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Asymptotic results for solutions of a weighted
p-Laplacian evolution equation
with Neumann boundary conditions

Alexander Nerlich

Abstract. The purpose of this paper is to investigate the time behavior of
the solution of a weighted p-Laplacian evolution equation, given by

⎧
⎪⎨

⎪⎩

ut = div
(
γ|∇u|p−2∇u

)
on (0, ∞) × S,

γ|∇u|p−2∇u · η = 0 on (0, ∞) × ∂S,

u(0, ·) = u0 on S,

(0.1)

where n ∈ N\{1}, p ∈ (1, ∞)\{2}, S ⊆ R
n is an open, bounded and

connected set of class C1, η is the unit outer normal on ∂S, and γ :
S → (0, ∞) is a bounded function which can be extended to an Ap-
Muckenhoupt weight on R

n. It will be proven that the solution of (0.1)
converges in L1(S) to the average of the initial value u0 ∈ L1(S). More-
over, a conservation of mass principle, an extinction principle and a decay
rate for the solution will be derived.
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1. Introduction

The initial value problem (0.1) has been considered by Andreu et al. [2], Sec-
tion 3. More precisely it has been shown that this equation admits, for any
integrable initial value, a unique entropy solution.

From the applied point of view, the solution u can be used to model
diffusion processes: One has some initially given quantity u0 which changes
over time due to an external force γ and the resulting quantity at time t is
u(t).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-017-0468-4&domain=pdf
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For example, as Birnir and Rowlett demonstrated in [7], the solution u
of (0.1) can be used to describe the evolution of a fluvial landscape u0 (for
example a hill) which changes over time due to rain that determines the water
depth γ.

The basic technique used in [2] to obtain the existence of a unique entropy
solution of (0.1) is to apply nonlinear semigroup theory. To be slightly more
specific; the concept of entropy solution of (0.1) is defined precisely in such
a way that it coincides with the usual definition of strong solution of the
evolution equation

0 ∈ u′(t) + Au(t), a.e. t ∈ (0,∞) and u(0) = u0, (1.1)

where A : D(A) → 2L1(S) is a certain multi-valued operator to be specified
later.

Once the existence of a unique strong solution of (1.1) has been recalled,
which is subject of Sect. 2, the results mentioned in the abstract will be proven.

The asymptotic results which will be proven, are formulated by means
of nonlinear semigroup theory. Therefore, let T (·)u0 : [0,∞) → L1(S) denote,
for a given u0 ∈ L1(S), the uniquely determined strong solution of (1.1) cor-
responding to the initial value u0. Moreover, let (u0)S := 1

λ(S)

∫

S
u0dλ, where

λ denotes the Lebesgue measure.
Firstly, it will be proven that T conserves mass, i.e. (u0)S = (T (t)u0)S ,

for all t ∈ [0,∞) and u0 ∈ L1(S). In addition, one has

lim
t→∞ ||T (t)u0 − (u0)S ||Lq(S) = 0, (1.2)

for any u0 ∈ Lq(S) and q ∈ [1,∞); as well as

||T (t)u0 − (u0)S ||L1(S) ≤ C||u0 − (u0)S ||
2
p

L2(S)

(
1
t

) 1
p

, (1.3)

for all u0 ∈ L2(S) and t ∈ (0,∞), where C ≥ 0 is a constant (being determined
explicitly later) depending only on p, S and γ. Actually, it will turn out that
(1.3) is a corollary of a slightly stronger result which is more technical to
formulate and will be postponed until Sect. 4.

Moreover, it will be shown that even

||T (t)u0 − (u0)S ||L∞(S) ≤ Ĉ||u0 − (u0)S ||
2
p

L2(S)

(
1
t

) 1
p

, (1.4)

for all t ∈ (0,∞) and u0 ∈ Lp(S), if p is sufficiently larger than n, where Ĉ ≥ 0
is a constant (being determined explicitly later) depending only on p, S and
γ. (Hereby “sufficiently” depends on the integrability of γ.)

Additionally, an extinction principle will be proven, i.e. if p is sufficiently
smaller than n and if u0 ∈ L2(S), then there is a finite time T ∗ such that
T (t)u0 is constantly the average of the initial value for any t ≥ T ∗. It will
actually be possible to give an explicit formula for T ∗.

Finally, these results show that, if γ is sufficiently integrable and n = 2
then the solutions extinct after finite time if p ∈ (1, 2) and u0 ∈ L2(S); and
(1.4) holds if p ∈ (2,∞) and u0 ∈ Lp(S).
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Note that the considered initial value problem can be used to model the
evolution of a fluvial landscape. Consequently, in this application one always
has n = 2 and u0 ∈ L∞(S) ⊆ L2(S) ∩ Lp(S).

Before proceeding with a detailed derivation of all these results, some
words on the literature are in order. Firstly, the monograph by Andreu-Vaillo
et al. [1] deals with existence, uniqueness, asymptotic and qualitative results for
many initial value problems. Even though the initial value problem considered
here is not considered in this book, the asymptotic results there, served as an
inspiration for the current paper.

Moreover, the monograph by Bénilan et al. [6] is a detailed and com-
prehensive introduction to the general theory of nonlinear semigroups and
evolution equation.

2. Assumptions and preliminary results

Some notational preliminaries are in order: For any m-dimensional Borel mea-
surable set Ω, where m ∈ N, B(Ω) denotes the Borel σ-algebra on this set.
Moreover, if μ : B(Ω) → [0,∞] is a measure and q ∈ [1,∞] then Lq(Ω, μ;Rm)
denotes the usual Lebesgue spaces and || · ||Lq(Ω,μ;Rm) denotes the canonical
norm on these spaces.

If m = 1 then Lq(Ω, μ;Rm) will be abbreviated by Lq(Ω, μ) and if μ is
the Lebesgue measure then Lq(Ω) will be written. Of course the analogous
convention applies to || · ||Lq(Ω,μ;Rm).

In addition, L1
Loc(Ω), L1

Loc(Ω;Rm) denote, if Ω is open, the space of locally
Lebesgue integrable functions f : Ω → R, f : Ω → R

m respectively.
Moreover, if Ω is open then W 1,1

Loc(Ω) denotes the space of weakly differ-
entiable functions and ∇f denotes the weak derivative of any f ∈ W 1,1

Loc(Ω).
In addition, W 1,q(Ω) denotes the Sobolev space of once weakly differentiable
functions, such that the function and all of its weak derivatives are in Lq(B).

If (X, || · ||X) is a Banach space, then W 1,1
Loc((0,∞);X) denotes the space

of all functions f : (0,∞) → X which are locally absolutely continuous and
differentiable a.e. For an f ∈ W 1,1

Loc((0,∞);X) the function f ′ denotes the
almost everywhere existing derivative of f . Moreover, C([0,∞);X) denotes
the space of all continuous functions f : [0,∞) → X and 2X denotes the
power set of X.

If in addition a ∈ (0,∞) then

L1([0, a];X) := {f : [0, a] → X|f is strongly meas. and
∫ a

0

||f(t)||Xdt < ∞}.

Let B : X → 2X be a multi-valued operator, then its graph G(B) ⊆ X × X
is defined by G(B) := {(x, x̂) : x̂ ∈ Bx}. Moreover, it is clear that any set
B̃ ⊆ X×X uniquely defines an operator B, by x̂ ∈ Bx if and only if (x, x̂) ∈ B̃.
Therefore, an operator and its graph will be denoted by the same latter.

Moreover, the domain of B is defined by D(B) := {x ∈ X : Bx 
= ∅}
and B is called single-valued, if Bx contains precisely one element for any
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x ∈ D(B). If B is single valued, then the set Bx, containing only the element
x̂, is identified with this element, for any x ∈ D(B).

Moreover, λ denotes the Lebesgue measure and | · | the euclidean norm
on R

m. In addition, the canonical inner product of any x, y ∈ R
m is denoted

by x · y.
Finally, Aq(Rm) denotes, for any q ∈ (1,∞), the class of Muckenhoupt

weights, i.e. Aq(Rm) consists of all functions γ0 : Rm → R such that γ0 > 0
a.e., γ0 ∈ L1

Loc(R
m) and

sup
B⊆R

n

B is a ball

[
1

λ(B)

∫

B

γ0dλ

(
1

λ(B)

∫

B

γ
1

1−q

0 dλ

)q−1
]

< ∞.

Now the assumptions on the quantities S, γ and p mentioned in the
introduction, will be made precise.

Here and in everything that follows let n ∈ N\{1} and ∅ 
= S ⊆ R
n be a

non-empty, open, connected and bounded sets of class C1.
Moreover, let p ∈ (1,∞)\{2}. We are not interested in the linear case

p = 2; particularly the regularization effect (see [5] Theorem 4.4), which is
needed in the present paper, is not applicable if p = 2. Therefore, this value
for p is excluded.

Additionally, let γ : S → (0,∞) be such that γ ∈ L∞(S), γ
1

1−p ∈ L1(S)
and assume that there is a γ0 ∈ Ap(Rn) such that γ0|S = γ a.e. on S.

Furthermore, let ν : B(S) → [0,∞) be the measure induced by γ, i.e.
ν(B) :=

∫

B
γdλ for all B ∈ B(S) and introduce the weighted Sobolev space

W 1,p
γ (S) := {f ∈ Lp(S) : ∇f ∈ Lp(S, ν;Rn)}.

Now introduce J0 as the space of all convex, lower semi-continuous functions
j : R → [0,∞] fulfilling j(0) = 0. Given f, h ∈ L1(S), one writes f << h
whenever

∫

S

j ◦ fdλ ≤
∫

S

j ◦ hdλ, ∀j ∈ J0.

Moreover, an operator B ⊆ L1(S) × L1(S) is called completely accretive if
f − h << f − h + α(f̂ − ĥ), for all (f, f̂), (h, ĥ) ∈ B and α ∈ (0,∞). The
reader is referred to [5] for a detailed discussion of the concept of complete
accretivity.

Remark 2.1. In the sequel, τk : R → R, where k ∈ (0,∞), denotes the standard
truncation function, i.e. τk(s) := s, if |s| < k and τk(s) := ksign(s), if |s| ≥ k.
Moreover, if f : S → R is Borel measurable and fulfills
τk(f) ∈ W 1,1

Loc(S) for all k ∈ (0,∞), then ∇̃f : S → R
n, denotes the (up

to equality a.e.) uniquely determined function fulfilling

∇τk(f) = ∇̃f11{|f |<k}, ∀k ∈ (0,∞) (2.1)

a.e. on S. The function ∇̃f is called the generalized weak derivative of f . Note
that if f : S → R is generalized weakly differentiable, then f ∈ W 1,1

Loc(S) if and
only if ∇̃f ∈ L1

Loc(S;Rn); and in this case ∇̃f = ∇f . Cf. [4], for these and
further properties.
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The following operators are considered in [2] to show that (0.1) admits a
unique entropy solution.

Definition 2.2. Let A ⊆ L1(S) × L1(S) be defined by: (f, f̂) ∈ A if and only if
the following assertions hold.

1. f ∈ W 1,p
γ (S) ∩ L∞(S).

2. f̂ ∈ L1(S).
3.

∫

S
γ|∇f |p−2∇f · ∇ϕdλ =

∫

S
f̂ϕdλ for all ϕ ∈ W 1,p

γ (S) ∩ L∞(S).

Moreover, let A ⊆ L1(S) × L1(S) be defined by: (f, f̂) ∈ A if and only if the
following assertions hold.

4. f, f̂ ∈ L1(S).
5. τk(f) ∈ W 1,p

γ (S) for all k ∈ (0,∞).
6.

∫

S
γ|∇̃f |p−2∇̃f ·∇(τk(f −ϕ))dλ ≤ ∫

S
f̂ τk(f −ϕ)dλ for all k ∈ (0,∞) and

ϕ ∈ W 1,p
γ (S) ∩ L∞(S).

Finally, for the reader’s convenience, the following result will be extracted
from [2], Section 3. This existence and uniqueness result is fundamental for that
what follows.

Theorem 2.3. A is completely accretive, m-accretive and the closure of A.
Moreover, D(A) is a dense subset of (L1(S), || · ||L1(S)). Consequently, the
evolution equation

0 ∈ u′(t) + Au(t) for a.e. t ∈ (0,∞) and u(0) = u0 (2.2)

has for a given u0 ∈ L1(S) precisely one mild solution. Moreover, this mild so-
lution is also the unique strong solution. Hence, there is a semigroup (T (t))t≥0,
with T (t) : L1(S) → L1(S), fulfilling

T (·)u0 ∈ C([0,∞);L1(S)) ∩ W 1,1
Loc((0,∞);L1(S))

and

0 ∈ T ′(t)u0 + AT (t)u0, T (t)u0 ∈ D(A) a.e. t ∈ (0,∞) and T (0)u0 = u0

for all u0 ∈ L1(S).

In what follows, (T (t))t≥0 denotes the strongly continuous semigroup
introduced in Theorem 2.3 and T ′(·)u0 denotes, for any u0 ∈ L1(S), the de-
rivative of T (·)u0, which exists almost everywhere on (0,∞). Note that the
null-set on which T (·)u0 is not differentiable depends on u0.

In the following sections, initial values are simply denoted by u, v, etc.
and no longer by u0, v0, etc.

3. Conservation of mass and other basic properties

The purpose of this section is to derive some basic properties of (T (t))t≥0

among them, the conservation of mass principle.
For any u ∈ L1(S), let (u)S denote its average, i.e. (u)S := 1

λ(S)

∫

S
udλ.

By slightly abusing notation, the constant function mapping from S to R,
which takes only the value (u)S will also be denoted by (u)S .
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Lemma 3.1. A is single-valued. Moreover, if f ∈ D(A) ∩ L∞(S) and f̂ ∈ Af ,
then f ∈ D(A) and f̂ = Af .

Proof. It is plain that A is single-valued, since (f, f̂), (f, f̃) ∈ A implies
∫

S

(f̂ − f̃)ϕdλ = 0, ∀ϕ ∈ W 1,p
γ (S) ∩ L∞(S).

Now let f ∈ D(A) ∩ L∞(S) and f̂ ∈ Af , then τk(f) ∈ W 1,p
γ (S) for all k ∈

(0,∞). Consequently, f ∈ W 1,p
γ (S)∩L∞(S) by choosing k > ||f ||L∞(S). Hence

the claim follows if
∫

S

γ|∇f |p−2∇f · ∇ϕdλ =
∫

S

f̂ϕdλ, ∀ϕ ∈ W 1,p
γ (S) ∩ L∞(S). (3.1)

Proof of (3.1). It follows from the definition of A that
∫

S

γ|∇̃f |p−2∇̃f · ∇(τk(f − ϕ))dλ ≤
∫

S

f̂ τk(f − ϕ)dλ,

for all ϕ ∈ W 1,p
γ (S) ∩ L∞(S) and k ∈ (0,∞).

Observe that f ∈ W 1,p
γ (S) ∩ L∞(S) implies ∇̃f = ∇f on S (see Re-

mark 2.1) and that ϕ = f − ϕ̃, where ϕ̃ ∈ W 1,p
γ (S) ∩ L∞(S), is a valid choice

as a test function in the previous equation, hence
∫

S

γ|∇f |p−2∇f · ∇(τk(ϕ̃))dλ ≤
∫

S

f̂ τk(ϕ̃)dλ, (3.2)

for all ϕ̃ ∈ W 1,p
γ (S) ∩ L∞(S) and k ∈ (0,∞).

Now (3.2) yields, by choosing k > ||ϕ̃||L∞(S) for a given ϕ̃ ∈ W 1,p
γ (S) ∩

L∞(S), that
∫

S

γ|∇f |p−2∇f · ∇ϕ̃dλ ≤
∫

S

f̂ ϕ̃dλ, ∀ϕ̃ ∈ W 1,p
γ (S) ∩ L∞(S). (3.3)

Conclusively the claim follows since ϕ̃ can be replaced by −ϕ̃ as a test function
in (3.3). �

Remark 3.2. As it turns out, the preceding lemma is only useful for our pur-
poses if one can show the following: If v ∈ L1(S), w ∈ L∞(S) and v << w,
then ||v||L∞(S) ≤ ||w||L∞(S).

In fact, choosing j(x) := max(|x| − ||w||L∞(S), 0), x ∈ R, yields

0 ≤
∫

S

max(|v| − ||w||L∞(S), 0)dλ ≤
∫

S

max(|w| − ||w||L∞(S), 0)dλ = 0,

if v << w and consequently |v| ≤ ||w||L∞(S) a.e. on S.

Lemma 3.3. The following assertions hold.
1. T (t)u − T (t)v << u − v for all u, v ∈ L1(S) and t ∈ [0,∞).
2. T (t)u << u for all u ∈ L1(S) and t ∈ [0,∞).
3. ||T (t)w||L∞(S) ≤ ||w||L∞(S) for every w ∈ L∞(S) and every t ∈ [0,∞).
4. T (t)w ∈ D(A) and −T ′(t)w = AT (t)w for every w ∈ L∞(S) and almost

every t ∈ (0,∞).
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Proof. The first assertion follows from [5], Prop. 4.1. Moreover, it is plain that
0 ∈ D(A) and A0 = 0 which clearly implies 0 ∈ D(A) and 0 ∈ A0. This yields
that T (t)(0) = 0 for all t ∈ [0,∞). Consequently, the second assertions holds
as well.

The third assertion follows by combining the second and Remark 3.2.
Finally, Theorem 2.3, Lemma 3.1 and the third assertion yield the fourth.

�

Lemma 3.4. Let u ∈ L1(S), then (T (t)u)S = (u)S for every t ≥ 0.

Proof. Firstly, Lemma 3.3 yields that it suffices to prove the claim for
u ∈ D(A), since this is according to Theorem 2.3 a dense subset of (L1(S)|| ·
||L1(S)). So let u ∈ D(A) be given. Moreover, introduce τ ∈ (0,∞) and
f : [0, τ ] → R by f(t) :=

∫

S
T (t)udλ, for all t ∈ [0, τ ].

It follows from [6], Lemma 7.8 that (T (·)u)|[0,τ ] is Lipschitz continuous
which obviously implies that f is Lipschitz continuous as well. Moreover, it is
plain that f ′(t) =

∫

S
T ′(t)udλ.

In addition, note that D(A) ⊆ L∞(S) which yields by the aid of
Lemma 3.3 that

f ′(t) = −
∫

S

γ|∇T (t)u|p−2∇T (t)u · ∇ϕdλ = 0,

where ϕ : S → R denotes the function which is constantly one.
Consequently, f is constant and therefore (u) = (T (t)u) for all t ∈ [0, τ ]

which gives the claim as τ is arbitrary. �

4. Upper bounds and asymptotic results

The purpose of this section is to prove the results (1.2), (1.3) and (1.4) men-
tioned in the introduction. Actually, it will turn out that (1.3) is a corollary
of a slightly stronger result.

Lemma 4.1. Let u ∈ L1(S) and ϕ : S → R be a constant function. Then

T (t)(u + ϕ) = T (t)(u) + ϕ, ∀t ∈ [0,∞). (4.1)

Consequently, if T (·)u is differentiable in t ∈ (0,∞), then T (·)(u + ϕ) is dif-
ferentiable in t and T ′(t)(u + ϕ) = T ′(t)u.

Proof. Let u ∈ L∞(S), let ϕ : S → R be a constant function and introduce
f : [0,∞) → L1(S) by f(t) := T (t)(u) + ϕ.

It is clear that f(0) = u + ϕ and also that f is continuous on [0,∞) and
an element of W 1,1

Loc((0,∞);L1(S)), since T (·)u has these properties.
Now observe that obviously f ′(t) = T ′(t)u for a.e. t ∈ (0,∞). Moreover,

one has for any ϕ ∈ W 1,p
γ (S) ∩ L∞(S) that

∫

S

γ|∇f(t)|p−2∇f(t) · ∇ϕdλ =
∫

S

γ|∇T (t)u|p−2∇T (t)u · ∇ϕdλ
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which implies, together with f ′(t) = T ′(t)u for a.e. t ∈ (0,∞) and Lemma 3.3,
that f(t) ∈ D(A) and −f ′(t) = Af(t) for a.e. t ∈ (0,∞). Consequently the
claim is verified for initial values u ∈ L∞(S).

Conclusively, applying Lemma 3.3 yields that (4.1) holds also for arbi-
trary initial values u ∈ L1(S), since L∞(S) is dense in (L1(S), || · ||L1(S)).

Finally observe that (4.1) clearly implies the remaining part of the claim.
�

Remark 4.2. In everything which follows let p0 ∈ [1, p] be the constant defined
by

p0 := inf{q > 1 : γ
1

1−q ∈ L1(S)}.

Since γ
1

1−p ∈ L1(S) by assumption it is clear that indeed p0 ≤ p.
The following lemma reveals that even p0 < p.

Lemma 4.3. If q > p0 then γ
1

1−q ∈ L1(S). Moreover, p0 < p.

Proof. Let q > p0, then there is q̃ ∈ [p0, q)\{1} such that γ
1

1−q̃ ∈ L1(S). Since
trivially 1−q

1−q̃ > 1, Hölder’s inequality yields

∫

S

γ
1

1−q dλ ≤ λ(S)
q̃−q
1−q

(∫

S

γ
1

1−q̃ dλ

) 1−q̃
1−q

< ∞,

which implies γ
1

1−q ∈ L1(S).
By assumption there is γ0 ∈ Ap(Rn) such that γ = γ0 a.e. on S. Moreover,

there is an ε ∈ (0, p − 1) such that γ0 ∈ Ap−ε(Rn). (See [10], Ch. IX Prop. 4.3
and Theorem 5.5.)

Since S is bounded, there is a ball B ⊆ R
n containing S which implies

γ
1

1−(p−ε)
0 ∈ L1(S). This implies p0 < p, since γ = γ0 a.e. on S. �

Lemma 4.4. Let 0 ≤ δ < p−p0
p0

and f ∈ W 1,p
γ (S) then f ∈ W 1,1+δ(S) and

||∇f ||L1+δ(S;Rn) ≤
(∫

S

γ
1+δ

1+δ−p dλ

) p−1−δ
p(1+δ)

||∇f ||Lp(S,ν;Rn) < ∞. (4.2)

Proof. Let 0 ≤ δ < p−p0
p0

. (Note that p0 < p, consequently such a δ does indeed
exists.)

Let f ∈ W 1,p
γ (S), then obviously f ∈ W 1,1

Loc(S) as well as f ∈ Lp(S).
Moreover, note that 1+ δ < 1+ p−p0

p0
≤ p and consequently f ∈ L1+δ(S),

since λ(S) < ∞.
Conclusively the claim follows once (4.2) is proven.
First of all 1 + δ − p 
= 0.
Secondly observe that p

1+δ > p0, consequently Lemma 4.3 yields
∫

S

γ
1+δ

1+δ−p dλ =
∫

S

γ
1

1− p
1+δ dλ < ∞. (4.3)
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Finally, (4.2) follows from the following estimate, where Hölder’s inequality is
used.

||∇f ||L1+δ(S;Rn) =
(∫

S

|∇f |1+δγ
1+δ

p γ− 1+δ
p dλ

) 1
1+δ

≤
((∫

S

|∇f |pγdλ

) 1+δ
p

(∫

S

γ
1+δ

1+δ−p dλ

) p−1−δ
p

) 1
1+δ

= ||∇f ||Lp(S,ν;Rn)

(∫

S

γ
1+δ

1+δ−p dλ

) p−1−δ
p(1+δ)

,

which is finite due to (4.3). �

The preceding lemma is a slight modification of [9], Prop. 2.1. There, an
analogues result is proven for Sobolev spaces, where the function and its weak
derivative need to be integrable with respect to the same measure and not to
different ones as in our setting.

Lemma 4.5. Let u ∈ L2(S) ∩ Lp(S), then T (t)u ∈ L2(S) ∩ W 1,p
γ (S) for a.e.

t ∈ (0,∞) and moreover

||∇T (t)u||Lp(S,ν;Rn) ≤
(

2
|p − 2|

) 1
p

||u − (u)S ||
2
p

L2(S)

(
1
t

) 1
p

(4.4)

for a.e. t ∈ (0,∞).

Proof. Let t ∈ (0,∞) be such that 0 ∈ T ′(t)u + AT (t)u. Theorem 2.3 implies
that almost every value in (0,∞) is a valid choice for t.

Let u ∈ L2(S) ∩ Lp(S) then Lemma 3.3 yields T (t)u ∈ L2(S) ∩ Lp(S).
Note that T (t)u is generalized weakly differentiable. Consequently, if one

proves that
∫

S

γ|∇̃T (t)u|pdλ ≤ 2
|p − 2| ||u − (u)S ||2L2(S)

1
t
, (4.5)

then obviously ∇̃T (t)u ∈ Lp(S, ν;Rn) ⊆ L1(S;Rn) and therefore, by virtue of
Remark 2.1, ∇̃T (t)u = ∇T (t)u a.e. on S.

Hence, if (4.5) holds, then also (4.4) as well as T (t)u ∈ L2(S) ∩ W 1,p
γ (S).

Proof of (4.5). First of all observe that

A(αv) = αp−1Av, ∀v ∈ D(A), α ∈ (0,∞).

Consequently Theorem 2.3 together with [5], Theorem 4.4 yield

||T ′(t)(u − (u)S)||L2(S) ≤ 2
|p − 2|t ||u − (u)S ||L2(S). (4.6)

Moreover, one infers from Fatou’s lemma and Lemma 4.1 that
∫

S

γ|∇̃T (t)u|pdλ ≤ lim inf
k→∞

∫

S

−T ′(t)
(
u − (u)S

)
τk

(
T (t)u − (u)S

)
dλ
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Consequently Cauchy Schwarz inequality, (4.6) and Lebesgue’s theorem yield
∫

S

γ|∇̃T (t)u|pdλ ≤ 2
|p − 2|t ||u − (u)S ||L2(S)||T (t)u − (u)S ||L2(S)

Finally, (4.5) follows by applying (4.1) and Lemma 3.3. �

Here, and in everything that follows CS,q denotes the Poincaré constant
of S, for any q ∈ [1,∞), i.e. CS,q ∈ (0,∞) is the smallest constant depending
only on S and q, such that

||f − (f)S ||Lq(S) ≤ CS,q||∇f ||Lq(S;Rn), ∀f ∈ W 1,q(S).

Note that S is assumed to be open, bounded, connected and of class C1.
Consequently the Poincaré inequality implies the existence of CS,q.

Theorem 4.6. Let 0 ≤ δ < p−p0
p0

and u ∈ L2(S) ∩ L1+δ(S), then

||T (t)u − (u)S ||L1+δ(S) ≤ CS,1+δΓδ,p||u − (u)S ||
2
p

L2(S)

(
1
t

) 1
p

(4.7)

for every t ∈ (0,∞), where

Γδ,p :=
(∫

S

γ
1+δ

1+δ−p dλ

) p−1−δ
p(1+δ)

(
2

|p − 2|
) 1

p

< ∞. (4.8)

Proof. Let 0 ≤ δ < p−p0
p0

and u ∈ L2(S) ∩ Lp(S).
Let t ∈ (0,∞) be such that the assertions of Lemma 4.5 hold. Since

T (t)u ∈ W 1,p
γ (S) Lemma 4.4 yields T (t)u ∈ W 1,1+δ(S) and consequently

Lemma 3.4, Poincaré’s inequality, (4.2) and (4.4) imply

||T (t)u − (u)S ||L1+δ(S) = ||T (t)u − (T (t)u)S ||L1+δ(S)

≤ CS,1+δ||∇T (t)u||L1+δ(S;Rn)

≤ CS,1+δΓδ,p||u − (u)S ||
2
p

L2(S)

(
1
t

) 1
p

,

i.e. (4.7) holds for u ∈ L2(S) ∩ Lp(S) and almost every t ∈ (0,∞).
Now let t ∈ (0,∞) be arbitrary and still assume u ∈ L2(S) ∩ Lp(S).
Moreover, let (tm)m∈N ⊆ (0,∞) be such that limm→∞ tm = t and assume

that (4.7) holds for each tm.
Since T (·)u : [0,∞) → (L1(S), || · ||L1(S)) is continuous one obtains (by

passing to a subsequence if necessary) that limm→∞ T (tm)u − (u)S = T (t)u −
(u)S a.e. on S. Consequently one infers by virtue of Fatou’s Lemma that

||T (t)u − (u)S ||L1+δ(S) =
(∫

S

lim
m→∞ |T (tm)u − (u)S |1+δdλ

) 1
1+δ

≤ lim inf
m→∞ ||T (tm)u − (u)S ||L1+δ(S)

which implies (4.7) for every t ∈ (0,∞) and u ∈ L2(S) ∩ Lp(S).
Finally, let t ∈ (0,∞) be arbitrary and let u ∈ L2(S) ∩ L1+δ(S).
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Moreover, let (um)m∈N ⊆ L2(S)∩Lp(S) be such that limm→∞ um = u in
L2(S) and in L1+δ(S). Then it is plain that limm→∞ (um)S = (u)S . Moreover,
it follows from Lemma 3.3 that limm→∞ T (t)um = T (t)u in L1+δ(S).

Hence

||T (t)u − (u)S ||L1+δ(S) = lim
m→∞ ||T (t)um − (um)S ||L1+δ(S)

≤ lim
m→∞ CS,1+δΓδ,p||um − (um)S ||

2
p

L2(S)

(
1
t

) 1
p

= CS,1+δΓδ,p||u − (u)S ||
2
p

L2(S)

(
1
t

) 1
p

,

which implies (4.7) for every t ∈ (0,∞) and u ∈ L2(S) ∩ L1+δ(S). �

Remark 4.7. Whenever δ is given such that 0 ≤ δ < p−p0
p0

, then Γδ,p denotes
the quantity introduced in (4.8).

Corollary 4.8. Let u ∈ L2(S), then

||T (t)u − (u)S ||L1(S) ≤ CS,1Γ0,p||u − (u)S ||
2
p

L2(S)

(
1
t

) 1
p

(4.9)

for every t ∈ (0,∞).

The proofs of Lemma 4.5 and Theorem 4.6 reveal that one could have
stated (with slightly less effort) that

||T (t)u − (u)S ||L1+δ(S) ≤ CS,1+δΓδ,p||u||
2
p

L2(S)

(
1
t

) 1
p

(4.10)

for all u ∈ L2(S) ∩ L1+δ(S), 0 ≤ δ < p−p0
p0

and t ∈ (0,∞). Note that (4.7) is a
sharper bound than (4.10) since it is well known that

||u − (u)S ||L2(S) ≤ ||u − c||L2(S), ∀c ∈ R.

If 0 ≤ δ < p−p0
p0

, then δ can be chosen as bigger as smaller p0 gets, i.e.
Theorem 4.6 yields the most general result if p0 = 1. A sufficient condition for
this to hold is that there is an ε > 0 such that

γ ≥ ε a.e. on S

Particularly, if γ is constantly nonzero almost everywhere, then p0 = 1.
By virtue of the Sobolev embedding theorem one obtains the main result

of this section.

Theorem 4.9. Let u ∈ Lp(S) and assume p0 < p
n , then T (t)u ∈ L∞(S) for

every t ∈ (0,∞). Moreover, if n − 1 < δ < p−p0
p0

, then T (t)u ∈ W 1,1+δ(S) and
there is a constant C∗

S,δ ∈ [0,∞), depending only on S and δ, such that

||T (t)u − (u)S ||L∞(S) ≤ C∗
S,δΓδ,p||u − (u)S ||

2
p

L2(S)

(
1
t

) 1
p

, (4.11)

for every t ∈ (0,∞).
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In addition, C∗
S,δ can be chosen as C∗

S,δ = C̃S,1+δ

(
C1+δ

S,1+δ + 1
) 1

1+δ

, where

C̃S,1+δ is the operator norm of the continuous injection W 1,1+δ(S) ↪→ L∞(S).

Proof. First of all note that if p0 < p
n , then p−p0

p0
> n − 1, consequently

(n − 1, p−p0
p0

) 
= ∅.

So let n − 1 < δ < p−p0
p0

and u ∈ Lp(S) which implies u ∈ L2(S), since
p > np0 ≥ n ≥ 2.

Now observe that Lemma 4.5 implies T (t)u ∈ L2(S) ∩ W 1,p
γ (S) for a.e.

t ∈ (0,∞) and consequently Lemma 4.4 yields T (t)u ∈ W 1,1+δ(S) and more-
over

||∇T (t)u||L1+δ(S;Rn) ≤ Γδ,p||u − (u)S ||
2
p

L2(S)

(
1
t

) 1
p

(4.12)

for a.e. t ∈ (0,∞).
Since T (t)u ∈ W 1,1+δ(S) it is clear that T (t)u − (u)S ∈ W 1,1+δ(S),

consequently, since 1 + δ > n, the Sobolev embedding theorem yields

||T (t)u − (u)S ||L∞(S) ≤ C̃S,1+δ||T (t)u − (u)S ||W 1,1+δ(S) (4.13)

for almost every t ∈ (0,∞), where C̃S,1+δ is the operator norm of the contin-
uous injection W 1,1+δ(S) ↪→ L∞(S).

Hence it follows by virtue of Theorem 4.6, and the inequalities (4.12) and
(4.13) that

(
1

C̃S,1+δ

||T (t)u − (u)S ||L∞(S)

)1+δ

≤ ||T (t)u − (u)S ||1+δ
W 1,1+δ(S)

= ||T (t)u − (u)S ||1+δ
L1+δ(S)

+ ||∇(T (t)u − (u)S)||1+δ
L1+δ(S;Rn)

= ||T (t)u − (u)S ||1+δ
L1+δ(S)

+ ||∇T (t)u||1+δ
L1+δ(S;Rn)

≤
(
C1+δ

S,1+δ + 1
)

(

Γδ,p||u − (u)S ||
2
p

L2(S)

(
1
t

) 1
p

)1+δ

Consequently, if one defines C∗
S,δ := C̃S,1+δ

(
C1+δ

S,1+δ + 1
) 1

1+δ

, then the preced-
ing estimate yields the claim for almost every t ∈ (0,∞).

Now let t ∈ (0,∞) and choose a monotonically increasing sequence
(tm)m∈N ⊆ (0,∞) such that limm→∞ tm = t, tm < t and such that (4.11)
holds for each m ∈ N. Then Lemma 3.3, together with Lemma 4.1, yield

||T (t)u − (u)S ||L∞(S) ≤ ||T (tm)(u − (u)S)||L∞(S) = ||T (tm)u − (u)S ||L∞(S),

for every m ∈ N, which verifies the claim for every t ∈ (0,∞). �
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Remark 4.10. Assume u ∈ Lp(S) and p0 < p
n . Moreover let n − 1 < δ <

p−p0
p0

. Then the preceding theorem states particularly that T (t)u ∈ W 1,1+δ(S).
Consequently, the Sobolev embedding theorem also yields that T (t)u is Hölder
continuous of order 1 − n

1+δ , or more accurately that there is a representative
in the equivalence class which is Hölder continuous of this order.

Remark 4.11. It is clear that Corollary 4.8 implies

lim
t→∞ ||T (t)u − (u)S ||L1(S) = 0, ∀u ∈ L2(S).

Moreover, Theorem 4.9 yields that this convergence is even uniform, if
u ∈ L2(S) ∩ Lp(S) and p0 < p

n .
It is beyond the scope of this paper to obtain a uniform convergence result

under more general assumptions. But it will be proven that Lq-convergence
holds under more general assumptions for any q ∈ [1,∞).

Theorem 4.12. Let q ∈ [1,∞) and u ∈ Lq(S), then

lim
t→∞ T (t)u = (u)S in Lq(S). (4.14)

Proof. Let q ∈ [1,∞), u ∈ Lq(S), k ∈ (0,∞) and let τk : R → R denote the
standard truncation function.

Let (t̃m)m∈N ⊆ [0,∞) be an arbitrary sequence such that limm→∞ t̃m =
∞. Moreover, let (tm)m∈N be a subsequence such that

lim
m→∞ T (tm)τk(u) = (τk(u))S , a.e. on S (4.15)

(Corollary 4.8 ensures the existence of such a subsequence, since
τk(u) ∈ L2(S).)

Now observe that Lemma 3.3 implies

||T (tm)τk(u) − (τk(u))S ||L∞(S) ≤ 2k,

for all m ∈ N. Consequently, this, together with (4.15) yields, by virtue of
dominated convergence, that limm→∞ T (tm)τk(u) = (τk(u))S in Lq(S) and
therefore

lim
t→∞ ||T (t)τk(u) − (τk(u))S ||Lq(S) = 0, ∀k ∈ (0,∞). (4.16)

Observe that clearly limk→∞ τk(u) = u a.e. on S and that |τk(u)−u|q ≤ (2|u|)q

for all k ∈ (0,∞). Consequently Lebesgue’s theorem yields

lim
k→∞

τk(u) = u, in Lq(S). (4.17)

Now let ε > 0 and choose k0 ∈ (0,∞) sufficiently large such that

max(||τk0(u) − u||Lq(S), ||(τk0(u))S − (u)S ||Lq(S)) <
ε

3
, (4.18)

which is possible, due to (4.17).
Moreover, (4.16) yields the existence of t0 ∈ (0,∞) such that

||T (t)τk0(u) − (τk0(u))S ||Lq(S) <
ε

3
, ∀t ≥ t0. (4.19)
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Finally, it follows by combining (4.18), (4.19) and by using Lemma 3.3, that

||T (t)u − (u)S ||Lq(S) < ε

for all t ≥ t0. �

5. Extinction of solutions

The basic idea to prove extinction of solutions is to apply the following lemma,
which is stated, but not proven, in [8], Lemma 2.2. Even though this lemma
seems to be in common use, the present author was unable to find a proof in
the literature. Therefore, the proof will be given.

Lemma 5.1. Let k ∈ (0, 1), α ∈ (0,∞) and let f : [0,∞) → [0,∞) be locally
Lipschitz continuous, i.e. f |[0,t̃] is Lipschitz continuous for any t̃ ∈ (0,∞).
Moreover, assume

f ′(t) + αf(t)k ≤ 0

for a.e. t ∈ (0,∞) and introduce

T ∗ :=
f(0)1−k

α(1 − k)
,

then f(t) = 0 for all t ∈ [T ∗,∞).

Proof. Let k ∈ (0, 1), α ∈ (0,∞) and let f , f̃ : [0,∞) → [0,∞) be locally
Lipschitz continuous. Moreover, assume f(0) = f̃(0) =: a and

1. f ′(t) = −αf(t)k for a.e. t ∈ (0,∞),
2. f̃ ′(t) ≤ −αf̃(t)k for a.e. t ∈ (0,∞).

It will be proven that 0 ≤ f̃(t) ≤ f(t) for all t ∈ [0,∞) which obviously implies
that it suffices to prove that f(t) = 0 for all t ≥ T ∗ := a1−k

α(1−k) .

Assume there is t1 > 0 such that f̃(t1) > f(t1), then there is, since both
functions are continuous and since f(0) = f̃(0), a t0 ∈ [0, t1) such that

f̃(t) > f(t), ∀t ∈ (t0, t1] and f̃(t0) = f(t0). (5.1)

But this implies

f(t1) − f̃(t1) = f(t1) − f̃(t1) − (f(t0) − f̃(t0))

=
∫ t1

t0

f ′(t) − f̃ ′(t)dt

≥
∫ t1

t0

−αf(t)k + αf̃(t)kdt

≥ 0,

which yields f(t1) ≥ f̃(t1) and therefore contradicts (5.1).
Now it will be proven that f(t) = 0 for all t ≥ T ∗ := a1−k

α(1−k) which then
implies the claim.



NoDEA Asymptotic results for solutions of a weighted... Page 15 of 21 46

First of all note that f ′ can be extended to a continuous function on
[0,∞). Consequently, f is continuously differentiable on (0,∞).

Moreover, f ′ ≤ 0 which yields that f is monotonically decreasing. Hence,
if f(τ) = 0 then f(t) = 0 for all t ≥ τ , since f ≥ 0 by assumption.

Now introduce τ := inf{t ≥ 0 : f(t) = 0}. The claim follows if τ ≤ T ∗.
Consequently let us contradict τ > T ∗. If τ > T ∗ then f(t) > 0 for all

t ∈ [0, T ∗] and consequently f ′(t)
−αf(t)k = 1 for all t ∈ [0, T ∗], which yields by

substituting that

T ∗ =
∫ T ∗

0

f ′(t)
−αf(t)k

dt

=
∫ f(T ∗)

f(0)

1
−αtk

dt

=
f(0)1−k

α(1 − k)
− 1

α(1 − k)
f(T ∗)1−k

= T ∗ − 1
α

1
1 − k

f(T ∗)1−k

and consequently f(T ∗) = 0 which contradicts τ > T ∗. �

Here and in everything which follows let fu : [0,∞) → [0,∞) be defined
by

fu(t) :=
∫

S

(
T (t)u − (u)S

)2

dλ

for any t ∈ [0,∞) and u ∈ L2(S).

Lemma 5.2. Let u ∈ D(A), then fu is locally Lipschitz continuous.

Proof. Let u ∈ D(A) and t̃ > 0 be given. Moreover, let L denote the Lipschitz
constant of [0, t̃] � t �→ T (t)u ∈ (L1(S), || · ||L1(S)). (As u ∈ D(A), the Lipschitz
continuity follows from [6], Lemma 7.8.)
Now Lemma 3.3 yields that

|fu(t1) − fu(t2)|

=
∣
∣
∣
∣

∫

S

(
T (t1)u − (u)S

)2

−
(
T (t2)u − (u)S

)2

dλ

∣
∣
∣
∣

≤
∫

S

∣
∣
∣(T (t1)u)2 − (T (t2)u)2 − 2(u)ST (t1)u + 2(u)ST (t2)u

∣
∣
∣ dλ

≤ ||(T (t1)u + T (t2)u) (T (t1)u − T (t2)u)||L1(S) + 2|(u)S |L|t1 − t2|
≤ ||T (t1)u + T (t2)u||L∞(S) ||T (t1)u − T (t2)u||L1(S) + 2|(u)S |L|t1 − t2|
≤ 2||u||L∞(S)L|t1 − t2| + 2|(u)S |L|t1 − t2|
= 2L(||u||L∞(S) + |(u)S |)|t1 − t2|
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for any t1, t2 ∈ [0, t̃]. (Note that indeed u ∈ L∞(S), since u ∈ D(A).) �

Lemma 5.3. Let u ∈ D(A), then fu is differentiable almost everywhere on
(0,∞) and

f ′
u(t) = −2||∇T (t)u||pLp(S,ν;Rn) (5.2)

for almost every t ∈ (0,∞).

Proof. Let u ∈ D(A), v := u − (u)S . Let t ∈ (0,∞) be such that T (·)v is
differentiable at t and let (hm)m∈N ⊆ (0,∞) such that limm→∞ hm = 0.

It is clear that

lim
m→∞

T (t + hm)v − T (t)v
hm

= T ′(t)v and lim
m→∞ T (t + hm)v + T (t)v = 2T (t)v.

in L1(S).
Consequently, by passing to a subsequence if necessary, this convergences

holds also almost everywhere, which yields

lim
m→∞

(T (t + hm)v)2 − (T (t)v)2

hm
= 2T (t)vT ′(t)v a.e. on S. (5.3)

It follows from [5], Theorems 4.2 and 4.4 that
∣
∣
∣
∣

∣
∣
∣
∣
(T (t + hm)v)2 − (T (t)v)2

hm

∣
∣
∣
∣

∣
∣
∣
∣
L∞(S)

≤
4||v||2L∞(S)

|p − 2|t ,

for all m ∈ N. This, together with (5.3) implies, by virtue of dominated con-
vergence, that

lim
m→∞

fu(t + hm) − fu(t)
hm

= 2
∫

S

T (t)
(
u − (u)S

)
T ′(t)

(
u − (u)S

)
dλ (5.4)

and consequently one infers, by using Lemmas 4.1 and 3.3, that

lim
m→∞

fu(t + hm) − fu(t)
hm

= 2
∫

S

(
T (t)(u) − (u)S

)
T ′(t)udλ

= 2
∫

S

T (t)(u)T ′(t)udλ − 2
∫

S

(u)ST ′(t)udλ

= −2||∇T (t)u||pLp(S,ν;Rn).

The preceding calculation yields that the right derivative of fu is given by the
right hand side of (5.2). Consequently (5.2) holds, since any real valued, locally
Lipschitz continuous function is differentiable almost everywhere. �

Lemma 5.4. Let u ∈ D(A) and assume that the interval
(

p0(n−2)
n+2 + p0, 2

)
is

nonempty. Moreover, assume p ∈
(

p0(n−2)
n+2 + p0, 2

)
, then there is a constant

T ∗
u,γ,p,n,S such that

T (t)u = (u)S a.e. on S

for all t ≥ T ∗
u,γ,p,n,S.
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In addition, T ∗
u,γ,p,n,S can be chosen as

T ∗
u,γ,p,n,S :=

(∫

S
(u − (u)S)2dλ

)1− p
2

2 − p
C̃p

S

(

C
2n

n+2

S, 2n
n+2

+ 1
)np+2p

2n

Γ̃n,p < ∞,

where the constant C̃S denotes the operator norm of the continuous injection
W 1, 2n

n+2 (S) ↪→ L2(S) and

Γ̃n,p :=
(∫

S

γ
2n

2n−np−2p dλ

)np+2p−2n
2n

< ∞.

Proof. Let u ∈ D(A), p ∈
(

p0(n−2)
n+2 + p0, 2

)
and assume that this interval is

nonempty.
First of all note that 2n

n+2 < n, since n 
= 1. Consequently, Sobolev’s

embedding theorem yields that there is a continuous injection W 1, 2n
n+2 (S) ↪→

L2(S). So let C̃S denote its operator norm.
Now let t ∈ (0,∞) be such that −T ′(t)u = AT (t)u and such that (5.2)

holds. (Clearly a.e. point in (0,∞) is a valid choice for t.)
Note that

0 ≤ 2n

n + 2
− 1 =

1
p0

(
p0(n − 2)

n + 2
+ p0

)

− 1 <
p

p0
− 1 =

p − p0

p0
(5.5)

Moreover, T (t)u ∈ D(A) yields T (t)u ∈ W 1,p
γ (S) and consequently it follows

by virtue of Lemma 4.4 and (5.5), that T (t)u ∈ W 1, 2n
n+2 (S) and

||∇T (t)u||p
L

2n
n+2 (S;Rn)

≤ Γ̃n,p||∇T (t)u||pLp(S,ν;Rn) (5.6)

and particularly that
∫

S
γ

2n
2n−np−2p dλ < ∞ which implies that T ∗

u,γ,p,n,S < ∞.
Now introduce

αγ,p,n,S := 2

(

C̃p
S

(

C
2n

n+2

S, 2n
n+2

+ 1
)np+2p

2n

Γ̃n,p

)−1

,

then

fu(t)
p
2 ≤ 2α−1

γ,p,n,S ||∇T (t)u||pLp(S,ν;Rn), (5.7)

since

fu(t)
p
2 = ||T (t)u − (u)S ||pL2(S)

≤ C̃p
S ||T (t)u − (u)S ||p

W
1, 2n

n+2 (S)

= C̃p
S

(

||T (t)u − (u)S ||
2n

n+2

L
2n

n+2 (S)
+ ||∇T (t)u||

2n
n+2

L
2n

n+2 (S;Rn)

)np+2p
2n

≤ C̃p
S

(

C
2n

n+2

S, 2n
n+2

||∇T (t)u||
2n

n+2

L
2n

n+2 (S;Rn)
+ ||∇T (t)u||

2n
n+2

L
2n

n+2 (S;Rn)

)np+2p
2n
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= C̃p
S

(

C
2n

n+2

S, 2n
n+2

+ 1
)np+2p

2n

||∇T (t)u||p
L

2n
n+2 (S;Rn)

≤ C̃p
S

(

C
2n

n+2

S, 2n
n+2

+ 1
)np+2p

2n

Γ̃n,p||∇T (t)u||pLp(S,ν;Rn)

= 2α−1
γ,p,n,S ||∇T (t)u||pLp(S,ν;Rn),

where the Sobolev embedding theorem, Poincaré’s inequality and (5.6) have
been used.

Consequently, (5.7) and Lemma 5.3 yield

f ′
u(t) + αγ,p,n,Sfu(t)

p
2 ≤ −2||∇T (t)u||pLp(S,ν;Rn) + 2||∇T (t)u||pLp(S,ν;Rn) = 0

Conclusively, Lemma 5.1 yields that fu(t) = 0 for all

t ≥ fu(0)1− p
2

αγ,p,n,S(1 − p
2 )

= T ∗
u,γ,p,n,S ,

which implies the claim, since fu(t) = 0 for all t ≥ T ∗
u,γ,p,n,S clearly yields

T (t)u = (u)S a.e. on S for all t ≥ T ∗
u,γ,p,n,S . �

Remark 5.5. Whenever p ∈
(

p0(n−2)
n+2 + p0, 2

)

= ∅ and u ∈ L2(S) then T ∗

u,γ,p,n,S

and Γ̃n,p denote the constants defined in Lemma 5.4.
The proof of the preceding lemma reveals that these are indeed finite.

So far one only knows that D(A) is a dense subset of (L1(S), || · ||L1(S)).
This result is of course not very useful to generalize the preceding Lemma to
more general initial values than u ∈ D(A). It will be established now that
D(A) is even a dense subset of (L2(S), || · ||L2(S)). The applied technique is the
same as in [3], Prop. 5.1.

Lemma 5.6. D(A) is a dense subset of (L2(S), || · ||L2(S)).

Proof. It suffices to prove that there is for each h ∈ L∞(S) a sequence (fm)m∈N

⊆ D(A) such that

lim
m→∞ fm = h in L2(S),

since L∞(S) is a dense subspace of L2(S).
Let h ∈ L∞(S) be arbitrary but fixed.
Since A is m-accretive there are for each m ∈ N functions fm ∈ D(A),

f̂m ∈ Afm, such that

h = fm +
1
m

f̂m a.e. on S (5.8)

for all m ∈ N.
By complete accretivity one obtains fm << fm + 1

m f̂m and consequently
fm << h for all m ∈ N, which yields

||fm||L∞(S) ≤ ||h||L∞(S) < ∞, ∀m ∈ N. (5.9)

Consequently fm ∈ L∞(S) and therefore fm ∈ D(A) for all m ∈ N.
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Moreover, (5.9) also implies that the sequence (||fm||L2(S))m∈N is bounded.
Hence, by passing to a subsequence if necessary, there is an h̃ ∈ L2(S) such
that

w - lim
m→∞ fm = h̃ in L2(S). (5.10)

Now observe that

lim
m→∞

1
m

∫

S

γ|∇fm|p−2∇fm · ∇ϕdλ = 0, ∀ϕ ∈ W 1,p
γ (S) ∩ L∞(S), (5.11)

since one obtains for all ϕ ∈ W 1,p
γ (S) ∩ L∞(S) and q := p

p−1 that
∣
∣
∣
∣
∣

(
1
m

) 1
q

∫

S

γ|∇fm|p−2∇fm · ∇ϕdλ

∣
∣
∣
∣
∣

≤
(

1
m

) 1
q

(∫

S

γ|∇fm|p−2∇fm · ∇fmdλ

) 1
q

||∇ϕ||Lp(S,ν;Rn)

=
(∫

S

(h − fm)fmdλ

) 1
q

||∇ϕ||Lp(S,ν;Rn)

≤
(∫

S

(||h||L∞(S) + ||h||L∞(S))||h||L∞(S)dλ

) 1
q

||∇ϕ||Lp(S,ν;Rn)

=
(
2λ(S)||h||2L∞(S)

) 1
q ||∇ϕ||Lp(S,ν;Rn),

where Cauchy Schwarz inequality, Hölder’s inequality, f̂m = Afm, (5.8) and
(5.9) were used.

Moreover, (5.11) yields
∫

S

(h − h̃)ϕdλ = lim
m→∞

∫

S

(h − fm)ϕdλ

= lim
m→∞

∫

S

1
m

f̂mϕdλ

= lim
m→∞

1
m

∫

S

γ|∇fm|p−2∇fm · ∇ϕdλ

= 0.

for all ϕ ∈ W 1,p
γ (S) ∩ L∞(S) and therefore h = h̃.

It is clear that ||fm||L2(S) ≤ ||fm + 1
m f̂m||L2(S) and consequently one gets

||fm||L2(S) ≤ ||h||L2(S) = ||h̃||L2(S) for all m ∈ N, which implies particularly
that

lim sup
m→∞

||fm||L2(S) ≤ ||h̃||L2(S).

Conclusively this, (5.10) and the uniform convexity of the Banach space L2(S)
yield limm→∞ fm = h̃ = h, in L2(S). �
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Theorem 5.7. Let u ∈ L2(S) and assume that the interval
(

p0(n−2)
n+2 + p0, 2

)
is

nonempty. Moreover, assume p ∈
(

p0(n−2)
n+2 + p0, 2

)
, then

T (t)u = (u)S a.e. on S

for all t ≥ T ∗
u,γ,p,n,S.

Proof. Let u ∈ L2(S) be given and assume that u is not constant a.e. on S.
(If u is constant the claim is trivial.)

Now let (vm)m∈N ⊆ D(A) be such that limm→∞ vm = u in L2(S) and
assume that none of the vm is constant a.e. on S.

Moreover, introduce (um)m∈N by

um :=
||u − (u)S ||L2(S)

||vm − (vm)S ||L2(S)

vm, ∀m ∈ N. (5.12)

It is clear that limm→∞ um = u in L2(S) and that T ∗
um,γ,p,n,S = T ∗

u,γ,p,n,S for
all m ∈ N.

Observe that also um ∈ D(A) for all m ∈ N. (Generally if (f, f̂) ∈ A then
(αf, αp−1f̂) ∈ A for any α > 0.)

Consequently Lemma 5.4 yields T (t)um = (um)S a.e. on S for every
t ≥ T ∗

u,γ,p,n,S .
Finally observe thatlimm→∞ T (t)um = T (t)u in L2(S) for any t ∈ [0,∞),

which clearly implies the claim. �

Using the preceding result and Theorem 4.9 one obtains the following
corollary for the case n = 2 and p0 = 1 which concludes this paper.

Note that this corollary is applicable for any p ∈ (1,∞)\{2}, i.e. for any
value of p for which the existence of unique strong solutions of (2.2) is proven.

Corollary 5.8. Assume n = 2 and p0 = 1, then

T (t)u = (u)S a.e. on S,

for all t ≥ T ∗
u,γ,p,2,S, if p ∈ (1, 2) and u ∈ L2(S).

Moreover, if p ∈ (2,∞) and u ∈ Lp(S), then

||T (t)u − (u)S ||L∞(S) ≤ C∗
S,δΓδ,p||u − (u)S ||

2
p

L2(S)

(
1
t

) 1
p

for every t ∈ (0,∞) and δ ∈ (1, p − 1).
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