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Abstract. We propose a 2 × 2 hyperbolic system of conservation laws to
model the dynamics of two incompressible fluids in mechanical disequi-
librium. In the theoretical part of the paper we show that this 1D system
is not strictly hyperbolic, that the characteristic speed can not a priori be
ordered and that the characteristic fields are neither genuinely nonlinear,
nor linearly degenerate. We nevertheless prove the existence and unique-
ness of an admissible solution to the Riemann problem. This solution re-
mains bounded with positive volume fractions even when one the phases
vanishes. We conclude that the multiphase/single phase transition does
not imply mechanical equilibrium but displays a non classical wave struc-
ture. In the numerical part of the paper we propose some approximate
Riemann solvers to simulate the model, especially the multiphase/single
phase transition. The classical Riemann solvers have been considered as
Godunov scheme, Roe scheme with or without entropy fix. We also pro-
pose an in-cell discontinuous reconstruction method which proves to be
successful, whereas the other schemes may show some spurious oscilla-
tions in some Riemann problem. Finally, as an application we study and
simulate the problem of phase separation by gravity.
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1. Introduction

The flow regime involved in a nuclear reactor core is purely liquid in normal
operating conditions but may become a liquid-gas mixture in incidental con-
ditions or even purely gaseous in the case of a serious accident involving a
core dewatering. The simulation of the single phase/multiphase transition is
numerically challenging and has been a major difficulty in the design of new
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simulation platforms based on advanced two-fluid models, see for instance [1,2]
and references therein. An important issue is to guarantee the positivity of the
volume fraction of each phase. There is an open debate as to whether this pos-
itivity is intrinsic to the conservation laws or requires some adequate source
terms such as inter-phase friction. The thermal hydraulics platform CATHARE
[3] assumes that when a phase disappears, its velocity is equal to the veloc-
ity of the other phase. In order to strongly couple the two phase velocities,
they use a very high interfacial friction term to deal numerically with these
transitions. This paper intends to prove in the case of incompressible phases
that the Riemann problem admits a positive solution without any frictional
term and that the two velocities are not necessarily equal (Sect. 2), to pro-
pose some numerical methods able to deal with vanishing phases (Sect. 3) and
then presents some numerical results (Sect. 4). Allowing phase disappearance
with mechanical disequilibrium enables for example the modelling of bubbles
ascending in a liquid as a consequence of Archimedes’ principle.

1.1. The compressible model

We consider a one dimensional isentropic two phase flow involving two flu-
ids with densities ρ1 < ρ2, pressures P1 and P2, volume fractions α1 ∈ [0, 1],
α2 = 1 − α1, and velocities u1 and u2. After averaging the mass and momen-
tum balance equations for each phase (see [4–6]), and neglecting mass and
momentum transfer terms, the two-fluid model consists in the following four
equations

∂tα1ρ1 + ∂x(α1ρ1u1) = 0, (1.1a)
∂tα2ρ2 + ∂x(α2ρ2u2) = 0, (1.1b)

∂t(α1ρ1u1) + ∂x(α1ρ1u
2
1) + α1∂xP1 = α1ρ1g, (1.1c)

∂t(α2ρ2u2) + ∂x(α2ρ2u
2
2) + α2∂xP2 = α2ρ2g, (1.1d)

where g is the gravitational acceleration. Unlike [1,2,7,8] we do not assume
pressure equality P1 = P2 nor do we introduce an interfacial pressure default
term �p∂xαk in the governing equations (1.1c) and (1.1d). Instead we consider
a non zero pressure difference of the form P1 − P2 = ρ1ρ2

2(ρ1−ρ2)
(u1 − u2)2 which

is the minimal pressure gap yielding a hyperbolic system.
It is known since the 70s [9,10] that the single pressure two-fluid model

may suffers instabilities due to the non real nature of its characteristic waves.
The compressible six equations two-fluid model display six characteristic waves
in 1D. Two of those are acoustic connected to pressure variations, and two are
entropy waves connected to temperature and/or internal energy variations.
These first four waves are necessarily real and similar to those encountered
in the Euler equations for single phase flows. There are however two possibly
complex waves that are specific to two phase flow and are strongly connected
to dynamics of the void fraction α, and called void waves (see [4,11] for more
details). The possibly unstable modes of the two-fluid model have been con-
nected by authors such as W. Fullmer to the shear flow instability known as
Kelvin–Helmholtz [12]. This instability is thus related to the surface instabili-
ties that are captured by the model through the void fraction parameter (see
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for example [13,14]). Some authors such as Keyfitz et al. [7,15] have studied
measure type solution to the non hyperbolic system, whilst other authors such
as [9,10] have considered relaxing the single pressure assumption through the
introduction of an interfacial pressure. In this paper we will follow the sec-
ond approach and allow a small pressure difference between the two phases
that will yield mathematically an hyperbolic system with no unstable mode.
This pressure difference originates physically from the surface tension stabiliz-
ing effect connected to the curvature of the interface and the surface tension
coefficient γ via the Young–Laplace equation [12]

P1 − P2 = γ

(
1

R1
+

1
R2

)
(1.2)

where R1 and R2 are the principal radii of curvature. In a non viscous two-
phase flow, the Kelvin–Helmholtz instability arises at the interface when sur-
face tension effects are dominated by shear flow instability. This usually gen-
erates a change of shape that distorts the bubbles or droplets and can lead to
them breaking up. The consequence of those distortions and breaking up is an
increase of the mean curvature 1

R1
+ 1

R2
and therefore of the surface tension

stress. We are not interested in the modeling of bubbles/droplets distortion and
break up. We will assume that surface tension dynamically adapts to oppose
instantly the shear mechanism that triggers the instability. In the absence of
surface tension, the Kelvin–Helmholtz instability may appear whenever there
is a velocity jump across an interface and its amplitude is proportional to the
square of the velocity jump. We therefore chose a dynamic surface tension
model of the form

P1 − P2 = ρ∗(u1 − u2)2 (1.3)
where ρ∗, should the smallest constant that stabilizes the system.
Looking for the smallest perturbation of B. Keyfitz model that yields a well
posed PDE problem we find the critical value

ρ∗ =
ρ1ρ2

2(ρ1 − ρ2)
(u1 − u2)2 (1.4)

Any correlation p1 − p2 = ρ(u1 − u2)2 will yield complex characteristic waves
if ρ < ρ∗ and real characteristic waves if ρ > ρ∗.
The system (1.1a–1.1d) has four main unknowns: α1, P1, u1, u2, the other un-
knowns can be obtained using the equations of state ρk(Pk) and the pressure
gap law

P1 − P2 =
ρ1ρ2

2(ρ1 − ρ2)
(u1 − u2)2. (1.5)

Defining the mixture sound wave cm =
√

(α1ρ2+α2ρ1)c22c21
α1ρ2c22+α2ρ1c21

, where ck = ck(Pk),
k = 1, 2 are the sound speeds of each phase, the characteristic waves of the
system are given by the roots of a fourth degree polynomial involving cm,
u1, u2, ρ1, ρ2 and α. It is not possible to obtain simple closed expressions
for these eigenvalues unless u1 = u2. However, following the work in [16],
the Taylor expansion of the four eigenvalues of the system (1.1a–1.1d) can be
derived near the mechanical equilibrium u1 = u2. If u1 − u2 � cm, u1−u2

cm
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can be considered as a small perturbation and the Taylor expansion can be
written as

λ1 =
ρ1u1 − ρ2u2

ρ1 − ρ2

(
1 − ρ1ρ2

(α1ρ2 + α2ρ1)2

)

+O
(

u1 − u2

cm

)
void fraction (or transport) wave,

λ2 =
ρ1u1 − ρ2u2

ρ1 − ρ2
+ O

(
u1 − u2

cm

)
void fraction (or transport) wave,

λ3 =
α1ρ2u1 + α2ρ1u2

α1ρ2 + α2ρ1
+ cm + O

(
u1 − u2

cm

)
acoustic wave,

λ4 =
α1ρ2u1 + α2ρ1u2

α1ρ2 + α2ρ1
− cm + O

(
u1 − u2

cm

)
acoustic wave.

Thus for small relative velocities u1 − u2 � cm, the system (1.1a–1.1d) is
hyperbolic with 2 acoustic waves involving the mixture sound speed λ1 and
λ2 that are similar to those encountered in the Euler system for single phase
flows, and two void waves that are specific to the two phase dynamics. Since we
are interested by the void wave dynamics and flows at low Mach numbers, we
devote more attention to the incompressible limit of the system (1.1a–1.1d).

1.2. The incompressible model

In order to study more precisely the volume fraction waves involved in ap-
plications where the fluid densities are almost constant, we follow [7] and
assume that both phases are incompressible with constant densities ρ1 and ρ2.
We will consider the incompressible model which is obtained by applying the
same method as in [7] but using the pressure law (1.5) instead of considering
P1 = P2 as was done in [7]. Recalling the closure laws, α1 + α2 = 1, the four
equation system (1.1a–1.1d) should be solved for the four unknowns (α1, u1,
u2, and P1).

Inspired by the method in [7], we derive a system of two equations, which
allows for the study of the void waves and avoids singularities when one phase
disappears.

The sum of 1
ρ1

(1.1a) and 1
ρ2

(1.1b) yields

∂x(α1u1 + α2u2) = 0. (1.6)

Therefore the quantity

K = α1u1 + α2u2 (1.7)

is constant in space and can be determined from the boundary conditions.
Assuming that the boundary condition is independent of time, we obtain that
K is constant both in space and time.

From the equation of momentum conservation (1.1c) and (1.1d), we derive

u1ρ1(∂tα1 + ∂xα1u1) + α1ρ1(∂tu1 + u1∂xu1) + α1∂xP1 = α1ρ1g, (1.8a)
u2ρ2(∂tα2 + ∂xα2u2) + α2ρ2(∂tu2 + u2∂xu2) + α2∂xP2 = α2ρ2g. (1.8b)
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Thank to (1.1a) and (1.1b), these equations can be simplified:

α1

(
∂t(ρ1u1) + ∂x

ρ1u
2
1

2

)
+ α1∂xP1 = α1ρ1g, (1.9a)

α2

(
∂t(ρ2u2) + ∂x

ρ2u
2
2

2

)
+ α2∂xP2 = α2ρ2g. (1.9b)

Assuming that initially α1α2 �= 0, we can simplify by α1 in (1.9a) and by α2

in (1.9b), then subtracting the two equations yields

∂t(ρ1u1 − ρ2u2) + ∂x

(
1
2
(ρ1u

2
1 − ρ2u

2
2) + P1 − P2

)
= (ρ1 − ρ2)g. (1.10)

The space differential in (1.10) can be simplified thanks to
1
2
(ρ1u

2
1 − ρ2u

2
2) + P1 − P2 =

1
2
(ρ1u

2
1 − ρ2u

2
2) +

ρ1ρ2

2(ρ1 − ρ2)
(u1 − u2)2

=
1

2(ρ1 − ρ2)
(ρ1u1 − ρ2u2)

2
. (1.11)

We set the new unknowns (α, ω) as

α = α1,

ω = ρ1u1 − ρ2u2. (1.12)

The original unknowns u1 and u2 can be recovered from (1.7) and (1.12):

u1 =
(1 − α)ω

α(ρ2 − ρ1) + ρ1
+

Kρ2

α(ρ2 − ρ1) + ρ1
,

u2 =
−αω

α(ρ2 − ρ1) + ρ1
+

Kρ1

α(ρ2 − ρ1) + ρ1
.

Finally, from (1.1a), (1.10) and (1.11) we obtain the 2 × 2 system . More
precisely, the incompressible two-fluid model can be written in closed form as⎧⎪⎨

⎪⎩
∂tα + ∂x

(
α(1−α)ω

α(ρ2−ρ1)+ρ1
+

Kρ1ρ2

(ρ1 − ρ2)(α(ρ2 − ρ1) + ρ1)

)
= 0,

∂tω + ∂x

(
ω2

2(ρ1−ρ2)

)
= (ρ1 − ρ2)g,

(1.13)

since K is constant in space and time.
For simplification, we will assume that K = 0, which is true for example

if there is a wall boundary condition. If K �= 0 is constant both in time and
space, a Galilean change of reference frame u′

k = uk − K yields a new system
with K ′ = α1u

′
1 + α2u

′
2 = 0 (see [7]). With the assumption K = 0, the system

(1.13) can be therefore rewritten as⎧⎪⎨
⎪⎩

∂tα + ∂x

(
α(1−α)ω

α(ρ2−ρ1)+ρ1

)
= 0,

∂tω + ∂x

(
ω2

2(ρ1−ρ2)

)
= (ρ1 − ρ2)g,

or in the following compact form

∂tU + ∂xF (U) = S, (1.14)
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with

U =
(

α
ω

)
, F (U) =

⎛
⎝

α(1−α)ω
α(ρ2−ρ1)+ρ1

ω2

2(ρ1−ρ2)

⎞
⎠ , S =

(
0

(ρ1 − ρ2)g

)
, (1.15)

∇F (U) =

(
ω

ρ1−ρ2

(
1 − ρ1ρ2

(α(ρ2−ρ1)+ρ1)2

)
α(1−α)

α(ρ2−ρ1)+ρ1

0 ω
ρ1−ρ2

)
. (1.16)

2. Theoretical study

2.1. Hyperbolicity and characteristic fields

The following theorem is a direct consequence of formula (1.16).

Theorem 1. (Hyperbolicity of system (1.14)) The jacobian matrix (1.16) of the
system (1.14) always admits real eigenvalues

λ1 =
ω

ρ1 − ρ2

(
1 − ρ1ρ2

(α(ρ2 − ρ1) + ρ1)2

)
, λ2 =

ω

ρ1 − ρ2
, (2.17)

provided U ∈ H where

H = {(α, ω), α ∈ [0, 1], ω ∈ R}.

Moreover, such a matrix is diagonalisable provided (α, ω) ∈ H∗ where

H∗ = H+ ∪ H− ∪ {(0, ω), ω ∈ R} ∪ {(1, ω), ω ∈ R} ,

and H± = {(α, ω), ω ∈ R±\{0}, and α ∈ (0, 1)} .

In general, the system (1.14) is weakly hyperbolic on the domain H = H∗ ∪
{(α, 0), α ∈ (0, 1)}.
The states (ω = 0, α = 0) and (ω = 0, α = 1) will play an important role in
connecting states in H+ to states in H− and will be called critical states.

H is neither an open nor a simply connected subset of R2, see Fig. 1. The
eigenvectors of ∇F are

�r1 = t(1, 0), �r2 = t (α(1 − α)(ρ1 − ρ2)(α(ρ2 − ρ1) + ρ1), ρ1ρ2ω) . (2.18)

α

ω

α=0 α=1

ω=0

H+

H−

Figure 1. Strict hyperbolicity domain H∗ = H+ ∪ H− ∪
{(0, ω), ω ∈ R} ∪ {(1, ω), ω ∈ R}
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Assuming that ρ1 < ρ2, we notice that the two eigenvalues are not a priori
ordered since ⎧⎪⎨

⎪⎩
λ1 < λ2 if ω < 0,

λ1 > λ2 if ω > 0,

λ1 = λ2 if ω = 0.

(2.19)

Moreover, the signs of �∇λ1 ·�r1 = −2ρ1ρ2ω
(α(ρ2−ρ1)+ρ1)3

and �∇λ2 ·�r2 = ρ1ρ2ω
(ρ1−ρ2)

are not
known a priori since ⎧⎪⎪⎨

⎪⎪⎩

�∇λk · �rk > 0 if ω < 0,

�∇λk · �rk < 0 if ω > 0,

�∇λk · �rk = 0 if ω = 0,

(2.20)

where k = 1, 2. Therefore the characteristic fields associated to λ1 and λ2 are
genuinely nonlinear in each domain H+ and H−, but are neither genuinely non
linear, nor linearly degenerate in general.

2.2. Triangular systems of conservation laws

The system (1.14) without source terms is a particular case of triangular sys-
tems of conservation laws due to the fact that the second equation is inde-
pendent of the first one. Let us consider the simplest triangular system of
conservation laws

∂tα + ∂xg(α, ω) = 0, (2.21a)
∂tω + ∂xf(ω) = 0, (2.21b)

which has been studied largely in the literature. For example, the reader is
referred to [17–21] and references therein for more details. Inspired by the the-
ory of scalar conservation laws, an simple way to solve a triangular system of
2×2 equations is to compute the solution of the independent equation then re-
place it to the remaining one. However for the general results of existence and
uniqueness to the Cauchy problem (or even the Riemann problem) for the sys-
tem (2.21a–2.21b) with regular functions of f(ω) and g(α, ω) is still open. The
difficulties encountered include the non strict hyperbolicity and the resonance.

Let us introduce well-known results for the triangular system as well as
the approaches so that we have a general point of view and can figure out our
contribution in this interest. The first approach is to generalize the weak solu-
tions, i.e. to extend the space of an admissible solution in the sense that they
are not necessarily bounded. Following this approach, some authors have been
studying non strictly hyperbolic triangular systems. More precisely, consider-
ing a particular system of (2.21a–2.21b) where g(α, ω) = αω and f(ω) = ω2,
the authors in [17,21] introduced the class of admissible solutions to the Rie-
mann problems admitting delta-shocks. Such study has been extended by many
researchers, for example in [18,22] and references therein. The general results
obtained for the Cauchy problem in such references require the function g(α, ω)
to be linear with respect to α for each ω, i.e. g(α, ω) can be rewritten as
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g(α, ω) = h(ω)α. The key idea in this case is to use the study of the lin-
ear transport equation where the velocity admits the discontinuities in space
and in time. The resulting admissible solutions include the delta-shock waves,
which appear around the configuration of non strict hyperbolicity.

Another approach can be found in [19,20], where the authors used the
theory of compensated compactness to prove the existence and uniqueness of
the Cauchy problem for a triangular hyperbolic system. The main idea is to use
numerical schemes, as Godunov-type in [19] or the relaxation scheme in [20],
in order to prove the convergence of the schemes which implies the existence
of the solution. However, the proof of the convergence strongly depends on
the assumption of the function g(α, ω). More precisely, the function g(α, ω)
must be genuinely nonlinear in α for any ω in the interesting domain, i.e. ∀ω,
gαα(α, ω) �= 0.

We cannot apply directly the results from the references presented above
to the system (1.14) although there are some similar properties between our
system and the one in [17,21], such as not strict hyperbolicity when ω = 0, two
eigenvalues that are not ordered, etc. The first reason is that we were not able
to exhibit entropy pairs for our system, which is consistent with the fact that
incompressible Euler equations do not admit obvious entropies, and the system
(1.14) is therefore not symmetrizable. The second reason is that our flux func-
tion in Eq. (2.21a) is not linear with respect to α, therefore we are not able to
use directly the theory of transport equations. Moreover, the function g(α, ω)
is not genuinely nonlinear with respect to α. We therefore present in this pa-
per a new approach yielding the existence and uniqueness of the admissible
solution to the Riemann problem for the system (1.14) without source terms.

2.3. Admissible solutions of the Riemann problem

The fact that the domain H is not open, that the system is not strictly hyper-
bolic and that the characteristic fields are neither genuinely nonlinear neither
linearly degenerate raises many theoretical as well as numerical difficulties. We
cannot use the classical Lax theorem (see [23]) to obtain solutions to the Rie-
mann problem but will however build solutions to the Riemann problem having
a non classical wave structure for any pair of left and right states data in H.

Definition 2.1. (Hugoniot locus and Riemann invariants) Given a state U ∈ H,
the Hugoniot locus S(U) associated to (2.28) and U is the set of states that
can be connected to U via a shock wave:

S(U) = {V ∈ H, ∃σ(U, V ) ∈ R, F (U) − F (V ) = σ(U, V )(U − V )} .

For any k ∈ {1, 2}, a k-Riemann invariant associated to (2.28) is a function
Rk defined on H such that

∀U ∈ H, ∇Rk · �rk = 0.

and the k-rarefaction wave associated to the Riemann invariant Rk at a left
state U is

k-R(U) = {V ∈ H, Rk(V ) = Rk(U), λk(V ) ≥ λk(U)} .
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We did not find an entropy pair to our system and instead of an entropy based
selection criterion we use the Liu criterion to define admissible solutions.

Definition 2.2. (Admissible solution of the Riemann problem) An admissible
solution to (2.28) is a weak solution that is composed of a finite number of
constant states connected by a rarefaction wave or a shock wave, connecting
left and right sates UL and UR and propagating at a speed σ, that satisfies the
Liu criterion:

σ(UL, UR) ≤ σ(UL, U), ∀U ∈ S(UL) between UL and UR.

Liu’s shock admissibility criterion is more general than the classical Lax’s shock
admissibility criterion which is often used to select the entropy solution, see
[24,25]. These two criteria coincide in the cases where the system is genuinely
nonlinear [26]. We will use Liu’s criterion since in our case, the incompressible
system (1.14) is not genuinely nonlinear.

2.4. Shock and rarefaction waves

In the theory of 2 × 2 strictly hyperbolic systems with genuinely nonlinear
characteristic fields, each eigenvector family �rk, k = 1, 2 defines at any state
U0 one single shock and one single rarefaction curve, both starting and having
tangent vector �rk at U = U0. These two curves are defined in an open neigh-
borhood of U0 and do not necessarily extend to the entire domain, see [23,27]
for example.

Our system is neither strictly hyperbolic neither genuinely nonlinear, our
strict hyperbolicity domain is not open. However we prove below that there
are two families of shock “curves” (1-shocks and 2-shocks) and rarefaction
“curves” (1-rarefactions and 2-rarefactions) and that they extend to the entire
domain.

The originality in our system is the fact that the shock “curve” associated
to a state is not necessarily a connected set. Indeed the 1-shock “curve” asso-
ciated to the states (α ∈ [0, 1], ω = 0) is a contact discontinuity whose speed
is σ = 0, whereas there is no 1-rarefaction associated to such states. Moreover
the 2-shock family of “curves” can be composed of the two branches of a hy-
perbola and there are more than one 2-rarefaction curves passing through the
critical state (α = 1, ω = 0).

We now characterise the shock and rarefaction curves and illustrate them
on Fig. 2. We note that the admissibility criterion is not taken into account in
the following theorem.

Theorem 2. (Existence of shock curves) Any state U0 = (α0, ω0) ∈ H\(α = 1,
ω = 0) belongs to two shock curves in H. The state (α = 1, ω = 0) belong to
three shock curves in H.

The equation of the 1-shock family (1-S) of states (α, ω1(α)) connected
to the state U0 = (α0, ω0) is

• If ω0 �= 0, ω1(α) = ω0.
• If ω0 = 0, ω1(α) = 0, the 1-shock “curve” degenerates a contact discon-

tinuity whose the speed is σ = 0.
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The equation of the 2-shock family (2-S) of states (α, ω2(α)) connected to the
state U0 = (α0, ω0) is

• If ω0 �= 0 and α0 ∈ (0, 1)

ω2(α) =
α(ρ2 − ρ1) + ρ1

α0(ρ2 − ρ1) + ρ1
× α2

0(ρ2 − ρ1) + α0(ρ1 − 2ρ2 + αρ2 − αρ1) + αρ1

α2(ρ2 − ρ1) + α(ρ1 − 2ρ2 + α0ρ2 − α0ρ1) + α0ρ1
ω0

• If ω0 �= 0 and α0 = 0, then either α = 0 or ω2 = (α(ρ2−ρ1)+ρ1)ω0
α(ρ2−ρ1)+ρ1−2ρ2

.

• If ω0 �= 0 and α0 = 1, then either α = 1 or ω2 = −(α(ρ2−ρ1)+ρ1)ω0
−α(ρ2−ρ1)+ρ1

.
• If ω0 = 0 and α0 ∈ [0, 1), the 2-shock curve is straight line defined by the

constant α which is the unique solution in [0, 1) of the following equation

α2(ρ2 − ρ1) + α(ρ1 − 2ρ2 + α0ρ2 − α0ρ1) + α0ρ1 = 0.

• If ω0 = 0 and α0 = 1, then either α = 1 or α = ρ1
ρ2−ρ1

if ρ2 > 2ρ1.

Proof. A state U in S(U0) must fulfil the Rankine–Hugoniot condition

F (U) − F (U0) = σ(U,U0)(U − U0), (2.22)

which for the system (2.28) takes the form⎧⎨
⎩

α(1−α)ω
α(ρ2−ρ1)+ρ1

− α0(1−α0)ω0
α0(ρ2−ρ1)+ρ1

= σ(U,U0)(α − α0),

ω2

2(ρ1−ρ2)
− ω2

0
2(ρ1−ρ2)

= σ(U,U0)(ω − ω0).
(2.23)

• If ω = ω0, there always exists σ(U,U0) such that (2.23). This comes from
the fact that the second equation is independent from α. The 1-shock
family is made of states sharing the same values of ω which is consistent
with the expression of the eigenvector �r1 (Eq. 2.18).

• If ω �= ω0, the second equation of (2.23) implies σ(U,U0) = ω+ω0
2(ρ1−ρ2)

,
which yields in the first equation

α2(ρ2 − ρ1) + α(ρ1 − 2ρ2 + α0ρ2 − α0ρ1) + α0ρ1

α(ρ2 − ρ1) + ρ1
ω

−α2
0(ρ2 − ρ1) + α0(ρ1 − 2ρ2 + αρ2 − αρ1) + αρ1

α0(ρ2 − ρ1) + ρ1
ω0 = 0. (2.24)

− If ω0 = 0, (2.24) implies

α2(ρ2 − ρ1) + α(ρ1 − 2ρ2 + α0ρ2 − α0ρ1) + α0ρ1 = 0. (2.25)

It is easy to see that ∀α ∈ [0, 1), the Eq. (2.25) has a unique solution
α ∈ [0, 1), and such an α defines the straight line 2-shock curve
connecting to (α0, ω0 = 0). Moreover, the state (α0 = 1, ω0 = 0)
connects to the straight line α = 1 and can connect to all states
(α = ρ1

ρ2−ρ1
, ω ∈ R

∗) under the assumption that ρ2 > 2ρ1.
− If ω0 �= 0 and α0 = 0, then (2.24) implies either α = 0 or ω =

(α(ρ2−ρ1)+ρ1)ω0
α(ρ2−ρ1)+ρ1−2ρ2

.
− If ω0 �= 0 and α0 = 1, then (2.24) implies either α = 1 or ω =

−(α(ρ2−ρ1)+ρ1)ω0
−α(ρ2−ρ1)+ρ1

.
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− If ω0 �= 0 and α0 ∈ (0, 1), then then (2.24) implies

ω(α) =
α(ρ2 − ρ1) + ρ1

α0(ρ2 − ρ1) + ρ1
× α2

0(ρ2 − ρ1) + α0(ρ1 − 2ρ2 + αρ2 − αρ1) + αρ1

α2(ρ2 − ρ1) + α(ρ1 − 2ρ2 + α0ρ2 − α0ρ1) + α0ρ1
ω0.

The shape of the shock curves can be seen on Fig. 2. �

Theorem 3. (Existence of rarefaction curves)

• Any state U0 = (α0, ω0) ∈ H\{(α, ω = 0)} belongs to two rarefaction
curves, the 1-rarefaction curve (1-R) is described by the equation ω1(α) =
ω0 and the 2-rarefaction curve (2-R) is described by the equation

ω2(α) = ω0
α(ρ2 − ρ1) + ρ1

α0(ρ2 − ρ1) + ρ1

(
α

α0

) ρ2
ρ1−ρ2

(
1 − α

1 − α0

) −ρ1
ρ1−ρ2

. (2.26)

• The state (α0 = 0, ω0 = 0) belongs to a single rarefaction curve, the 2-
rarefaction curve described by α = 0.

• The state (α0 = 1, ω0 = 0) belongs to all 2-rarefaction curves going
through U0 = (α0, ω0) ∈ H\{(α = 0, ω = 0)} and described by (2.26)
if α0 �= 1 or α = 1, otherwise.

• There is no rarefaction going through the state (α0 ∈ (0, 1), ω = 0).

Proof. From the definition of Riemann invariants, R1 and R2 must satisfy

∂R1

∂α
= 0; α(1 − α)(ρ1 − ρ2)(α(ρ2 − ρ1) + ρ1)

∂R2

∂α
+ ρ1ρ2ω

∂R2

∂ω
= 0.

Since R1 is function of only ω, it is easy to obtain the equation of the 1-
rarefaction curves.

Considering the Riemann invariant R2,

• if α ∈ (0, 1), we have

∂ω

∂α
=

ρ1ρ2ω

α(1 − α)(ρ1 − ρ2)(α(ρ2 − ρ1) + ρ1)
. (2.27)

Solving the linear ordinary differential equation (2.27), we obtain explic-
itly the equation of the rarefaction curves (2.26) in the theorem.

• if α ∈ {0, 1}, then
− either ∂R2

∂ω = 0, the rarefaction curves are α(ω) = 0 (or α(ω) = 1)
corresponding to α0 = 0 (or α0 = 1),

− or ω = 0. However, only the state (α = 1, ω = 0) belongs to all R2

described by (2.26) due to continuing property (limα→1 ω2(α) = 0,
limα→0 ω2(α) = ±∞). �

The structure of the rarefaction curves is illustrated on Fig. 2.

2.5. Solution of the Riemann problem

We consider the Riemann problem for the conservative system (1.14) in the
case g = 0 with a piecewise constant initial data:
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Figure 2. Shock curves and Rarefaction curves. U0 = (0, 40):
green. U0 = (0.5,−10): red. U0 = (0.5, 10): violet. U0 =
(1,−20): blue. a 1-Shock curves, b 1-rarefaction curves, c 2-
shock curves, d 2-rarefaction curves (color figure online)

∂tU + ∂xF (U) = 0

U0(x) =

{
UL(αL, ωL) if x ≤ 0,

UR(αR, ωR) if x > 0,

(2.28)

where U =t (α, ω) ∈ H, F (U) are defined in (1.15), and UL, UR ∈ H. We
start by stating and proving in Sect. 2.5.1 existence and uniqueness of an
admissible solution to (2.28) in Theorem 4. We then give in Sect. 2.5.2 four
important examples of non classical solutions to the Riemann problem in order
to illustrate the proof of Theorem 4 and the unusual behaviour of the system
(2.28) as well.

2.5.1. Main result. We intend to prove existence and uniqueness of an admis-
sible solution. The weak solutions are found using the classical characteristic
method with the shock and the rarefaction curves found in Theorems 2 and 3
correspondingly. Due to the complex structure of the shock curves, there are
numerous different cases to be considered. We first describe the structure of
admissible solutions in the following lemma.

Theorem 1. Assume that an admissible solution of the Riemann problem con-
tains two adjacent waves which connect the left state UL = (αL, ωL) ∈ H to the
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right state UR = (αR, ωR) ∈ H through the intermediate state UI = (αI , ωI).
Then, these two adjacent waves must be in different family (i.e. one wave from
a 1-family and the other from a 2-family) at the exception that a 2-rarefaction
may be followed by a 2-rarefaction.

Moreover, if the two adjacent waves are a 1-wave followed by a 2-wave
(resp. a 2-wave followed by a 1-wave), then the intermediate state satisfies
ωI = ωL ≤ 0 (resp. ωI = ωR ≥ 0). Therefore, the value of ω satisfies the
maximum principle.

Proof. This lemma is a direct consequence of the characterisation of k-shock
curves and k-rarefaction curves (Theorems 2 and 3) and of the speed order
criterion. Assume first that two adjacent waves are two 1-shock waves con-
necting the left state UL = (αL, ωL) to the right state UR = (αR, ωR) through
the intermediate state UI = (αI , ωI). A consequence of Theorem 2 is that
ωL = ωR = ωI . From the first equation in (2.23), the speed of the first 1-shock
and the second 1-shock is

σ11 =
ωL

ρ1 − ρ2

(
1 − ρ1ρ2

(αI(ρ2 − ρ1) + ρ1)(αL(ρ2 − ρ1) + ρ1)

)
, and (2.29)

σ12 =
ωR

ρ1 − ρ2

(
1 − ρ1ρ2

(αI(ρ2 − ρ1) + ρ1)(αR(ρ2 − ρ1) + ρ1)

)
. (2.30)

Liu’s criterion for both shocks gives αR > αI > αL if ωL = ωR = ωI > 0 and
αR < αI < αL if ωL = ωR = ωI < 0, while the speed order criterion σ11 < σ12

gives αR < αL if ωL = ωR = ωI > 0 and αR > αL if ωL = ωR = ωI < 0.
Therefore, the admissible solutions of the Riemann problem do not admit two
adjacent waves in the same 1-shock family.

The conclusion for the 1-rarefaction family and 2-shock family are com-
pletely the same while the conclusion for the 2-rarefaction family is an excep-
tion.

Since the two 2-rarefaction curves join at unique point (α = 1, ω = 0),
if two adjacent waves are two 2-rarefaction, then ωL > 0 > ωR. Such two
2-rarefaction satisfy the speed criterion although there exists only an interme-
diate point (α = 1, ω = 0) (no intermediate constant state). It is the same
conclusion of a system in [17].

As for the second statement of the lemma, assume that the intermediate
state UI = (αI , ωI) connects to the left state (resp. right state) by a 1-wave
and connects to the right state (resp. the left state) by a 2-wave, due to the
fact that the equation of 1-wave is that ω is constant, see theorem of existence
of shock curves Theorem 2 and rarefaction curves Theorem 3, then ωI = ωL

(or ωI = ωR). In order to prove the sign property of ωI = ωL in the case of a 1-
wave followed by a 2-wave, let us notice that for the solution to be admissible,
the speed of propagation of the 1-wave must be smaller or equal to the one
of the 2-wave. (2.19) thus imposes ωI = ωL ≤ 0. Similarly, we also obtain the
sign property ωI = ωR ≥ 0 in the case of a 2-wave followed by a 1-wave. �

Theorem 4. (Existence and uniqueness for the Riemann problem) Let us con-
sider two states UL(αL, ωL) and UR(αR, ωR) in H. The Riemann problem
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(2.28) admits a unique admissible solution (in the sense of Sect. 2.3) U(x, t) ∈
H which depends continuously on the initial condition.

Proof. Let UL = (αL, ωL) �= UR = (αR, ωR) be in H. Assuming that ρ1 < ρ2,
we find admissible solutions satisfying the initial data (2.28).
Case 1 ωL = ωR. The solution is a single 1-wave. In particular, if ωL = ωR = 0
and αL �= αR, such a 1-wave is the degenerate 1-contact discontinuity.
Case 2 ωL > ωR. An admissible solution will contain at least one 2-rarefaction
(see Theorem 3 for the existence of the rarefaction curves which are illustrated
in Fig. 2). In detail, we consider two possibilities, ωLωR ≥ 0 or ωLωR < 0.

• Case 2.1 ωLωR ≥ 0. Without loss of generality, we assume that ωL and ωR

are non-positive. From (2.19), an admissible solution is a 2-rarefaction fol-
lowed by a 1-wave. In addition, the 2-rarefaction monotonic curve ω2(α)
intersects the 1-wave curve, ω(α) = ωR, at a unique point, see also Fig. 2.
The uniqueness of the admissible solution is thus obtained.

• Case 2.2 ωL > 0 > ωR. Due to Lemma 1, the left state must connect to
a 2-rarefaction and the right state does the same (otherwise it violates
Lemma 1). This property then implies the uniqueness of the admissible
solution whose structure depends on the values of αL and αR, there are
three possibilities

– If αL �= 0 and αR �= 0, the admissible solution is a 2-rarefaction
followed by another 2-rarefaction. See Example 2.3 and Fig. 4a, c.
In particular, if (αL = 1, ωL = 0) or (αR = 1, ωR = 0), the solution
is a single 2-rarefaction.

– If αL = αR = 0, the admissible solution is a single 2-rarefaction
due to existence of a 2-rarefaction which goes through α = 0, see
Theorem 3.

– If (αL = 0 and αR �= 0) or (αL �= 0 and αR = 0), due to Theorem
3 the 2-rarefaction connecting the left state and the one connecting
the right state are neither coincide nor intersecting, the admissible
therefore contains more than two waves. The unique result solution
which satisfies the speed criterion is a 2-rarefaction attached to a
1-contact discontinuity and then followed by another 2-rarefaction.
See Example 2.4 and Fig. 4b, d.

Case 3 ωL < ωR. This case is more technical and the uniqueness of the admis-
sible solution has to be carefully studied. An admissible solution in this case
contains a 2-shock, since ω must increase from ωL to ωR, see Fig. 2 for the
shock and rarefaction curves.
We introduce a new variable

β = α(ρ2 − ρ1) + ρ1. (2.31)

Since α ∈ [0, 1], we have β ∈ [ρ1, ρ2].
First of all, we look for admissible solutions whose structure is a 2-shock fol-
lowed by a 1-wave with U∗ as intermediate state. The necessary condition
ω∗ = ωR ≥ 0 follows from Lemma 1. In order to select an admissible solution,
we introduce the speed order criterion in this specific case, which is



NoDEA A 2 × 2 hyperbolic system modelling Page 15 of 35 36

σ2 ≤ λ1(U∗) if the solution is a 2-shock followed by a 1-rarefaction, (2.32)
or σ2 < σ1 if the solution is a 2-shock followed by a 1-shock, (2.33)

where σ2 = ωL+ωR

2(ρ1−ρ2)
, σ1 = ωR

ρ1−ρ2

(
1 − ρ1ρ2

β∗βR

)
, U∗ = (α∗, ωR) such that α∗ =

ρ1−β∗

ρ1−ρ2
. For simplicity, we can rewrite the inequalities (2.32) as β∗ ≤

√
2ρ1ρ2ωR

ωR−ωL

and (2.33) as β∗ ≤ 2ρ1ρ2ωR

βR(ωR−ωL) .

Replacing α by β−ρ1
ρ2−ρ1

in the 2-shock curve equation in Theorem 2 yields
after some calculations that all states (α, ωR) which are connected to UL by a
2-shock satisfy the following quadratic equation

βL(ωL − ωR)β2 − (βL(ωL − ωR)(2(ρ1 + ρ2) − βL) − 2ρ1ρ2ωL) β

− 2ρ1ρ2βLωR = 0. (2.34)

Let G(βL, β) be the left hand side of the Eq. (2.34), then

G(βL, ρ1) = −ρ1(βL − ρ1) (βL(ωR − ωL) + 2ρ2ωL) and (2.35)
G(βL, ρ2) = ρ2(ρ2 − βL) (βL(ωR − ωL) + 2ρ1ωL) . (2.36)

Recall that ωL < ωR, the concave quadratic function G(βL, β) may have no
solution or more than one solution. We look for a condition on ωR such that
the Eq. (2.34) has a non-negative solution α∗ ∈ [0, 1], namely β∗ ∈ [ρ1, ρ2],
or equivalently G(βL, ρ1)G(βL, ρ2) ≤ 0 because G(βL, ρ1) and G(βL, ρ2) can
not be negative at the same time. By considering a variation of αL, we get
different cases.

• Case 3.1 If αL ∈ {0, 1}, then G(βL, ρ1)G(βL, ρ2) = 0 and the Eq. (2.34)
may have two solutions with β∗ ∈ [ρ1, ρ2]. Using the speed order criterion,
we obtain:

– Case 3.1.1 If αL = 0, i.e. βL = ρ1 the two potential solutions of
(2.34) are β∗ = ρ1 and β∗ = 2ρ2ωR

ωR−ωL
. However 2ρ2ωR

ωR−ωL
violates the

criteria (2.32) and (2.33). Therefore, only β∗ = ρ1 is acceptable and
the admissible solution is a 2-shock followed by a 1-shock (not a 1-
rarefaction) since ωI = ωR > 0 (see 1-shock curves and 1-rarefaction
curves on Fig. 2). Such an admissible solution satisfies the criterion
(2.33) if and only if βR ≤ 2ρ2ωR

ωR−ωL
.

– Case 3.1.2 If αL = 1 and βL ≥ −2ρ2ωL

ωR−ωL
, (which is equivalent to ωR ≥

−ωL and also to 2ρ1ωR

ωR−ωL
≥ ρ1), then there exists a unique solution

β∗ = min{ρ2,
2ρ1ωR

ωR−ωL
} satisfying the criteria (2.32) and (2.33).

• Case 3.2 If αL ∈ (0, 1), or equivalently βL ∈ (ρ1, ρ2), then it is obvious
that G(βL, ρ1) and G(βL, ρ2) can not be non-positive at the same time,
the Eq. (2.34) therefore has at most a solution β∗ ∈ [ρ1, ρ2].
The first possibility is G(βL, ρ1) ≤ 0 and G(βL, ρ2) ≥ 0, or equivalently

βL ≥ −2ρ2ωL

ωR − ωL
, (2.37)

i.e. G(βL, β) ≥ 0 implies β ∈ [β∗,+∞).
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The second possibility is G(βL, ρ1) ≥ 0 and G(βL, ρ2) ≤ 0, or equiva-
lently

βL ≤ −2ρ1ωL

ωR − ωL
. (2.38)

i.e. G(βL, β) ≥ 0 implies β ∈ (−∞, β∗].
As long as the condition (2.37) or (2.38) is satisfied, the speed order
criterion (2.32) and (2.33) will help us to select an admissible solution.

– Case 3.2.1 Assume first that the admissible solution is a 2-shock fol-
lowed by a 1-rarefaction and use the speed order criterion (2.32). We

denote H(βL) = G
(
βL,

√
2ρ1ρ2ωR

ωR−ωL

)
and first prove that H(βL) > 0

for all βL ∈ (ρ1, ρ2). Writing H (βL) explicitly,

H(βL) = −4ρ1ρ2βLωR + (βL(ωR − ωL)(2(ρ1 + ρ2) − βL) + 2ρ1ρ2ωL)√
2ρ1ρ2ωR

ωR − ωL
.

Calculating and evaluating H(ρ1),

H(ρ1) = −4ρ2
1ρ2ωR + ρ1 (ρ1(ωR − ωL) + 2ρ2ωR)

√
2ρ1ρ2ωR

ωR − ωL

≥ −4ρ2
1ρ2ωR + 2ρ1

√
2ρ1ρ2ωR(ωR − ωL)

√
2ρ1ρ2ωR

ωR − ωL
(2.39)

= 0.

The inequality (2.39) is obtained by the Cauchy’s inequality for two
non-negative numbers ρ1(ωR−ωL) and 2ρ2ωR. The result H(ρ2) ≥ 0
is obtained similarly. Moreover, considering βL as a variable of
the quadratic function H(βL) whose highest order’s coefficient is
negative and both H(ρ1) and H(ρ2) are non-negative, we achieve
H(βL) > 0 for all βL ∈ (ρ1, ρ2). This result shows that the condi-

tion (2.37) satisfies the criterion (2.32) (since G
(
βL,

√
2ρ1ρ2ωR

ωR−ωL

)
=

H(βL) and G(βL, β) ≥ 0 implies β ∈ [β∗,+∞), so that β∗ ≤√
2ρ1ρ2ωR

ωR−ωL
) while the condition (2.38) is impossible to satisfy (since it

implies β∗ ≥
√

2ρ1ρ2ωR

ωR−ωL
because G(βL, β) ≥ 0 implies β ∈ (−∞, β∗]

in this case).
– Case 3.2.2 Assume that the admissible solution is a 2-shock followed

by a 1-shock and use the speed order criterion (2.33). If 2ρ1ρ2ωR

βR(ωR−ωL) >

ρ2, the criterion (2.33) is always satisfied. So we will merely consider
2ρ1ρ2ωR

βR(ωR−ωL) ≤ ρ2, where we define M(βL) = G
(
βL, 2ωRρ1ρ2

βR(ωR−ωL)

)
.

Rewrite M(βL) as the following

M(βL) =
2ρ1ρ2ωR

β2
R(ωR − ωL)

((βRωL − βLωR)

+βLβR(ωR − ωL)(2ρ1 + 2ρ2 − βL − βR)) .
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We compute

M(ρ1) =
2ρ1ρ2ωR

βR
(ρ1 − βR)

(
ρ1 − 2ρ1ρ2ωR

βR(ωR − ωL)

)
,

M(ρ2) =
2ρ1ρ2ωR

βR
(ρ2 − βR)

(
ρ2 − 2ρ1ρ2ωR

βR(ωR − ωL)

)
.

The condition (2.37) implies M(ρ1) ≥ 0 and M(ρ2) ≥ 0, and then
obviously M(βL) > 0, ∀βL ∈ (ρ1, ρ2) (since the second order poly-
nomial βL → M(βL) is concave), this result satisfies the criterion
(2.33).
On the other hand, the condition (2.38) violates the criterion (2.33)
as long as we assume the solution has more than one wave. By the
continuity, this solution is not admitted.

We summarize the structure of the admissible solution according to the initial
data.

• If αL ∈ (0, 1] and βL ≥ −2ρ2ωL

ωR−ωL
, the solution is a 2-shock followed by a

1-wave.

• If αL = 0 and βR ≤ 2ρ2ωR

ωR−ωL
, the solution is a 2-shock followed by a

1-shock (α∗ = 0).
Similarly, we obtain the following results

• If αR ∈ (0, 1] and βR ≥ 2ρ2ωR

ωR−ωL
, the solution is a 1-wave followed by a

2-shock.

• If αR = 0 and βL ≤ −2ρ2ωL

ωR−ωL
, the solution is a 1-shock followed by a

2-shock (α∗ = 0).
Before continuing the proof, we can conclude that if αL �= 0 and αR �= 0, the
solution consisting of a 2-shock (resp. 1-wave) followed by a 1-wave (resp. a
2-shock) is admissible if βL ≥ −2ρ2ωL

ωR−ωL
(resp. βR ≥ 2ρ2ωR

ωR−ωL
).

The rest of our proof considers the initial data which are not studied above,
i.e. αLαR �= 0 and βL < −2ρ2ωL

ωR−ωL
and βR < 2ρ2ωR

ωR−ωL
. According to Lemma 1,

an admissible solution must be a 1-wave followed by a 2-shock connected to
another 1-wave. Let us denote the two intermediate states ordered from the
left to the right by U∗(α∗, ωL) and U∗∗(α∗∗, ωR).

• If α∗ �= 0 and α∗∗ �= 0, due to the previous results a 1-wave followed
by a 2-shock is admissible if β∗∗ ≥ 2ρ2ωR

ωR−ωL
and this 2-shock followed by

another 1-wave is admissible if β∗ ≥ −2ρ2ωL

ωR−ωL
. Both β∗∗ ≥ 2ρ2ωR

ωR−ωL
and

β∗ ≥ −2ρ2ωL

ωR−ωL
are satisfied if and only if ωL = −ωR and β∗ = β∗∗ = ρ2,

this condition however violates the speed order criterion.
• If (α∗ �= 0 and α∗∗ = 0) or (α∗ = 0 and α∗∗ �= 0), Theorem 2 shows that

it is impossible.
• α∗ = α∗∗ = 0 is admissible, this solution satisfies all criteria of speed

order. See Fig. 3b for the construction of such an admissible solution. An
example is performed in Example 2.5, see Fig. 5a, c. �
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Figure 3. The admissible solution 2-shock 1-shock (a), 1-
shock 2-shock 1-shock (b)

The continuity to the initial condition of the admissible solution is obvious
due to the construction of such an admissible solution.
We would like to remark that an admissible solution of a Riemann problem
may admit a 2-shock wave which connects a left state which is on a branch
of a hyperbola to a right state located on the other branch, see Fig. 3a. In
the following section, this 2-shock will be called a non classical shock wave. It
turns out that such a non classical shock wave is not easily captured by some
classical numerical methods.

2.5.2. Key examples and important comments. The first three Riemann prob-
lems (Examples 2.3, 2.4, 2.5) we present do not give rise to classical weak
solution made of two waves of different families while the last one (Example
2.6) produces a non classical shock wave. The first Riemann problem gives rise
two rarefactions of the 2-family, the second one leads to three waves (a 2-wave
followed by and attached to a 1-wave followed by a 2-wave) and the third one
produces a pure phase (α = 0) starting from a mixture and contains three
shocks. It is interesting to notice that in the third Riemann problem (Exam-
ple 2.5) the value of the velocity of the vanishing phase does not necessarily
equal the one of the non vanishing phase. Finally, the last Riemann problem
illustrates an admissible solution consisting in two waves of different families
whose one is a non classical wave.

Example 2.3. The configuration αL = αR = 0.5, ωL = −ωR = 3 generates a
pure gas intermediate value U∗ = (1, 0). The admissible solution consists of
two rarefaction waves. See Fig. 4a, c.

Example 2.4. The configuration αL = 0, αR > 0, ωL > 0 > ωR is an example
where the solution is a 2-rarefaction touching the degenerate 1-shock followed
by another 2-rarefaction such that λ2(U∗) = λ2(U∗∗) = 0 and the speed
of degenerate 1-shock is also zero, where U∗ = (0, 0), U∗∗ = (1, 0) are the
intermediate values. See Fig. 4b, d.
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Figure 4. Example 2.3: 2-rarefaction 2-rarefaction (a, c).
Example 2.4: 2-rarefaction 1-shock 2-rarefaction (b, d)

Example 2.5. The configuration αL = αR = 0.5, ωL = −ωR = −5 generates
a pure liquid and the solution consists in three shocks (a 1-shock connects to
2-shock followed by another 1-shock). See Fig. 5a, c.

Example 2.6. The configuration αL = 0.8, αR = 0.5, ωL = −3, ωR = 5
generates a non classical shock and the solution consists in two shocks (a non
classical 2-shock connects to a 1-shock). See Fig. 5b, d.

3. Numerical study

We now investigate the numerical simulation of the system (1.14) and show
that the basic Roe scheme fails to capture the expected dynamics whereas the
Godunov scheme and the Roe scheme with a Harten type correction capture
the analytic solution. However in the non classical shock wave (corresponding
to a passage through the domain H+ and H−, both of these schemes show
oscillations. We then propose a reconstruction method, see in [28–32] and
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Figure 5. Example 2.5: 1-shock 2-shock 1-shock (a, c); Ex-
ample 2.6: 2-rarefaction 1-shock 2-rarefaction (b, d)

references therein, which significantly improves the numerical result in this
case.

We consider a uniform mesh of the computational domain [0, 1] whose
N cells are centered at xi, i = 1, . . . , N . The space step Δx = xi − xi−1 is
constant whereas the time step Δt(Un) > 0 depends on the discrete field
Un = (Un

i )i=1,...,N which approximates the exact solution U(x, t) at cells
i and time tn =

∑n−1
k=0 Δt(Uk). The time step should satisfy the follow-

ing CFL condition in order to ensure the stability of the explicit schemes:
Δt ≤ Δx

maxi{λ1(Ui,Ui+1),λ2(Ui,Ui+1)} , where λk(Ui, Ui+1), k = 1, 2 is the largest
value of |λk| on the path connecting Ui to Ui+1 using the rarefactions and
admissible shock waves computed in Theorems 2 and 3. We point out that
λk(Ui, Ui+1) may be different from |λk(Ui)| and |λk(Ui+1)| because the char-
acteristic fields are non genuinely nonlinear. Denote U∗ intermediate states,
then

λk(Ui, Ui+1) = max
U∗

{|λk(Ui)|, |λk(Ui+1)|, |λk(U∗)|}, k = 1, 2. (3.40)
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We consider conservative finite volume schemes in the following explicit form:

Un+1
i = Un

i − Δt

Δx

(
Φn

i+1/2 − Φn
i−1/2

)
, (3.41)

where Φn
i+1/2 is the numerical flux function at the interface between cells i and

i + 1, and at time tn. We compute the numerical flux Φn
i+1/2 using one of the

following strategy.

3.1. Godunov scheme

Φn
i+1/2 = FGod

j+1/2 = F (U∗(Un
i , Un

i+1)),

where U∗(Un
i , Un

i+1)) is the value taken by the solution of the Riemann problem
between the left state Un

i and the right state Un
i+1 at the interface.

3.2. Roe scheme with a Harten type correction

Φn
i+1/2 = FHar

j+1/2 =
F (Un

i ) + F (Un
i+1)

2
− (|ARoe(Un

i , Un
i+1)| + harn

i,i+1 Id
)

·ΔUi+1/2

2
,

where ΔUi+1/2 = Un
i+1 −Un

i , ARoe(Un
i , Un

i+1) is the Roe matrix, (see (3.42) for
the derivation of a Roe matrix), and harn

i,i+1 = C max(|λ1(Un
i ) − λ1(Un

i+1)|, |
λ2(Un

i ) − λ2(Un
i+1)|). If C = 0 we recover the standard Roe scheme. However

it is well-known that the Roe scheme may capture non admissible solutions
(see [33]). Hence we used a constant value C = 1

5 to include a Harten type
entropic correction in the Roe scheme.

A Roe matrix ARoe(UL, UR) for the system (1.14) and two states UL, UR ∈
H is a diagonalisable matrix such that

F (UL) − F (UR) = ARoe(UL, UR)(UL − UR)

ARoe(U,U) = ∇F (U)

After some calculations, we obtained and used the following Roe matrix

ARoe(UL, UR) =
(

A1,1 A1,2

A2,1 A2,2

)
, (3.42)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1,1 =
wL + wR

2(ρ1 − ρ2)

(
1 − ρ1ρ2

βLβR

)
,

A1,2 =
1

2(ρ1 − ρ2)

[
(βL − ρ1)(βL − ρ2)

βL
+

(βR − ρ1)(βR − ρ2)
βR

]
,

A2,1 = 0,

A2,2 =
ωL + ωR

2(ρ1 − ρ2)
,

and βk = αk(ρ2 − ρ1) + ρ1, k = L,R.
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3.3. Reconstruction scheme

As we will see in the next section devoted to the numerical experiments, the
Roe scheme (with Harten entropy correction) and the Godunov scheme provide
good numerical results when the solution stays in one of the two domains H−
and H+, or when the solution belongs to H∗ but crosses the line w = 0 with a
pure phase for which α is a constant (more precisely, α = 0 or α = 1). In these
situations, the model is strictly hyperbolic and the characteristic fields are
genuinely non linear. In other words, the model satisfies the usual properties
which ensure that the solution is classical and do not develop non classical
shocks. On the contrary, we will see that when the solution goes from H− to
H+, both methods fail in producing good numerical results. More precisely,
the methods are not able to properly compute the non classical discontinuity
joining the two sets H− and H+. Recall that the model is hyperbolic in H− ∪
H+ but the characteristic fields are not genuinely non linear (nor linearly
degenerate) in this domain, which gives rise to a non classical shock.

From a numerical point of view, it is now very well-known that approx-
imating non classical shocks is a challenging issue because of the dependence
on the underlying diffusion mechanisms. Standard techniques (like Godunov’s
method and Roe’s method) are useless and a deeper analysis shows that the
failure of these techniques can be related to the (un)control of the underlying
numerical diffusion. We refer for instance the reader to [27,34–39]... and the
references therein.

With this in mind and in order to obtain numerical solutions in agreement
with the exact ones, we suggest to develop a new method able to control
the numerical diffusion across the non classical discontinuity. The strategy is
based on in-cell discontinuous reconstructions and was first proposed in [40] to
solve transport equations with no numerical diffusion (see also [28,41] for non
linear scalar equations). More precisely, the aim of this non-dissipative finite
volume approach is to follow exactly the propagation of a given discontinuity by
means of in-cell reconstructions. Then, the usual projection onto the piecewise
constant solutions of the time evolution of the reconstructed discontinuities
makes the capture of isolated discontinuities exact. In particular, the numerical
diffusion is perfectly controlled and made of one point only.

Extending this approach to our model is not immediate since we first face
a system of conservation law (the above papers consider scalar equations),
and secondly we aim at following the non classical discontinuity of a non
linear model and not a contact discontinuity of a (linear) transport equation as
above. However, the in-cell discontinuous reconstruction strategy has already
been extended to the computation of non-classical shocks for non linear scalar
equations, see for instance [30,31], but also to the system case, see for instance
[29,32,42] and references therein for more details.

In what follows, we therefore follow the same approach and propose an
in-cell discontinuous reconstruction strategy of the non classical discontinuities
of our model. Again, the strategy allows for a sharp computation of these non
classical discontinuities. By sharp, we mean that such isolated discontinuities
are exactly computed with only one point of numerical diffusion, the value of
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which corresponds to the mean value of the exact solution in the corresponding
cell. It is clearly the best result achievable by a conservative scheme.

Let us now present the main ideas of the method and summarize the
computation of the numerical flux function, which is what is really needed to
implement the method. For more details, we refer the reader to the references
above.

Considering our system, the unknown variables is U = (α, ω) but only α
varies in a 1-shock, whereas the 2-shock corresponds to the case where both α
and ω vary at the jump. Numerical methods in general capture well the shock
when only one of the two variables varies, and show difficulties in the cases
where the two variables vary at the jump. This is especially the case of the
non classical 2-shock i.e. when the two states located on different branches of a
hyperbola. Therefore, we will develop the in-cell reconstruction corresponding
to this specific configuration.

In-cell reconstruction criteria. First of all, one has to decide when it is
necessary to introduce a discontinuous reconstruction in a given cell j. In
other words, it amounts to wonder when a non classical discontinuity is ex-
pected to be present in the cell j. With this in mind, we suggest to con-
sider the Riemann solution associated with the left and right initial states
Uj−1 and Uj+1. We denote RP(Uj−1, Uj+1) this Riemann solution and our de-
tection criteria of non classical discontinuity in the cell j is the following.
If the solution of RP(Uj−1, Uj+1) contains an admissible discontinuity be-
tween the left state U−

j = (α−
j (Uj−1, Uj+1) , ω−

j (Uj−1, Uj+1)) and right state
U+

j = (α+
j (Uj−1, Uj+1) , ω+

j (Uj−1, Uj+1)) such that α−
j �= α+

j and ω−
j �= ω+

j ,
we propose a discontinuous in-cell reconstruction between U−

j and U+
j in cell

j as shown on Fig. 6. Otherwise, U−
j = U+

j = Uj .
Location of the reconstructed discontinuity and conservativity. It is impor-

tant to note that the in-cell reconstructed discontinuity will not be necessarily
located at the same place for both variables α and ω. Indeed, our objective
is to preserve conservation for both variables α and ω, which means that we
require the average value of the reconstructed discontinuity to be equal for
each variable to the initial constant value on the cell j. We thus define the co-
efficient θα

j (resp. θω
j ) such that the distance from xj−1/2 to the discontinuity

of the variable α (resp. variable ω) is θα
j Δx (resp. θω

j Δx), see Fig. 6. We would
like to locate the discontinuities of α and ω in a way that yields a conservative
scheme, so that θα

j and θω
j must satisfy

⎧⎨
⎩

θα
j α−

j +
(
1 − θα

j

)
α+

j = αn
j ,

θω
j ω−

j +
(
1 − θω

j

)
ω+

j = ωn
j .

At this stage, it may happen that the values of θ given by these relations
lie outside of [0, 1], meaning that the reconstructed discontinuity should be
located outside of the cell j. In this case, we simply suggest to give up the
reconstruction process in the cell j, more precisely we set
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x

α

xj−1/2 xj+1/2

dα
j

αj−1

αj+1

αj

α+
j

α−
j

x

ω

dω
j

xj−1/2 xj+1/2

ωj−1

ωj+1

ωj

ω−
j

ω+
j

Figure 6. Reconstruct Uj by U−
j = (α−

j , ω−
j ), U+

j =
(α+

j , ω+
j ) and dα

j = θα
j Δx, dω

j = θω
j Δx

• If θα
j /∈ [0, 1] : no reconstruction for α i.e.

α+
j = α−

j = αn
j .

• If θω
j /∈ [0, 1] : no reconstruction for ω i.e.

ω+
j = ω−

j = ωn
j .

• If θα
j ∈ [0, 1] (and/or θω

j ∈ [0, 1]), reconstructing for α (and/or ω).

Definition of the numerical flux using the reconstructed discontinuity. In this
paragraph, we give the definition of the numerical fluxes taking into account
the presence of in-cell reconstructed discontinuities. The idea is to evaluate
the numerical fluxes by considering the propagation of the reconstructed dis-
continuities and by calculating the value of the exact flux either on the left
or the right state of the discontinuity depending on its (varying in time) po-
sition inside or outside the cell j. With this in mind, let us denote σj the
exact value of the speed of propagation of the discontinuity

(
U−

j , U+
j

)
. We

then compute the numerical flux function between tn and tn +Δt by using the
reconstructed discontinuities rather than the average values. More precisely, if
σj > 0 (resp. σj < 0), we are going to calculate the flux at interface j + 1/2
(resp. j − 1/2) by considering that the numerical flux equals the exact flux
evaluated on the right value U+

j , until the corresponding discontinuity reaches
the interface j + 1/2 (resp. j − 1/2), and the exact flux evaluated on the left
value U−

j afterwards. Therefore, such a flux function will be computed relying
on the speed of shock propagation σj of the reconstructed discontinuity and on
the times Δtαj+1/2,Δtωj+1/2 needed by this discontinuity to reach the interface
j ± 1/2 depending on the sign of σj . More explicitly:

• If σj > 0. Denote Δtωj+1/2 = (1−θω
j )Δx

σj
, Δtαj+1/2 = (1−θα

j )Δx

σj
. The nu-

merical flux function FRec
j+1/2 is computed by using U−

j and U+
j .
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− If θα
j ≤ θω

j , then

ΔtFRec
j+/2 = min

(
Δtωj+1/2,Δt

)
F (U+

j ) + max
(
Δt − Δtαj+1/2, 0

)
F (U−

j )

+ max
(
min

(
Δtαj+1/2,Δt

)
− Δtωj+1/2, 0

)
F

(
(α+

j , ω−
j )

)
.

− If θα
j > θω

j , then

ΔtFRec
j+/2 = min

(
Δtαj+1/2,Δt

)
F (U+

j ) + max
(
Δt − Δtωj+1/2, 0

)
F (U−

j )

+ max
(
min

(
Δtωj+1/2,Δt

)
− Δtαj+1/2, 0

)
F

(
(α−

j , ω+
j )

)
.

• If σj < 0. Denote Δtωj−1/2 = θω
j Δx

−σj
, Δtαj−1/2 = θα

j Δx

−σj
.

The numerical flux function FRec
j−1/2 is computed by using U−

j and
U+

j .
− If θα

j ≤ θω
j , then

ΔtFRec
j−1/2 = min

(
Δtαj−1/2,Δt

)
F (U−

j ) + max
(
Δt − Δtωj−1/2, 0

)
F (U+

j )

+ max
(
min

(
Δtωj−1/2,Δt

)
− Δtαj−1/2, 0

)
F

(
(α+

j , ω−
j )

)
.

− If θα
j > θω

j , then

ΔtFRec
j−1/2 = min

(
Δtωj−1/2,Δt

)
F (U−

j ) + max
(
Δt − Δtαj−1/2, 0

)
F (U+

j )

+ max
(
min

(
Δtαj−1/2,Δt

)
− Δtωj−1/2, 0

)
F

(
(α−

j , ω+
j )

)
.

4. Numerical results

We present some numerical results obtained with the constant densities ρ1 = 1,
ρ2 = 3, which give a good overview of the wave structure. Moreover, the
simulation is implemented on a spacial domain [0, 1], uniform mesh with space
step Δx and CFL number is less than or equal to 1. The time step is defined
by

Δt = CFL × Δx

maxi{λ1(Ui, Ui+1), λ2(Ui, Ui+1)} (4.43)

where λk(Ui, Ui+1), k = 1, 2 are defined by (3.40).
We first show in Sect. 4.1 that the Godunov scheme and the Roe scheme with
Harten type correction are able to capture the non classical wave structure
joining two states in different domains H− and H+ in the Riemann prob-
lem involving a pure phase intermediate state (Examples 2.3 and 2.5). These
schemes however show strong oscillation in capturing the non classical 2-shock
wave in Example 2.6, see this configuration in Fig. 3a, whereas the reconstruct-
ing method show very good results, Fig. 9.
Then in Sect. 4.2 we simulate the classical problem of phase separation under
gravity.
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Figure 7. Solution of the Riemann problem at time t = 0.15
for the initial data α1 = α2 = 0.5 and ωL = −ωR = 5; 100
cells and CFL = 0.9

4.1. The Riemann problem

The Riemann problem consists in solving the system (1.14) with K = 0, S = 0
and the initial data

U(x, 0) =
{

(βL, ωL) if x ≤ 0,
(βR, ωR) if x > 0.

(4.44)

From Theorem 4, this problem admits a unique admissible solution satisfying
Liu’s criterion with α1, α2 ∈ [0, 1]. In the special case where ωL = −ωR,
the solution involves a pure phase: the lighter if ωL > 0, and the heavier if
ωL < 0. It consists of two transonic rarefactions in the former case and three
shocks waves in the latter. We present in Figs. 7 and 8, the numerical results
obtained using the Godunov scheme, the Roe scheme, and the Roe scheme
with the Harten type entropy fix presented at Sect. 3. In the first case ωL > 0,
Fig. 7, the original Roe scheme is unable to capture the admissible solution and
captures instead an inadmissible shock, i.e. does not satisfy the Liu criterion.
We remark that the velocity of the liquid in the pure gas region is smooth. In
the second case ωL < 0, Fig. 8, the original Roe scheme and others schemes
capture well the pure liquid state. In this case, the gas velocity in the pure
liquid region includes of three shocks and is bounded. The velocity of the
vanishing phase in both of cases is not necessarily equal to the one of the pure
phase.



NoDEA A 2 × 2 hyperbolic system modelling Page 27 of 35 36

Figure 8. Solution of the Riemann problem at time t = 0.15
for the initial data α1 = α2 = 0.5 and ωL = −ωR = −5; 100
cells and CFL = 0.9

The third numerical simulation of the Riemann problem is the non classical 2-
shock wave as in Fig. 3a. We recall that this 2-shock goes through the domain
H− and H+, connects the left state UL to the intermediate state Uint such
that each component of UL and Uint is different and the speed propagation of
the 2-shock is not equal to zero. These challenges lead to oscillations given by
both the Godunov scheme and the Roe scheme with Harten entropy fix while
the Roe scheme without entropy fix yields strong oscillations. The admissible
solution is well captured only by the reconstruction method, see Fig. 9 (a
uniform mesh with 100 cells), Fig. 11 (a uniform mesh with 500 cells) and
Fig. 10 for the convergence of these schemes.

4.2. The phase separation under gravity

This is a classical test case in the assessment of numerical methods in the
modeling of counter-current two phase flows with steep transition (see [2]).
We consider the model (1.1) with g = −10m/s2, K = 0 and x ∈ [0, 1] with
the initial data u1(x, 0) = 0, u2(x, 0) = 0, α1(x, 0) = 0.5, α2(x, 0) = 0.5 and
boundary data u1(0, t) = u2(0, t) = u1(1, t) = u2(1, t) = 0. The transient
result in Fig. 12 (left) shows that the Roe scheme captures an inadmissible
shock departing from x = 1. This is consistent with the results shown in the
previous section since the Riemann problems at the walls yield pure phases
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Figure 9. Solution of the Riemann problem at time t = 0.12
for the initial data αL = 0.9, αR = 0.3 and ωL = −3, ωR = 5;
100 cells and CFL = 0.5

intermediate states and a transonic rarefaction fan for the lighter phase. How-
ever, the Roe scheme with Harten entropic correction gives a similar result to
the Godunov scheme, both of them being consistent with the analysis of the
Riemann problem (Figs. 13, 14).

Both the physical and mathematical analysis agree that the expected station-
ary state for the volume fraction and velocities should satisfy α1 = 0 on [0, 0.5]
and α1 = 1 on [0.5, 1] velocity u2 = 0 on [0, 0.5] and u1 = 0 on [0.5, 1]. However
there is a debate as to what should be the value of u2 (resp. u1) on [0.5, 1]
(resp. [0, 0.5]) since in that region the liquid (resp. the gas) is absent). In our
model we can compute the stationary velocity of the liquid which is not zero
hence there is no mechanical equilibrium. However there does not exist a sta-
tionary value for the gas velocity on the whole of domain, we refer the reader
to Appendix 5 for details. During the numerical simulation, all schemes except
the original Roe scheme captured well the vanishing velocity of liquid in the
pure gas domain as well as the (non stationary) vanishing velocity of gas in
the pure liquid domain.
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Figure 10. Solution of the Riemann problem at time t =
0.12 for the initial data αL = 0.9, αR = 0.3 and ωL =
−3, ωR = 5; 500 cells and CFL = 0.5

Figure 11. Convergence curves (mesh refinement for the
Riemann problem with initial data αL = 0.9, αR = 0.3 and
ωL = −3, ωR = 5; CFL = 0.5)
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Figure 12. Volume fraction α1 for the sedimentation prob-
lem. a Transient, b stationary

Figure 13. The velocity u1 for the sedimentation problem.
a Transient, b stationary

Figure 14. The velocity u2 for the sedimentation problem.
a Transient, b stationary
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5. Appendix: Vanishing velocity of the phase separation under
gravity

This appendix demonstrates the derivations of the vanishing velocity, i.e the
stationary state of the phase separation under gravity in Sect. 4.2.
We consider the stationary state of the 2×2 system (1.13) assuming that g < 0
and ρ1 < ρ2. The first equation in (1.13) at stationary state and the boundary
condition together with (1.7) yield

α1u1 = 0,

α2u2 = 0.

We seek a solution consisting of two zones. A bottom zone with pure phase
2: α2 = 1 and constant velocity u2 = 0 in the region x ∈ [0, 0.5] and a top
zone with pure phase 1: α1 = 1 and constant velocity u1 = 0 in the region
x ∈ [0.5, 1]. We are going to use the second equation of the system (1.13) to
determine the vanishing velocity of phase 2 in the region x ∈ [0.5, 1].
The second equation of the system (1.13), using the physical variables u1 and
u2 (or equivalently equation 1.10) is

∂x

(
ρ1

u2
1

2
− ρ2

u2
2

2
+

ρ1ρ2

2(ρ1 − ρ2)
(u1 − u2)2

)
= (ρ1 − ρ2)g. (5.45)

Integrating (5.45) we obtain the two phase Bernoulli’s principle:

ρ1
u2

1

2
− ρ2

u2
2

2
+

ρ1ρ2

2(ρ1 − ρ2)
(u1 − u2)2 − (ρ1 − ρ2)gx = constant. (5.46)

In order to compute the vanishing phase velocity of phase 2, we remark that
the velocities at the walls x = 1 are u1 = u2 = 0. Hence the constant in (5.46)
equals −(ρ1 − ρ2)g, and since u1 = 0 for x ∈ [0.5, 1] the two phase Bernouilli’s
principle becomes

ρ2
2

ρ1 − ρ2

u2
2(x)
2

= (ρ1 − ρ2)g(x − 1) for x ∈ [0.5, 1].

Hence

u2(x) = −
√

2
(

1 − ρ1

ρ2

)
g(x − 1) for x ∈ [0.5, 1]. (5.47)

The velocity profile is therefore not constant and furthermore shows a discon-
tinuity at the interface x = 0.5.

We remark that we cannot determine a stationary vanishing velocities
for phase 1 in the region x ∈ [0, 0.5]. Indeed since u2 = 0 for x ∈ [0, 0.5], the
two-phase Bernouilli’s principle takes the form

ρ2
1

ρ1 − ρ2

u2
1(x)
2

= (ρ1 − ρ2)gx for x ∈ [0, 0.5]. (5.48)

Since g = −10m/s < 0, the Eq. (5.48) has no solution as it yields u2
1 < 0.

In the stationary state of the sedimentation problem, the vanishing liquid
velocity in the pure gas region is given by the formula (5.47), however the
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stationary vanishing gas velocity in the pure liquid phase need not exist as
explained above. This result is consistent with the other similar results in the
simulation of compressible two-phase flows, for example in [43–45], where the
authors can capture and study the vanishing liquid velocity but no informa-
tion is given about the gas vanishing velocity. It is in fact a difficult problem
encountered in the transition between the two-phase flow model to the single
one.
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