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Abstract. In this paper, we will study the Trudinger-Moser inequalities
with the monomial weight |x1|A1 ... |xN |AN in R

N with A1 ≥ 0, ..., AN ≥
0. Moreover, we investigate the Trudinger-Moser inequalities on both do-
mains of finite and infinite volume. More importantly, we will exhibit the
best constants for our results. In the particular case A1 = · · · = AN = 0,
we recover many results about the Trudinger-Moser inequalities without
weight established in the literature.
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1. Introduction

Functional and geometric inequalities with monomial weights have been stud-
ied extensively recently. For example, motivated by an open question raised by
Haim Brezis [5,6], Cabré and Ros-Oton studied in [7] the problem of the reg-
ularity of stable solutions to reaction-diffusion problems of double revolution
and then established in [8] the Sobolev, Morrey, Trudinger and isoperimetric
inequalities with weight xA. Here

xA = |x1|A1 ... |xN |AN

A1 ≥ 0,..., AN ≥ 0

A = (A1, ..., AN ).
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In [4], Bakry, Gentil and Ledoux used the stereographic projection combined
with the Curvature-Dimension condition to prove the following Sobolev in-
equality with monomial weight: for a ≥ 0, N + a > 2, there exists S (N, a) > 0
such that for all smooth, compactly supported function f on R

N−1 × R+:[∫
RN−1

∫
R+

|u (x)| 2(N+a)
N+a−2 xa

Ndx

]N+a−2
2(N+a)

≤S (N, a)

[∫
RN−1

∫
R+

|∇u (x)|2 xa
Ndx

] 1
2

.

The best constant S (N, a) was also calculated explicitly in [4]. In [20], V.H.
Nguyen employed the mass transport approach to prove again and extend
the above result. Moreover, he also studied the best constants and extremal
functions for the Gagliardo–Nirenberg inequalities and logarithmic Sobolev
inequalities with the weight xa

N and with arbitrary norm.
The main purpose of this article is to study the sharp Trudinger-Moser

inequalities in R
N with monomial weight xA. Denote

R
N
∗ =

{
(x1, ..., xN ) ∈ R

N such that xi > 0 whenever Ai > 0
}

and Ω∗ = Ω ∩ R
N
∗ . Let

D = N + A1 + · · · + AN

and denote

mA (E) =
∫

E

xAdx.

In [8], the authors set up the following weighted Trudinger inequality.

Theorem A. Let Ω ⊂ R
N be a bounded domain. Then for each u ∈ C1

c (Ω)

with
∫

Ω

|∇u|D xAdx ≤ 1, we have∫
Ω

exp
{
c1 |u| D

D−1

}
xAdx ≤ c2mA (Ω)

where c1 and c2 are constants depending only on D.

Our first main result in this paper is to exhibit the best constant in the
above result. More precisely, we will prove the following sharp Trudinger-Moser
inequality on finite-volume domains:

Theorem 1.1. There exists C0 (D) > 0 such that for all u such that u is a
Lipschitz continuous function in R

N
∗ ,mA

{
x ∈ R

N
∗ : |u (x)| > t

}
is finite for

every positive t, mA (supp (u)) < ∞ and
∫
RN∗

|∇u|D xAdx ≤ 1, we have

∫
RN∗

[
exp
(
αD,A |u| D

D−1

)
− 1
]
xAdx ≤ C0 (D) mA (supp (u))

where

αD,A = D

(∫
∂B∗

1

xAdσ

) 1
D−1

is the best constant.
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The best constant αD,A can actually be computed as follows:

∫
B∗

1

xAdx =
∫ 1

0

∫
∂B∗

r

xAdσdr

=
∫ 1

0

rD−1

(∫
∂B∗

1

xAdσ

)
dr

=
1
D

(∫
∂B∗

1

xAdσ

)
.

Hence by [8]: ∫
∂B∗

1

xAdσ = D

∫
B∗

1

xAdx

= D
Γ
(

A1+1
2

)
Γ
(

A2+1
2

)
...Γ
(

AN+1
2

)
2kΓ

(
1 + D

2

)
where k is the number of strictly positive entries of A. So

αD,A = D

(
D

Γ
(

A1+1
2

)
Γ
(

A2+1
2

)
...Γ
(

AN+1
2

)
2kΓ

(
1 + D

2

)
) 1

D−1

.

When A =
−→
0 , we recover the well-known Trudinger-Moser inequality

on bounded domains proved by J. Moser in [19]. It is worth mentioning that
the theorems of J. Moser in [19] are the sharp versions with best constants of
the earlier results of Pohozaev [21], Trudinger [24] and Yudovich [25] about
the embedding W 1,N

0 (Ω) ⊂ LϕN
(Ω). Here Ω ⊂ R

N is a bounded domain
and LϕN

(Ω) is the Orlicz space associated with the Young function ϕN (t) =

exp
(
α |t|N/(N−1)

)
−1 for some α > 0. We also mention that when the volume

of Ω is infinite, the Trudinger-Moser inequality in [19] becomes meaningless.
Thus, it is interesting and nontrivial to extend such inequalities to domains
with infinite measure. In this direction, we state here the following three such
results in the Euclidean spaces that could be found in [1,3,9,10,13,14,18,22]:

Theorem B. Let 0 ≤ β < N and 0 ≤ α < αN = Nω
1

N−1
N−1, where ωN−1 is the

area of the surface of the unit N− ball. There hold

sup
u∈W 1,N (RN ): ‖∇u‖N ≤1

1

‖u‖N−β
N

∫
RN

φN

(
α

(
1 − β

N

)
|u| N

N−1

)
dx

|x|β
< ∞.

(1.1)

sup
u∈W 1,N (RN ): ‖∇u‖N

N+‖u‖N
N ≤1

∫
RN

φN

(
αN

(
1 − β

N

)
|u| N

N−1

)
dx

|x|β
< ∞.

(1.2)
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sup
u∈W 1,N (RN ): ‖∇u‖N ≤1

1

‖u‖N−β
N

∫
RN

φN

(
αN

(
1 − β

N

)
|u| N

N−1

)
(
1 + |u| N

N−1 (1− β
N )
) dx

|x|β
< ∞.

(1.3)

Here

φN (t) = et −
N−2∑
j=0

tj

j!
.

Moreover, the constant αN is sharp.

Our next purpose of this article is to establish the sharp Trudinger-Moser
inequalities on the whole domain in the sense of [10,17,18]:

Theorem 1.2. There exists a constant C (D,A) > 0 such that for all u ∈
C∞

c

(
RN∗
)

:
∫
RN∗

|∇u|D xAdx ≤ 1, there holds

∫
RN∗

ΦD

(
αD,A |u| D

D−1

)
(
1 + |u| D

D−1

) xAdx ≤ C (D,A)
∫
RN∗

|u|D xAdx. (1.4)

Here

ΦD (t) =
∑

k∈N:k≥D−1

tk

k!
.

The constant αD,A is sharp. Moreover, the inequality does not hold when 1 +
|u| D

D−1 is replaced by 1 + |u|p with p < D
D−1 .

As consequences, we get the following versions of the Trudinger-Moser
inequalities on the whole domain in the spirit of [1,12,14,22]:

Theorem 1.3. 1/For all α < αD,A, there exists a constant C (D,A) > 0 such

that for all u ∈ C∞
c

(
RN∗
)

: ∫
RN∗

|∇u|D xAdx ≤ 1, there holds

∫
RN∗

ΦD

(
α |u| D

D−1

)
xAdx ≤ C (D,A)

αD,A − α

∫
RN∗

|u|D xAdx. (1.5)

2/ For any M > 1, there exists C (D,A,M) > 0 such that for all u ∈
C∞

c

(
RN∗
)

:
∫
RN∗

|∇u|D xAdx < 1, there holds

∫
RN∗

ΦD

(
MD,A (u) αD,A |u| D

D−1

)
xAdx ≤ C (D,A,M)

∫
RN∗

|u|D xAdx

1 −
∫
RN∗

|∇u|D xAdx

(1.6)
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where

MD,A (u) =
M

1
D−1(

M − 1 +
∫
RN∗

|∇u|D xAdx

) 1
D−1

.

3/ There exists a constant C (D,A) > 0 such that for all u ∈ C∞
c

(
RN∗
)

:∫
RN∗

|∇u|D xAdx +
∫
RN∗

|u|D xAdx ≤ 1, there holds

∫
RN∗

ΦD

(
αD,A |u| D

D−1

)
xAdx ≤ C (D,A). (1.7)

The constant αD,A is sharp.

It is interesting to mention that if we just consider the restriction under
the seminorm

∫
RN∗

|∇u|D xAdx ≤ 1, the inequality (1.5) fails at the critical case
α = αD,A. Hence, (1.5) can be considered as the sharp subcritical Trudinger-
Moser inequality with monomial weight. Also, Statement 3 claims that if we
want to achieve the sharp constant αD,A, we have to use the constraint of full
norm

∫
RN∗

|∇u|D xAdx +
∫
RN∗

|u|D xAdx ≤ 1. Thus, (1.7) is the sharp critical
Trudinger-Moser inequality with monomial weight. Finally, Statement 2 is the
extension of these two results in the spirit of Lions [16]. It is easy to see that
(1.5) without the asymptotic behavior and (1.7) are just easy consequences of
(1.6). Surprisingly, we will show next that these three inequalities are actually
equivalent. More specifically, let us denote

STM (α) = sup

u∈C∞
c (RN∗ ):

∫
RN∗

|∇u|DxAdx≤1

1∫
RN∗

|u|D xAdx

∫
RN∗

ΦD

(
α |u| D

D−1

)
xAdx

TM = sup

u∈C∞
c (RN∗ ):

∫
RN∗

|∇u|DxAdx+

∫
RN∗

|u|DxAdx≤1

∫
RN∗

ΦD

(
αD,A |u| D

D−1

)
xAdx

and

ITMM = sup

u∈C∞
c (RN∗ ):

∫
RN∗

|∇u|DxAdx≤1

1 −
∫
RN∗

|∇u|D xAdx∫
RN∗

|u|D xAdx

×
∫
RN∗

ΦD

(
MD,A (u)αD,A |u| D

D−1

)
xAdx.

Then our next result is that
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Theorem 1.4. For M > 1, we have

ITMM =
M

M − 1
TM =

M

M − 1
sup

α∈(0,αD,A)

⎡
⎢⎣1 −

(
α

αD,A

)D−1

(
α

αD,A

)D−1

⎤
⎥⎦STM (α).

See [11] for a similar result for the nonweighted case.
Our paper is organized as follows: Preliminaries and some useful lemmata

will be provided in Sect. 2. Our first main result about the Trudinger-Moser
inequality on bounded domains will be proved in Sect. 3. Finally, in Sect. 4,
we will investigate several versions of the Trudinger-Moser inequalities on the
whole domain and will also establish the equivalency of some of them.

2. Preliminaries

A result by Talenti in [23] states that whenever balls minimize the isoperimetric
quotient with a weight w, there exists a radial rearrangement which preserves∫

f (u) wdx and decreases
∫ |∇u|p wdx. As pointed out in [8], by combining this

fact with the results in [8] about the isoperimetric inequalities with monomial
weights and the layer cake representation (see [15]), one could deduce the
following rearrangement results:

Lemma 2.1. Let u be a Lipschitz continuous function in R
N
∗ such that mA{

x ∈ R
N
∗ : |u (x)| > t

}
is finite for every positive t. Then there exists a radial

rearrangement u∗ of u such that

(i) mA ({|u| > t}) = mA ({u∗ > t}) for all t,
(ii) u∗ is radially decreasing
(iii) for every Young function Φ (that is, Φ maps [0,∞) into [0,∞), vanishes

at 0, and is convex and increasing):∫
RN∗

Φ(|∇u∗|) xAdx ≤
∫
RN∗

Φ(|∇u|) xAdx.

(iv) If Ψ : R+ → R
+ is nondecreasing, then

∫
RN∗

Ψ (u)xAdx=
∫
RN∗

Ψ (u∗) xAdx.

Now, we consider the following Moser type sequence:

Mn(x) =

⎛
⎜⎜⎝ 1∫

∂B∗
1

xAdσ

⎞
⎟⎟⎠

1
D
⎧⎪⎪⎨
⎪⎪⎩

( n
D )

D−1
D , 0 ≤ |x| ≤ e− n

D ,(
D
n

) 1
D log ( 1

|x| ), e− n
D < |x| < 1

0, |x| ≥ 1

. (2.1)

Then, we have that
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∫
RN∗

|∇Mn|D xAdx =

(∫
∂B∗

1

xAdσ

)∫ 1

0

|M ′
n (r)|D rD−1dr

=

(∫
∂B∗

1

xAdσ

)∫ 1

e− n
D

D

n

∫
∂B∗

1

xAdσ

1
r
dr

= 1.

Next, we state the following result by Adams [2]:

Lemma 2.2. Let 1 < p < ∞ and a(s, t) be a non-negative measurable function
on [0,∞) × [0,∞) such that (a.e.)

a(s, t) ≤ 1, when 0 < s < t, (2.2)

sup
t>0

(∫ ∞

t

a(s, t)p′
ds

)1/p′

= b < ∞. (2.3)

Then there is a constant c0 = c0(p, b) such that if for φ ≥ 0,∫ ∞

0

φ(s)pds ≤ 1, (2.4)

then ∫ ∞

0

e−F (t)dt ≤ c0 (2.5)

where

F (t) = t −
(∫ ∞

0

a(s, t)φ(s)ds

)p′

. (2.6)

We now state the following result that the proof could be found in [17,18]:

Lemma 2.3. Given any sequence s = {sk}k≥0, let

‖s‖1 =
∞∑

k=0

|sk| ,

‖s‖D =

( ∞∑
k=0

|sk|D
)1/D

,

‖s‖q,(e) =

( ∞∑
k=0

|sk|q ek

)1/q

and

μ (h) = inf
{

‖s‖q,(e) : ‖s‖1 = h, ‖s‖D ≤ 1
}

.

Then for h > 1, we have

μ (h) ∼
exp
(

h
D

D−1

q

)
h

1
D−1

.
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Using the above lemma, we can obtain the following Radial Sobolev in-
equality in the spirit of Ibrahim-Masmoudi-Nakanishi [10]:

Theorem 2.1. (Radial Sobolev). There exists a constant C > 0 such that for
any radially nonnegative nonincreasing function ϕ satisfying ϕ(R) > 1 and(∫

∂B∗
1

xAdσ

)∫ ∞

R

|ϕ′(t)|D tD−1dt ≤ K

for some R, K > 0, then we have

exp
[

αD,A

K
1

D−1
ϕ

D
D−1 (R)

]
ϕ

D
D−1 (R)

RD ≤ C

∫ ∞

R

|ϕ(t)|D tD−1dt

K
D

D−1
.

We also have the following observation:

Lemma 2.4. We have

STM (α) = sup

u∈C∞
c (RN∗ ):

∫
RN∗

|∇u|DxAdx=1=

∫
RN∗

|u|DxAdx

∫
RN∗

ΦD

(
α |u| D

D−1

)
xAdx.

Proof. First, it’s easy to see that

STM (α)= sup

u∈C∞
c (RN∗ ):

∫
RN∗

|∇u|DxAdx=1

1∫
RN∗

|u|D xAdx

∫
RN∗

ΦD

(
α |u| D

D−1

)
xAdx.

Next, for any u ∈ C∞
c

(
RN∗
)

\{0} :
∫
RN∗

|∇u|D xAdx = 1, we set

v (x) = u (λx)

with

λD =
∫
RN∗

|u|D xAdx.

Then it is easy to verify that∫
RN∗

|∇v|D xAdx =
∫
RN∗

|∇u|D xAdx = 1

and ∫
RN∗

|v|D xAdx =
1

λD

∫
RN∗

|u|D xAdx = 1.
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Also,

1∫
RN∗

|u|D xAdx

∫
RN∗

ΦD

(
α |u| D

D−1

)
xAdx

=
1

λD

1∫
RN∗

|v|D xAdx

λD

∫
RN∗

ΦD

(
α |v| D

D−1

)
xAdx

=
∫
RN∗

ΦD

(
α |v| D

D−1

)
xAdx.

Hence

STM (α) = sup

u∈C∞
c (RN∗ ):

∫
RN∗

|∇u|DxAdx=1=

∫
RN∗

|u|DxAdx

∫
RN∗

ΦD

(
α |u| D

D−1

)
xAdx.

�

3. Sharp Trudinger-Moser inequality on bounded domains

Proof of Theorem 1.1. Using Lemma 2.1, we can now assume that u is radially
decreasing with supp (u) = B∗

R. Then

∫
RN∗

[
exp
(
αD,A |u| D

D−1

)
− 1
]
xAdx

=
∫ R

0

(∫
∂B∗

r

[
exp
(
αD,A |u| D

D−1

)
− 1
]
xAdσ

)
dr

=
∫ R

0

[
exp
(
αD,A |u| D

D−1

)
− 1
]
rD−1

(∫
∂B∗

1

xAdσ

)
dr

=

(∫
∂B∗

1

xAdσ

)∫ R

0

[
exp
(
αD,A |u| D

D−1

)
− 1
]
rD−1dr.

Also ∫
RN∗

|∇u|D xAdx =

(∫
∂B∗

1

xAdσ

)∫ R

0

|u′|D rD−1dr.

Set

v (t) = Bu
(
Re− t

D

)
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then∫ R

0

[
exp
(
αD,A |u| D

D−1

)
− 1
]
rD−1dr

=
∫ ∞

0

[
exp
(

αD,A

∣∣∣u(Re− t
D

)∣∣∣ D
D−1
)

− 1
](

Re− t
D

)D−1

R
1
D

e− t
D dt

= RD 1
D

∫ ∞

0

[
exp
(

αD,A

B
D

D−1
|v (t)| D

D−1

)
− 1
]

e−tdt

and∫ R

0

|u′ (r)|D rD−1dr =
∫ R

0

∣∣∣u′
(
Re− t

D

)∣∣∣D (Re− t
D

)D−1

R
1
D

e− t
D dt

=
∫ R

0

|v (t)|D
(

D

RB
e

t
D

)D (
Re− t

D

)D−1

R
1
D

e− t
D dt

=
(

D

B

)D 1
D

∫ R

0

|v′ (t)|D dt.

So if we choose B such that(
D

B

)D 1
D

(∫
∂B∗

1

xAdσ

)
= 1

i.e.

B = D

(
1
D

∫
∂B∗

1

xAdσ

) 1
D

,

we get that

∫ R

0

|v′ (t)|D dt ≤ 1.

Using Lemma 2.2 with

a (s, t) =
{

1 0 ≤ s ≤ t
0 t < s

,

φ = v′,

we get that there exists a constant C0 = C0 (D) such that

1
D

∫ ∞

0

[
exp
(

αD,A

B
D

D−1
|v (t)| D

D−1

)
− 1
]

e−tdt

=
1
D

∫ ∞

0

[
exp
(
|v (t)| D

D−1

)
− 1
]
e−tdt ≤ C0.
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Combining these estimates, we obtain∫
RN∗

[
exp
(
αD,A |u| D

D−1

)
− 1
]
xAdx ≤ C0 (D) RD

(∫
∂B∗

1

xAdσ

)

= C0 (D)

∫
∂B∗

1

xAdσ∫
B∗

1

xAdx

mA (B∗
R) .

Finally, we note that∫
B∗

1

xAdx =
∫ 1

0

∫
∂B∗

r

xAdσdr

=
∫ 1

0

rD−1

(∫
∂B∗

1

xAdσ

)
dr

=
1
D

(∫
∂B∗

1

xAdσ

)
.

Hence ∫
RN∗

[
exp
(
αD,A |u| D

D−1

)
− 1
]
xAdx ≤ C1 (D) mA (supp (u)).

Now, to show that the constant αD,A is sharp, we will take into consideration
the Moser sequence Mn. Indeed, for all α > αD,A:∫

RN∗

[
exp
(
α |Mn| D

D−1

)
− 1
]
xAdx

=

(∫
∂B∗

1

xAdσ

)∫ 1

0

[
exp
(
α |Mn| D

D−1

)
− 1
]
rD−1dr

�
∫ e− n

D

0

exp

⎛
⎜⎜⎜⎜⎝α

∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝ 1∫

∂B∗
1

xAdσ

⎞
⎟⎟⎠

1
D ( n

D

)D−1
D

∣∣∣∣∣∣∣∣∣

D
D−1
⎞
⎟⎟⎟⎟⎠ rD−1dr

� exp
[

α

αD,A
n

]
e−n → ∞ as n → ∞.

Actually, from the above argument, we can deduce that for any positive func-
tion f such that f (n) → ∞ as n → ∞, we get

sup∫
RN∗

|∇u|DxAdx≤1

1
mA (supp (u))

∫
RN∗

[
exp
(
αD,A |u| D

D−1

)
− 1
]
f (|u|) dx = ∞.

�
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4. Sharp Trudinger-Moser inequalities on R
N
∗

Proof of Theorem 1.2. By Lemma 2.1, we may assume that u is a smooth,
nonnegative and radially nonincreasing function. Let R1 = R1(u) be such that∫

B∗
R1

|∇u|D xAdx =

(∫
∂B∗

1

xAdσ

)∫ R1

0

|ur|D rD−1dr ≤ 1 − ε0,

∫
RN∗ \B∗

R1

|∇u|D xAdx =

(∫
∂B∗

1

xAdσ

)∫ ∞

R1

|ur|D rD−1dr ≤ ε0.

Here ε0 ∈ (0, 1) is fixed and does not depend on u.
Denote

ωN−1,A =
∫

∂B∗
1

xAdσ,

by the Holder’s inequality, we have

u (r1) − u (r2) ≤
∫ r2

r1

− urdr

≤
(

1 − ε0

ωN−1,A

)1/D (
ln

r2

r1

)D−1
D

for 0 < r1 ≤ r2 ≤ R1, (4.1)

and

u (r1) − u (r2) ≤
(

ε0

ωN−1,A

)1/D (
ln

r2

r1

)D−1
D

for R1 ≤ r1 ≤ r2. (4.2)

We define R0 := inf {r > 0 : u(r) ≤ 1} ∈ [0,∞) . Hence u(s) ≤ 1 when s ≥ R0.
WLOG, we assume R0 > 0.

Now, we split the integral as follows:

∫
RN∗

ΦD

(
αD,A |u| D

D−1

)
1 + u

D
D−1

xAdx =
∫

B∗
R0

+
∫
RN∗ \B∗

R0

ΦD

(
αD,A |u| D

D−1

)
1 + u

D
D−1

xAdx

= I + J.

First, we will estimate J . Since u ≤ 1 on R
N
∗ \B∗

R0
, we have

J =
∫
RN∗ \B∗

R0

ΦD

(
αD,A |u| D

D−1

)
1 + u

D
D−1

xAdx

≤ C

∫
RN∗

|u|D xAdx. (4.3)

Hence, now, we just need to deal with the integral I.

Case 1: 0 < R0 ≤ R1.
In this case, using (4.1), we have for 0 < r ≤ R0:

u(r) ≤ 1 +
(

1 − ε0

ωN−1,A

)1/D (
ln

R0

r

)D−1
D

.
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By using

(a + b)
D

D−1 ≤ (1 + ε)a
D

D−1 + C (ε) b
D

D−1 ,

where

A (ε) =

(
1 − 1

(1 + ε)D−1

) 1
1−D

,

we get

u
D

D−1 (r) ≤ (1 + ε1)
(

1 − ε0

ωN−1,A

)1/(D−1)

ln
R0

r
+ A (ε1) .

Thus, we can estimate the integral I as follows:

I =
∫

B∗
R0

ΦD

(
αD,A |u| D

D−1

)
(
1 + u

D
D−1

) xAdx

≤
∫

B∗
R0

exp

(
αD,A (1 + ε1)

(
1 − ε0

ωN−1,A

)1/(D−1)

ln
R0

r
+ αA (ε1)

)
xAdx

≤ CR
αD,A(1+ε1)((1−ε0)/ωN−1,A)1/(D−1)

0 (ωN−1,A)

×
∫ R0

0

rD−1−αD,A(1+ε1)((1−ε0)/ωN−1,A)1/(D−1)
dr

≤ CRD
0 ωN−1,A ≤ C

(∫
B∗

R0

1dx

)
≤ C

∫
RN∗

|u|D xAdx. (4.4)

where ε1 = (1 + ε0)
1/(D−1) − 1.

Case 2: 0 < R1 < R0.
We have

I =
∫

B∗
R0

ΦD

(
αD,A |u| D

D−1

)
1 + u

D
D−1

xAdx

=
∫

B∗
R1

ΦD

(
αD,A |u| D

D−1

)
1 + u

D
D−1

xAdx +
∫

B∗
R0

\B∗
R1

ΦD

(
αD,A |u| D

D−1

)
1 + u

D
D−1

xAdx

= I1 + I2.

Using (4.2), we get

u (r) − u (R0) ≤
(

ε0

ωN−1,A

)1/D (
ln

R0

r

)D−1
D

for r ≥ R1.

Hence

u (r) ≤ 1 +
(

ε0

ωN−1,A

)1/D (
ln

R0

r

)D−1
D

.
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Then, we have

u
D

D−1 (r) ≤ (1 + ε2)
(

ε0

ωN−1,A

) 1
D−1

ln
R0

r
+ A (ε2).

So

I2 =

∫
B∗

R0
\B∗

R1

ΦD

(
αD,A |u| D

D−1

)
1 + u

D
D−1

xAdx

≤ CωN−1,A

∫ R0

R1

exp

(
αD,A (1 + ε2)

(
ε0

ωN−1,A

) 1
D−1

ln
R0

r
+ αA (ε2)

)
rD−1dr

≤ CωN−1,AR
αD,A(1+ε2)(ε0/ωN−1,A)

1
D−1

0

× R
D−αD,A(1+ε2)(ε0/ωN−1,A)

1
D−1

0 − R
D−αD,A(1+ε2)(ε0/ωN−1,A)

1
D−1

1

D − αD,A (1 + ε) (ε0/ωN−1,A)
1

D−1

≤ CωN−1,A

D − αD,A (1 + ε2) (ε0/ωN−1,A)
1

D−1

(
RD

0 − RD
1

)

≤ CωN−1,A

(∫ R0

R1

1dr

)
≤ C

∫
B∗

R0
\B∗

R1

xAdx ≤ C

∫
RN

∗

|u|D xAdx.,

where ε2 > 0 is such that D − αD,A (1 + ε2) (ε0/ωN−1,A)
1

D−1 > 0.

So, we now just need to estimate I1 =
∫

B∗
R1

ΦD

(
αD,A|u|

D
D−1

)

1+u
D

D−1
xAdx with

u (R1) > 1.
First, we define

v(r) = u(r) − u (R1) on 0 ≤ r ≤ R1.

It’s clear that
∫

B∗
R1

|∇v|N xAdx =
∫

B∗
R1

|∇u|N xAdx ≤ 1 − ε0.

Moreover, for 0 ≤ r ≤ R1:

u
D

D−1 (r) ≤ (1 + ε)v
D

D−1 (r) + A(ε)u
D

D−1 (R1)

with

0 < ε =
(

1
1 − ε0

) 1
D−1

− 1.

Hence

I1 =
∫

B∗
R1

ΦD

(
αD,A |u| D

D−1

)
1 + u

D
D−1

xAdx

≤ eαD,AA(ε)u
D

D−1 (R1)

u
D

D−1 (R1)

∫
B∗

R1

eαD,A(1+ε)v
D

D−1 (r)xAdx
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=
eαD,AA(ε)u

D
D−1 (R1)

u
D

D−1 (R1)

∫
B∗

R1

eαD,Aw
D

D−1 (r)xAdx (4.5)

where w = (1 + ε)
D−1

D v.

It’s clear that supp(w) ⊂ B∗
R1

and
∫

B∗
R1

|∇w|D xAdx = (1 + ε)D−1
∫

B∗
R1

|∇v|D xAdx ≤ (1 + ε)D−1 (1 − ε0) = 1. Noting that in this case

A (ε) =

(
1 − 1

(1 + ε)D−1

) 1
1−D

= ε
1

1−D

0

Hence, using Theorem 1.1, we have∫
B∗

R1

eαD,Aw
D

D−1 (r)xAdx ≤ C

∫
B∗

R1

xAdx ≤ CRD
1

∫
B∗

1

xAdx. (4.6)

Also, using Theorem 2.1, we have

exp
(
αD,AA(ε)u

D
D−1 (R1)

)
u

D
D−1 (R1)

RD
1

∫
B∗

1

xAdx

=

exp

(
αD,A

ε
1

D−1
0

u
D

D−1 (R1)

)

u
D

D−1 (R1)
RD

1

∫
B∗

1

xAdx

≤ Cε
D

D−1
0

∫
RN∗ \B∗

R1

|u|D xAdx

≤ C

∫
RN∗

|u|D xAdx. (4.7)

By (4.5), (4.6) and (4.7), the proof is now completed.
The fact that αD,A is sharp can be showed as in the proof of Theorem 1.1.

Now, to show that the power D
D−1 in the denominator of (1.4) is also optimal,

again we will consider the Moser sequence. We have for sufficiently large n:∫
RN∗

|Mn|D xAdx

= (ωN−1,A)
∫ 1

0

|Mn (r)|D rD−1dr

= (ωN−1,A)
∫ e− n

D

0

(
1

ωN−1,A

)( n

D

)D−1

rD−1dr

+ (ωN−1,A)
∫ 1

e− n
D

(
D

nωN−1,A

) ∣∣∣∣log
(

1
r

)∣∣∣∣
D

rD−1dr

� e−nnD−1 +
1
n

� 1
n

.
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Also,

∫
RN∗

ΦD

(
αD,A |Mn| D

D−1

)
(1 + |Mn|p) xAdx

�
∫ e− n

D

0

ΦD

(
αD,A

(
1

ωN−1,A

) 1
D−1 n

D

)
(

1 +
∣∣∣∣( 1

ωN−1,A

) 1
D ( n

D

)D−1
D

∣∣∣∣
p)rD−1dr

�
∫ e

− n
N−β

0

ΦD(n)

n
p(D−1)

D

rD−1dr � ΦD(n)e−n

n
p(D−1)

D

� 1

n
p(D−1)

D

Hence, we need
1

n
p(D−1)

D

� 1
n

⇒ p ≥ D

D − 1
.

�
We next prove Theorem 1.3:

Proof of Theorem 1.3. It is clear that Statement 1 without the exact asymp-
totic behavior 1

αD,A−α is an easy consequence of Theorem 1.2 while Statement
3 can be deduced from Statement 2 easily.

First, let 0 < α � αD,A and u ∈ C∞
c

(
RN∗
)

:
∫
RN∗

|∇u|D xAdx ≤ 1. Then

∫
RN∗

ΦD

(
α |u| D

D−1

)
xAdx =

∫
|u|≤1

+
∫

|u|>1

ΦD

(
α |u| D

D−1

)
xAdx.

The first integral is easy to estimate:∫
|u|≤1

ΦD

(
α |u| D

D−1

)
xAdx

=
∫

|u|≤1

∞∑
k=D−1

αk

k!
|u|k D

D−1 xAdx

≤
∞∑

k=D−1

αk

k!

∫
RN∗

|u|D xAdx

≤ C0 (D,A)
αD,A − α

∫
RN∗

|u|D xAdx.

Also, when |u| > 1:∫
|u|>1

ΦD

(
α |u| D

D−1

)
xAdx

≤
∫

|u|>1

exp
(
α |u| D

D−1

)
xAdx

≤
∫

|u|>1

exp
(
αD,A |u| D

D−1

)
exp
(
[α − αD,A] |u| D

D−1

)
xAdx
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≤ C0 (D,A)
∫

|u|>1

exp
(
αD,A |u| D

D−1

)
(αD,A − α) |u| D

D−1
xAdx

≤ C1 (D,A)
αD,A − α

∫
|u|>1

ΦD

(
αD,A |u| D

D−1

)
1 + |u| D

D−1
xAdx

≤ C2 (D,A)
αD,A − α

.

Next, we will prove Statement 2. Let u ∈ C∞
c

(
RN∗
)

:
∫
RN∗

|∇u|D xAdx <

1. If
∫
RN∗

|∇u|D xAdx ≤ (M−1
M

)D
, then with v = M

M−1u, we get
∫
RN∗

|∇v|D xAdx

≤ 1 and∫
RN∗

ΦD

(
MD,A (u)αD,A |u| D

D−1

)
xAdx

=
∫
RN∗

ΦD

(
MD,A (u)αD,A

(
M − 1

M

) D
D−1

|v| D
D−1

)
xAdx

≤
∫
RN∗

ΦD

((
M − 1

M

)
αD,A |v| D

D−1

)
xAdx ≤ C0 (M,D,A)

∫
RN∗

|v|D xAdx

≤ C1 (M,D,A)
∫
RN∗

|u|D xAdx ≤ C1 (M,D,A)

∫
RN∗

|u|D xAdx

1 −
∫
RN∗

|∇u|D xAdx

.

where

MD,A (u) =
M

1
D−1(

M − 1 +
∫
RN∗

|∇u|D xAdx

) 1
D−1

.

If 1 >

∫
RN∗

|∇u|D xAdx >
(

M−1
M

)D
, then we set w = u⎡

⎣
∫
RN∗

|∇u|DxAdx

⎤
⎦

1
D

,

α = MD,A (u)

[∫
RN∗

|∇u|D xAdx

] 1
D−1

αD,A,

and note that

αD,A > α ≥ M
1

D−1(
M − 1 +

(
M−1

M

)D) 1
D−1

[(
M − 1

M

)D
] 1

D−1

αD,A.
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1
αD,A − α

≤ C (M,D,A)
1

1 −
∫
RN∗

|∇u|D xAdx

.

Hence, by Statement 1, we obtain∫
RN∗

ΦD

(
MD,A (u) αD,A |u| D

D−1

)
xAdx

≤ C0 (D,A)
1

αD,A − α

∫
RN∗

|u|D xAdx∫
RN∗

|∇u|D xAdx

≤ C1 (M,D,A)

∫
RN∗

|u|D xAdx

1 −
∫
RN∗

|∇u|D xAdx

.

�

We now prove the equivalence of the three versions of the Trudinger-
Moser inequalities:

Proof of Theorem 1.4. We will first show that

ITMM =
M

M − 1
sup

α∈(0,αD,A)

⎡
⎢⎣1 −

(
α

αD,A

)D−1

(
α

αD,A

)D−1

⎤
⎥⎦STM (α) .

Indeed, first, for any u ∈ C∞
c

(
RN∗
)

\ {0} :
∫
RN∗

|∇u|D xAdx = 1 =
∫
RN∗

|u|D xA

dx, we set

v (x) = ηu (λx) .

Then it is easy to verify that∫
RN∗

|∇v|D xAdx = ηD

and ∫
RN∗

|v|D xAdx =
ηD

λD
.

Also, ∫
RN∗

ΦD

(
α |u| D

D−1

)
xAdx = λD

∫
RN∗

ΦD

(
α

η
D

D−1
|v| D

D−1

)
xAdx.

Hence, if we choose η and λ such that
α

η
D

D−1
= MD,A (v) αD,A,
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that is

ηD =
M − 1

M
(αD,A

α

)D−1 − 1
=
(

α

αD,A

)D−1
M − 1 + ηD

M
,

and

ηD

λD
= 1 − ηD,

we get ∫
RN∗

ΦD

(
α |u| D

D−1

)
xAdx

=
ηD

1 − ηD

∫
RN∗

ΦD

(
MD,A (v)αD,A |v| D

D−1

)
xAdx

≤ M − 1
M

.

(
α

αD,A

)D−1

1 −
(

α
αD,A

)D−1
ITMM .

Hence, by Lemma 2.4

STM (α) ≤ M − 1
M

.

(
α

αD,A

)D−1

1 −
(

α
αD,A

)D−1
ITMM .

Now, we note here that we can reverse the above process. Hence, we can deduce
that

ITMM =
M

M − 1
sup

α∈(0,αD,A)

⎡
⎢⎣1 −

(
α

αD,A

)D−1

(
α

αD,A

)D−1

⎤
⎥⎦STM (α) .

Also, we can argue as in [13] and as above to get that

TM = sup
α∈(0,αD,A)

⎡
⎢⎣1 −

(
α

αD,A

)D−1

(
α

αD,A

)D−1

⎤
⎥⎦STM (α) .

�
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