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Estimate for the number of limit cycles
of Abel equation via a geometric criterion
on three curves

Jianfeng Huang and Haihua Liang

Abstract. This paper is devoted to the investigation of Abel equation
ẋ = S(t, x) =

∑3
i=0 ai(t)x

i, where ai ∈ C∞([0, 1]). A solution x(t) with
x(0) = x(1) is called a periodic solution. And an orbit x = x(t) is called
a limit cycle if x(t) is a isolated periodic solution. By means of Lagrange
interpolation formula, we give a criterion to estimate the number of limit
cycles of the equation. This criterion is only concerned with S(t, x) on
three non-intersecting curves. Applying our main result, we prove that
the maximum number of limit cycles of the equation is 4 if a2(t)a0(t) <
0. To the best of our knowledge, this is a nontrivial supplement for a
classical result which says that the equation has at most 3 limit cycles
when a2(t) �= 0 and a0(t) ≡ 0. We also study a planar polynomial system
with homogeneous nonlinearities:

ẋ = ax − y + Pn(x, y), ẏ = x + ay + Qn(x, y),

where a ∈ R and Pn, Qn are homogeneous polynomials of degree n ≥ 2.
Denote by ψ(θ) = cos(θ) · Qn

(
cos(θ), sin(θ)

) − sin(θ) · Pn

(
cos(θ), sin(θ)

)
.

We prove that if (n − 1)aψ(θ) + ψ̇(θ) �= 0, then the polynomial system
has at most 1 limit cycle surrounding the origin, and the multiplicity is
no more than 2.
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1. Introduction and statements of main results

Consider a non-autonomous differential equation

ẋ =
dx

dt
= S(t, x), (1)

where S ∈ C∞([0, 1] × R).
A solution x(t) of (1) is called a periodic solution, if it is defined in [0, 1]

with x(0) = x(1). Moreover, an orbit x = x(t) in the strip [0, 1] × R is called
a periodic orbit (resp. limit cycle) of (1), if x(t) is a periodic solution (resp.
isolated periodic solution) of the equation.

One of the simplest type of (1) is that

S(t, x) =
m∑

i=0

ai(t)xi,

where ai ∈ C∞([0, 1]), i = 0, 1, . . . , m. This type of equation is usually named
generalized Abel equation. It is not only a powerful tool in solving the prob-
lems for limit cycles of planar differential systems (see Cherkas [14], Devlin
et al. [17], Lins-Neto [26] and Lloyd [31]), but also extensively applied in the
biological studies (for instance, harvesting model, see [5,18,37]). Under these
backgrounds, an important problem for the generalized Abel equation is to
estimate its number of limit cycles.

Over the past three decades, a large number of investigations have been
carried out for generalized Abel equation. Up till now, the problem mentioned
above is not completely solved. The works on generalized Abel equation are
firstly motivated by Lins-Neto [26] and Lloyd [29–31]. Both authors prove
that the equation has at most one (resp. two) limit cycle(s) if m = 1 (resp.
m = 2). However, the difficulty starts from m = 3. Also in [26], it is proved
that the number of limit cycles of the equation is not bounded when m = 3 (see
also Panov [34]). Such result is easily extended for the equation with m > 3
(see Gasull and Guillamon [19]). For these reasons, a more specific problem
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arises: Give a suitable classification (additional hypotheses) for generalized
Abel equation, such that the number of limit cycles of the equation can be
estimate.

The most classical hypothesis on which many results depend is the fixed
sign hypothesis for one of the first two non-zero coefficients.
For instance, when m = 3, the equation is called Abel equation. It is well-
known that if a3(t) keeps the sign, then Abel equation has at most three limit
cycles (see Gasull and Llibre [21], Lins-Neto [26], Lloyd [31] and Pliss [35]).
Also for the case that a2(t) does not change sign and a0(t) ≡ 0, the number of
limit cycles of Abel equation is still no more than three (see Gasull and Llibre
[21]). For generalized Abel equation with m > 3 and am(t) ≡ 1, Ilyashenko
[24] gives an upper bound for the number of limit cycles associated with the
bounds of |ai(t)|, i = 0, . . . , m − 1. Some generalized Abel equations with co-
efficients of definite signs are also studied by several authors (see Alkoumi and
Torres [1], Gasull and Guillamon [19] and Panov [33]).

The hypotheses presented above are easily invalid in some cases (espe-
cially when am(t), . . . , a0(t) are trigonometrical polynomials). In recent years,
two families of investigations which admit the coefficients without fixed signs
are proposed. The first one requires the symmetric conditions for some coeffi-
cients of the equation (see [3,9,10]). The second one depends on the fixed sign
hypotheses for some linear combinations of the coefficients. It is started and
motivated by Álvarez et al. [4]. They prove that if S(t, x) = a3(t)x3 + a2(t)x2

with

a · a3(t) + b · a2(t) �= 0, a, b ∈ R, (2)

then the equation has at most one non-zero limit cycle. Later, Huang and Zhao
[23] consider a generalized case S(t, x) = am(t)xm + an(t)xn + al(t)xl. Under
the hypotheses of the parity of m,n, l and the inequality

al(t) · (
am(t)λm−n + an(t)

) · S
(
t, (±1)m−n+1λ

) �= 0, λ �= 0,

they also obtain the upper bound for the number of limit cycles. In paper [2],
Álvarez, Bravo and Fernández study the generalized Abel equation and give a
criterion to estimate the number of limit cycles, which can be computationally
checked by the algebraic methods.

For more relevant works, see [7,8,11,15,20,25], etc.
The aim of this paper is to estimate the upper bound for the number of

limit cycles of the Abel equation

ẋ =
dx

dt
= S(t, x) = a3(t)x3 + a2(t)x2 + a1(t)x + a0(t), (3)

where x ∈ R and ai ∈ C∞([0, 1]), i = 0, . . . , 3.
Instead of the restriction on the signs of a3(t), . . . , a0(t), our main result

is only based on the hypothesis for S(t, x) on three curves x = λ1(t), x = λ2(t),
x = λ3(t) which possess the following property
(H) λi ∈ C∞([0, 1]), λi(1) = λi(0) and λi(t) − λj(t) �= 0, where i, j = 1, 2, 3
and i �= j.
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Throughout this paper we will use the notation “λi” to represent not only the
function λi itself but also the function value “λi(t)” for the sake of brevity.
Moreover, unless specially stated, “λi” is supposed to satisfy (H) whenever the
notation is used. Define

ω(t) =
1

(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)

∣
∣
∣
∣
∣
∣

S
(
t, λ1

)
λ1 1

S
(
t, λ2

)
λ2 1

S
(
t, λ3

)
λ3 1

∣
∣
∣
∣
∣
∣
, (4)

where S(t, x) is defined as in (3). A straightforward calculation leads to

ω(t) = a3(t) · (
λ1 + λ2 + λ3

)
+ a2(t). (5)

We are now ready to state the following fundamental result.

Theorem 1.1. Let b1, b2, b3 be three real constants satisfying
{

b1λ1 + b2λ2 + b3λ3 ≡ 0,

b1 + b2 + b3 = 0.
(6)

If either ω(t) ≥ 0 and (bi − 1)
(
S(t, λi) − λ̇i

) ≥ 0 for i = 1, 2, 3, or ω(t) ≤ 0
and (bi − 1)

(
S(t, λi) − λ̇i

) ≤ 0 for i = 1, 2, 3, then (3) has at most

(i) 2 limit cycles in each connected component of
(
[0, 1] × R

)\{
(t, λi)

∣
∣t ∈

[0, 1], i ∈ {1, 2, 3}, bi �= 1
}
, counted with multiplicities.

(ii) 2(n + 1) limit cycles in [0, 1] × R, where n = #
{
bi

∣
∣i ∈ {1, 2, 3}, bi �= 1

}

and # represents the cardinality of a set.

Clearly, the equalities in (6) always hold for b1 = b2 = b3 = 0. As an
important consequence of Theorem 1.1 we have

Theorem 1.2. If either ω(t) ≥ 0 and S(t, λi)−λ̇i ≤ 0 for i = 1, 2, 3, or ω(t) ≤ 0
and S(t, λi) − λ̇i ≥ 0 for i = 1, 2, 3, then (3) has at most
(i) 2 limit cycles in each connected component of

(
[0, 1] × R

)\{
(t, λi)

∣
∣t ∈

[0, 1], i = 1, 2, 3
}
, counted with multiplicities.

(ii) 8 limit cycles in [0, 1] × R.

Remark 1.3. The hypotheses on ω and S, which play a crucial role in our
above result, are natural. Firstly, by (5) one can see that the assumption
on ω essentially extend condition (2). Secondly, the assumption on S is a
“transversal” condition from the geometric point of view. Furthermore, if (3)
has a limit cycle x = λ(t), then there are many choices of the curves x = λ1(t),
x = λ2(t) and x = λ3(t), satisfying either S(t, λi) ≥ λ̇i for i = 1, 2, 3, or
S(t, λi) ≤ λ̇i for i = 1, 2, 3. For instance, observe that the equation ẋ =
S(t, x) + ε has a limit cycle x = ηε(t) located near x = λ(t) as ε > 0 (or < 0)
sufficiently small. We can choose three small positive (or negative) numbers
ε1 > ε2 > ε3 and then take λi(t) = ηεi

(t). So S(t, λi) = λ̇i − εi for i =
1, 2, 3, which implies the above inequalities. Compare with the results in [4]
and [23], our restrictions for the curves are less (essentially, the works in [4]
and [23] require some straight lines hypotheses). This is an improvement for
the previous results.
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An example with all the coefficients changing signs will be given after
the proof of Theorem 1.2. Also together with the bifurcation method, we will
show in a second example that there exist an equation which has at least 4
limit cycles. See Sect. 4 for details.

As we mentioned above, Gasull and Llibre [21] proved that the number
of limit cycles of (3) is no more than 3 when a2(t) �= 0 and a0(t) ≡ 0. It is
natural to ask that whether if this upper bound can be enlarged once a0(t)
does not vanish? By virtue of Theorem 1.2, we can provide a positive answer
to this question, see the following corollary.

Corollary 1.4. If a2(t) · a0(t) < 0, then (3) has at most 4 limit cycles, counted
with multiplicities. This upper bound is sharp.

Remark 1.5. the conclusion of Corollary 1.4 shows that the upper bound ap-
pearing in Theorem 1.2 seems not so rough.

Next we consider the case where b1, b2, b3 in Theorem 1.1 are not all zeros.
This case occurs when (λ1 − λ3)/(λ1 − λ2) is a constant, which leads to the
second important conclusion of Theorem 1.1 below.

Theorem 1.6. Assume that b � (λ1 − λ3)/(λ1 − λ2) is a constant. If either
ω(t) ≥ 0, (b−2)

(
S(t, λ1)− λ̇1

) ≥ 0 and (b+1)
(
S(t, λ2)− λ̇2

) ≤ 0, or ω(t) ≤ 0,
(b − 2)

(
S(t, λ1) − λ̇1

) ≤ 0 and (b + 1)
(
S(t, λ2) − λ̇2

) ≥ 0, then (3) has at most

(i) 2 limit cycles in each connected component of
(
[0, 1] × R

)\{
(t, λi)

∣
∣t ∈

[0, 1], i = 1, 2
}
, counted with multiplicities.

(ii) 6 limit cycles in [0, 1] × R.

Corollary 1.7. Consider equation

ẋ = a3(t)x3 + a2(t)x2 + a1(t)x. (7)

If there exist two different non-zero real numbers κ1 and κ2 such that
(
a3(t)κ2

1 + a2(t)κ1

) · (
a3(t)κ2

2 + a2(t)κ2 + a1(t)
)

< 0,

then (7) has at most 6 limit cycles.

A third example will be given after the proof of Corollary 1.7, see Sect. 5
for details.

It is notable that Hilbert’s 16th problem on many planar polynomial
differential systems can be reduced to the problem of determining the max-
imal number of limit cycles of (3), where the coefficients a0(t) ≡ 0 and
a1(t), a2(t), a3(t) are homogeneous trigonometrical polynomials (see Gasull
and Llibre [21] and Lins-Neto [26], etc). Take, for instance, the planar polyno-
mial system with homogeneous nonlinearities:

⎧
⎪⎨

⎪⎩

dx

dt
= ax − y + Pn(x, y),

dy

dt
= x + ay + Qn(x, y),

(8)

where Pn, Qn are homogeneous polynomials of degree n ≥ 2.
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In fact, (8) is a system which has been extensively studied and gained
wide attention. So far, plenty of works have been carried out for the bifurcation
of (8) with small perturbations, see for instance [6,22,27,28,32,36] and the
references therein. In contrast, only a few results for the non-bifurcation case
are obtained. Here we summarize the representative ones as below: Let

ϕ(θ) = cos(θ) · Pn

(
cos(θ), sin(θ)

)
+ sin(θ) · Qn

(
cos(θ), sin(θ)

)
,

ψ(θ) = cos(θ) · Qn

(
cos(θ), sin(θ)

) − sin(θ) · Pn

(
cos(θ), sin(θ)

)
.

(9)

(I) If ϕ(θ) − aψ(θ) �≡ 0 does not change sign, then (8) has at most 1 limit
cycle surrounding the origin (see Coll, Gasull and Prohens [16]).

(II) If ψ(θ)
(
ϕ(θ) − aψ(θ)

) �≡ 0 does not change sign, then (8) has at most 1
(resp. 2) limit cycle(s) surrounding the origin when n is even (resp. odd)
(see Carbonell and Llibre [12]).

(III) If (n − 1)
(
ϕ(θ) − 2aψ(θ)

) − ψ̇(θ) �≡ 0 does not change sign, then (8) has
at most 2 limit cycles surrounding the origin (see Gasull and Llibre [21]).

(IV) If either (n − 1)
(
ϕ(θ) − 2aψ(θ)

) − ψ̇(θ) ≡ 0, or ψ(θ)
(
ϕ(θ) − aψ(θ)

) ≡ 0,
then (8) has at most 1 limit cycle surrounding the origin (see Gasull and
Llibre [21]).

Now as an application of our theorems, we give a new criterion on the
upper bound for the number of limit cycles of (8).

Proposition 1.8. Consider planar polynomial system (8). Let ψ(θ) be defined
as in (9). Suppose that

(n − 1)aψ(θ) + ψ̇(θ) �= 0.

Then system (8) has at most 1 limit cycle surrounding the origin, and the
multiplicity is no more than 2.

We remark that when n is even, ψ(θ + π) = −ψ(θ) and therefore (n −
1)aψ(θ) + ψ̇(θ) always has zeros. So the hypothesis in Proposition 1.8 implies
that n is odd.

Two examples will be provided to illustrate the application of Proposition
1.8. One of them has exactly 1 limit cycle and the other one violates all the
previous criterions (I)–(IV). See Sect. 6 for details.

The rest of this paper is organized as follows: in Sect. 2 we give several
preliminary results. In Sect. 3 we prove Theorem 1.1. Theorem 1.2 and Corol-
lary 1.4 are obtained in Sect. 4. Theorem 1.6 and Corollary 1.7 are proved in
Sect. 5. Finally, in Sect. 6 we prove Proposition 1.8.

2. Preliminaries

In this section we mainly give four lemmas and one proposition that are useful
for the proofs of the theorems.
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Let x(t, x0) be the solution of (3) with x(0, x0) = x0. It is well-known
that (see Lloyd [31] for instance)

∂x

∂x0
(t, x0) = exp

∫ t

0

∂S

∂x

(
s, x(s, x0)

)
ds. (10)

Moreover, for the return map

H(x0) = x(1, x0),

we have

Ḣ(x0) = exp
∫ 1

0

∂S

∂x

(
t, x(t, x0)

)
dt,

Ḧ(x0) = Ḣ(x0) ·
∫ 1

0

∂2S

∂x2

(
t, x(t, x0)

) · ∂x

∂x0
(t, x0)dt,

(11)

where ˙and¨represent the first-order and second-order derivatives, respectively.
When x(t, x0) is periodic with H ′(x0) �= 1 (resp.

(
H − id

)′(x0) = · · · =
(
H − id

)(n−1)(x0) = 0 and
(
H − id

)(n)(x0) �= 0), we say that x = x(t, x0) is a
hyperbolic limit cycle (resp. a limit cycle with multiplicity n).

Firstly we have the following lemma.

Lemma 2.1. Let U =
{
(t, x)

∣
∣t ∈ [0, 1], x ∈ (

c1(t), c2(t)
)}

, where ci ∈ C∞([0, 1])⋃{+∞,−∞}, ci(0) = ci(1) and i = 1, 2.
Let F ∈ C2(U) with F (1, x) = F (0, x). Assume that

G(t, x) � ∂S

∂x
(t, x) +

∂F

∂x
(t, x) · S(t, x) +

∂F

∂t
(t, x),

where (t, x) ∈ U.

(i) If x = x(t, x0) is a periodic orbit of (3) in U , then
∫ 1

0

∂S

∂x

(
t, x(t, x0)

)
dt =

∫ 1

0

G
(
t, x(t, x0)

)
dt. (12)

(ii) Assume that E ⊆ [0, 1] is a non-empty open set. If

∂G

∂x

∣
∣
∣
∣
U

≥ 0(≤ 0),
∂G

∂x

∣
∣
∣
∣
U∩(E×R)

�= 0,

then (3) has at most 2 limit cycles in U , counted with multiplicities. In
addition:

(ii.a) If there exist two different limit cycles of (3) in U , then the one
above is unstable and the one below is stable (resp. the one above
is stable and the one below is unstable) when (∂G/∂x)|U ≥ 0 (resp.
(∂G/∂x)|U ≤ 0).

(ii.b) If there exists a limit cycle with multiplicity 2 of (3) in U , then it is
unstable from above and stable from below (resp. stable from above
and unstable from below) when (∂G/∂x)|U ≥ 0 (resp. (∂G/∂x)|U ≤
0).



47 Page 8 of 31 J. Huang and H. Liang NoDEA

Proof. Let x(t, x0) be the solution of (3) with x(0, x0) = x0. Let I ⊂ R be
the maximal interval such that

(
t, x(t, x0)

) ∈ U for (t, x0) ∈ [0, 1] × I. By
assumption, we get

∫ 1

0

(
∂F

∂x

(
t, x(t, x0)

) · S
(
t, x(t, x0)

)
+

∂F

∂t

(
t, x(t, x0)

)
)

dt

=
∫ 1

0

(
∂F

∂x

(
t, x(t, x0)

) · dx

dt
(t, x0) +

∂F

∂t

(
t, x(t, x0)

)
)

dt

= F
(
1, x(1, x0)

) − F
(
0, x(0, x0)

)

= F
(
0,H(x0)

) − F (0, x0),

where x0 ∈ I and H(x0) represents the return map of (3). Therefore,
∫ 1

0

∂S

∂x

(
t, x(t, x0)

)
dt

=
∫ 1

0

G
(
t, x(t, x0)

)
dt + F (0, x0) − F

(
0,H(x0)

)
, x0 ∈ I.

(13)

(i) Clearly, Eq. (12) is implied by (13) if x = x(t, x0) is a periodic orbit.
(ii) Define a function as

g(x0) =
∫ 1

0

G
(
t, x(t, x0)

)
dt, x0 ∈ I.

Equation (13) becomes
∫ 1

0

∂S

∂x

(
t, x(t, x0)

)
dt = g(x0) + F (0, x0) − F

(
0,H(x0)

)
, x0 ∈ I.

When x = x(t, x0) is a limit cycle in U , it follows from (11) that

Ḣ(x0) = exp g(x0),

Ḧ(x0) = exp g(x0) ·
(

ġ(x0) +
∂F

∂x0
(0, x0) · (

1 − exp g(x0)
)
)

.
(14)

In what follows we consider the case (∂G/∂x)|U ≥ 0,
(
∂G/∂x

)∣
∣
U∩(E×R)

�=
0 (it is a similar argument for the other case). Note that ∂x/∂x0 > 0 by (10).
We obtain

ġ(x0) =
∫

[0,1]\E

∂G

∂x

(
t, x(t, x0)

) · ∂x

∂x0
(t, x0)dt

+
∫

E

∂G

∂x

(
t, x(t, x0)

) · ∂x

∂x0
(t, x0)dt

> 0.

(15)

Hence, g(x0) is a strictly increasing function. In view of (14), we have:
(a) If x1 > x2 are initial values of two consecutive limit cycles in U , then

x = x(t, x1) (resp. x = x(t, x2)) is unstable (resp. stable) when it is
hyperbolic.
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(b) At most 1 limit cycle of (3) in U is non-hyperbolic. In addition, if such
limit cycle exists, then it is of multiplicity 2, unstable from above and
stable from below.
Clearly, statement (a) shows that U contains at most 2 limit cycles of (3)

if it only contains hyperbolic limit cycles.
Now we claim that U contains no other limit cycles when it contains

a non-hyperbolic one (a limit cycle of multiplicity 2). In fact, assume for a
contradiction that x = x(t, x1) and x = x(t, x2) are two consecutive limit cycles
of (3) in U , where one of them is non-hyperbolic and x1 > x2. From statement
(b), x = x(t, x1) is hyperbolic stable (resp. x = x(t, x2) is hyperbolic unstable)
if x = x(t, x2) (resp. x = x(t, x1)) is non-hyperbolic. However, statement (a)
tells us that x = x(t, x1) (resp. x = x(t, x2)) is unstable (resp. stable) when it
is hyperbolic. This shows a contradiction. As a result, our claim is valid.

Based on the above discussion, (3) has at most 2 limit cycles in U , counted
with multiplicties. In addition, statements (ii.a) and (ii.b) follows from state-
ments (a) and (b), respectively.

The proof of Lemma 2.1 is finished. �

Next we give a lemma which is essentially proved in [4, Proposition 6].

Lemma 2.2. Let L ∈ C1(R) and p ∈ C1([0, 1]). Consider differential equation

dx

dt
= p(t)L(x). (16)

The following statements hold.

(i) Suppose that
∫ 1

0
p(s)ds = 0. Then (16) has no limit cycles.

(ii) Suppose that
∫ 1

0
p(s)ds �= 0. Then an orbit x = x(t) of (16) is periodic if

and only if L
(
x(0)

)
= 0. In addition, x = x(t) is a hyperbolic limit cycle

when L
(
x(0)

)
= 0 and

(
dL/dx

)
(x(0)) �= 0.

Proof. Let x(t) be an arbitrary solution of (16). We firstly claim that for a
point t in the domain,

sgn
(
x(t) − x(0)

)
= sgn

(∫ t

0

p(s)ds

)

· sgn
(

L
(
x(0)

)
)

. (17)

In fact, if L
(
x(0)

)
= 0, then x(t) ≡ x(0). Equation (17) holds. If L

(
x(0)

) �= 0,
then L

(
x(t)

) �= 0, i.e. L
(
x(t)

)
does not change sign. We have

∫ x(t)

x(0)

dx

L(x)
=

∫ t

0

p(s)ds,

which also implies Eq. (17).

(i) According to (17), Eq. (16) has no limit cycles when
∫ 1

0
p(s)ds = 0.

(ii) Suppose that
∫ 1

0
p(s)ds �= 0. Then (17) tells us that x = x(t) is a periodic

orbit if and only if L
(
x(0)

)
= 0. Furthermore, when L

(
x(0)

)
= 0 and(

dL/dx
)
(x(0)) �= 0, the first derivative for the return map of (16) on

x(0) is
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exp
∫ 1

0

p(t)
dL

dx

(
x(0)

)
dt = exp

(
dL

dx

(
x(0)

) ·
∫ 1

0

p(t)dt

)

�= 1.

Hence, x = x(t) is a hyperbolic limit cycle. The conclusion follows. �

Recall that without further remark, in this paper x = λ1(t), x = λ2(t),
x = λ3(t) always represent three curves satisfying hypothesis (H), and ω(t)
represents the function defined in (4) (i.e. (5)), respectively. We give the rest
two lemmas and one proposition below.

Lemma 2.3. Let b1, b2, b3 be three real constants satisfying (6). If ω(t) ≡ 0 and
(bi − 1)

(
S(t, λi) − λ̇i

) ≡ 0 for i = 1, 2, 3, then the following statements hold
for (3).
(i) Each connected component of

(
[0, 1]×R

)\{
(t, λi)

∣
∣t ∈ [0, 1], i ∈ {1, 2, 3}, bi

�= 1
}

contains at most 1 limit cycle of (3), counted with multiplicity.
(ii) x = λi(t) is not semi-stable when it is a limit cycle of (3), i = 1, 2, 3.

Proof. Firstly, since ω(t) ≡ 0, we get that

d

dt

(
λ1 − λ3

λ2 − λ3

)

=
1

(λ2 − λ3)2

∣
∣
∣
∣
∣
∣

λ̇1 λ1 1
λ̇2 λ2 1
λ̇3 λ3 1

∣
∣
∣
∣
∣
∣

=
1

(λ2 − λ3)2

∣
∣
∣
∣
∣
∣

S(t, λ1) λ1 1
S(t, λ2) λ2 1
S(t, λ3) λ3 1

∣
∣
∣
∣
∣
∣

=
(λ1 − λ2)(λ1 − λ3)

λ2 − λ3
ω(t)

≡ 0,

which means that (λ1 − λ3)/(λ2 − λ3) is a constant.
Secondly, taking transformation

y =
x − λ3

λ2 − λ3
, i.e. x = λ3 + (λ2 − λ3)y, (18)

Equation (3) becomes

ẏ = S̃(t, y) =
S

(
t, λ3 + (λ2 − λ3)y

) − (
λ̇2 − λ̇3

)
y − λ̇3

λ2 − λ3
. (19)

According to hypothesis (H), the limit cycles of (3) one-to-one correspond to
the limit cycles of (19). Furthermore, we know that S̃(t, y) is a polynomial in
y of degree no more than 3, and

S̃(t, 0) =
S(t, λ3) − λ̇3

λ2 − λ3
,

S̃(t, 1) =
S(t, λ2) − λ̇2

λ2 − λ3
,

S̃

(

t,
λ1 − λ3

λ2 − λ3

)

=
S(t, λ1) − λ̇1

λ2 − λ3
+

d

dt

(
λ1 − λ3

λ2 − λ3

)

=
S(t, λ1) − λ̇1

λ2 − λ3
.

(20)
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Since b1 + b2 + b3 = 0 from (6), at least one of b1, b2, b3 is not equal to 1.
In what follows we prove the lemma in three cases, respectively.

Case 1. bi �= 1 for i = 1, 2, 3.

By assumption, S(t, λi) − λ̇i ≡ 0 for i = 1, 2, 3. Hence (20) tells us that

S̃(t, 0) = S̃(t, 1) = S̃

(

t,
λ1 − λ3

λ2 − λ3

)

≡ 0. (21)

Observe that (λ1 − λ3)/(λ2 − λ3) �= 0, 1 from hypothesis (H). S̃(t, y) can be
written as

S̃(t, y) = ã3(t) ·
(

y − λ1 − λ3

λ2 − λ3

)

(y − 1)y,

where ã3(t) is the first coefficient of S̃(t, y) in y. As a result, using Lemma
2.2, Eq. (19) has either no limit cycles, or three limit cycles y = 0, y = 1 and
y = (λ1 −λ3)/(λ2 −λ3), which are all hyperbolic. That is to say, (3) has either
no limit cycles, or three limit cycles x = λ1(t), x = λ2(t) and x = λ3(t), which
are all hyperbolic. Our assertion for Case 1 holds.

Case 2. Two of b1, b2, b3 are not equal to 1.

Without loss of generality, suppose that b1 = 1 and b2 �= 1, b3 �= 1. Then
S(t, λ2) − λ̇2 = S(t, λ3) − λ̇3 ≡ 0. Together with (4) and (6), we have
∣
∣
∣
∣
∣
∣

S(t, λ1) − λ̇1 0 0
λ̇2 λ2 1
λ̇3 λ3 1

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

S(t, λ1) − λ̇1 − b2λ̇2 − b3λ̇3 −b2λ2 − b3λ3 −b2 − b3
λ̇2 λ2 1
λ̇3 λ3 1

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

S(t, λ1) λ1 1
S(t, λ2) λ2 1
S(t, λ3) λ3 1

∣
∣
∣
∣
∣
∣

= (λ1 − λ2)(λ1 − λ3)(λ2 − λ3) · ω(t)
≡ 0,

i.e. S(t, λ1) − λ̇1 ≡ 0. Thus, (21) is also valid. Following a similar argument in
Case 1, (3) has either no limit cycles, or three limit cycles x = λ1(t), x = λ2(t)
and x = λ3(t), which are all hyperbolic. As a consequence, there exists at most
1 limit cycle of (3) in

(
[0, 1] × R

)\{
(t, λi)|t ∈ [0, 1], i ∈ {2, 3}}, counted with

multiplicity. And x = λi(t) is not semi-stable when it is a limit cycle of (3),
i = 1, 2, 3. Our assertion for Case 2 is valid.

Case 3. One of b1, b2, b3 is not equal to 1.

Without loss of generality, suppose that b1 = b2 = 1 and b3 �= 1. Then we
obtain b3 = −2 and 2λ3 = λ1 + λ2 by (6), and S(t, λ3) − λ̇3 ≡ 0.

Recalling that S̃(t, y) is a polynomial in y of degree no more than 3, it
can be written as

S̃(t, y) = ã3(t)y3 + ã2(t)y2 + ã1(t)y + ã0(t).
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From (3), (5), (19) and a direct calculation, we get

ã2(t) = (λ2 − λ3)(3a3(t)λ3 + a2(t))

= (λ2 − λ3)
(
a3(t)(λ1 + λ2 + λ3) + a2(t)

)

= (λ1 − λ2)(λ1 − λ3) · ω(t)
≡ 0,

ã0(t) = S̃(t, 0)

=
S(t, λ3) − λ̇3

λ2 − λ3

≡ 0.

Thus, (19) is reduced to ẏ = S̃(t, y) = ã3(t)y3 + ã1(t)y, which is a Bernoulli
equation. The result follows from the expression of the general solution and a
straightforward calculation.

Based on the above, (19) has at most 1 limit cycle in each connected
component of [0, 1]×(R\{0}), counted with multiplicity. And y = 0 is not semi-
stable when it is a limit cycle of (19). Applying transformation (18), Eq. (3) has
at most 1 limit cycle in each connected component of

(
[0, 1] × R

)\{
(t, λ3)

∣
∣t ∈

[0, 1]
}
, counted with multiplicity. And x = λ3(t) is not semi-stable when it is

a limit cycle of (3). Our assertion for Case 3 follows.
The proof of Lemma 2.3 is finished.

Lemma 2.4. Let b1, b2, b3 be three real constants satisfying (6). Assume that

q(t, x) =
∏

λi∈I

(x − λi), I =
{
λi

∣
∣i ∈ {1, 2, 3}, bi �= 1

}
.

Then (bi − 1) · q(t, λi) ≡ 0 for i = 1, 2, 3, and

(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)

∣
∣
∣
∣
∣
∣

q(t, λ1) λ1 1
q(t, λ2) λ2 1
q(t, λ3) λ3 1

∣
∣
∣
∣
∣
∣
≥ 0. (22)

Proof. Firstly, we have by assumption that (bi − 1) · q(t, λi) ≡ 0 for i = 1, 2, 3.
Secondly, since b1 + b2 + b3 = 0 from (6), at least one of b1, b2, b3 is not

equal to 1. Thus the proof of (22) can be split into three cases: (i) bi �= 1 for
i = 1, 2, 3. (ii) Two of b1, b2, b3 are not equal to 1. (iii) One of b1, b2, b3 are not
equal to 1. In each case (22) follows from the definition of q(t, x) and a direct
calculation. �

Before giving the final proposition of this section, we need a little bit
more preparation.

Let f(t, x) be a function defined as follows:

f(t, x) = (x − λ1)(x − λ2)(x − λ3). (23)
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We know by (3) that S(t, x) − a3(t)f(t, x) is a polynomial in x of degree
no more than 2. According to Lagrange interpolation formula,

S(t, x) = a3(t)f(t, x) +
3∑

i=1

⎛

⎝ S(t, λi)∏
j �=i(λi − λj)

·
∏

j �=i

(x − λj)

⎞

⎠ . (24)

Hence, we get

∂S

∂x
(t, x) = a3(t) · ∂f

∂x
(t, x)

+
(

S(t, λ1)(λ2 − λ3) − S(t, λ2)(λ1 − λ3) + S(t, λ3)(λ1 − λ2)
(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)

)

· 2x

−
3∑

i=1

∑
j �=i λj

∏
j �=i(λi − λj)

· S(t, λi)

= a3(t) · ∂f

∂x
(t, x) +

1
(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)

∣
∣
∣
∣
∣
∣

S(t, λ1) λ1 1
S(t, λ2) λ2 1
S(t, λ3) λ3 1

∣
∣
∣
∣
∣
∣
· 2x

−
3∑

i=1

∑
j �=i λj

∏
j �=i(λi − λj)

· S(t, λi)

= a3(t) · ∂f

∂x
(t, x) + 2ω(t) · x −

3∑

i=1

∑
j �=i λj

∏
j �=i(λi − λj)

· S(t, λi). (25)

Define λ0 = λ1 + λ2 + λ3 and

Fi(t, x) = ln |x − λi| , (t, x) ∈ (
[0, 1] × R

)\{
(t, λi)

∣
∣t ∈ [0, 1]

}
, i = 1, 2, 3.

(26)

We have by (5) that ω(t) = a3(t)λ0 + a2(t) and

∂Fi

∂x
(t, x) · S(t, x) +

∂Fi

∂t
(t, x)

=
S(t, x) − λ̇i

x − λi

= a3(t)x2 +
(
a3(t)λi + a2(t)

)
x

+
(
a3(t)λ2

i + a2(t)λi + a1(t)
)

+
S(t, λi) − λ̇i

x − λi

= a3(t) (x − λ0 + λi) x + ω(t)x

+
(
a3(t)λ2

i + a2(t)λi + a1(t)
)

+
S(t, λi) − λ̇i

x − λi
. (27)

Now let b1, b2, b3 be three real constants satisfying (6). Taking

F (t, x) = (b1 − 1) · F1(t, x) + (b2 − 1) · F2(t, x) + (b3 − 1) · F3(t, x),

(t, x) ∈ (
[0, 1] × R

)\{
(t, λi)

∣
∣t ∈ [0, 1], i ∈ {1, 2, 3}, bi �= 1

} (28)

in Lemma 2.1, we obtain the following proposition.
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Proposition 2.5. Let b1, b2, b3 be three real constants satisfying (6). If either

(I.1) ω(t) ≥ 0 and (bi − 1)(S(t, λi) − λ̇i) ≥ 0 for i = 1, 2, 3,
or
(I.2) ω(t) ≤ 0 and (bi − 1)(S(t, λi) − λ̇i) ≤ 0 for i = 1, 2, 3,
then the following statements hold.

(i) Suppose that U is a connected component of
(
[0, 1] × R

)\{
(t, λi)

∣
∣t ∈

[0, 1], i ∈ {1, 2, 3}, bi �= 1
}
. Then U contains at most 2 limit cycles of

(3), counted with multiplicities. In addition:
(i.a) If there exist two different limit cycles of (3) in U , then the one

above is stable and the one below is unstable (resp. the one above is
unstable and the one below is stable) when (I.1) (resp. (I.2)) holds.

(i.b) If there exists a limit cycle with multiplicity 2 of (3) in U , then it
is stable from above and unstable from below (resp. unstable from
above and stable from below) when (I.1) (resp. (I.2)) holds.

(ii) Suppose that U1 and U2 are two consecutive connected components of(
[0, 1] × R

)\{
(t, λi)

∣
∣t ∈ [0, 1], i ∈ {1, 2, 3}, bi �= 1

}
, with a limit cycle

x = λ(t) of (3) being common boundary.
(ii.a) Either U1 or U2 contains at most 1 limit cycle of (3), counted with

multiplicity.
(ii.b) If U1 ∪ U2 contains 3 limit cycles (counted with multiplicities) of

(3), then x = λ(t) is not semi-stable.
(ii.c) If each of U1 and U2 contains 1 limit cycle (counted with multiplic-

ity) of (3) and x = λ(t) is semi-stable, then x = λ(t) is unstable
from above and stable from below (resp. stable from above and un-
stable from below) when (I.1) (resp. (I.2)) holds.

Proof. Denote by

E = [0, 1]\{
t
∣
∣t ∈ [0, 1], ω(t) = 0 and (bi − 1)(S(t, λi) − λ̇i) = 0 for all i = 1, 2, 3

}
,

V =
(
[0, 1] × R

)\{
(t, λi)

∣
∣t ∈ [0, 1], i ∈ {1, 2, 3}, bi �= 1

}
.

Firstly, according to Lemma 2.3, we know that statements (i) and (ii) hold if
E = φ.

In what follows we consider the case E �= φ. We will only give the proof
for case (I.1) because case (I.2) can be dealt with in an analogous way.

Take λ0 = λ1 + λ2 + λ3. Let f(t, x) be defined as in (23). Let F1(t, x),
F2(t, x), F3(t, x) be defined as in (26) and F (t, x) be defined as in (28), re-
spectively. Substituting F (t, x) in Lemma 2.1, it follows from (25) and (27)
that

∂G

∂x
(t, x) =

∂2S

∂x2
(t, x) +

∂2F

∂x2
(t, x) · S(t, x) +

∂F

∂x
(t, x) · ∂S

∂x
(t, x) +

∂2F

∂t∂x
(t, x)

= a3(t) · ∂2f

∂x2
(t, x) + 2ω(t)

+
3∑

i=1

(bi − 1)

(

a3(t) (2x − λ0 + λi) + ω(t) − S(t, λi) − λ̇i

(x − λi)2

)
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= a3(t) · (
6x − 2λ0

)
+ 2ω(t)

+
3∑

i=1

(bi − 1)

(

a3(t) (2x − λ0 + λi) + ω(t) − S(t, λi) − λ̇i

(x − λi)2

)

= 2

(
3∑

i=1

bi

)

a3(t) · x +

(
3∑

i=1

biλi −
3∑

i=1

biλ0

)

a3(t)

−
(

1 −
3∑

i=1

bi

)

ω(t) −
3∑

i=1

(bi − 1) · S(t, λi) − λ̇i

(x − λi)2
.

Since (6) holds from assumption, we get

∂G

∂x
(t, x) = −ω(t) −

3∑

i=1

(bi − 1)
(
S(t, λi) − λ̇i

)

(x − λi)2
, (29)

where (t, x) ∈ V . As a result,

∂G

∂x

∣
∣
∣
∣
V

≤ 0,
∂G

∂x

∣
∣
∣
∣
V ∩(E×R)

�= 0. (30)

(i) Note that U is a connected component of V . By means of (30) and
statement (ii) of Lemma 2.1, U contains at most 2 limit cycles of (3),
counted with multiplicities. Furthermore, if this upper bound is achieved,
then statements (i.a) and (i.b) are valid.

(ii) By assumption, we suppose U1 ⊂ {(t, x)|t ∈ [0, 1], x > λ(t)} and U2 ⊂
{(t, x)|t ∈ [0, 1], x < λ(t)} for convenience.

Now consider a perturbation of (3)

ẋ = Sε(t, x) = S(t, x) + ε · q(t, x), (31)

where

q(t, x) =
∏

λi∈I

(x − λi), I =
{
λi

∣
∣i ∈ {1, 2, 3}, bi �= 1

}
.

We know that Sε(t, x) is a polynomial in x of degree no more than 3, i.e.
(31) is of the form (3). Recall that we suppose (I.1) holds for (3). For ε ≥ 0,
it follows from (4) and Lemma 2.4 that

(bi − 1)
(
Sε(t, λi) − λ̇i

)
= (bi − 1)

(
S(t, λi) − λ̇i

) ≥ 0, i = 1, 2, 3,

and
∣
∣
∣
∣
∣
∣

Sε(t, λ1) λ1 1
Sε(t, λ2) λ2 1
Sε(t, λ3) λ3 1

∣
∣
∣
∣
∣
∣

(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)
=

∣
∣
∣
∣
∣
∣

S(t, λ1) λ1 1
S(t, λ2) λ2 1
S(t, λ3) λ3 1

∣
∣
∣
∣
∣
∣
+ ε

∣
∣
∣
∣
∣
∣

q(t, λ1) λ1 1
q(t, λ2) λ2 1
q(t, λ3) λ3 1

∣
∣
∣
∣
∣
∣

(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)
≥ ω(t) ≥ 0.

Hence, (31)|ε≥0 also satisfies condition (I.1). Using statement (i), each of U1

and U2 contains at most 2 limit cycles of (31)|ε≥0, counted with multiplicities.
In addition:
(a) If U1 (U2) contains two different limit cycles of (31)|ε≥0, then the one

above is stable and the one below is unstable.
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(b) If U1 (U2) contains one limit cycle with multiplicity 2 of (31)|ε≥0, then
it is stable from above and unstable from below.

Since x = λ(t) is a common boundary of U1 and U2 as well as a limit
cycle of (3), we have λ ∈ I and S(t, λ)− λ̇ = 0. Therefore, λ is a simple zero of
q in x, and Sε(t, λ) − λ̇ = 0 (i.e. x = λ(t) is a limit cycle of (31)). This implies
that

sgn

(
∂q

∂x

∣
∣
∣
∣
x=λ(t)

)

= sgn
(
q|U1

)
= −sgn

(
q|U2

) �= 0, (32)

and

Ḣε

(
λ(0)

)
= exp

∫ 1

0

(
∂S

∂x

(
t, λ(t)

)
+ ε

∂q

∂x

(
t, λ(t)

)
)

dt

= Ḣ0

(
λ(0)

) · exp
∫ 1

0

ε
∂q

∂x

(
t, λ(t)

)
dt,

(33)

where Hε is the return map of (31). As a consequence, for ε > 0,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ḣε

(
λ(0)

)
> 1, Sε|U1 > S|U1 , if Ḣ0

(
λ(0)

)
= 1,

∂q

∂x

∣
∣
∣
∣
x=λ(t)

> 0,

Ḣε

(
λ(0)

)
< 1, Sε|U2 > S|U2 , if Ḣ0

(
λ(0)

)
= 1,

∂q

∂x

∣
∣
∣
∣
x=λ(t)

< 0.

(34)

In order to prove statement (ii.a), we assume to the contrary that each
of U1 and U2 contains 2 limit cycles of (3) (i.e. (31)|ε=0), counted with mul-
tiplicities. By statements (a) and (b), x = λ(t) is a semi-stable limit cycle of
(31)|ε=0, stable from above and unstable from below. Furthermore, together
with (34), there exist at least 3 limit cycles of (31) in U1 (resp. U2) as ε > 0
sufficiently small and (∂q/∂x)|x=λ(t) > 0 (resp. (∂q/∂x)|x=λ(t) < 0), where one
of them is near x = λ(t). This shows a contradiction. As a result, statement
(ii.a) holds.

Suppose that U1∪U2 contains 3 limit cycles (counted with multiplicities)
of (3) (i.e. (31)|ε=0). Then one of them contains two limit cycles and the other
one contains one. Assume for a contradiction that x = λ(t) is semi-stable for
(3). By statements (a) and (b), it is stable from above and unstable from
below. In view of (34) again, for ε > 0 sufficiently small we obtain:

(c) If U1 contains 1 limit cycle (counted with multiplicity) of (3) and
(∂q/∂x)|x=λ(t) > 0, then U1 contains at least 2 limit cycles of (31), where
the one below is stable from below and near x = λ(t).

(d) If U1 contains 2 limit cycles (counted with multiplicities) of (3) and
(∂q/∂x)|x=λ(t) > 0, then U1 contains at least 3 limit cycles of (31).

(e) If U1 contains 1 limit cycle (counted with multiplicity) of (3) and
(∂q/∂x)|x=λ(t) < 0, then U2 contains at least 3 limit cycles of (31).

(f) If U1 contains 2 limit cycles (counted with multiplicities) of (3) and
(∂q/∂x)|x=λ(t) < 0, then U2 contains at least 2 limit cycles of (31), where
the one above is unstable from above and near x = λ(t).
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However, recall that each of U1 and U2 contains at most 2 limit cycles
of (31)|ε>0, counted with multiplicities. This contradicts to statements (d)
and (e). And the stabilities of limit cycles of (31)|ε>0 shown in statement
(a) contradict to those shown in statements (c) and (f). Based on the above,
x = λ(t) is not semi-stable. Statement (ii.b) follows.

Finally, suppose that each of U1 and U2 contains 1 limit cycles (counted
with multiplicity) of (3) and x = λ(t) is semi-stable. Assume to the contrary
that x = λ(t) is stable from above and unstable from below. Then according
to (34), the following statements are valid as ε > 0 sufficiently small.
(g) If (∂q/∂x)|x=λ(t) > 0, then U1 contains 2 limit cycles of (31), where the

one below is stable and near x = λ(t).
(h) If (∂q/∂x)|x=λ(t) < 0, then U2 contains 2 limit cycles of (31), where the

one above is unstable and near x = λ(t).
However, these contradict to the stabilities of limit cycles of (31)|ε>0 shown in
statement (a). As a consequence, x = λ(t) is unstable from above and stable
from below. Statement (ii.c) holds.

The proof of Proposition 2.5 is finished. �

3. Proof of Theorem 1.1

By virtue of the results given in the previous sections, we now begin to prove
Theorem 1.1.

Proof of Theorem 1.1. Firstly, denote by

V =
(
[0, 1] × R

)\{
(t, λi)

∣
∣t ∈ [0, 1], i ∈ {1, 2, 3}, bi �= 1

}
.

From assumption and statement (i) of Proposition 2.5, (3) has at most 2
limit cycles in each connected component of V , counted with multiplicities.
Statement (i) holds.

Secondly, since b1 + b2 + b3 = 0 from (6), at least one of b1, b2, b3 is not
equal to 1. Hence n ∈ {1, 2, 3} by assumption. In what follows we divide the
proof of statement (ii) into three cases.

Case 1. n = 1.
Without loss of generality, suppose that b1 �= 1 and b2 = b3 = 1. Then V has
two connected components, with x = λ1(t) being common boundary.

When x = λ1(t) is not a limit cycle, all the limit cycles of (3) are located
in V . Hence their number is at most 2 × 2 = 2(n + 1).

When x = λ1(t) is a limit cycle, statement (ii.a) of Proposition 2.5 tells
us that one of the connected components of V contains at most 1 limit cycle
of (3), counted with multiplicity. This implies that the number of limit cycles
of (3) is no more than 1 + 1 + 2 = 2(n + 1).

Case 2. n = 2.
Suppose that b1 �= 1, b2 �= 1 and b3 = 1, without loss of generality. Then V

has three consecutive connected components U1, U2 and U3. For convenience,
we suppose that x = λ1(t) (resp. x = λ2(t)) is the common boundary of U1

and U2 (resp. U2 and U3).
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When neither x = λ1(t) nor x = λ2(t) is a limit cycle, all the limit cycles
of (3) are located in V . Thus their number is at most 2 × 3 = 2(n + 1).

When one of x = λ1(t) and x = λ2(t) is a limit cycle and the other one
is not, it follows from statement (ii.a) of Proposition 2.5 that at least one of
U1, U2 and U3 contains at most 1 limit cycle of (3), counted with multiplicity.
Therefore (3) has no more than 1 + 1 + 2 + 2 = 2(n + 1) limit cycles.

When x = λ1(t) and x = λ2(t) are both limit cycles, the estimate for the
number of limit cycles of (3) is obtained by the following subcases.

(2.a) Both U1 and U3 contain at most 1 limit cycle (counted with multiplicity),
respectively. Then (3) has at most 1 + 1 + 1 + 1 + 2 = 2(n + 1) limit
cycles.

(2.b) One of U1 and U3 contains at most 1 limit cycle (counted with multi-
plicity) and the other one contains 2. Then statement (ii.a) of Proposi-
tion 2.5 tells us that U2 contains at most 1 limit cycle, counted with
multiplicity. Hence, the number of limit cycles is still no more than
1 + 1 + 1 + 1 + 2 = 2(n + 1).

(2.c) Both U1 and U3 contain 2 limit cycles (counted with multiplicities),
respectively. Then from statements (i.a) and (i.b) of Proposition 2.5, the
number of limit cycles (counted with multiplicities) in U2∪{x = λ1(t)}∪
{x = λ2(t)} is even. Moreover, using statement (ii.a) of Proposition 2.5,
U2 contains at most 1 limit cycle, counted with multiplicity. Together
with statement (ii.b) of Proposition 2.5, the multiplicities of x = λ1(t)
and x = λ2(t) are both odd when this upper bound is exactly achieved.
Thus, (3) has no limit cycles in U2, which means that the total number
of limit cycles is no more than 1 + 1 + 2 + 2 = 2(n + 1).

Case 3. n = 3.

By assumption, V has four consecutive connected components U1, U2, U3 and
U4. For convenience, we suppose x = λ1(t), x = λ2(t) and x = λ3(t) are
common boundaries of U1 and U2, U2 and U3, and U3 and U4, respectively.

When none of x = λ1(t), x = λ2(t) and x = λ3(t) are limit cycles, the
limit cycles of (3) only appear in V . Hence their number is no more than
2 × 4 = 2(n + 1).

When one of x = λ1(t), x = λ2(t) and x = λ3(t) is a limit cycle and the
other two are not, it follows from statement (ii.a) of Proposition 2.5 that at
least one of U1, U2, U3 and U4 contains at most 1 limit cycle of (3), counted
with multiplicity. Thus (3) has at most 1+1+2+2+2 = 2(n+1) limit cycles.

When two of x = λ1(t), x = λ2(t) and x = λ3(t) are limit cycles and the
rest one is not, the estimate for the number of limit cycles of (3) can be known
by the following subcases.

(3.a) The two limit cycles in {x = λi(t)|i = 1, 2, 3} are consecutive. Without
loss of generality, suppose that they are x = λ1(t) and x = λ2(t). Then
following a similar argument in statements (2.a), (2.b) and (2.c), there
exist at most 6 limit cycles in U1 ∪ U2 ∪ U3 ∪ {x = λi(t)|i = 1, 2}. Recall
that U4 has at most 2 limit cycles. The number of limit cycles is no more
than 6 + 2 = 2(n + 1).
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(3.b) The two limit cycles in {x = λi(t)|i = 1, 2, 3} are not consecutive, i.e.
they are x = λ1(t) and x = λ3(t). Then according to statement (ii.a)
of Proposition 2.5, at least two of U1, U2, U3 and U4 contain at most 1
limit cycle (counted with multiplicity), respectively. Thus, the number
of limit cycles is no more than 1 + 1 + 1 + 1 + 2 + 2 = 2(n + 1).

When x = λ1(t), x = λ2(t) and x = λ3(t) are all limit cycles, we get the
estimate for the number of limit cycles of (3) by the following subcases.

(3.c) Either U1 or U4 contains at most 1 limit cycle, counted with multiplicity.
Suppose that U4 does, without loss of generality. Then again following
a similar argument in cases (2.a), (2.b) and (2.c), there exist at most 6
limit cycles in U1 ∪ U2 ∪ U3 ∪ {x = λi(t)|i = 1, 2}. The number of limit
cycles of (3) is no more than 6 + 1 + 1 = 2(n + 1).

(3.d) Each of U1 and U4 contains 2 limit cycles, and U2 ∪U3 contain at most 1
limit cycle, counted with multiplicities. Then the number of limit cycles
is no more than 1 + 1 + 1 + 2 + 1 + 2 = 2(n + 1).

(3.e) Each of U1 and U4 contains 2 limit cycles, and U2 ∪ U3 contains at least
2 limit cycles, counted with multiplicities. Then according to case (ii.a)
of Proposition 2.5, each of U2 and U3 contains exactly 1 limit cycle,
counted with multiplicity. Together with case (ii.b) of Proposition 2.5,
both numbers of limit cycles (counted with multiplicities) in U1∪U2∪{x =
λ1(t)} and U3 ∪ U4 ∪ {x = λ3(t)} are even. Hence, using cases (i.a) and
(i.b) of Proposition 2.5 for U1 and U4, the stability of x = λ2(t) can be
known. More precisely:

– When ω(t) ≥ 0 and (bi−1)
(
S(t, λi)−λ̇i

) ≥ 0 for i = 1, 2, 3, x = λ2(t)
is semi-stable, stable from above and unstable from below.

– When ω(t) ≤ 0 and (bi−1)
(
S(t, λi)−λ̇i

) ≤ 0 for i = 1, 2, 3, x = λ2(t)
is semi-stable, unstable from above and stable from below.

However, both of these two cases contradict to case (ii.c) of Proposition
2.5. As a result, this subcase (3.e) does not exist.

Based on the argument for the above three cases, statement (ii) holds.
The proof of Theorem 1.1 is finished. �

4. Proofs of Theorem 1.2 and Corollary 1.4

In this section we mainly prove Theorem 1.2 and Corollary 1.4. We also give
an example, in which all the coefficients with respect to x change signs, to
show the application of our result.

Proof of Theorem 1.2. Take b1 = b2 = b3 = 0. Then b1, b2 and b3 satisfy (6).
In addition, (bi − 1)

(
S(t, λi) − λ̇i

)
= −(

S(t, λi) − λ̇i

)
, i = 1, 2, 3. Thus, our

assertion immediately follows from Theorem 1.1.
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Example 1. Consider equation

dx

dt
= S(t, x)

= −2π

(

cos(2πt)x3 +
(
1 − 3 cos(2πt) − 2 cos2(2πt)

)
x2

− (
2 + 4 cos(2πt) − 4 cos2(2πt) − cos3(2πt)

)
x

− (
6 − 6 cos(2πt) + cos3(2πt)

)
)

. (35)

We know that (35) is of the form (3) with

a3(t) = −2π cos(2πt), a2(t) = −2π
(
1 − 3 cos(2πt) − 2 cos2(2πt)

)
.

If we take

λ1(t) = 1, λ2(t) = 3 + cos(2πt), λ3(t) = −1 + cos(2πt),

then it follows from (5) that

ω(t) = a3(t) · (
λ1 + λ2 + λ3

)
+ a2(t) = −2π < 0.

Furthermore, a direct calculation shows that

S(t, λ1) = 2π
(
7 − 2 cos2(2πt)

)
,

S(t, λ2) = 2π
(
3 + 2 cos(2πt)

)
,

S(t, λ3) = 2π
(
3 − 2 cos(2πt)

)
,

which implies that

S(t, λ1) − λ̇1 = 2π
(
7 − 2 cos2(2πt)

)
> 0,

S(t, λ2) − λ̇2 = 2π
(
3 + 2 cos(2πt) + sin(2πt)

)
> 0,

S(t, λ3) − λ̇3 = 2π
(
3 − 2 cos(2πt) + sin(2πt)

)
> 0.

According to Theorem 1.2, the number of limit cycles of (35) is no more than
8.

Remark 4.1. We emphasize that Eq. (35) is an Abel equation which has no
coefficients with respect to x keeping signs.

Example 2. Consider equation

dx

dt
= S(t, x) = a3(t)

(
x2 − 1

)
x + ε

(
−αx2 + α + βe2A3(t)

)
, (36)

where α, β > 0, a3 ∈ C∞([0, 1]) and A3(t) =
∫ t

0
a3(s)ds with A3(1) = 0. If we

take λ1(t) = 1, λ2(t) = 0 and λ3(t) = −1, then

ω(t) = −εα, S(t, λ1) = S(t, λ3) = εβe2A3 , S(t, λ2) = ε
(
α + βe2A3

)
.

From Theorem 1.2, Eq. (36) has at most 8 limit cycles when ε �= 0.
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In the following we show that there exist some equations which are of the
form (36) with at least 4 limit cycles as ε �= 0 small enough.

Let us regard (36) as a perturbation of (36)ε=0, and ε is the small
perturbation parameter. It is not hard to know that the first integral and
the solution of (36)ε=0 can be written in

H(t, x) = e−2A3

(

1 − 1
x2

)

and x = ± (
1 − he2A3

)−1/2
, (37)

respectively, where h ≤ mint∈[0,1]

{
e−2A3

}
:= hr. Moreover, the solutions well

defined in [0,1] are all periodic due to A3(1) = 0. Thus, when ε �= 0 is small
enough, using the first order analysis (about ε), the number of limit cycles
bifurcated from the family of periodic solutions, is exactly the twice of number
of simple zeros of the following function:

Φ(h) =
∫ 1

0

(
∂H
∂x

· (−αx2 + α + βe2A3
)
)∣

∣
∣
∣
H(t,x)=h

dt

= ∓2
(

αh

∫ 1

0

(
1 − he2A3

)1/2
dt − β

∫ 1

0

(
1 − he2A3

)3/2
dt

)

, h ∈ (0, hr).

(38)

In fact, by (37) each simple zero of Φ implies two symmetric solutions of
(36)ε=0, which give rise to two limit cycles of (36)ε�=0 that tend to these two
solutions respectively as ε goes to 0. For a similar argument see [20].

Now denote by

Jk,η(h) =
∫ 1

0

ekA3
(
1 − he2A3

)η
dt, k ∈ Z, η ∈ R.

Then Φ(h) = ∓2
(
α · hJ0,1/2 − β · J0,3/2

)
. One can check that

J̇k,η = −ηJk+2,η−1,

Jk,η = Jk,η−1 − hJk+2,η−1 = Jk,η−2 − 2hJk+2,η−2 + h2Jk+4,η−2.

Hence, the Wronskian determinant for hJ0,1/2 and J0,3/2 is

W (hJ0,1/2, J0,3/2)

=

∣
∣
∣
∣
∣

hJ0,1/2 J0,3/2

J0,1/2 − 1
2
hJ2,−1/2 −3

2
J2,1/2

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

hJ0,−1/2 − h2J2,−1/2 J0,−1/2 − 2hJ2,−1/2 + h2J4,−1/2

J0,−1/2 − 3
2
hJ2,−1/2 −3

2
J2,−1/2 +

3
2
hJ4,−1/2

∣
∣
∣
∣
∣

= − (
J0,−1/2 − hJ2,−1/2

)2 +
1
2
h2

(
J0,−1/2 · J4,−1/2 − J2

2,−1/2

)

= −J2
0,1/2 +

1
2
h2

(
J0,−1/2 · J4,−1/2 − J2

2,−1/2

)
. (39)

We have the following proposition.
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Proposition 4.2. Suppose there exists h0 ∈ (0, hr) such that W (hJ0,1/2,
J0,3/2)|h=h0 > 0. Then there exist α, β > 0 such that Φ has at least 2 pos-
itive simple zeros. Therefore Eq. (36) has at least 4 limit cycles as ε �= 0
sufficiently small.

Proof. Firstly, since J0,3/2 > 0, we get

Φ(h) = ∓2α · J0,3/2

(
hJ0,1/2

J0,3/2
− β

α

)

,

d

dh

(
hJ0,1/2

J0,3/2

)

= −W (hJ0,1/2, J0,3/2)
J2
0,3/2

.

Secondly, due to (39), W (hJ0,1/2, J0,3/2)|h=0 < 0. Together with assump-
tion, hJ0,1/2/J0,3/2 has a local maximum in the interval (0, h0). Observe that
hJ0,1/2/J0,3/2 is always positive. Consequently, there exist fixed α, β > 0 such
that hJ0,1/2/J0,3/2 −β/α (i.e. Φ) has at least 2 positive simple zeros in (0, h0).
From the previous mention, the conclusion follows. �

We would like to show a concrete example. Take

h0 =
3
4
, A3(t) =

1
2

ln

⎛

⎝4
3

− 4
3

(

2(1 − 2μ)
(

t − 1
2

)2

+ μ

)2
⎞

⎠ , 0 < μ <
1
2
.

Then A3(0) = A3(1) = 0, and one can check by (39) that

W (hJ0,1/2, J0,3/2)|h=3/4 =
128μ3 + 32μ2 + 12μ + 5

280
(
(2 − 4μ)μ

)1/2

· arctan
(

1
2μ

− 1
)1/2

− (1 + 4μ)2

24
.

So the assumption of Proposition 4.2 holds as μ > 0 is sufficiently small.
For instance, W (hJ0,1/2, J0,3/2)|h=3/4 = 1.9244 > 0 when μ = 10−4 (in this
situation we have h0 = 3/4 ∈ (0, hr) = (0, 25 000 000/33 333 333)). That is
to say, there exactly exists an equation of the form (36) with at least 4 limit
cycles.

To our knowledge, for Theorem 1.2, the example with 3 limit cycles is
easy to find (such as an equation with constant coefficients). However, up till
now, even if there is no restriction for Eq. (3), only some special cases with
at least 4 limit cycles are known, because they all come from the bifurcation
studies and the calculations are very difficult. This is the reason that we can
only find the example which has 4 limit cycles.

Nevertheless, such example is still very significant, because in the follow-
ing we can prove Corollary 1.4 with its help. This shows that the upper bound
appearing in Theorem 1.2 seems not so rough.
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Proof of Corollary 1.4. By assumption, sgn(a0(t)) = −sgn(a2(t)) �= 0. Hence
there exists a small constant λ0 > 0, such that

sgn
(
a3(t) · λ0 + a2(t)

)
= sgn(a2(t)),

sgn
(
S(t, x)

)
= sgn

(
a3(t)x3 + a2(t)x2 + a1(t)x + a0(t)

)

= sgn(a0(t))

= −sgn(a2(t)), (40)

where x ∈ (0, λ0).
Now define three constant functions λ1(t) = λ0/6, λ2(t) = λ0/3 and

λ3(t) = λ0/2. It follows from (40) that

sgn
(
a3(t) · (λ1 + λ2 + λ3) + a2(t)

)
= sgn(a2(t)),

sgn
(
S(t, λi) − λ̇i

)
= sgn

(
S(t, λi)

)
= −sgn(a2(t)), i = 1, 2, 3.

Together with (5), we know that Eq. (3) satisfies the assumption of Theorem
1.2. As a consequence, each region of [0, 1]× (−∞, λ1), [0, 1]× (λ1, λ2), [0, 1]×
(λ2, λ3) and [0, 1] × (λ3,+∞) contains at most 2 limit cycles (counted with
multiplicities) of (3).

Observe that from the second equality in (40), neither [0, 1]×(λ1, λ2) nor
[0, 1] × (λ2, λ3) contains limit cycles of (3). For the same reason, all of x = λ1,
x = λ2 and x = λ3 are not limit cycles of (3).

Based on the above, (3) has at most 4 limit cycles, counted with mul-
tiplicities. We can use Eq. (36) and Proposition 4.2 to show that such upper
bound is sharp. In fact, when ε �= 0, a2(t)a0(t) = −ε2α

(
α+βe2A3

)
< 0, which

satisfies the assumption of the corollary. On the other hand, the previous ar-
gument tells us that there exists an example in which the equation has exactly
4 limit cycles. The conclusion follows. �

5. Proofs of Theorem 1.6 and Corollary 1.7

At the beginning of this section, we give the proof of Theorem 1.6.

Proof of Theorem 1.6. By assumption, let b1 = b − 1, b2 = −b and b3 = 1. It
is easy to check that b1 + b2 + b3 = 0 and

b1λ1 + b2λ2 + b3λ3 = λ1 ·
(

λ1 − λ3

λ1 − λ2
− 1

)

− λ2 · λ1 − λ3

λ1 − λ2
+ λ3 = 0.

Hence, b1, b2 and b3 are three constants satisfying (6). Moreover,

(b1 − 1)
(
S(t, λ1) − λ̇1

)
= (b − 2)

(
S(t, λ1) − λ̇1

)
,

(b2 − 1)
(
S(t, λ2) − λ̇2

)
= −(b + 1)

(
S(t, λ2) − λ̇2

)
,

(b3 − 1)
(
S(t, λ1) − λ̇1

)
= 0.

Thus, according to assumption and Theorem 1.1, (3) has at most
(a) 2 limit cycles in each connected component of

(
[0, 1] × R

)\{
(t, λi)

∣
∣t ∈

[0, 1], i ∈ {1, 2}, bi �= 1
}
, counted with multiplicities.
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(b) 2(n + 1) limit cycles on [0, 1] ×R, where n = #{bi|i ∈ {1, 2}, bi �= 1} and
# represents the cardinality of a set.

Clearly,
(
[0, 1] × R

)\{
(t, λi)

∣
∣t ∈ [0, 1], i = 1, 2

} ⊆ (
[0, 1] × R

)\{
(t, λi)

∣
∣t ∈

[0, 1], i ∈ {1, 2}, bi �= 1
}
, and n ≤ 2. We therefore obtain statements (i) and

(ii) of the theorem. �

Now we are in position to prove Corollary 1.7.

Proof of Corollary 1.7. Firstly, define three constant functions

λ1(t) = 0, λ2(t) = κ2, λ3(t) = κ1 − κ2. (41)

It is clear that λ1, λ2 and λ3 satisfy hypothesis (H), and

b � λ1 − λ3

λ1 − λ2
=

κ1

κ2
− 1 ∈ R. (42)

Secondly, Eq. (7) is of the form (3). Denote by S(t, x) = a3(t)x3 +
a2(t)x2 + a1(t)x. It follows from (41) and (42) that

(b − 2)
(
S(t, λ1) − λ̇1

)
= (b − 2) · S(t, 0) = 0,

(b + 1)
(
S(t, λ2) − λ̇2

)
= (b + 1) · S(t, κ2) = κ1

(
a3(t)κ2

2 + a2(t)κ2 + a1(t)
)
.

In addition, let ω(t) be defined as in (4) (i.e. (5)). Then

ω(t) = a3(t) · (
λ1 + λ2 + λ3

)
+ a2(t) = a3(t)κ1 + a2(t).

From assumption,

sgn
(

(b + 1)
(
S(t, λ2) − λ̇2

) )

= −sgn
(
ω(t)

) �= 0.

As a result, we know by Theorem 1.6 that Eq. (7) has at most 6 limit
cycles. �

Example 3. Consider equation

dx

dt
= 2 cos(2πt)x3 +

(
1 − 2 cos(2πt)

)
x2 − (

1 + 4 cos(2πt)
)
x. (43)

Then (43) is of the form (7) with

a3(t)=2 cos(2πt), a2(t)=1 − 2 cos(2πt), a1(t)=−(
1 + 4 cos(2πt)

)
.

Taking κ1 = 1 and κ2 = −1, we have

a3(t)κ2
1 + a2(t)κ1 = 1 > 0,

a3(t)κ2
2 + a2(t)κ2 + a1(t) = −2 < 0.

According to Corollary 1.7, (43) has at most 6 limit cycles.
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6. Application on planar polynomial system with homogeneous
nonlinearities

In this final section, we apply our theorems to study the limit cycles for the
planar polynomial system (8) which has been extensively studied by a large
number of authors. Now the proof of Proposition 1.8 is given below.

Proof of Proposition 1.8. Firstly, system (8) in polar coordinates can be writ-
ten in the form

⎧
⎪⎨

⎪⎩

dr

dt
= ar + rnϕ(θ),

dθ

dt
= 1 + rn−1ψ(θ),

(44)

where ϕ(θ) and ψ(θ) are defined as in (9).
It is known that the limit cycles surrounding the origin of system (8)

do not intersect the curve 1 + rn−1ψ(θ) = 0 (see Carbonell and Llibre [13]).
Therefore, these limit cycles can be investigated by equation

dr

dθ
=

ar + rnϕ(θ)
1 + rn−1ψ(θ)

, θ ∈ [0, 2π]. (45)

Furthermore, using the transformation introduced by Cherkas [14]

ρ =
rn−1

1 + rn−1ψ(θ)
, θ = 2πτ, (46)

Equation (45) becomes

dρ

dτ
= S(τ, ρ) = a3

(
θ(τ)

)
ρ3 + a2

(
θ(τ)

)
ρ2 + a1

(
θ(τ)

)
ρ, τ ∈ [0, 1], (47)

where
a3(θ) = 2(n − 1)π · ψ(θ)

(
aψ(θ) − ϕ(θ)

)
,

a2(θ) = 2(n − 1)π · (
ϕ(θ) − 2aψ(θ)

) − 2πψ̇(θ),

a1(θ) = 2a(n − 1)π.

(48)

We claim that ψ(θ) �= 0. In fact, since ψ is differentiable and periodic,
there exist θmax, θmin ∈ [0, 2π] such that

ψ(θmax) = max
θ∈[0,2π]

{ψ(θ)}, ψ(θmin) = min
θ∈[0,2π]

{ψ(θ)}, ψ̇(θmax) = ψ̇(θmin) = 0.

From assumption,

(n − 1)aψ(θmax) = (n − 1)aψ(θmax) + ψ̇(θmax) �= 0,

(n − 1)aψ(θmin) = (n − 1)aψ(θmin) + ψ̇(θmin) �= 0,

which implies that ψ(θmax) �= 0, ψ(θmin) �= 0 and a �= 0. Thus, sgn
(
ψ(θmax)

)
=

sgn
(
ψ(θmin)

) �= 0 (otherwise there exists θ0 ∈ [0, 2π] satisfying ψ̇(θ0) + (n −
1)aψ(θ0) = 0). We know ψ(θ) �= 0.

We also emphasize that the limit cycles of system (8) in polar coordinates
are all located in region [0, 2π]×R

+. And transformation (46) sends the region
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[0, 2π] × R
+ to the region U1 (resp. U2 ∪ U3) when ψ(θ) > 0 (resp. ψ(θ) < 0),

where

U1 =
{
(τ, ρ)

∣
∣0 < ρ < 1/ψ(θ(τ)), τ ∈ [0, 1]

}
,

U2 =
{
(τ, ρ)

∣
∣ρ < 1/ψ(θ(τ)), τ ∈ [0, 1]

}
,

U3 =
{
(τ, ρ)

∣
∣ρ > 0, τ ∈ [0, 1]

}
.

Now by a direct calculation (47) can be rewritten into

1
(ψρ − 1)(ψρ)2

· d(ψρ)
dθ

= (n − 1)
aψ(θ) − ϕ(θ)

ψ(θ)
− (n − 1)aψ(θ) + ψ̇(θ)

ψ2(θ)ρ
.

Hence, if ρ1(θ) �= ρ2(θ) are two limit cycles of (47) located in U1 (resp. U2∪U3)
when ψ(θ) > 0 (resp. ψ(θ) < 0), then

∫ 2π

0

(n − 1)aψ(θ) + ψ̇(θ)
ψ2(θ)

· 1
ρi(θ)

dθ

=
∫ 2π

0

(n − 1)
aψ(θ) − ϕ(θ)

ψ(θ)
dθ, i = 1, 2. (49)

However, since
(
(n − 1)aψ + ψ̇

)
/ψ2 �= 0, we get

∫ 2π

0

(n − 1)aψ(θ) + ψ̇(θ)
ψ2(θ)

· 1
ρ1(θ)

dθ �=
∫ 2π

0

(n − 1)aψ(θ) + ψ̇(θ)
ψ2(θ)

· 1
ρ2(θ)

dθ,

which contradicts to (49). As a result, when ψ(θ) > 0 (resp. ψ(θ) < 0), Eq. (47)
has at most 1 limit cycle (not counted with multiplicity) in U1 (resp. U2 ∪U3).

The rest of the proof is to obtain the multiplicity of the limit cycle of
Eq. (47). To this end we apply Theorem 1.6. Define three functions

λ1(τ) = 0, λ2(τ) =
ε

ψ
(
θ(τ)

) , λ3(τ) =
1 − ε

ψ
(
θ(τ)

) , ε ∈ (−1/2, 1/2)\{0}.

By the previous claim, they are well-defined in [0, 1] and satisfy hypothesis
(H).

According to (48), we have

ω(τ) � a3

(
θ(τ)

) · (
λ1(τ) + λ2(τ) + λ3(τ)

)
+ a2

(
θ(τ)

)

=
a3(θ)
ψ(θ)

+ a2(θ)

= −2π
(
(n − 1)aψ(θ) + ψ̇(θ)

)
.

It follows from assumption that

sgn
(
ω(τ)

)
= −sgn

(
(n − 1)aψ(θ) + ψ̇(θ)

)
�= 0. (50)
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Moreover, a direct calculation shows that S(τ, λ1) = 0 and

S(τ, λ2) − dλ2

dτ
= S(τ, λ2) − dθ

dτ
· dλ2

dθ

=
(

a3(θ)λ2
2 + a2(θ)λ2 + a1(θ)

)
ε

ψ(θ)
+ 2πε · ψ̇(θ)

ψ2(θ)

=
(

a3(θ)ε2 + a2(θ)ψ(θ)ε + 2πψ(θ)
(

(n − 1)aψ(θ) + ψ̇(θ)
))

ε

ψ3(θ)
.

Again following assumption, for ε �= 0 sufficiently small, we obtain

sgn
(

S(τ, λ2) − dλ2

dτ

)

= sgn
(
ε
(
(n − 1)aψ(θ) + ψ̇(θ)

)) �= 0. (51)

Observe that

b � λ1 − λ3

λ1 − λ2
=

1
ε

− 1 ∈ R.

For ε �= 0 sufficiently small, (50) and (51) tell us that

sgn
(

(b + 1)
(

S(τ, λ2) − dλ2

dτ

))

= sgn
(
(n − 1)aψ(θ) + ψ̇(θ)

)
= −sgn

(
ω(τ)

)
.

Meanwhile, we have

(b − 2)
(

S(τ, λ1) − dλ1

dτ

)

= 0.

As a consequence, when ε �= 0 is fixed and small enough, we know by Theorem
1.6 that any arbitrary limit cycle of (47) in the connected component of

(
[0, 1]×

R
)\{

(τ, λi)
∣
∣τ ∈ [0, 1], i = 1, 2

}
, has multiplicity at most 2. Furthermore, if

we take ε sufficiently small, then all the non-zero limit cycles of (47) do not
intersect the curves ρ = λ1(τ) and ρ = λ2(τ). Thus the multiplicity of any
arbitrary limit cycle of (47) is no more than 2.

Based on the above, system (8) has at most 1 limit cycle surrounding the
origin, and the multiplicity is no more than 2.

The proof of Proposition 1.8 is finished.

Example 4. Consider system
⎧
⎪⎨

⎪⎩

dx

dt
= x − y − (x + y)

(
x2 + y2

)k
,

dy

dt
= x + y + (x − y)

(
x2 + y2

)k
,

k ∈ Z
+. (52)

We know that (52) is of the form (8) with a = 1, n = 2k + 1 and

Pn(x, y) = −(x + y)
(
x2 + y2

)k
, Qn(x, y) = (x − y)

(
x2 + y2

)k
.

A straightforward calculation shows that ψ(θ) = 1 and (n − 1)aψ(θ) + ψ̇(θ) =
2k > 0. Hence by Theorem 1.2, the number of limit cycles of system (52)
surrounding the origin is at most 1.
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Actually, one can check that system (52) has a limit cycle x2 + y2 = 1
surrounding the origin.

Example 5. Consider planar system
⎧
⎪⎨

⎪⎩

dx

dt
= x − y − x3 +

3
2
x2y − xy2 +

1
2
y3,

dy

dt
= x + y − 3

2
x3 − x2y − 1

2
xy2 − y3.

(53)

Then (53) is of the form (8) with a = 1, n = 3 and

P3(x, y) = −x3 +
3
2
x2y − xy2 +

1
2
y3, Q3(x, y) = −3

2
x3 − x2y − 1

2
xy2 − y3.

It is easy to check that

ψ(θ) = −1
2

− cos2(θ). (54)

Consequently,

(n − 1)aψ(θ) + ψ̇(θ) = −2 − cos(2θ) + sin(2θ) < 0.

Applying Proposition 1.8 again, the number of limit cycles of system (53)
surrounding the origin is at most 1.

For system (53), we can also obtain by (9) that ϕ(θ) = −1. Together with
(54),

ϕ(θ) − aψ(θ) =
1
2

cos(2θ),

ψ(θ)
(
ϕ(θ) − aψ(θ)

)
= −1

2
cos(2θ)

(
1
2

+ cos2(θ)
)

,

(n − 1)
(
ϕ(θ) − 2aψ(θ)

) − ψ̇(θ) = 2 + 2 cos(2θ) − sin(2θ).

Clearly, all of these three equalities have indefinite signs, which violate the
conditions of the representative results (I)–(IV) shown in our introduction
(Sect. 1). That is to say, our Proposition 1.8 is indeed an improvement of the
previous works.
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