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Abstract. We study the metastable dynamics of solutions to nonlinear
evolutive equations of parabolic type, with a particular attention to the
case of the viscous scalar Burgers equation with small viscosity ε. In order
to describe rigorously such slow motion, we adapt the strategy firstly
proposed in Mascia and Strani (SIAM J Math Anal 45:3084–3113, 2013)
by linearizing the original equation around a metastable state and by
studying the system obtained for the couple (ξ, v), where ξ is the position
of the internal shock layer and v is a perturbative term. The main result
of this paper provides estimates for the speed of the shock layer and for
the error v; in particular, in the case of the viscous Burgers equation, we
prove they are exponentially small in ε. As a consequence, the time taken
for the solution to reach the unique stable steady state is exponentially
large, and we have exponentially slow motion.
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1. Introduction

In the analysis of PDEs, metastability is a broad term describing the per-
sistence of unsteady structures for a very long time. We refer to metastable
dynamics when, in a first stage, the evolution of a (non-stationary) solution is
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so slow that the solution appears to be stable, and it is only after a very long
time that it converges to its asymptotic limit. To be more precise, the quali-
tative features of metastable dynamics are the following: through a transient
process a pattern of internal layers is formed from initial data over a O(1) time
interval; at this point of the dynamics the solution is far from any stable con-
figuration of the system. Once this pattern is formed, the subsequent motion of
the interfaced solution is exceedingly slow, converging to its asymptotic limit.
As a consequence, two different time scales emerge: a short time phase where
one observes the formation of this pattern of internal interfaces (the so called
metastable state), and a subsequent long time phase where these interfaces
interact until the solution stabilizes to the stable steady state of the system.

A large class of evolutive PDEs exhibits such phenomenon; far from be-
ing exhaustive, we here recall the study of metastability for the Allen–Cahn
equation performed in [5,6,12], for the Cahn–Hilliard equation [1–3], for the
Jin–Xin systems [19], for convection-reaction-diffusion and reaction-diffusion
equations [20–22] and for hyperbolic variations of the Allen–Cahn equation
[9–11].

Given � > 0, I = [−�, �] and the space X := L2(I), in this paper we mean
to investigate the metastable dynamics of solutions u : [0,+∞) → X to the
following Cauchy problem

ut = Fε[u], u(·, 0) = u0. (1.1)

Here, Fε denotes a nonlinear differential operator, complemented with appro-
priate boundary conditions, depending in a singular way with respect to ε,
meaning that the operator F0 is of lower order with respect to Fε.

In particular, the main example we have in mind is the initial-boundary
value problem for the viscous Burgers equation, i.e.

⎧
⎪⎨

⎪⎩

∂tu = ε ∂2
xu − ∂xf(u), x ∈ I, t > 0,

u(x, 0) = u0(x), x ∈ I,

u(−�, t) = u−, u(�, t) = u+, t > 0,

(1.2)

where the unknown u ∈ C0([0,+∞);L2(I)) and the the flux function is f(u) =
u2/2. Formally, in the limit ε → 0, problem (1.2) reduces to the initial-
boundary value problem for the hyperbolic Burgers equation

∂tu + ∂x

(
1
2u2

)
= 0, (1.3)

for which it is well known that solutions with discontinuities may appear,
provided they satisfy the Rankine–Hugoniot and the entropy conditions. In
particular, in this setting these conditions state that only jumps from a value
u− greater than u+ are admitted and their speed of propagation is given by

s =
[[f(u)]]

[[u]]
=

u− + u+

2
.

When looking for stationary solutions, because of the above discussion, for any
given ξ ∈ (−�, �) the one parameter family

Uhyp(x; ξ) := u−χ(−�,ξ) + u+χ(ξ,�)
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Figure 1. The solutions to (1.2) with ε = 0.07 and ε = 0.045,
respectively. The initial datum is u0(x) = 1

2x2 − x − 1
2

is composed by stationary solutions to (1.3) if and only if u− = −u+, i.e.
s = 0. From now on, we will thus consider boundary conditions of the form
u± = ∓u∗ for some u∗ > 0.

When ε > 0, the situation is very different: indeed, in this case it is
possible to prove that (1.2) possesses a unique stationary solution, that can
be explicitly computed and reads

Ūε(x) = −κ tanh
(κx

2ε

)
,

where the constant κ = κ(u∗) is univocally determined by the boundary con-
ditions. In [14] the authors proved the asymptotic stability of Ūε by analyzing
spectral properties of the linearized operator around Ūε; precisely, in [14] it
has been shown that the eigenvalues of

Lεu := ε∂2
xu − ∂x(Ūε(x)u),

are real, negative and have the following distribution as with respect to ε

λ1 = O(e−1/ε), λk < −1
ε

∀ k ≥ 2.

Negativity of the spectrum implies the asymptotic stability of the steady state
Ūε; the precise distribution of the eigenvalues and, in particular, the order of
the first eigenvalue, suggest that the speed rate of convergence of the time-
dependent solution towards the steady state Ūε is exponentially small in ε,
precisely of order O(e−1/ε).

Numerical simulations validate such hypothesis, as they show that, even
if starting from an initial datum localized far from the stable steady state Ūε,
the corresponding time-dependent solution develops into a layered function on
a short time scale, while on a longer time scale proportional to e1/ε, it moves
towards the location corresponding to the equilibrium solution.

To have an idea of how the size of the parameter ε influences the speed
rate of convergence of the solution towards its steady state, Fig. 1 shows the
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solution to (1.2) with u± = ∓1 and initial datum u0(x) = 1
2x2 − x − 1

2 for
two different values of ε: when ε = 0.07, for times of order 105 the solution
is already very close to its asymptotic configuration or in other words, the
location of the shock is already very close to zero. On the other hand, when
ε = 0.045, and for times of the same order, the shock layer location is still
quite far from its equilibrium.

Many papers have been devoted to the study of metastability for the
viscous Burgers equation. Without claiming to be complete, we list some of
the contributions. Slow motion for the viscous Burgers equation in the case of
the whole real line have been analized in [4,13]. If uε = uε(x, t) is the solution
of the viscous Burgers equation and u0 = u0(x, t) is the solution of the corre-
sponding inviscous case (1.3), then it is known that uε → u0 in an appropriate
sense for any fixed t > 0 as ε → 0. However, for fixed ε, the long-time behavior
of uε and u0 is different and they converge to solutions known as diffusion
waves and N -waves, respectively. In [13], the authors studied generation of
N -waves and their evolution to the final stage of a diffusion wave by using
a transformed version of the Burgers equation (in self-similar variables). The
same problem has been studied in [4], where the large-time behavior of solu-
tions is described using invariant manifolds; in particular, the authors provided
a geometric explanation for the metastability.

The case of bounded intervals has been examined in [7,8,15,17,23]. In
[15,17,23] the analysis is conducted at a formal level and validated numerically
by means of comparison with significant computations. In particular, specific
examples are solved explicitly by using the Cole–Hopf transformation and the
“supersensitivity” of the metastable motion is analyzed. On the other hand, a
rigorous analysis has been performed in [7,8], where the approach is based on
the use of traveling wave solutions satisfying the boundary conditions and with
small velocity. The authors used such traveling waves and maximum principle
methods to obtain rigorous asymptotic formulae for the velocity of convergence
of solutions.

In order to describe rigorously the metastable behavior of solutions to
(1.1) without relying on such techniques, which are typical of scalar equations,
in this paper we use more flexible strategies and techniques, firstly performed
in [16]. Precisely, the key idea relies on the construction of what we refer to as
a one-parameter family of approximated steady states {Uε(x; ξ)}ξ∈I (that is,
a family whose elements satisfies the stationary equation up to an error that
is small in ε in a sense that will be specified later on), and on a subsequent
linearization of the original equation around an element of this family. The
idea of a linearization around Uε is developed in order to separate the two
distinct phases of the dynamics of the solution, so that to understand firstly
what happens far from the stable equilibrium solution, when the shock layer is
formed, and, subsequently, to study the evolution of such a layer towards the
asymptotic limit. In particular, in the case of the viscous Burgers equation, an
element of the family {Uε(x; ξ)}ξ∈I is a layered function and the parameter
ξ represents the position of the unique internal interface, so that the function
ξ(t) describes the evolution of the position of the internal shock layer and,
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consequently, the time dependent evolution of the layered solution. As it was
in [16], after the linearization, that is after representing the solution as the
sum of an element Uε(x; ξ) moving along the family {Uε}, plus a perturbation
term v, we end up with a coupled system for the shock layer position ξ and
the perturbation v; in [16], only a reduced version of this system, obtained by
disregarding quadratic terms in v, has been analyzed. On the other hand, in
the present paper we state and prove a general result, analogous to the one
proved in [16, Theorem 2.1], concerning the complete nonlinear system for the
couple (ξ, v), that better suites the behavior of the solutions to the original
equation. Of course, dealing with the complete system brings into the analysis
the specific form of the quadratic terms arising from the linearization; when
these terms do not depend on the first order derivative of the solution, similar
results can be proven (see, for example, [21]). In the case analyzed in this paper
a nonlinear first-order space derivative term is present, as in the case of the
viscous Burgers equation (1.2). Our main result provides an estimate for the
L2-norm of the perturbation v and for the speed of the internal shock layer ξ.
In particular, in the case of the viscous Burgers equation, if we start from initial
data that are exponentially close to an element of the family Uε(·; ξ), then the
perturbation v remains exponentially small for all times and the speed of the
internal shock layer is exponentially small. As a consequence, the time taken
for the solution to reach the equilibrium is exponentially large, leading to an
exponentially slow motion. In [18] an algebraic slow motion result for Burgers
equation is proven, with slightly stronger assumption and by analyzing the
H1-norm of the perturbation.

The rest of the paper is organized as follows. Section 2 contains the
general strategy and the main result of the paper, Theorem 2.1, providing the
above sketched estimates on the couple (ξ, v). In Sect. 3 we illustrate how this
procedure can be applied to the case of the viscous Burgers equation. We prove
exponentially slow motion for the latter equation and present some numerical
explorations, showing the metastable dynamics of the solutions to (1.2).

2. General framework

We here mean to describe the general strategy proposed in [16] to study the
metastable dynamics of solutions to evolutive equations of the form

ut = Fε[u], u(·, 0) = u0. (2.1)

Here and in what follows, � > 0, I = [−�, �], the space X := L2(I) and the
solution u : [0,+∞) → X. As previously mentioned, our aim is to adapt this
strategy in order to describe metastability for the solutions to (1.2).

Given an open interval J ⊂ I, consider a one-parameter family {Uε(·; ξ) :
ξ ∈ J} in X, satisfying

|〈ψ,Fε[Uε(·; ξ)]〉| ≤ Ωε(ξ)|ψ|
L∞ , ∀ψ ∈ C(I), ∀ ξ ∈ J, (2.2)

where Ωε(ξ) is a family of smooth positive functions converging to zero as
ε → 0, uniformly with respect to ξ ∈ J . Formula (2.2) states that each element
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of the family satisfies the stationary equation up to an error that is small
in ε, and that is measured by Ωε. Then, the family Uε(·; ξ) is composed by
approximate steady states of (2.1).

Once the one-parameter family Uε(·; ξ) is chosen, the second step of our
strategy is the linearization of the original equation (2.1) around an element
of the family; then, we look for a solution of the form

u(x, t) = Uε(x; ξ(t)) + v(x, t), (2.3)

where the perturbation v ∈ X and the parameter ξ has to be determined. In
particular, the key point here is that the parameter ξ, describing the position of
the internal shock layer, depends on time, so that by following its dynamics we
mean to describe the time dependent evolution of the layered solution. Hence,
the idea is to reduce the dynamics of the PDE (2.1) into a one-dimensional
dynamics for the parameter ξ.

By substituting (2.3) into (2.1) we obtain

∂tv = Lε
ξv + Fε[Uε(·; ξ)] − ∂ξU

ε(·; ξ) dξ

dt
+ Qε[v, ξ], (2.4)

where Lε
ξv is the linearized operator arising from the linearization around Uε,

and
Qε[v, ξ] := Fε[Uε(·; ξ) + v] − Fε[Uε(·; ξ)] − Lε

ξv.

Having in mind the case of the Burgers equation, where Qε[v, ξ] = −∂x

(
1
2v2

)

is a divergence term, and thus integrable by parts, in the following we shall
assume

|〈ψ,Qε[v, ξ]〉| ≤ C|v|2
L2

|ψ′|
L∞ , ∀ψ ∈ C1(I), ∀ ξ ∈ J. (2.5)

Next, following the line of [16], we require that Lε
ξ has a discrete spectrum

composed by semi-simple eigenvalues λε
k := λε

k(ξ) with corresponding eigen-
functions ϕε

k := ϕε
k(·; ξ). Moreover, we assume that λε

k are real, negative and
diverge to −∞ as kα, α > 1, that is

|λε
k| = O(kα), for some α > 1 and for k → +∞. (2.6)

Finally, we require that the first eigenvalue is small in ε and tends to 0 as
ε → 0. Let now ψε

k(·; ξ) be the eigenfunctions of the adjoint operator Lε,∗
ξ of

Lε
ξ. In what follows, we also assume that we can expand v in terms of the

eigenfunctions ϕε
k, namely

v(x, t) =
∑

k

vk(t)ϕε
k(x, ξ(t)) with vk(t) = 〈ψε

k(·, ξ(t)), v(·, t)〉. (2.7)

The latter can be seen as an assumption on the linearized operator Lε
ξ and/or

on the perturbation term v we are dealing with.
In order to remove the singular part of the operator Lε

ξ in the limit
ε → 0 (i.e. the one corresponding to the first singular eigenvalue λε

1) we set
an algebraic condition ensuring orthogonality between the solution v and ψε

1;
in particular, the equation for the parameter ξ(t) is chosen in such a way that
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the slower decaying terms in the perturbation v are canceled out. In formula,
we have

d

dt
〈ψε

1(·; ξ(t)), v(·, t)〉 = 0 and 〈ψε
1(·; ξ(0)), v(·, 0)〉 = 0,

so that, using (2.4), we obtain

〈ψε
1(·; ξ),Lε

ξv + Fε[Uε(·; ξ)] − ∂ξU
ε(·; ξ)dξ

dt
+ Qε[v, ξ]〉 + 〈∂ξψ

ε
1(·; ξ)

dξ

dt
, v〉 = 0.

Since 〈ψε
1,Lε

ξv〉 = λε
1〈ψε

1, v〉 = 0, we end up with a scalar nonlinear differential
equation for the variable ξ, that reads

(〈ψε
1(·; ξ), ∂ξU

ε(·; ξ)〉 − 〈∂ξψ
ε
1(·; ξ), v〉) dξ

dt
= 〈ψε

1(·; ξ),Fε[Uε(·; ξ)] + Qε[v, ξ]〉.
(2.8)

To rewrite (2.8) in a normal form, we assume that there exists a constant
c0 > 0 (independent on ξ) such that

|〈ψε
1(·; ξ), ∂ξU

ε(·; ξ)〉| ≥ c0.

Therefore, we can renormalize the first adjoint eigenfunction in such a way

〈ψε
1(·; ξ), ∂ξU

ε(·; ξ)〉 = 1, ∀ ξ ∈ J.

It follows that
dξ

dt
=

〈ψε
1(·; ξ),Fε[Uε(·; ξ)] + Qε[v, ξ]〉

1 − 〈∂ξψε
1(·; ξ), v〉 . (2.9)

Using that

1
1 − 〈∂ξψε

1(·; ξ), v〉 = 1 + 〈∂ξψ
ε
1, v〉 +

〈∂ξψ
ε
1(·; ξ), v〉2

1 − 〈∂ξψε
1(·; ξ), v〉 ,

and inserting in (2.9), we obtain an ODE for the variable ξ(t) that reads

dξ

dt
= θε(ξ)

(
1 + 〈∂ξψ

ε
1, v〉) + ρε[ξ, v], (2.10)

where

θε(ξ) := 〈ψε
1,Fε[Uε]〉,

ρε[ξ, v] :=
〈ψε

1,Qε[v, ξ]〉
1 − 〈∂ξψε

1(·; ξ), v〉 + θε(ξ)
〈∂ξψ

ε
1(·; ξ), v〉2

1 − 〈∂ξψε
1(·; ξ), v〉 .

(2.11)

We notice that, heuristically and for small perturbation v, the speed of the
parameter ξ is given by θε(ξ), the leading order term in the equation. In
particular, by the assumption (2.2) it follows that

|θε(ξ)| ≤ C Ωε(ξ), ξ ∈ J,

suggesting that the speed of the shock layer location ξ is indeed small in ε.
Equations (2.4) and (2.10) form a system for the couple (ξ, v). This sys-

tem is obtained by linearizing with respect to v, and by keeping the nonlinear
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dependence on ξ, in order to describe the evolution of the interface when it is
localized far from the equilibrium location. It reads

⎧
⎪⎨

⎪⎩

dξ

dt
= θε(ξ)

(
1 + 〈∂ξψ

ε
1, v〉) + ρε[ξ, v],

∂tv = Lε
ξv + Fε[Uε(·; ξ)] − ∂ξU

ε dξ

dt
+ Qε[v, ξ],

(2.12)

together with initial data

〈ψε
1(·; ξ0), v0〉 = 0, v0 = u0 − Uε(·; ξ0). (2.13)

The aim of this section is to analyze the behavior of the solutions to (2.12) in
the limit ε → 0. The novelty with respect to [16] is that the complete system
is considered; indeed in [16] the terms ρε and Qε are neglected.

From now on, we will make use of the following properties on the eigen-
functions ψε

k and the metastable state Uε:

|ψε
k|

L2 ≤ C, |∂xψε
k|

L∞ + |∂ξψ
ε
k|

L∞ ≤ C
√

|λε
k|, |∂ξU

ε|
L2 ≤ C√

ε
. (2.14)

We now state our main result, giving an estimate for the L2-norm of the
perturbation v and for the speed of the internal shock layer ξ.

Theorem 2.1. Let (ξ, v) be the solution to the initial-value problem (2.12)–
(2.13), with v0 and Ωε satisfying

|v0|L2 = o(
√

ε) and |Ωε|
L∞ = o(ε). (2.15)

Then, there exists ε0 > 0 such that for any ε ∈ (0, ε0) it holds

|v|
L2 (t) ≤ C

(

|v0|L2 +
1√
ε
|Ωε|

L∞

)

and
∣
∣
∣
∣
dξ

dt

∣
∣
∣
∣ ≤ C (|v0|2

L2
+ |Ωε|

L∞ ),

(2.16)
for all t ≥ 0 and for some constant C > 0.

Proof of Theorem 2.1. By using (2.7) and differentiating with respect to t,
we obtain an infinite-dimensional differential system for the coefficients

vk

dvk

dt
= 〈ψε

k, ∂tv〉 + 〈∂ξψ
ε
k

dξ

dt
, v〉

= λε
k(ξ) vk + 〈ψε

k,Fε[Uε]〉 + 〈ψε
k,Qε[v, ξ]〉 +

dξ

dt
(〈∂ξψ

ε
k, v〉 − 〈ψε

k, ∂ξU
ε〉) .

Now let us set

Ek(s, t) := exp
(∫ t

s

λε
k(ξ(σ))dσ

)

.
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Since v1 ≡ 0, by Duhamel’s formula, we have the following expression for the
coefficients vk, k ≥ 2

vk(t) = vk(0)Ek(0, t)

+
∫ t

0

{

〈ψε
k,Fε[Uε]〉 +

dξ

dt

(〈∂ξψ
ε
k, v〉 − 〈ψε

k, ∂ξU
ε〉)

}

Ek(s, t)ds

+
∫ t

0

〈ψε
k,Qε[v, ξ]〉Ek(s, t)ds.

Hence, by using the assumptions (2.2), (2.6) and (2.14), we deduce

|vk(t)| ≤ |vk(0)|Ek(0, t)

+C

∫ t

0

{

Ωε(ξ) +
∣
∣
∣
∣
dξ

dt

∣
∣
∣
∣

(

k
α
2 |v|

L2 +
1√
ε

)}

Ek(s, t)ds

+
∫ t

0

|〈ψε
k,Qε[v, ξ]〉|Ek(s, t)ds. (2.17)

Recalling the equation for ξ(t) in system (2.12), we have
∣
∣
∣
∣
dξ

dt

∣
∣
∣
∣ ≤ C Ωε(ξ)

(
1 + |∂ξψ

ε
1|2L2

+ |v|2
L2

)
+ |ρε[ξ, v]|,

where we used |θε(ξ)| ≤ CΩε(ξ) and Young’s inequality. Going further, using
the assumptions (2.5) and (2.14) in the definition of ρε (2.11), we obtain

|ρε[ξ, v]| ≤
∣
∣
∣
∣
∣

C|v|2
L2

1 − 〈∂ξψε
1(·; ξ), v〉

∣
∣
∣
∣
∣
+ C Ωε(ξ)

∣
∣
∣
∣

〈∂ξψ
ε
1(·; ξ), v〉2

1 − 〈∂ξψε
1(·; ξ), v〉

∣
∣
∣
∣

≤ C
(1 + Ωε(ξ))

|1 − 〈∂ξψε
1(·; ξ), v〉| |v|2

L2
,

leading to
∣
∣
∣
∣
dξ

dt

∣
∣
∣
∣ ≤ C Ωε(ξ)

(
1 + |v|2

L2

)
+ C|v|2

L2
≤ C

(
Ωε(ξ) + |v|2

L2

)
, (2.18)

for any t > 0 such that

|v|
L2 ≤ 1

2|∂ξψε
1|L2

, (2.19)

and using the boundedness of Ωε(ξ). As concerning the last term in (2.17),
because of (2.5), (2.6) and (2.14) we have

|〈ψε
k,Qε[v, ξ]〉| ≤ C|∂xψε

k|
L∞ |v|2

L2
≤ C

√

|λε
k| |v|2

L2
≤ Ck

α
2 |v|2

L2
,

and (2.17) becomes

|vk(t)| ≤ |vk(0)|Ek(0, t) + C

∫ t

0

{(

k
α
2 +

1√
ε

) (
Ωε(ξ) + |v|2

L2

)}

Ek(s, t)ds,

for ε small and for any t > 0 such that

|v|
L2 ≤ 1. (2.20)
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We estimate the integral as follows
∫ t

0

Ek(s, t) ds ≤ 1
Ckα

(
1 − e−Ckαt

)
≤ 1

Ckα
,

where we used 0 ≤ Ek(s, t) ≤ exp (−Ckα(t − s)). It follows that

|vk(t)| ≤ |vk(0)|e−Ckαt + C

(
1

k
α
2

+
1√
εkα

)(

|Ωε|
L∞ + sup

s∈[0,t]

|v|2
L2

(s)

)

.

We claim that
|v|2

L2
≤ C

∑

k≥2

|vk(t)|2.

Indeed, for any n ∈ N define v(n) :=
∑n

k=2 vk(t)ϕε
k(x; ξ)

∣
∣v(n)

∣
∣2

L2
≤ C

n∑

k=2

|vk(t)|2 |ϕε
k(·, ξ)|2

L2
≤ C

n∑

k=2

|vk(t)|2,

and our claim follows by passing to the limit n → +∞. We thus obtain

|v|2
L2

≤ C
∑

k≥2

(

|vk(0)|e−Ckαt +
(

1
k

α
2

+
1√
εkα

)(

|Ωε|
L∞+ sup

s∈[0,t]

|v|2
L2

(s)
))2

≤ C
∑

k≥2

|vk(0)|2e−Ckαt

+ C

(

|Ωε|
L∞ + sup

s∈[0,t]

|v|2
L2

(s)

)2
∑

k≥2

(
1
kα

+
1

εk2α

)

≤ C
∑

k≥2

|vk(0)|2e−Ckαt +
C

ε

(

|Ωε|
L∞ + sup

s∈[0,t]

|v|2
L2

(s)

)2

,

for ε small and because of the convergence of the series, being α > 1. We use
(2.14) to estimate |vk(0)| ≤ |ψε

k|
L2 |v0|L2 ≤ C|v0|L2 . Therefore, for 0 ≤ t ≤ t0,

|v|
L2 ≤ 2|v0|L2 , while for t ≥ t0

∑

k≥2

|vk(0)|2e−Ckαt ≤ C|v0|2
L2

,

again for the convergence of the series (for α > 0). Finally, for any t > 0, we
end up with

|v|
L2 ≤ C|v0|L2 +

C√
ε

(

|Ωε|
L∞ + sup

s∈[0,t]

|v|2
L2

(s)

)

,

because
√

a2 + b2 + c2 ≤ a + b + c, for nonnegative values a, b, c.
Thus, setting

N(t) := sup
s∈[0,t]

|v|
L2 (s),
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we infer

N(t) ≤ C√
ε
N2(t) + C

(

|v0|L2 +
1√
ε
|Ωε|

L∞

)

=: AN2(t) + B.

Hence, as soon as

4AB =
4C2

√
ε

(

|v0|L2 +
1√
ε
|Ωε|

L∞

)

≤ 1,

which is satisfied for ε small enough in view of (2.15), we end up with

N(t) ≤ 2B

1 +
√

4AB
≤ 2B,

that is

|v|
L2 ≤ C

(

|v0|L2 +
1√
ε
|Ωε|

L∞

)

. (2.21)

Therefore, for ε sufficiently small, (2.19) and (2.20), and hence (2.21), are valid
for any t > 0. Substituting (2.21) in (2.18), since |Ωε|

L∞ = o(ε) we then obtain
the second estimate in (2.16) and the proof is complete. �

Remark 2.2. We underline that (2.16) states that both the L2-norm of the
perturbation and the speed of the shock layer are small with respect to ε,
provided Ωε and |v0|L2 to be small in ε (as required in (2.15)). Actually, in the
next section we will prove that, in the case of the viscous Burgers equation, it
holds

|Ωε|
L∞ ≤ Ce−c/ε,

so that, also requiring |v0|L2 to be exponentially small, we prove the exponen-
tially slow motion for the solutions to (1.2).

3. Application to the Burgers equation

In this section, we apply the strategy presented in the previous section to the
case of the Burgers equation (1.2); then, in this case the nonlinear differential
operator Fε reads

Fε[u] := ε ∂2
xu − ∂x

(
1
2u2

)
.

The family of approximate steady states. In order to follow the strategy
introduced in the previous section, the first step is the construction of the one-
parameter family of approximate steady states {Uε(x; ξ)}ξ∈J , satisfying the
assumption (2.2). There are many possible choices to construct the generic
element of such a family; here we use the same construction of [16], which
consists in matching in a continuous way two exact steady states in the inter-
vals (−�, ξ) and (ξ, �) satisfying, respectively, the left and the right boundary
conditions together with the request Uε(ξ; ξ) = 0. Precisely,

Uε(x; ξ) =

{
Uε

−(x; ξ) in (−�, ξ)

Uε
+(x; ξ) in (ξ, �),
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where Uε
−(x; ξ) solves

ε∂2
xUε

− − Uε
−∂xUε

− = 0, Uε
−(−�; ξ) = u∗, Uε

−(ξ; ξ) = 0,

and similarly for Uε
+ in (ξ, �). In particular, by separating variables we get an

implicit expression for Uε
±, given by

∫ Uε
±

0

ds

κ± − s2/2
=

x − ξ

ε
.

Therefore, Uε is defined as

Uε(x; ξ) =

{
κ− tanh (κ−(ξ − x)/2ε) in (−�, ξ)

κ+ tanh (κ+(ξ − x)/2ε) in (ξ, �),
(3.1)

where κ± are chosen so that the boundary conditions are satisfied, and are
implicitly defined by

2ε

κ±
tanh−1

(∓u∗
κ±

)

± � = ξ,

or equivalently

κ+ tanh
(κ+

2ε
(� − ξ)

)
= κ− tanh

(κ−
2ε

(� + ξ)
)

= u∗. (3.2)

It follows that κ+ = κ− if and only if ξ = 0, and

lim
ξ→�−

(κ− − κ+) = −∞, lim
ξ→−�+

(κ− − κ+) = +∞.

We also note that, with such a construction, the parameter ξ represents the
location of the unique internal shock layer, and the function Uε is a continuous
function with a jump in the first derivative located in x = ξ; hence, when
computing Fε[Uε] in order to obtain an explicit expression for Ωε, we get

Fε[Uε] = [[∂xUε]]x=ξ δx=ξ,

where δ is the Dirac delta distribution located in x = ξ.
By the explicit expression of Uε given in (3.1), we obtain

[[∂xUε]]x=ξ =
1
2ε

(κ2
− − κ2

+).

Let us now set κ± := u∗(1 + h±); from (3.2) we have

u∗ = κ± tanh
(κ±

2ε
(� ∓ ξ)

)
(3.3)

and we deduce
tanh

(u∗
2ε

(� ∓ ξ)(1 + h±)
)

=
1

1 + h±
.

From (3.3) we can state that the values h± are both positive and then

tanh
(u∗

2ε
(� ∓ ξ)

)
≤ 1

1 + h±
,

that gives the asymptotic representation

h± ≤ 1
tanh (u∗(� ∓ ξ)/2ε)

− 1 =
2

eu∗(�∓ξ)/ε − 1
≤ Ce−u∗(�∓ξ)/ε. (3.4)
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Hence, the behavior as ε → 0 of [[∂xUε]]x=ξ is encoded in the difference κ−−κ+,
and since we have

κ− − κ+ = u∗(h− − h+)
we end up with

|[[∂xUε]]x=ξ| ≤ C

ε
e−u∗(�−|ξ|)/ε. (3.5)

Hence, the error Ωε defined in (2.2) is exponentially small for ε → 0, uni-
formly in any compact subset of (−�, �); moreover, it is zero when ξ = 0, that
corresponds to the equilibrium location of the shock.

Linearization and spectral analysis. The second step of our strategy is the lin-
earization of the original Eq. (1.2) around an element of the family
{Uε(x; ξ)}ξ∈J ; then, we look for a solution of the form

u(x, t) = Uε(x; ξ(t)) + v(x, t),

where the perturbation v ∈ L2(I) and the parameter ξ(t) has to be determined.
The parameter ξ, describing the position of the internal shock layer, depends
on time, and by following its dynamics we mean to describe the time dependent
evolution of the layered solution. Hence, the idea is to reduce the dynamics of
the PDE (1.2) into a one-dimensional dynamics for the parameter ξ.

The Eq. (2.4) in the case of Burgers equation (1.2) reads

∂tv = Lε
ξv + Fε[Uε(·; ξ)] − ∂ξU

ε(·; ξ) dξ

dt
− v∂xv, (3.6)

where
Lε

ξv := ε∂2
xv − ∂x(Uεv)

is the linearized operator arising from the linearization around Uε.
Observe that in this case, Qε[v, ξ] := −∂x

(
1
2v2

)
, so that the assumption

(2.5) is clearly satisfied.
In order to exploit spectral properties of the linearized operator Lε

ξ, we
are thus interested in studying the eigenvalue problem

ε∂2
xv − ∂x(Uεv) = λv, v(±�) = 0. (3.7)

We first notice that, introducing the operator

Mε
ξv := ε2∂2

xv − bεv, where bε :=
(

1
2

Uε

)2

+
ε

2
∂xUε,

then ϕ(x; ξ) is an eigenfunction for (3.7) relative to the eigenvalue λ if and
only if the function φ(x; ξ), defined as

φ(x; ξ) = exp
(

− 1
2ε

∫ x

0

Uε(y; ξ) dy

)

ϕ(x; ξ)

is an eigenfunction for Mε
ξ of eigenvalue μ := ελ. Since Mε

ξ is self-adjoint, we
can state that the spectrum of Lε

ξ is composed by a decreasing sequence of real
eigenvalues {λε

k(ξ)}k∈N converging to −∞; also, a straightforward computation
(see [16]) shows that

σ(Lε
ξ) ⊂ (−∞, 0).
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Going further, the following Proposition can be proved by applying [16], Propo-
sition 4.1 and Proposition 4.4.

Proposition 3.1. Let {λε
k} be the sequence of eigenvalues of Lε

ξ. Then there
exist positive constants c1, c2 such that

−e−c1/ε ≤ λε
1 < 0, and λε

k ≤ −c2/ε for any k ≥ 2.

Let now ϕε
k(·; ξ) and ψε

k(·; ξ) be the eigenfunctions of Lε
ξ and its adjoint

Lε,∗
ξ v := ε∂2

xv + Uε(·; ξ)∂xv,

respectively. Proposition 3.1 states that the first eigenvalue of the linearized
operator is exponentially small in ε. In the case of viscous Burgers equation,
the equation for ξ becomes

dξ

dt
=

〈ψε
1(·; ξ),Fε[Uε(·; ξ)] − ∂x( 1

2v2)〉
〈ψε

1(·; ξ), ∂ξUε(·; ξ)〉 − 〈∂ξψε
1(·; ξ), v〉 . (3.8)

Observe that, since Uε(·; 0) is the exact stationary solution, then

F [Uε(·; ξ)] = F [Uε(·; ξ)] − F [Uε(·; 0)] ≈ Lε
ξ∂ξU

ε(·; 0) ξ.

The fact that Lε
ξ(∂ξU

ε) is uniformly small suggests that the first eigenfunction
ψε

1 is proportional to ∂ξU
ε (at least for small ε), so that we can renormalize

the first adjoint eigenfunction in such a way

〈ψε
1(·; ξ), ∂ξU

ε(·; ξ)〉 = 1, ∀ ξ ∈ I.

We thus obtain the following ODE for the variable ξ(t)
dξ

dt
= θε(ξ)

(
1 + 〈∂ξψ

ε
1, v〉) + ρε[ξ, v], (3.9)

where θε and ρε are defined as in (2.11). Heuristically, and for small perturba-
tion v, the speed of the parameter ξ is given by θε(ξ), the leading order term
in the equation. In particular, by the very definition it follows that for any
δ > 0, we have

|θε(ξ)| ≤ C Ωε(ξ) ∼ e−c/ε, ξ ∈ (−� + δ, � − δ),

suggesting that the speed rate of convergence of the shock layer location to-
wards its equilibrium is indeed exponentially small in ε.

Applying Theorem 2.1 in the case of Burgers equation, we can say that
if the L2-norm of the initial perturbation v0 is exponentially small, then the
L2-norm of the perturbation v and the speed of the shock layer location are
exponentially small for all t > 0, namely

|v|
L2 +

∣
∣
∣
∣
dξ

dt

∣
∣
∣
∣ ≤ Ce−c/ε, (3.10)

for all t ≥ 0. Since, for ε → 0, the estimate on the L2-norm of the perturbation
given in (3.10) holds globally in time, it can be used in the equation for ξ(t)
in order to decouple the system (2.12). Indeed, ξ(t) solves an equation of the
form

dξ

dt
= θε(ξ)(1 + r) + ρε,
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where
|r| ≤ C|v|

L2 and |ρε| ≤ C(1 + |Ωε|
L∞ )|v|2

L2
.

Hence, for small ε and initial data v0 such that |v0|L2 ≤ e−c/ε, the dynamics
of ξ is described by the ODE

dξ

dt
= θε(ξ).

Using a standard method of separation of variables, it follows that the function
ξ satisfies

|ξ| ≤ |ξ0|e−βεt, −βε ∼ θε′(0), (3.11)
for βε > 0 and βε → 0 as ε → 0.

Estimate (3.11) shows the exponentially slow motion of the shock layer:
indeed, recalling that Uε(·; 0) is the exact steady state of the problem, (3.11)
states that the speed rate of convergence of ξ(t) towards its equilibrium posi-
tion is much slower as ε becomes smaller, since βε ∼ e−c/ε as ε → 0 (for more
details, see [16, Example 3.4]).

In terms of the original solution to (1.2), recalling the decomposition

u(x, t) = v(x, t) + Uε(x; ξ(t)),

estimates (3.10)–(3.11) show that the solution u is converging to Uε(·; 0) for
large times; moreover, the speed rate of such convergence is dictated by the
speed rate of convergence of ξ(t) towards 0, hence it is smaller as ε becomes
smaller, leading to a metastable behavior.

Asymptotic for the eigenfunctions. We here mean to exploit some properties
of the eigenfunctions ψε

k in order to heuristically justify the assumptions (2.14)
we used in the proof of Theorem 2.1. To this aim, we consider the eigenvalue
problem

Lε,∗
ξ v = λv, v(±�) = 0,

where
Lε,∗

ξ v := ε∂2
xv + Uε(·; ξ)∂xv.

We expect that, for ε small, the eigenfunctions ψε
k of Lε,∗

ξ are close to the
eigenfunctions of the operator L0,∗

ξ , defined as

L0,∗
ξ v := ε∂2

xv + U0(·; ξ)∂xv, U0(x; ξ) := u∗χ(−�, ξ) − u∗χ(ξ, �).

Hence, ψε
1 ≈ ψ0

1 , where ψ0
1 is the eigenfunction of the operator L0,∗

ξ relative to
the eigenvalue λ = 0, that is ψ0

1 solves
{

ε∂2
xψ0

1 + u∗∂xψ0
1 = 0,

ψ0
1(−�) = 0,

in (−�, ξ),

{
ε∂2

xψ0
1 − u∗∂xψ0

1 = 0,

ψ0
1(�) = 0,

in (ξ, �),

together with the request [[ψ0
1 ]]x=ξ = 0. We thus obtain obtain the representa-

tion formula

ψε
1(x) ≈ ψ0

1(x) :=

{
(1 − eu∗(ξ−�)/ε)(1 − e−u∗(x+�)/ε) x ≤ ξ,

(1 − e−u∗(ξ+�)/ε)(1 − eu∗(x−�)/ε) x > ξ.
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Figure 2. The solutions to (1.2) with ε = 0.07 and ε = 0.045,
respectively. The initial datum is u0(x) = − 1

2x2 − x + 1
2

For any k ≥ 2, the eigenfunctions ψε
k are approximately given by the solutions

to {
ε∂2

xψ0
k ± u∗∂xψ0

k = λε
kψ0

k,

ψ0
k(∓�) = 0,

to be considered in the intervals (−�, ξ) and (ξ, �) respectively, together with
the jump condition [[ψ0

k]]x=ξ = 0.
It turns out that

ψ0
k(x) =

{
c1e

−u∗(x+�)/2ε sin
(√−4ελε

k − u2∗(x + �)/2ε
)

x ≤ ξ

c2e
u∗(x−�)/2ε sin

(√−4ελε
k − u2∗(x − �)/2ε

)
x > ξ,

where the constants are determined by the condition [[ψ0
k]]x=ξ = 0

c1 = eu∗(ξ−�)/2ε sin
(√

−4ελε
k − u2∗(ξ − �)/2ε

)

,

c2 = e−u∗(ξ+�)/2ε sin
(√

−4ελε
k − u2∗(ξ + �)/2ε

)

.

We underline that these expressions make sense as soon as 4ε|λε
k| > u2

∗, which
holds true because of the distribution of the eigenvalues given in Proposi-
tion 3.1.

A straightforward computation shows that the functions ψ0
k satisfy the

assumptions (2.14).

Numerical solutions. We conclude this paper by showing some numerical
simulations describing the metastable dynamics of the solutions to (1.2). As
already seen in the Introduction (see Fig. 1), the time taken for the solution
to reach the stable steady state increases as ε → 0.

In Fig. 2 we describe the evolution of the concave initial datum u0(x) =
− 1

2x2 −x+ 1
2 ; as the initial position of the shock is ξ0 > 0, the function ξ(t) is
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Figure 3. The solutions to (1.2) with ε = 0.04 and discon-
tinuous initial datum
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Figure 4. The solutions to (1.2) with ε = 0.01 and discon-
tinuous initial datum

decreasing in time. Also in this case, for times of order O(1) we observe the for-
mation of a single internal layers located in ξ0; subsequently, such layer starts
to drift towards its equilibrium but the time taken for the time-dependent
solution to reach the asymptotic limit is longer as ε → 0.

In Fig. 3 we plot the solution to (1.2) with ε = 0.04 and discontinuous
initial datum u0(x) = χ(−1,−0.5) − χ(−0.5,1), that is a stationary solution to
(1.3); in addition to the well-known regularizing effect of the Laplacian, we
can see that the time of convergence is in this case greater than t = 108.

Finally, in Fig. 4, we can see that the evolution of the solution is extremely
slow, provided ε to be very small; indeed, for times of order t = 106, the
position of the shock is still very close to the position of the shock in the
initial datum.
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Figure 5. The solutions to (1.2) with ε = 0.01 and
discontinuous initial datum. The boundary conditions are
u± = ∓0.6

A similar example is given in Fig. 5, where we changed both the boundary
conditions and the initial datum. Again, we can see that the shock layer, after
a long time, is almost still very close to the shock layer of the initial datum.

These examples also show that the limits ε → 0 and t → +∞ are not
interchangeable. Indeed, if we first consider the limit as t → +∞ and then
the limit ε → 0, we obtain a function with a jump discontinuity in 0; by
interchanging the limits we obtain a jump function with a shock layer located
far away from 0.
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