
2 v

q
2 ∇v

q
2 ·∇u

p
2 ϕ

+
2pχ

q

∫ ∞

0

∫
Ω

u
p
2 vqΔu

p
2 ϕ − 2pχ

q

∫ ∞

0

∫
∂Ω

u
p
2 vq ∂u

p
2

∂ν
ϕ

=
2pχ

q

∫ ∞

0

∫
Ω

vq|∇u
p
2 |2ϕ +

4pχ

q

∫ ∞

0

∫
Ω

u
p
2 v

q
2 ∇v

q
2 ·∇u

p
2 ϕ

+
2(p − 2)χ

q

∫ ∞

0

∫
Ω

vq|∇u
p
2 |2ϕ

+
p2χ

q

∫ ∞

0

∫
Ω

up−1vqΔuϕ − 2pχ

q

∫ ∞

0

∫
∂Ω

u
p
2 vq ∂u

p
2

∂ν
ϕ, (2.11)

whereas integrating by parts twice in the integral containing Δϕ in (2.3), by
(2.10) applied to u, p and v, q, respectively, leads to
(
1 − pχ

q

)∫ ∞

0

∫
Ω

upvqΔϕ =
(
1 − pχ

q

)∫ ∞

0

∫
Ω

vqΔ(up)ϕ

+
(
1 − pχ

q

)∫ ∞

0

∫
Ω

upΔ(vq)ϕ
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+ 2
(
1 − pχ

q

)∫ ∞

0

∫
Ω

2u
p
2 ∇u

p
2 ·2v

q
2 ∇v

q
2 ϕ

−
(
1 − pχ

q

)∫ ∞

0

∫
∂Ω

2u
p
2
∂u

p
2

∂ν
vqϕ − 2

(
1 − pχ

q

)∫ ∞

0

∫
∂Ω

upv
q
2
∂v

q
2

∂ν
ϕ

=
4(p − 1)

p

(
1 − pχ

q

)∫ ∞

0

∫
Ω

vq|∇u
p
2 |2ϕ

+
4(q − 1)

q

(
1 − pχ

q

)∫ ∞

0

∫
Ω

up|∇v
q
2 |2ϕ

+
(
1 − pχ

q

)
p

∫ ∞

0

∫
Ω

vqup−1Δuϕ +
(
1 − pχ

q

)
q

∫ ∞

0

∫
Ω

upvq−1Δvϕ

+ 8
(
1 − pχ

q

)∫ ∞

0

∫
Ω

u
p
2 v

q
2 ∇u

p
2 ·∇v

q
2 ϕ

−
(
1 − pχ

q

)∫ ∞

0

∫
∂Ω

2u
p
2
∂u

p
2

∂ν
vqϕ (2.12)

for any such ϕ, for we already know that ∂v
∂ν = 0 on ∂Ω×(0,∞). If we combine

(2.3) with (2.8), (2.11) and (2.12), we obtain∫ ∞

0

∫
Ω

(upvq)tϕ ≥
{

4(1 − p)
p

+
2pχ

q
+

4(p − 1)
p

(
1 − pχ

q

)
+

2(p − 2)χ
q

}
∫ ∞

0

∫
Ω

vq|∇u
p
2 |2ϕ

+
{

4(pχ + 1 − q)
q

+
4(q − 1)

q

(
1 − pχ

q

)}∫ ∞

0

∫
Ω

up|∇v
q
2 |2ϕ

+
{

−4(1 − p)χ
q

− 8 +
4pχ

q
+ 8 − 8pχ

q

}∫ ∞

0

∫
Ω

u
p
2 v

q
2 ∇u

p
2 ·∇v

q
2 ϕ

+
{

p2χ

q
+
(
1 − pχ

q

)
p

}∫ ∞

0

∫
Ω

vqup−1Δuϕ

+
(
1− pχ

q

)
q

∫ ∞

0

∫
Ω

upvq−1Δvϕ−q

∫ ∞

0

∫
Ω

upvqϕ + q

∫ ∞

0

∫
Ω

up+1vq−1ϕ

− 2pχ

q

∫ ∞

0

∫
∂Ω

u
p
2 vq ∂u

p
2

∂ν
ϕ −
(

1 − pχ

q

)∫ ∞

0

∫
∂Ω

2u
p
2
∂u

p
2

∂ν
vqϕ

=
∫ ∞

0

∫
Ω

{
4pχ

q2
up|∇v

q
2 |2 − 4χ

q
u

p
2 v

q
2 ∇u

p
2 ·∇v

q
2

+ pvqup−1Δu − pχupvq−1Δv
}

ϕ

+ q

∫ ∞

0

∫
Ω

upvq−1 {Δv − v + u} ϕ

− 2
∫ ∞

0

∫
∂Ω

u
p
2
∂u

p
2

∂ν
vqϕ (2.13)

for every ϕ ∈ C∞
0 (Ω × (0,∞)) satisfying ϕ ≥ 0 throughout Ω × (0,∞) and

∂ϕ
∂ν

∣∣
∂Ω×(0,∞)

= 0 as well as supp ϕ ⊂ {u > 0}.
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The observations that

pup−1vq
(
Δu − χ∇ · (

u

v
∇v)
)

= pup−1vqΔu − pχ up−1vq−1∇u·∇v

+ pχ upvq−2|∇v|2 − pχupvq−1Δv

= pup−1vqΔu − 4χ

q
u

p
2 v

q
2 ∇u

p
2 ·∇v

q
2

+
4pχ

q2
up|∇v

q
2 |2 − pχ upvq−1Δv,

and that v solves (1.2), now turn (2.13) into

p

∫ ∞

0

∫
Ω

up−1vqutϕ ≥ p

∫ ∞

0

∫
Ω

up−1vq
{

Δu − χ∇ ·
(u

v
∇v
)}

ϕ

− p

∫ ∞

0

∫
∂Ω

up−1vq ∂u

∂ν
ϕ (2.14)

for all nonnegative ϕ ∈ C∞
0 (Ω × (0,∞)) with suppϕ ⊂ {u > 0} and

∂ϕ
∂ν

∣∣
∂Ω×(0,∞)

= 0.
Specializing this to nonnegative ϕ ∈ C∞

0 (Ω × (0,∞) ∩ {u > 0}) by a Du
Bois-Reymond lemma type argument we conclude

ut ≥ Δu − χ∇ ·
(u

v
∇v
)

in {u > 0}. (2.15)

Density of {u > 0} in Ω × (0,∞), obtained from the assumption that u > 0
a.e., and continuity show that (2.15) actually holds on all of Ω × (0,∞).

We pick t0 > 0 and some nonnegative ψ ∈ C1(Ω) with ∂ψ
∂ν

∣∣
∂Ω

= 0 such
that suppψ ⊂ {u(·, t0) > 0} := {x ∈ Ω : u(x, t0) > 0}. Then by continuity
of u we can find some τ > 0 such that suppψ ⊂ ∩t∈(t0−τ,t0+τ){u(·, t) > 0}.
Applying (2.14) to functions of the form ϕ(x, t) = ζ(t)ψ(x), ζ ∈ C∞

0 ((t0 −
τ, t0 + τ)) by once more invoking a Weierstrass type density argument and the
Du Bois-Reymond lemma, we see that∫

Ω

up−1vqut(·, t)ψ ≥
∫

Ω

up−1vq
{

Δu − χ∇ ·
(u

v
∇v
)}

(·, t)ψ

−
∫

∂Ω

up−1vq ∂u

∂ν
(·, t)ψ

for every nonnegative ψ ∈ C1(Ω) such that ∂ψ
∂ν

∣∣
∂Ω

= 0, suppψ ⊂ {u(·, t0) > 0}
and for almost every t ∈ (t0 − τ, t0 + τ) – and due to continuity especially for
t = t0. In particular inserting ψε(x) := (1 − 1

εdist (x, ∂Ω))+ · ψ and Lebesgue’s
theorem show that for every t > 0, ψ ∈ C1(Ω), ψ ≥ 0 with ∂ψ

∂ν

∣∣
∂Ω

= 0 and
suppψ ∩ ∂Ω ⊂ {u(·, t) > 0}, ∫

∂Ω

up−1vq ∂u

∂ν
ψ ≥ 0. (2.16)

Since the integral only depends on ψ
∣∣
∂Ω

and not on the values of ψ inside Ω,
it can be seen that (2.16) actually holds for any t > 0 and any nonnegative
ψ ∈ C0(Ω) such that suppψ ∩ ∂Ω ⊂ {u(·, t) > 0}.
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If ∂u
∂ν (x0, t0) < 0 for some (x0, t0) ∈ ∂Ω × (0,∞) with u(x0, t0) > 0, we

pick ψ1 ∈ C0(∂Ω) such that ψ1(x0) > 0, ψ1 ≥ 0, and suppψ1 ⊂ {x ∈ ∂Ω :
∂u
∂ν (x, t0) < 0, u(x, t0) > 0} =: M . Moreover, we let d := dist (suppψ1, ∂Ω\M)
(or d = 1 if ∂Ω \ M = ∅) and let ψ2 be the solution to −Δψ2 = 0 in
Ω, ψ2 = −u1−p(·, t0)v−q(·, t0)ψ1

∂u
∂ν on ∂Ω. Then, thanks to the choice of

suppψ1, ψ2 is nonnegative on the boundary and hence by the maximum prin-
ciple in Ω. Defining ψ3(x) := ψ2(x)(1 − 2

ddist (x,M))+ we obtain a nonneg-
ative continuous function on Ω whose support intersects the boundary only
in {x ∈ ∂Ω : u(x, t) > 0} and which hence is a permissible test function in
(2.16). We conclude that 0 ≤ ∫

∂Ω
up−1vq ∂u

∂ν ψ3 = − ∫
∂Ω

|∂u
∂ν |2ψ1 and hence in

particular ∂u
∂ν (x0, t0) = 0, which is a contradiction. We conclude that ∂u

∂ν ≥ 0
on ∂Ω × (0,∞) ∩ {u > 0} and hence, by continuity of ∂u

∂ν and density of this
set that ∂u

∂ν ≥ 0 on ∂Ω × (0,∞).
Finally integrating (2.15) over Ω × (0, t) and taking (2.7) into considera-

tion, we see that∫
Ω

u0 ≥
∫

Ω

u(·, t) ≥
∫

Ω

u0 +
∫ t

0

∫
Ω

Δu − χ

∫ t

0

∫
Ω

∇ ·
(u

v
∇v
)

=
∫

Ω

u0 +
∫ t

0

∫
∂Ω

∂u

∂ν

by Gauss’ theorem and ∂v
∂ν = 0, which firstly shows that ∂u

∂ν = 0 on ∂Ω×(0,∞)
and secondly that (2.15) actually is an equality. �

3. Global smooth solutions to approximate problems

Now in order to approximate solutions by means of a convenient regularization
of (1.1)–(1.2), for ε ∈ (0, 1) we consider⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uεt = Δuε − χ∇ ·
(

uε

(1+εuε)vε
∇vε

)
, x ∈ Ω, t > 0,

vεt = Δvε − vε + uε, x ∈ Ω, t > 0,
∂uε

∂ν = ∂vε

∂ν = 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω,

(3.1)

and then first obtain the following.

Lemma 3.1. For all ε ∈ (0, 1), the problem (3.1) admits a global classical
solution (uε, vε) ∈ (C0(Ω × [0,∞)) ∩ C2,1(Ω × (0,∞)))2 for which uε > 0 in
Ω × (0,∞) and vε > 0 in Ω × [0,∞).

Proof. The local existence of a solution can be obtained in a standard manner
(cf. [1, Lemma 3.1] for a related general setting). Boundedness of the sensitivity
term χ uε

(1+εuε)vε
, due to a strict positivity property of vε on Ω × (0, T ) – to

be made more precise in Lemma 3.3 below – allows for an iterative procedure
converting boundedness information of ‖∇vε(·, t)‖Lq(Ω) for some q > 1 into
bounds for ‖uε(·, t)‖Lp(Ω) for p ∈ (1, nq

(n−q)+
) that in turn yield better estimates

for ∇vε through application of semigroup estimates in the first and second
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equation, respectively. Finally, this serves to provide a uniform bound on uε

on Ω × (0, T ), in light of the extensibility criterion [1, (3.3)] thus ensuring
global existence of the solution. Positivity of uε follows from a classical strong
maximum principle. �

These approximate solutions clearly preserve mass:

Lemma 3.2. Let ε ∈ (0, 1). Then∫
Ω

uε(·, t) =
∫

Ω

u0 for all t > 0. (3.2)

Proof. This directly results on integrating the first equation in (3.1). �

Moreover, the assumed positivity of v0 enables us to control vε from below at
least locally in time:

Lemma 3.3. For each ε ∈ (0, 1), we have

vε(x, t) ≥
(

inf
x∈Ω

v0(x)
)

· e−t for all x ∈ Ω and t > 0.

Proof. As uε is nonnegative, this is a straightforward consequence of a com-
parison argument applied to the second equation in (3.1). �

By means of well-known smoothing estimates of the heat semigroup, the mass
conservation property (3.2) readily implies some basic regularity features of
the second component.

Lemma 3.4. Let r ≥ 1 and s ≥ 1 be such that r < n
n−2 and s < n

n−1 . Then
there exists C > 0 such that for each ε ∈ (0, 1),∫

Ω

vr
ε(·, t) ≤ C for all t > 0 (3.3)

and ∫
Ω

|∇vε(·, t)|s ≤ C for all t > 0. (3.4)

Proof. The representation of vε as

vε(·, t) = et(Δ−1)v0 +
∫ t

0

e(t−s)(Δ−1)uε(·, s)ds

makes it possible to apply well-known estimates for the Neumann heat-
semigroup (cf. [20, Lemma 1.3]), which provide positive constants c1, c2, c3

and c4 such that

‖vε(·, t)‖Lr(Ω)

≤ c1 ‖v0‖Lr(Ω) + c2

∫ t

0

(1 + (t − s)− n
2 (1− 1

r ))e−(t−s)
∥∥∥uε(·, s)

∥∥∥
L1(Ω)

ds

and



49 Page 12 of 33 J. Lankeit and M. Winkler NoDEA

‖∇vε(·, t)‖Ls(Ω)

≤ c3 ‖v0‖W 1,∞(Ω) + c4

∫ t

0

(1 + (t − s)− 1
2 − n

2 (1− 1
s ))e−(t−s)

∥∥∥uε(·, s)
∥∥∥

L1(Ω)
ds

for all t > 0 and all ε ∈ (0, 1), so that Lemma 3.2 and finiteness of
∫∞
0

(1 +
τ− n

2 (1− 1
r ))e−τdτ and

∫∞
0

(1 + τ− 1
2 − n

2 (1− 1
s ))e−τdτ due to the conditions on r

and s prove the lemma. �

4. A fundamental identity and first consequences thereof

Let us next formulate an identity which apparently reflects a fundamental
structural propety of (1.1)–(1.2), as already used in a slightly modified form
and for more restricted choices of χ in [21]. In Lemma 4.3 applied to ϕ ≡ 1, this
will serve as a source for some essential a priori estimates for (3.1), whereas
in Lemma 8.8 we will make use of the freedom to choose widely arbitrary
test functions here in order to verify (2.3) for the limit couple (u, v) to be
constructed in Lemma 8.1.

Lemma 4.1. Let p ∈ (0, 1) and q ∈ (0, 1), and assume that T > 0 and that
ϕ ∈ C∞(Ω × [0, T ]) is such that ∂ϕ

∂ν = 0 on ∂Ω × (0, T ). Then

−
∫ T

0

∫
Ω

up
εv

q
εϕt +

∫
Ω

up
ε(·, T )vε

q(·, T )ϕ(·, T ) −
∫

Ω

up
0v

q
0ϕ(·, 0)

=
∫ T

0

∫
Ω

4(1 − p)q − 4q2 − p (1−p)2χ2

(1+εuε)2

pq( pχ
1+εuε

+ 1 − q)
vq

ε |∇u
p
2
ε |2ϕ

+
∫ T

0

∫
Ω

4
q

(
pχ

1 + εuε
+ 1 − q

) ∣∣∣∣u
p
2
ε ∇v

q
2
ε −

(1−p)χ
1+εuε

+ 2q

2( pχ
1+εuε

+ 1 − q)
v

q
2
ε ∇u

p
2
ε

∣∣∣∣
2

ϕ

+
∫ T

0

∫
Ω

2[(1 − p)εuε−p]χ
q(1 + εuε)

2 u
p
2
ε vq

ε∇u
p
2
ε · ∇ϕ

+
∫ T

0

∫
Ω

(
1 − pχ

q(1 + εuε)

)
up

εv
q
εΔϕ

−q

∫ T

0

∫
Ω

up
εv

q
εϕ + q

∫ T

0

∫
Ω

up+1
ε vq−1

ε ϕ for all ε ∈ (0, 1). (4.1)

Proof. Using (3.1), we compute∫
Ω

∂

∂t
(up

εv
q
ε) · ϕ = −p

∫
Ω

∇
(
up−1

ε vq
εϕ
)

·
(
∇uε − χ

uε

(1 + εuε)vε
∇vε

)

−q

∫
Ω

∇
(
up

εv
q−1
ε ϕ

)
· ∇vε − q

∫
Ω

up
εv

q
εϕ + q

∫
Ω

up+1
ε vq−1

ε ϕ

= p(1 − p)
∫

Ω

up−2
ε |∇uε|2vq

εϕ

−p(1 − p)χ
∫

Ω

up−1
ε

1 + εuε
vq−1

ε (∇uε · ∇vε)ϕ
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− 2pq

∫
Ω

up−1
ε vq−1

ε (∇uε · ∇vε)ϕ

+ pqχ

∫
Ω

up
ε

1 + εuε
vq−2

ε |∇vε|2ϕ + q(1 − q)
∫

Ω

up
εv

q−2
ε |∇vε|2ϕ

− p

∫
Ω

up−1
ε vq

ε∇uε · ∇ϕ + pχ

∫
Ω

up
ε

1 + εuε
vq−1

ε ∇vε · ∇ϕ

− q

∫
Ω

up
εv

q−1
ε ∇vε · ∇ϕ

− q

∫
Ω

up
εv

q
εϕ + q

∫
Ω

up+1
ε vq−1

ε ϕ

=
4(1 − p)

p

∫
Ω

vq
ε |∇u

p
2
ε |2ϕ

−4(1 − p)χ
q

∫
Ω

u
p
2
ε

1 + εuε
v

q
2
ε (∇u

p
2
ε · ∇v

q
2
ε )ϕ

−8
∫

Ω

u
p
2
ε v

q
2
ε (∇u

p
2
ε · ∇v

q
2
ε )ϕ

+
4pχ

q

∫
Ω

up
ε

1 + εuε
|∇v

q
2
ε |2ϕ +

4(1 − q)
q

∫
Ω

up
ε |∇v

q
2
ε |2ϕ

−2
∫

Ω

u
p
2
ε vq

ε∇u
p
2
ε · ∇ϕ

+
pχ

q

∫
Ω

up
ε

1 + εuε
∇vq

ε · ∇ϕ −
∫

Ω

up
ε∇vq

ε · ∇ϕ

−q

∫
Ω

up
εv

q
εϕ + q

∫
Ω

up+1
ε vq−1

ε ϕ for all t > 0. (4.2)

Here a straightforward rearrangement in the first five integrands on the right
along the lines of (2.8) shows that

4(1 − p)
p

vq
ε |∇u

p
2
ε |2 − 4(1 − p)χ

q

u
p
2
ε

1 + εuε
v

q
2
ε

(
∇u

p
2
ε · ∇v

q
2
ε

)

− 8u
p
2
ε v

q
2
ε

(
∇u

p
2
ε · ∇v

q
2
ε

)

+
4pχ

q

up
ε

1 + εuε
|∇v

q
2
ε |2 +

4(1 − q)
q

up
ε |∇v

q
2
ε |2

=
4
q

(
pχ

1 + εuε
+ 1 − q

)(
up

ε |∇v
q
2
ε |2 −

(1−p)χ
1+εuε

+ 2q
pχ

1+εuε
+ 1 − q

u
p
2
ε v

q
2
ε ∇u

p
2
ε · ∇v

q
2
ε

+
1
4

(
(1−p)χ
1+εuε

+ 2q
pχ

1+εuε
+ 1 − q

)2

vq
ε |∇u

p
2
ε |2
⎞
⎠

+
4(1 − p)q − 4q2 − p (1−p)2χ2

(1+εuε)2

pq( pχ
1+εuε

+ 1 − q)
vq

ε |∇u
p
2
ε |2 in Ω × (0,∞). (4.3)
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Moreover, in two of the three summands in (4.2) which contain ∇ϕ we once
more integrate by parts to see that

−2

∫
Ω

u
p
2
ε vq

ε∇u
p
2
ε · ∇ϕ +

pχ

q

∫
Ω

up
ε

1 + εuε
∇vq

ε · ∇ϕ −
∫

Ω

up
ε∇vq

ε · ∇ϕ

= −2

∫
Ω

u
p
2
ε vq

ε∇u
p
2
ε · ∇ϕ − p2χ

q

∫
Ω

up−1
ε

1 + εuε
vq

ε∇uε · ∇ϕ

+
pχε

q

∫
Ω

up
ε

(1 + εuε)2
vq

ε∇uε · ∇ϕ − pχ

q

∫
Ω

up
ε

1 + εuε
vq

εΔϕ

+p

∫
Ω

up−1
ε vq

ε∇uε · ∇ϕ +

∫
Ω

up
εvq

εΔϕ

= −2

∫
Ω

u
p
2
ε vq

ε∇u
p
2
ε · ∇ϕ − 2pχ

q

∫
Ω

u
p
2
ε

1 + εuε
vq

ε∇u
p
2
ε · ∇ϕ

+
2χε

q

∫
Ω

u
p
2 +1
ε

(1 + εuε)2
vq

ε∇u
p
2
ε · ∇ϕ − pχ

q

∫
Ω

up
ε

1 + εuε
vq

εΔϕ

+2

∫
Ω

u
p
2
ε vq

ε∇u
p
2
ε · ∇ϕ +

∫
Ω

up
εvq

εΔϕ

=

∫
Ω

2[(1 − p)εuε − p]χ

q(1 + εuε)
2 u

p
2
ε vq

ε∇u
p
2
ε · ∇ϕ

+

∫
Ω

(
1 − pχ

q(1 + εuε)

)
up

εvq
εΔϕ in (0, T )

thanks to the assumption that ∂ϕ
∂ν

= 0 on ∂Ω× (0, T ). Combining this with (4.2) and
(4.3) establishes (4.1). �

An elementary but crucial observation now identifies a condition on the rela-
tionship between the exponents p and q which ensure positivity of the coeffi-
cient appearing in the first summand on the right-hand side in (4.1).

Lemma 4.2. Given χ > 0 and p ∈ (0, 1) such that p < 1
χ2 , let q+(p) ∈ (0, 1)

and q−(p) ∈ (0, q+(p)) be defined by

q±(p) :=
1 − p

2
·
(
1 ±
√

1 − pχ2
)
. (4.4)

Then for any choice of q ∈ (q−(p), q+(p)) and all ε ∈ (0, 1),

4(1 − p)q − 4q2 − p (1−p)2χ2

(1+εuε)2

pq( pχ
1+εuε

+ 1 − q)

≥ 4(1 − p)q − 4q2 − p(1 − p)2χ2

pq(pχ + 1 − q)
> 0 in Ω × (0,∞). (4.5)

Proof. We use that 1 + εuε ≥ 1 to firstly obtain

4(1 − p)q − 4q2 − p(1 − p)2χ2

(1 + εuε)2
≥ 4(1 − p)q − 4q2−p(1−p)2χ2 in Ω × (0,∞).

Since here our hypothesis q ∈ (q−(p), q+(p)) guarantees that

4(1 − p)q − 4q2 − p(1 − p)2χ2 = −4 ·
(
q − q+(p)

)
·
(
q − q−(p)

)
>0,
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we may once again estimate 1 + εuε ≥ 1 to infer that indeed both inequalities
in (4.5) hold. �

As a consequence, for p and q as in Lemma 4.2 we can readily derive the
following from Lemma 4.1 when combined with the pointwise lower estimate
for vε in Lemma 3.3.

Lemma 4.3. Let p ∈ (0, 1) be such that p < 1
χ2 , and let q ∈ (q−(p), q+(p))

with q±(p) taken from (4.4). Then for each T > 0 there exists C(p, q, T ) > 0
fulfilling ∫ T

0

∫
Ω

vq
ε |∇u

p
2
ε |2 ≤ C(p, q, T ) (4.6)

and ∫ T

0

∫
Ω

|∇u
p
2
ε |2 ≤ C(p, q, T ) (4.7)

as well as
∫ T

0

∫
Ω

4
q

(
pχ

1 + εuε
+ 1 − q

) ∣∣∣∣u
p
2
ε ∇v

q
2
ε −

(1−p)χ
1+εuε

+ 2q

2( pχ
1+εuε

+ 1 − q)
v

q
2
ε ∇u

p
2
ε

∣∣∣∣
2

≤ C(p, q, T ) (4.8)

and ∫ T

0

∫
Ω

up+1
ε vq−1

ε ≤ C(p, q, T ) (4.9)

for all ε ∈ (0, 1).

Proof. According to Lemma 4.2, our assumption q ∈ (q−(p), q+(p)) ensures
that with some c1 > 0 we have

4(1 − p)q − 4q2 − p (1−p)2χ2

(1+εuε)2

pq( pχ
1+εuε

+ 1 − q)
≥ c1

for all ε ∈ (0, 1), whence applying Lemma 4.1 to ϕ ≡ 1 shows that

c1

∫ T

0

∫
Ω

vq
ε |∇u

p
2
ε |2

+
∫ T

0

∫
Ω

4
q

(
pχ

1 + εuε
+ 1 − q

) ∣∣∣∣u
p
2
ε ∇v

q
2
ε −

(1−p)χ
1+εuε

+ 2q

2( pχ
1+εuε

+ 1 − q)
v

q
2
ε ∇u

p
2
ε

∣∣∣∣
2

ϕ

+q

∫ T

0

∫
Ω

up+1
ε vq−1

ε

≤
∫

Ω

up
ε(·, T )vq

ε(·, T ) −
∫

Ω

up
0v

q
0 + q

∫ T

0

∫
Ω

up
εv

q
ε for all ε ∈ (0, 1).

(4.10)
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Now by the Hölder inequality,∫
Ω

up
εv

q
ε ≤
{∫

Ω

uε

}p

·
{∫

Ω

v
q

1−p
ε

}1−p

for all t > 0,

so that since

q

1 − p
<

q+(p)
1 − p

=
1 +
√

1 − pχ2

2
< 1 <

n

n − 2
,

we may combine (3.2) with Lemma 3.4 to find c3 > 0 fulfilling∫
Ω

up
εv

q
ε ≤ c3 for all t > 0

whenever ε ∈ (0, 1). The estimates in (4.6), (4.8) and (4.9) therefore result from
(4.10), whereupon (4.7) is a consequence of (4.6) and the fact that Lemma 3.3
along with (1.7) says that given T > 0 we can find c2 > 0 such that

vε(x, t) ≥ c2 for all x ∈ Ω, t ∈ (0, T ) and ε ∈ (0, 1).

�

5. A further consequence: a bound for uε in Lr for some r > 1

Now in view of the desired integrability feature in (1.4), a crucial step in our
analysis will consist in deriving a spatio-temporal equi-integrability property
of uε. This will result from bounds therefor in some reflexive Lr spaces, to be
obtained by an interpolation between (4.9) and (3.3). The following statement
identifies the minimal possible choice of an integrability exponent arising in
the course of this argument (cf. (5.6) below), and will thereby form the core
of our requirement (1.8) on χ.

Lemma 5.1. Let χ > 0, and for p ∈ (0,min{1, 1
χ2 }) let q±(p) be as in (4.4).

Then

inf
p∈(0,1), p< 1

χ2

q∈(q−(p),q+(p))

1 − q

p
=

⎧⎪⎨
⎪⎩

1 if χ ≤ 1,

χ if χ ∈ (1, 2),

1 + χ2

4 if χ ≥ 2.

(5.1)

Proof. By an evident monotonicity property,

inf
p∈(0,1), p< 1

χ2

q∈(q−(p),q+(p))

1 − q

p
= inf

p∈(0,1), p< 1
χ2

1 − q+(p)
p

= inf
p∈(0,1), p< 1

χ2

1 − 1−p
2 (1 +

√
1 − pχ2)

p

= inf
p∈(0,1), p< 1

χ2

1 + p − (1 − p)
√

1 − pχ2)
2p

=: I(χ)

(5.2)
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for any χ > 0. Since (1 − p)
√

1 − pχ2 < 1 − p and thus 1+p−(1−p)
√

1−pχ2

2p > 1
for all p ∈ (0,min{1, 1

χ2 }), and since on the other hand for χ ≤ 1 we have

I(χ) ≤ lim inf
p↗1

1 + p − (1 − p)
√

1 − pχ2

2p
= 1,

this firstly implies that I(χ) = 1 for any such χ.
In the case χ > 1, having in mind the substitution ξ =

√
1 − pχ2 in (5.2), we

note that

ρ(ξ) :=
1 + 1−ξ2

χ2 − (1 − 1−ξ2

χ2 ) · ξ

2 · 1−ξ2

χ2

=
1
2

·
{ χ2

1 − ξ2
· (1 − ξ) + 1 + ξ

}

=
1
2

·
{ χ2

1 + ξ
+ 1 + ξ

}
, ξ ∈ [0, 1),

satisfies

ρ′(ξ) = − χ2

2(1 + ξ)2
+

1
2

for all ξ ∈ (0, 1),

so that ρ′ attains a zero at ξ = χ − 1 ∈ (0, 1) if and only if χ ∈ (1, 2), while
ρ′ ≤ 0 throughout (0, 1) if χ ≥ 2. Therefore, infξ∈[0,1) ρ(ξ) = ρ(χ − 1) = χ

if χ ∈ (1, 2), whereas infξ∈[0,1) ρ(ξ) = limξ↗1 ρ(ξ) = 1 + χ2

4 if χ ≥ 2. In
conjunction with (5.2), these observations verify (5.1). �

Now under the assumptions on χ from Theorem 1.1, the announced interpo-
lation argument indeed bears fruit of the desired flavour.

Lemma 5.2. Suppose that χ > 0 is such that (1.8) holds. Then there exists
r > 1 such that for any T > 0 one can find C(T ) > 0 with the property that∫ T

0

∫
Ω

ur
ε ≤ C(T ) for all ε ∈ (0, 1). (5.3)

Proof. As a consequence of Lemma 5.1, our assumption on χ warrants that
we can pick p ∈ (0,min{1, 1

χ2 }) and q ∈ (q−(p), q+(p)) such that

1 − q

p
<

n

n − 2
. (5.4)

Indeed, if n = 2 this is obvious, while if n ≥ 4 this is immediate from (5.1),
because then due to the fact that n

n−2 ≤ 2, the hypothesis (1.8) in particular
requires that χ < 2, so that in both cases χ ≤ 1 and χ > 1, (5.1) shows that
the assumption χ < n

n−2 implies that

inf
p∈(0,1), p< 1

χ2

q∈(q−(p),q+(p))

1 − q

p
= max{1, χ} <

n

n − 2
.
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If n = 3, in the case χ < 2 we similarly obtain that

inf
p∈(0,1), p< 1

χ2

q∈(q−(p),q+(p))

1 − q

p
= max{1, χ} < 2 < 3 =

n

n − 2
,

whereas when χ ≥ 2 we use our restriction χ <
√

8 to infer from (5.1) that

inf
p∈(0,1), p< 1

χ2

q∈(q−(p),q+(p))

1 − q

p
= 1 +

χ2

4
< 3

and that thus (5.4) can be achieved also in this case.

Henceforth keeping p and q fixed such that (5.4) holds, e.g. by means of a
continuity argument we can pick r > 1 sufficiently close to 1 such that still
p + 1 − r > 0 and

(1 − q)r
p + 1 − r

<
n

n − 2
. (5.5)

Then using Young’s inequality, for T > 0 we can estimate∫ T

0

∫
Ω

ur
ε =
∫ T

0

∫
Ω

(
up+1

ε vq−1
ε

) r
p+1 · v

(1−q)r
p+1

ε

≤
∫ T

0

∫
Ω

up+1
ε vq−1

ε +
∫ T

0

∫
Ω

v
(1−q)r
p+1−r
ε for all ε ∈ (0, 1), (5.6)

so that (5.3) results on using (4.9) and applying (3.3) together with (5.5). �

6. A weighted L2 bound for ∇vε

In order to complement (4.7) by an analogous L2 estimate for ∇vε merely
involving vε but not uε as a weight function, independently from the above we
apply a standard testing technique to the second equation in (3.1) with the
following outcome.

Lemma 6.1. For all q ∈ (0, 1) and any T > 0 one can find C(T ) > 0 such that∫ T

0

∫
Ω

|∇v
q
2
ε |2 ≤ C(T ) for all ε ∈ (0, 1). (6.1)

Proof. Thanks to the positivity of vε, we may use vq−1
ε as a test function in

the second equation in (3.1) to see that
1
q

d

dt

∫
Ω

vq
ε = (1 − q)

∫
Ω

vq−2
ε |∇vε|2 −

∫
Ω

vq
ε +
∫

Ω

uεv
q−1
ε

≥ (1 − q)
∫

Ω

vq−2
ε |∇vε|2 −

∫
Ω

vq
ε for all t > 0, (6.2)

where according to Lemma 3.4 and the fact that q < 1 < n
n−2 , we can find

c1 > 0 such that ∫
Ω

vq
ε ≤ c1 for all t > 0.
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On integration, we thus obtain from (6.2) that

4(1 − q)
q2

∫ T

0

∫
Ω

|∇v
q
2
ε |2 = (1 − q)

∫ T

0

∫
Ω

vq−2
ε |∇vε|2

≤ 1
q

∫
Ω

vq
ε(·, T ) +

∫ T

0

∫
Ω

vq
ε

≤ c1

q
+ Tc1

for all ε ∈ (0, 1). �

7. Time regularity

As a final preparation for our limit procedure, we establish some regularity
features of the time derivatives in (3.1), beginning with a conveniently trans-
formed version of the first solution component.

Lemma 7.1. Assume (1.8), and let p ∈ (0, 1) be such that p < 1
χ2 . Then for all

T > 0 there exists C(T ) > 0 such that
∫ T

0

∥∥∥∂t

(
uε(·, t) + 1

) p
2
∥∥∥

(W 1,∞
0 (Ω))�

dt ≤ C(T ) for all ε ∈ (0, 1). (7.1)

Proof. We fix ψ ∈ C∞
0 (Ω) such that ‖ψ‖W 1,∞(Ω) ≤ 1 and use (3.1) and Young’s

inequality as well as the trivial estimate uε + 1 ≥ 1 to see that∣∣∣∣
∫
Ω

∂t(uε + 1)
p

2 ψ

∣∣∣∣ =
∣∣∣∣p(2 − p)

4

∫
Ω

(uε + 1)
p−4
2 |∇uε|2ψ − p

2

∫
Ω

(uε + 1)
p−2
2 ∇uε · ∇ψ

−p(2 − p)χ

4

∫
Ω

uε(uε + 1)
p−4
2

(1 + εuε)vε
(∇uε · ∇vε)ψ

+
pχ

2

∫
Ω

uε(uε + 1)
p−2
2

(1 + εuε)vε
∇vε · ∇ψ

∣∣∣∣
≤ p(2 − p)

4

∫
Ω

(uε + 1)
p−4
2 |∇uε|2 +

p

2

∫
Ω

(uε + 1)
p−2
2 |∇uε|

+
p(2 − p)χ

4

∫
Ω

(uε + 1)
p−2
2 |∇uε| · |∇vε|

vε

+
pχ

2

∫
Ω

(uε + 1)
p

2
|∇vε|

vε

≤ p(2 − p)

4

∫
Ω

(uε + 1)p−2|∇uε|2 +
p

4

∫
Ω

(uε + 1)p−2|∇uε|2 +
p|Ω|
4

+
p(2 − p)χ

8

∫
Ω

(uε + 1)p−2|∇uε|2

+
p(2 − p)χ

8

∫
Ω

|∇vε|2
v2

ε

+
pχ

4

∫
Ω

(uε + 1)p +
pχ

4

∫
Ω

|∇vε|2
v2

ε

for all t > 0 and ε ∈ (0, 1).
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Since Lemma 3.3 provides c1 > 0 such that vε ≥ c1 in Ω × (0, T ) and hence∫
Ω

|∇vε|2
v2

ε

(·, t) ≤ 9c
− 2

3
1

∫
Ω

|∇v
1
3
ε (·, t)|2 for all t ∈ (0, T ) and ε ∈ (0, 1),

and since∫
Ω

(uε(·, t) + 1)p ≤
∫

Ω

u0 + |Ω| for all t > 0 and ε ∈ (0, 1)

by (3.2), we thus infer that there exists c2 > 0 such that for all ε ∈ (0, 1),∥∥∥∂t

(
uε(·, t) + 1

) p
2
∥∥∥

(W 1,∞
0 (Ω))�

= sup
ψ∈C∞

0 (Ω)

‖ψ‖W1,∞(Ω)≤1

∣∣∣∣
∫

Ω

∂t

(
uε(·, t) + 1

) p
2
ψ

∣∣∣∣

≤ c2 ·
{∫

Ω

|∇u
p
2
ε (·, t)|2 +

∫
Ω

|∇v
1
3
ε (·, t)|2 + 1

}
for all t ∈ (0, T ).

Thanks to the outcomes of Lemmas 4.3 and 6.1, an integration over t ∈ (0, T )
therefore yields (7.1). �

As for the second component, we can directly address the quantity vεt.

Lemma 7.2. Let χ > 0. Then there exists C > 0 such that whenever ε ∈ (0, 1),

‖vεt(·, t)‖(W 1,∞
0 (Ω))�dt ≤ C for all t > 0. (7.2)

Proof. We again fix ψ ∈ C∞
0 (Ω) fulfilling ‖ψ‖W 1,∞(Ω) ≤ 1, and using (3.1) we

find that∣∣∣∣
∫

Ω

vεtψ

∣∣∣∣ =
∣∣∣∣−
∫

Ω

∇vε · ∇ψ −
∫

Ω

vεψ +
∫

Ω

uεψ

∣∣∣∣
≤
∫

Ω

|∇vε| +
∫

Ω

vε +
∫

Ω

uε for all t > 0 and ε ∈ (0, 1).

Therefore,

‖vεt(·, t)‖(W 1,∞
0 (Ω))� ≤ sup

τ>0

{∫
Ω

|∇vε(·, τ)| +
∫

Ω

vε(·, τ) +
∫

Ω

uε(·, τ)
}

for all t > 0 and ε ∈ (0, 1),

so that (7.2) results from Lemmas 3.4 and (3.2). �

8. Construction of limit functions. Proof of Theorem 1.1

Collecting the above estimates, by means of a straightforward extraction pro-
cedure we can pass to the limit ε ↘ 0 in the following sense.

Lemma 8.1. Suppose that (1.8) holds, and let p ∈ (0, 1) and q ∈ (0, 1) be such
that p < 1

χ2 and q ∈ (q−(p), q+(p)). Then there exist (εj)j∈N ⊂ (0, 1) and
functions u and v defined on Ω × (0,∞) such that εj ↘ 0 as j → ∞, that
u ≥ 0 and v≥0 a.e. in Ω × (0,∞), and that

uε → u in L1
loc(Ω × [0,∞)) and a.e. in Ω × (0,∞), (8.1)
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∇u
p
2
ε ⇀ ∇u

p
2 in L2

loc(Ω × [0,∞)), (8.2)

vε → v in L1
loc(Ω × [0,∞)) and a.e. in Ω × (0,∞), (8.3)

∇vε ⇀ ∇v in L1
loc(Ω × [0,∞)) and (8.4)

∇v
q
2
ε ⇀ ∇v

q
2 in L2

loc(Ω × [0,∞)) (8.5)

as ε = εj ↘ 0, and ∫
Ω

u(·, t) =
∫

Ω

u0 for a.e. t > 0. (8.6)

Proof. We fix p ∈ (0, 1) such that p < 1
χ2 and combine Lemma 4.3 with (3.2)

and Lemma 7.1 to see that(
(uε + 1)

p
2

)
ε∈(0,1)

is bounded in L2
loc([0,∞);W 1,2(Ω))

and that(
∂t(uε + 1)

p
2

)
ε∈(0,1)

is bounded in L1
loc([0,∞); (W 1,∞

0 (Ω))
).

Apart from that, Lemmas 3.4 and 7.2 show that there exists r > 1 such that

(vε)ε∈(0,1) is bounded in Lr
loc([0,∞);W 1,r(Ω))

and

(vεt)ε∈(0,1) is bounded in L∞((0,∞); (W 1,∞
0 (Ω))
).

Therefore, by means of two applications of an Aubin-Lions lemma [16, Cor. 8.4]
we can find (εj)j∈N ⊂ (0, 1) such that εj ↘ 0 as j → ∞, that u

p
2
ε → u

p
2 in

L2
loc(Ω × [0,∞)) and a.e. in Ω × (0,∞) as ε = εj ↘ 0, and that (8.2), (8.3)

and (8.4) hold with some nonnegative functions u and v defined on Ω× (0,∞).
Since thus also uε → u a.e. in Ω × (0,∞) as ε = εj ↘ 0, making use of the
equi-integrability property implied by Lemma 5.2 we may invoke the Vitali
convergence theorem to infer that in fact also (8.1) holds, whereupon (8.6)
becomes a consequence of (3.2). The additional convergence statement in (8.5)
finally results from Lemma 6.1 and (8.3) in a straightforward manner. �

Our next aim is to make sure that the functions u and v we have just con-
structed form a generalized solution of (1.1)–(1.2). We begin with the second
equation.

Lemma 8.2. If (1.8) holds, then the pair (u, v) obtained in Lemma 8.1 is a
global weak solution of (1.2) in the sense of Definition 2.3.

Proof. From (8.1), (8.3) and (8.4) we immediately see that the regularity prop-
erties in (2.5) hold, and that moreover for arbitrary ϕ ∈ C∞

0 (Ω × [0,∞)), in
the identity

−
∫ ∞

0

∫
Ω

vεϕt−
∫

Ω

v0ϕ(·, 0)= −
∫ ∞

0

∫
Ω

∇vε · ∇ϕ−
∫ ∞

0

∫
Ω

vεϕ+
∫ ∞

0

∫
Ω

uεϕ,

valid for all ε ∈ (0, 1) due to (3.1), we may let ε = εj ↘ 0 in each integral
separately to readily verify (2.6). �
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Another important part of Definition 2.4 are positivity requirements, which
will be established in Lemma 8.6. The following technical lemmas prepare
the main argument therein, where we will derive a differential inequality
for
∫
Ω

lnuε, and where further exploting the latter will in particular require
some ε-independent lower bound for this functional at some suitable initial
value, despite the fact that (1.7) does not guarantee finiteness of

∫
Ω

ln u0. An
appropriate replacement, to be provided by Lemma 8.5, is entailed by the
comparison-type Lemma 8.3 in combination with a differential inequality, the
derivation of which rests on Lemma 8.4.

Lemma 8.3. Let a > 0, b > 0 and T > 0, and let y : (0, T ) → R be a continu-
ously differentiable function satisfying

y′(t) ≤ −ay2(t) + b for all t ∈ (0, T ) at which y(t) > 0.

Then

y(t) ≤
√

b

a
coth(

√
abt) for all t ∈ (0, T ).

Proof. Let η > 0. Then Mη :=
{

t ∈ (0, T ) : y(t) >
√

b
a + η

}
(is either empty

or) can be written as union of its connected components, i.e. Mη =
⋃

k∈N
Ik

with disjoint open intervals Ik. If we consider any nonempty Ik with inf Ik �= 0,

by continuity y(inf Ik) =
√

b
a + η and hence y′(inf Ik)≤ −2

√
abη − aη2 < 0,

contradicting the definition of inf Ik as infimum of a set where y >
√

b
a + η.

Hence there is tη ∈ [0, T ) such that y ≤
√

b
a +η in (tη, T ) and that y >

√
b
a +η

in (0, tη) so that b−ay2 is negative in (0, tη) and for t0 ∈ (0, tη) and t ∈ (t0, tη)
we find that

t − t0≤
∫ t

t0

y′(s)
b − ay2(s)

ds =
1√
ab

∫ √
a
b y(t)

√
a
b y(t0)

1
1 − z2

dz

=
1√
ab

{
arcoth

(√a

b
y(t)
)

− arcoth
(√a

b
y(t0)

)}
,

leading to

√
ab(t − t0) + arcoth

(√a

b
y(t0)

)
≤ arcoth

(√a

b
y(t)
)

and hence to

y(t)≤
√

b

a
coth
(√

ab(t − t0)+arcoth
(√a

b
y(t0)

))
≤
√

b

a
coth
(√

ab(t − t0)
)
.

Using that t0 ∈ (0, t) and η > 0 were arbitrary, we conclude that y(t) ≤
max
{√

b
a coth(

√
abt),

√
b
a

}
=
√

b
a coth(

√
abt). �

The following statement essentially goes back to an observation made in [18].
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Lemma 8.4. Let η > 0. Then there exists C > 0 such that every positive
function ϕ ∈ C1(Ω) fulfilling∣∣∣{x ∈ Ω; ϕ(x) > δ}

∣∣∣ > η

for some δ > 0 satisfies∫
Ω

|∇ϕ|2
ϕ2

≥ C ·
{∫

Ω

ln
δ

ϕ

}2

or
∫

Ω

ln
δ

ϕ
< 0.

Proof. This directly follows from the inequality provided by [18, Lemma 4.3]
upon squaring. A requirement on convexity of the domain, as additionally
made there in order to allow for an application of the Poincaré inequality from
[10, Cor 9.1.4] in the proof, can actually be removed by replacing the latter
with Lemma 9.1. �

We can now pass to our derivation of lower bounds for
∫
Ω

ln uε in the following
form.

Lemma 8.5. There exists T > 0 such that for every t ∈ (0, T ),

inf
ε∈(0,1)

∫
Ω

ln uε(·, t) > −∞.

Proof. We let Mε(t) := supτ∈[0,t] ‖uε(·, τ)‖L∞(Ω) for t ∈ (0,∞) and ε ∈ (0, 1),
and pick p > n. From known Lp-Lq estimates for the Neumann heat semigroup
[20, Lemma 1.3 (iii) and (ii)] we obtain c1 > 0 and c2 > 0 such that

‖∇vε(·, t)‖L∞(Ω) ≤ c1 ‖v0‖W 1,∞(Ω) + c2

∫ t

0

(1 + (t − s)− 1
2 )e−(t−s) ‖uε‖L∞(Ω) ds

≤ c3 · (1 + Mε(t)) for all t ∈ (0,∞),

where c3 = max
{

c1‖v0‖W 1,∞(Ω), c2

∫∞
0

(1 + τ− 1
2 )e−τdτ

}
. Invoking further

semigroup estimates (in the form of [20, Lemma 1.3 (iv)]) we find c4 > 0
such that

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + χ c4

∫ t

0

(1 + (t − s)− 1
2 − n

2p )
∥∥∥∥ uε

vε(·, s)(1 + εuε(·, s))∇vε(·, s)
∥∥∥∥

Lp(Ω)

ds ≤ ‖u0‖L∞(Ω)

+
χ c4

inf v0
et · c3(1 + Mε(t)) · ‖u0‖

1
p

L1(Ω) (Mε(t))
p−1

p

∫ t

0

(1 + τ− 1
2 − n

2p )dτ

for all t ∈ (0,∞) and all ε ∈ (0, 1), because
∥∥∥ uε(·,t)

1+εuε(·,t)
∥∥∥

Lp(Ω)
≤ ‖uε(·, t)‖Lp(Ω) ≤

‖u0‖
1
p

L1(Ω) ‖uε(·, t)‖
p−1

p

L∞(Ω) for all t ∈ (0,∞), so that in conclusion we can find
c5 > 0 fulfilling

Mε(t)≤‖u0‖L∞(Ω)+c5(t + t
1
2 − n

2p )et(1+Mε(t))(Mε(t))
p−1

p for all t ∈ (0,∞),
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and hence by the fact that for all a, b ∈ [0,∞), γ ∈ (0, 1)

sup{x ∈ [0,∞); x ≤ a + bxγ} ≤ a

1 − γ
+ b

1
1−γ

we can achieve that

Mε(t) ≤ p ‖u0‖L∞(Ω) +
(

c5(t + t
1
2 − n

2p )et(1 + Mε(t))
)p

If we let Tε := sup
{

t ∈ (0,∞) : Mε(t) ≤ p ‖u0‖L∞(Ω) + 1
}

, then certainly

Tε > min
{

1,
1
2

(
c5 · 2e(2 + p ‖u0‖L∞(Ω))

)− 1
1
2 − n

2p

}
=: T.

In conclusion, this means that for all ε ∈ (0, 1),

‖uε(·, t)‖L∞(Ω) ≤ p ‖u0‖L∞(Ω) + 1 =: M and ‖∇vε(·, t)‖W 1,∞(Ω)

≤ c3(1 + M) for all t ∈ (0, T ).

In particular with δ := 1
2|Ω|
∫
Ω

u0 and η := 1
2M

∫
Ω

u0 we have |{uε(·, t) ≥ δ}| ≥
η for every t ∈ (0, T ) and each ε ∈ (0, 1), because∫

Ω

u0 =
∫

Ω

u(·, t) =
∫

{u(·,t)≥δ}
u(·, t)

+
∫

{u(·,t)<δ}
u(·, t) ≤ M |{u(·, t) ≥ δ}| + |Ω|δ = M |{u(·, t) ≥ δ}| +

1
2

∫
Ω

u0

and therefore

η =
1

2M

∫
Ω

u0 ≤ |{u(·, t) ≥ δ}|.

From Lemma 8.4 we hence obtain c6 > 0 such that

d

dt

(∫
Ω

ln
δ

uε(·, t)
)

= −
∫

Ω

|∇uε(·, t)|2
u2

ε(·, t)
+ χ

∫
Ω

1
(1 + εuε)uε(·, t)vε(·, t)

∇uε(·, t) · ∇vε(·, t)

≤ −1
2

∫
Ω

|∇uε(·, t)|2
u2

ε(·, t)
+

χ2

2

∫
Ω

|∇vε(·, t)|2
v2

ε(·, t)

≤ −c6

2

(∫
Ω

ln
δ

uε(·, t)
)2

+
χ2e2T c2

3(1 + M)2

2(inf v0)2

for every t ∈ (0, T ) at which
∫
Ω

ln δ
uε(·,t) > 0. Lemma 8.3 hence proves the

claim. �

This enables us to verify the positivity requirements from Definition 2.4 with-
out any assumptions on the initial data beyond (1.7).

Lemma 8.6. The functions u, v obtained in Lemma 8.1 satisfy v > 0, u > 0
a.e. in Ω × (0,∞) and upvq > 0 a.e. on ∂Ω × (0,∞).
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Proof. According to Lemma 3.3 and (8.3), essinfx∈Ω v(x, t) > inf v0e
−t for any

t > 0, and (8.2) and (8.5) together with (8.1) or (8.3), respectively, show that
u and v can be evaluated on ∂Ω × (0,∞) in the sense of traces. For the proof
of the remaining positivity properties u > 0 a.e. in Ω × (0,∞) and u > 0 a.e.
on ∂Ω × (0,∞), we intend to prove

ln u ∈ L2
loc((0,∞);W 1,2(Ω)), (8.7)

which entails ln u ∈ L2
loc(Ω × (0,∞)) and, due to the embedding W 1,2(Ω) ↪→

L2(∂Ω), also ln u ∈ L2
loc(∂Ω × (0,∞)), proving positivity of u a.e. in the respec-

tive sets. By Lemmas 3.3 and 3.2,

d

dt

[
−
∫

Ω

ln uε − χ2

∫
Ω

ln vε

]
= −
∫

Ω

|∇uε|2
u2

ε

+ χ

∫
Ω

1
uεvε(1 + εuε)

∇uε · ∇vε

− χ2

∫
Ω

|∇vε|2
v2

ε

+ χ2|Ω| − χ2

∫
Ω

uε

vε

≤ −1
2

∫
Ω

|∇uε|2
u2

ε

− χ2

2

∫
Ω

|∇vε|2
v2

ε

+ χ2|Ω|

+
χ2

inf v0
et

∫
Ω

u0

for any t > 0. Now picking τ > 0, according to Lemma 8.5 we can find
τ0 ∈ (0, τ) and c1 > 0 such that

inf
ε∈(0,1)

∫
Ω

ln uε(·, τ0) > −∞. (8.8)

For any fixed T > τ we then obtain

−
∫

Ω

ln uε(·, t) +
1
2

∫ t

τ0

∫
Ω

|∇ ln uε|2 ≤ −
∫

Ω

ln uε(·, τ0)

+χ2

∫
Ω

ln
vε(·, t)
vε(·, τ0)

+ χ2|Ω|T +
χ2

inf v0
eT

∫
Ω

u0 (8.9)

for t ∈ (τ, T ), where according to (8.8) and by Lemmas 3.3 and (3.3) the right-
hand side is bounded independently of ε. We invoke the Poincaré inequality
to find c1 > 0 such that ‖ϕ‖W 1,2(Ω) ≤ c1(‖∇ϕ‖L2(Ω) + ‖ϕ‖L1(Ω)) for all ϕ ∈
W 1,2(Ω), and since the elementary estimate | ln s| ≤ 2s − ln s valid for all
s > 0, Lemmas 3.2 and (8.9) provide c2 > 0 such that

∫
Ω

| ln uε(·, t)| ≤ c2 for
all t ∈ (τ, T ), we conclude that for every τ > 0 and T > τ there exists c3 > 0
such that for all ε ∈ (0, 1) we have

‖ln uε‖L2((τ,T );W 1,2(Ω)) ≤ c3,

which by a weak compactness argument immediately results in (8.7). �

In order to demonstrate that (u, v) satisfies (2.3), we prepare the following.
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Lemma 8.7. Let (φε)ε∈(0,1) ⊂ C0([0,∞)) ∩ L∞((0,∞)) be such that

sup
ε∈(0,1)

‖φε‖L∞((0,∞)) < ∞ (8.10)

and that there exists φ ∈ C0([0,∞)) such that

φε → φ in L∞
loc([0,∞)) as ε ↘ 0. (8.11)

Then given χ > 0 such that (1.8) holds and taking u, v and (εj)j∈N ⊂ (0, 1)
from Lemma 8.1, for all p ∈ (0,min{1, 1

χ2 }), any q ∈ (q−(p), q+(p)) and each
T > 0 we have

φε(uε)v
q
2
ε ∇u

p
2
ε ⇀ φ(u)v

q
2 ∇u

p
2 in L2(Ω × (0, T )) as ε = εj ↘ 0. (8.12)

Proof. Let T > 0. Then since from (8.10) we know that there exists c1 > 0
such that

|φε(s)| ≤ c1 for all s > 0 and ε ∈ (0, 1) (8.13)

and hence∫ T

0

∫
Ω

∣∣∣φε(uε)v
q
2
ε ∇u

p
2
ε

∣∣∣2 ≤ c1

∫ T

0

∫
Ω

vq
ε |∇u

p
2
ε |2 for all ε ∈ (0, 1),

writing wε := φε(uε)v
q
2
ε ∇u

p
2
ε , ε ∈ (0, 1), we infer from (4.6) that (wε)ε∈(0,1) is

bounded in L2(Ω × (0, T )) and hence relatively compact therein with respect
to the weak topology. According to a standard argument, in order to verify
(8.12) it is thus sufficient to make sure that whenever (εjk

)k∈N is a subsequence
of (εj)j∈N with the property that

wε ⇀ w in L2(Ω × (0, T )) as ε = εjk
↘ 0 (8.14)

with some w ∈ L2(Ω × (0, T )), we have w = φ(u)v
q
2 ∇u

p
2 a.e. in Ω × (0, T ). To

achieve this, we note that due to q < 1 and (8.3), v
q
2
ε → v

q
2 in L2(Ω×(0, T )). By

(8.13) and the pointwise convergence asserted in (8.1) together with Lebesgue’s
dominated convergence theorem, we therefore even have φε(uε)v

q
2
ε → φ(u)v

q
2

in L2(Ω × (0, T )). Furthermore taking into account (8.2), we see that

φε(uε)v
q
2
ε ∇u

p
2
ε ⇀ φ(u)v

q
2 ∇u

p
2 in L1(Ω × (0, T )),

which ensures w = φ(u)v
q
2 ∇u

p
2 a.e. in Ω × (0, T ). �

We can now make sure that indeed the obtained pair (u, v) has all the prop-
erties required in Definition 2.1.

Lemma 8.8. Suppose that (1.8) holds, and let p ∈ (0, 1) and q ∈ (0, 1) be such
that p < 1

χ2 and q ∈ (q−(p), q+(p)). Then the functions u and v constructed in
Lemma 8.1 form a global weak (p, q)-supersolution of (1.1) in the framework
of Definition 2.1.

Proof. Writing

φ(1)
ε (s) :=

(1−p)χ
1+εs + 2q√

pqχ
1+εs + q(1 − q)
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and

φ(2)
ε (s) :=

2√
q

·
√

pχ

1 + εs
+ 1 − q (8.15)

as well as

φ(3)
ε (s) :=

√√√√4(1 − p)q − 4q2 − p (1−p)2χ2

(1+ε s)2

pq( pχ
1+ε s + 1 − q)

and

φ(4)
ε (s) :=

2[(1 − p)εs − p]χ
q(1 + εs)2

for ε ∈ (0, 1) and s ≥ 0, we first observe that φ
(k)
ε is well-defined for k ∈

{1, 2, 3, 4} with

φ(1)
ε → c1 :=

(1 − p)χ + 2q√
pqχ − q(1 − q)

,

φ(2)
ε → c2 :=

2
√

pχ + 1 − q√
q

,

φ(3)
ε → c3 :=

√
4(1 − p)q − 4q2 − p(1 − p)2χ2

p[pqχ − q(1 − q)]
and

φ(4)
ε → c4 := −2pχ

q
(8.16)

in L∞
loc([0,∞)) as ε ↘ 0. Using these auxiliary functions, given T > 0 we now

invoke Lemma 4.3 to fix c5 > 0 and c6 > 0 such that∫ T

0

∫
Ω

∣∣∣φ(1)
ε (uε)v

q
2
ε ∇u

p
2
ε − φ(2)

ε (uε)u
p
2
ε ∇v

q
2
ε

∣∣∣2 ≤ c5 (8.17)

and ∫ T

0

∫
Ω

up+1
ε vq−1

ε ≤ c6 (8.18)

for all ε ∈ (0, 1).
Next, since evidently (φ(1)

ε )ε∈(0,1), (φ(3)
ε )ε∈(0,1) and (φ(4)

ε )ε∈(0,1) are bounded
in L∞((0,∞)), three applications of Lemma 8.7 on the basis of (8.16) show
that

φ(1)
ε (uε)v

q
2
ε ∇u

p
2
ε ⇀ c1v

q
2 ∇u

p
2 in L2(Ω × (0, T )) (8.19)

and

φ(3)
ε (uε)v

q
2
ε ∇u

p
2
ε ⇀ c3v

q
2 ∇u

p
2 in L2(Ω × (0, T )) (8.20)

as well as

φ(4)
ε (uε)v

q
2
ε ∇u

p
2
ε ⇀ c4v

q
2 ∇u

p
2 in L2(Ω × (0, T )) (8.21)
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as ε = εj ↘ 0. We moreover observe that (8.1) implies that c2 ≥ φ
(2)
ε (uε) → c2

a.e. in Ω × (0, T ) as ε = εj ↘ 0, so that since
∫ T

0

∫
Ω

∣∣∣φ(2)
ε (uε)u

p
2
ε

∣∣∣
2
p ≤ c

2
p

2

∫ T

0

∫
Ω

uε = c
2
p

2 T

∫
Ω

u0 for all ε ∈ (0, 1)

by (3.2), the Vitali convergence theorem ensures that φ
(2)
ε (uε)u

p
2
ε → c2u

p
2 in

L2(Ω × (0, T )) as ε = εj ↘ 0 due to the fact that 2
p > 2. Since ∇v

q
2
ε ⇀ ∇v

q
2

in L2(Ω × (0, T )) as ε = εj ↘ 0 according to Lemma 8.1, we thus infer that

φ(2)
ε (uε)u

p
2
ε ∇v

q
2
ε ⇀ c2u

p
2 ∇v

q
2 in L1(Ω × (0, T ))

as ε = εj ↘ 0. But since (φ(1)
ε (uε)v

q
2
ε ∇u

p
2
ε −φ

(2)
ε (uε)u

p
2
ε ∇v

q
2
ε )ε∈(0,1) is relatively

compact with respect to the weak topology in L2(Ω×(0, T )) by (8.17), together
with (8.19) the latter guarantees that in fact

φ(2)
ε (uε)u

p
2
ε ∇v

q
2
ε ⇀ c2u

p
2 ∇v

q
2 in L2(Ω × (0, T ) (8.22)

as ε = εj ↘ 0. Along with e.g. (8.20), this particularly asserts the regularity
requirements in (2.2), whereas those in (2.1) result from (8.18) and the fact
that by Young’s inequality, (3.2) and Lemma 3.4 there exists c7 > 0 such that
∫ T

0

∫
Ω

∣∣∣up
εv

q
ε

∣∣∣
1

p+q ≤
∫ T

0

∫
Ω

uε +
∫ T

0

∫
Ω

vε ≤ c7 for all ε ∈ (0, 1)

and hence, as ε = εj ↘ 0,

up
εv

q
ε → upvq in L1(Ω × (0, T )) (8.23)

thanks to Lemma 8.1 and again the Vitali convergence theorem, because
p + q < p + q+(p) < 1.

Positivity properties of u, v and upvq, and the validity of (2.6) are ensured by
Lemma 8.6 and 8.2, respectively.

Now for the verification of (2.3) we let 0 ≤ ϕ ∈ C∞
0 (Ω × [0,∞)) be such that

∂ϕ
∂ν = 0 on ∂Ω × (0,∞) and fix T > 0 such that ϕ ≡ 0 in Ω × (T,∞). Then an
application of Lemma 4.1 shows that∫ T

0

∫
Ω

∣∣∣φ(3)
ε (uε)vε

q
2 ∇u

p
2
ε

∣∣∣2ϕ
+
∫ T

0

∫
Ω

∣∣∣φ(1)
ε (uε)v

q
2
ε ∇u

p
2
ε − φ(2)

ε (uε)u
p
2
ε ∇v

q
2
ε

∣∣∣2ϕ + q

∫ T

0

∫
Ω

up+1
ε vq−1

ε ϕ

= −
∫ T

0

∫
Ω

up
εv

q
εϕt −

∫
Ω

up
0v

q
0ϕ(·, 0)

−
∫

Ω

φ(4)
ε (uε)u

p
2
ε vq

ε∇u
p
2
ε · ∇ϕ −

∫ T

0

∫
Ω

(
1 − pχ

q(1 + εuε)

)
up

εv
q
εΔϕ

+ q

∫ T

0

∫
Ω

up
εv

q
εϕ for all ε ∈ (0, 1), (8.24)
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where again employing (8.23) we see that

−
∫ T

0

∫
Ω

up
εv

q
εϕt → −

∫ T

0

∫
Ω

upvqϕt (8.25)

and

q

∫ T

0

∫
Ω

up
εv

q
εϕ → q

∫ T

0

∫
Ω

upvqϕ (8.26)

as well as

−
∫ T

0

∫
Ω

(
1 − pχ

q(1 + εuε)

)
up

εv
q
εΔϕ → −

(
1 − pχ

q

)∫ T

0

∫
Ω

upvqΔϕ (8.27)

as ε = εj ↘ 0, the derivation of the latter additionally relying on an application
of the dominated convergence theorem. Since (8.23) together with Lemma 8.1
clearly warrants that u

p
2
ε v

q
2
ε → u

p
2 v

q
2 in L2(Ω × (0, T )) and hence

−
∫ T

0

∫
Ω

φ(4)
ε (uε)u

p
2
ε vq

ε∇u
p
2
ε · ∇ϕ = −

∫ T

0

∫
Ω

(
u

p
2
ε v

q
2
ε

)
·
(
φ(4)

ε (uε)v
q
2
ε ∇u

p
2
ε

)
· ∇ϕ

→ −
∫ T

0

∫
Ω

(
u

p
2 v

q
2

)
·
(
c4v

q
2 ∇u

p
2

)
· ∇ϕ

= −c4

∫ T

0

∫
Ω

u
p
2 vq∇u

p
2 · ∇ϕ

as ε = εj ↘ 0, in view of Fatou’s lemma and a standard argument based
on lower semicontinuity of the norm in L2(Ω × (0, T )) with respect to weak
convergence it follows from (8.24), (8.20), (8.19), (8.22) and (8.25)–(8.27) that∫ T

0

∫
Ω

∣∣∣c3v
q
2 ∇u

p
2

∣∣∣2ϕ+
∫ T

0

∫
Ω

∣∣∣c1v
q
2 ∇u

p
2 −c2u

p
2 ∇v

q
2

∣∣∣2ϕ+q

∫ T

0

∫
Ω

up+1vq−1ϕ

≤ −
∫ T

0

∫
Ω

upvqϕt −
∫

Ω

up
0v

q
0ϕ(·, 0)

− c4

∫ T

0

∫
Ω

u
p
2 vq∇u

p
2 · ∇ϕ −

(
1 − pχ

q

)∫ T

0

∫
Ω

upvqΔϕ

+ q

∫ T

0

∫
Ω

upvqϕ,

which is equivalent to (2.3) and thus completes the proof. �
Our main result thereby becomes evident.

Proof of Theorem 1.1. We only need to combine Lemma 8.2 with Lemma 8.8.
�
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9. Appendix: A Poincaré inequality in non-convex domains

Our proof of Lemma 8.5 relies on Lemma 8.4, which in its original formulation
in [18, Lemma 4.2] requires convexity of the domain due to the version of
Poincaré’s inequality [10, Corollary 9.1.4] used. In this appendix we state this
Poincaré inequality without any such convexity condition, and since we could
not find any reference to this in the literature, we briefly outline an argument.
Here and in the following, by uX we denote the average 1

|X|
∫

X
u(x)dx for

u ∈ L1(Ω) and any measurable set X ⊂ Ω with positive measure.

Lemma 9.1. Let Ω ⊂ R
n be a bounded with smooth boundary, and let δ > 0

and p ∈ [1,∞). Then there exists C = C(Ω, δ, p) with the property that for all
u ∈ W 1,p(Ω),

(∫
Ω

|u − uB|p
) 1

p

≤ C(Ω, δ, p)
(∫

Ω

|Du|p
) 1

p

holds for any measurable set B ⊂ Ω with |B| = δ.

A derivation of this can be based on the following.

Lemma 9.2. Let Ω ⊂ R
n be a bounded domain with smooth boundary, and let

δ > 0. Then there exists C > 0 such that for every measurable set B ⊂ Ω with
|B| = δ, and for each u ∈ W 1,1(Ω) we have

|u(x) − uB| ≤ C

∫
Ω

|Du(z)|
|x − z|n−1

dz (9.1)

for almost every x ∈ Ω.

Proof. We follow the proof of [7, Theorem 10], where (9.1) is shown for B = Ω,
and indicate necessary changes. With B0 being a certain ball in Ω, defined as
in the proof of [7, Theorem 10], in [7, (14)] it is shown that there is c1 > 0
such that for every u ∈ W 1,1(Ω) and almost every x ∈ Ω the estimate

|u(x) − uB0 | ≤ c1

∫
Ω

|∇u(z)|
|x − z|n−1

dz (9.2)

holds, whose proof relies on a Poincaré inequality on balls that takes into
account the dependence of the constant on the radius and on the existence
of a chain of balls connecting B0 with x that allows for certain estimates
independently of x (cf. [7, p. 119]). Whereas the first summand in the right-
hand side of

|u(x) − uB | ≤ |u(x) − uB0 | + |uB0 − uB| (9.3)

is immediately covered by (9.2), as to the second we observe that, again by
(9.2),

|uB0 − uB | ≤ 1
|B|
∫

B

|uB0 − u(y)|dy

≤ c1

|B|
∫

B

∫
Ω

|∇u(z)|
|y − z|n−1

dzdy
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≤ c1

|B|
∫

Ω

|∇u(z)|
∫

B

1
|y − z|n−1

dydz. (9.4)

In estimating
∫

B
1

|y−z|n−1 dy we employ the fact that with some c2 = c(n),

for all z ∈ R
n and any measurable E ⊂ R

n,
∫

E
dy

|y−z|n−1 ≤ c2|E| 1
n ([7, (13)]),

because if Ẽ is a ball centered in z with |E| = |Ẽ| and radius R = c̃2(n)|E| 1
n ,

∫
E

dy

|y − z|n−1
≤
∫

Ẽ

dy

|y − z|n−1
=
∫ R

0

rn−1 1
rn−1

dr = c2|Ẽ| 1
n .

We moreover use that 1 ≤ (diam Ω)n−1

|x−z|n−1 for any x, z ∈ Ω. With these observa-
tions, (9.4) turns into

|uB0−uB|≤ c1c2

|B| |B| 1
n

∫
Ω

|∇u(z)|dz≤c1c2|B| 1
n −1(diam Ω)n−1

∫
Ω

|∇u(z)|
|x − z|n−1

dz.

(9.5)
Noting that |B| 1

n −1 = δ
1
n −1 and combining (9.2) and (9.5) with (9.3) proves

(9.1). �

Proof of Lemma 9.1. For convex domains, this is exactly Corollary 9.1.4 of
[10], which follows from [10, Lemma 9.1.3] and [10, Lemma 9.1.2], the latter
of which (a continuity property of the Riesz potential operator) poses no con-
vexity condition on Ω. As replacement of the former, in the case of general Ω
we now rather rely on Lemma 9.2. �

Remark 9.3. In Lemma 9.2 (and hence in Lemma 9.1), for the domain it
is actually sufficient to be (bounded and) a John domain, instead of having
smooth boundary. In particular, any bounded domain satisfying the interior
cone condition is admissible in these lemmata. For details concerning this, we
once more refer the reader to [7].

Remark 9.4. With Lemma 9.1, it is also possible to remove the convexity
condition on the domain in [18].
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