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Global bifurcation for problem with mean
curvature operator on general domain

Guowei Dai

Abstract. We establish the existence of nontrivial nonnegative solution
for the following 0-Dirichlet problem with mean curvature operator in
the Minkowski space

⎧
⎨

⎩

−div

(
∇u√

1−|∇u|2

)

= λf(x, u) in Ω,

u = 0 on ∂Ω,

where Ω is a general bounded domain of R
N . By bifurcation and topo-

logical methods, we determine the interval of parameter λ in which the
above problem has nontrivial nonnegative solution according to sublinear
or linear nonlinearity at zero.
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1. Introduction

The aim of this paper is to study the existence of nontrivial nonnegative solu-
tion of the following problem by bifurcation and topological methods

⎧
⎨

⎩

−div
(

∇u√
1−|∇u|2

)

= λf(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where λ is a real parameter, Ω is a general C2 bounded domain of RN with
N ≥ 1 and f : Ω × [0, d] → R+ is a continuous function with d denoting the
diameter of Ω and R+ = [0,+∞).

The study of spacelike submanifolds of codimension one in the flat
Minkowski space L

N+1 with prescribed mean extrinsic curvature can lead to
the type of problems (1.1), where
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L
N+1 =

{
(x, t) : x ∈ R

N , t ∈ R
}

endowed with the Lorentzian metric
N∑

i=1

(dxi)
2 − (dt)2,

where (x, t) is the canonical coordinate in R
N+1 (see [2]). This kind of problems

are originated from differential geometry or classical relativity.
There are a large amount of papers in the literature on the existence and

on qualitative properties of solutions for this type of problems; see [1,10,18]
for zero or constant curvature, [3–6,9,15] for variable curvature. In particular,
Bartnik and Simon [2] proved the existence of one strictly spacelike solution
when λ = 1 and f is bounded. Recently, using Leray-Schauder degree argument
and critical point theory, the authors of [7] obtained some existence results
for positive radial solutions of problem (1.1) with λ = 1 and Ω = BR(0) :={
x ∈ R

N : |x| < R
}

for some constant R > 0. In [8], they also established some
nonexistence, existence and multiplicity results for positive radial solutions of
problem (1.1) with λf(x, s) = λμ(|x|)sq, where q > 1, μ : [0,+∞) → R

is continuous and strictly positive on (0,+∞). Recently, the author of this
paper [11] studied the nonexistence, existence and multiplicity positive radial
solutions of problem (1.1) on the unit ball via bifurcation analysis method (see
[16]).

By a solution u of problem (1.1) we understand that it is a function
which belongs to C2(Ω) ∩ C1

(
Ω

)
with |∇u| < 1 in Ω such that problem (1.1)

is satisfied. Of course, it is also a strictly spacelike solution (see [2]). For any
u ∈ C1

(
Ω

)
with u = 0 on ∂Ω and fixed y ∈ ∂Ω, we can see that

u(x) =
∫ 1

0

∂u

∂t
(tx + (1 − t)y) dt =

∫ 1

0

∇u (tx + (1 − t)y) · (x − y) dt.

It follows that ‖u‖∞ ≤ ‖∇u‖∞ d, where ‖·‖∞ denotes the usual sup-norm
on Ω. Moreover, if u is a solution of problem (1.1), one has that |u| < d
in Ω. So we have that ‖u‖∞ < d for any solution u of problem (1.1). Let
Λ = λ maxΩ×[0,d] f(x, s) for any fixed λ > 0. From Theorem 3.5 of [2], we
know that ‖∇u‖∞ < 1.

Now, we state the following hypothesis on the nonlinearity f :
(Hf ) there exists f0 ∈ (0,+∞] such that

lim
s→0+

f(x, s)
s

= f0

uniformly for x ∈ Ω.
Let λ1 denote the first eigenvalue of

{−Δu = λu in Ω,
u = 0 on ∂Ω.

(1.2)

It is well known that λ1 is simple, isolated and the associated eigenfunction
has one sign in Ω. Let

X =
{
u ∈ C1(Ω) : u = 0 on ∂Ω

}
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Figure 1. Bifurcation diagrams of Theorems 1.1 and 1.2. a
f0 = 1, b f0 = +∞

with the norm ‖u‖ = ‖∇u‖∞. From the fact of ‖u‖∞ ≤ ‖∇u‖∞ d, it is easy
to verify that the norm ‖u‖ is equivalent to the the usual norm maxΩ |u| +
maxΩ |∇u|.

The following theorem is the first main result of this paper.

Theorem 1.1. Let (Hf ) hold with f0 = 1. Then there is an unbounded compo-
nent C of the set of nontrivial nonnegative solutions of problem (1.1) bifurcat-
ing from (λ1, 0) such that C ⊆ ((R+ × X) ∪ {(λ1, 0)}).

It follows from Theorem 1.1 that problem (1.1) possesses at least one
nontrivial nonnegative solution for any λ ∈ (λ1,+∞), see (a) of Fig. 1.

The condition of f0 = 1 shows that f is linear at 0 and f(x, 0) = 0 for
any x ∈ Ω. As for sublinear case at 0, i.e., f0 = +∞, we have the following
theorem.

Theorem 1.2. Assume that (Hf ) holds with f0 = +∞. Then there is an un-
bounded component C of the set of nontrivial nonnegative solutions of problem
(1.1) emanating from (0, 0) such that C ⊆ ((R+ × X) ∪ {(0, 0)}).

Theorem 1.2 gives that problem (1.1) has at least one nontrivial nonneg-
ative solution for any λ ∈ (0,+∞), see (b) of Fig. 1. Clearly, Theorem 1.2 im-
proves the corresponding results of [7] even in the case of λ = 1 or Ω = BR(0).
Moreover, one has f0 = +∞ if f is bounded. So if f is bounded and λ = 1,
problem (1.1) has at least one nontrivial nonnegative solution, which is essen-
tially the conclusion of Theorem 3.6 of [2]. So Theorem 1.2 also improves the
corresponding results of [2].

The rest of this paper is arranged as follows. In Sect. 2, we prove Theo-
rem 1.1. Section 3 is devoted to the proof of Theorem 1.2.

2. Proof of Theorem 1.1

For any t ∈ (0, 1], we first consider the following auxiliary problem
⎧
⎨

⎩

−div
(

∇u√
1−t|∇u|2

)

= g(x) in Ω,

u = 0 on ∂Ω
(2.1)
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for a given g ∈ C
(
Ω

)
. Letting v =

√
tu, problem (2.1) is equivalent to

⎧
⎨

⎩

−div
(

∇v√
1−|∇v|2

)

=
√

tg(x) in Ω,

v = 0 on ∂Ω.
(2.2)

By Theorem 3.6 of [2], we know that there exists a unique strictly spacelike
solution v ∈ C2

(
Ω

)
to problem (2.2) which is denoted by Ψ(

√
tg). So u = v/

√
t

is the unique solution of problem (2.1).
We also consider the following auxiliary problem

{−Δu = h(x) in Ω,
u = 0 on ∂Ω (2.3)

for a given h ∈ Lp/(p−1)(Ω), where p ∈ (1, 2∗] with

2∗ =
{

2N
N−2 if N ≥ 3,

+∞ if N = 1, 2.

By an argument similar to that of Theorem 8.3 of [14], we can easily show
that there is a unique weak solution u to problem (2.3) for every given h ∈
Lp/(p−1)(Ω). Let Φ(h) denote the unique solution to problem (2.3) for a given
h ∈ Lp/(p−1)(Ω). Clearly, Φ : Lp/(p−1)(Ω) → H1

0 (Ω) is continuous and linear.
Moreover, from Theorem 8.34 of [14] we know that if h ∈ L∞(Ω) problem
(2.3) has a unique solution in C1,α

(
Ω

)
with some constant α ∈ (0, 1). So

Φ : L∞(Ω) → C1
(
Ω

)
is completely continuous and linear.

For any g ∈ C
(
Ω

)
, define

G(t, g) =

{
Ψ(

√
tg)√
t

if t ∈ (0, 1],
Φ(g) if t = 0.

Then we can show that:

Lemma 2.1. G : [0, 1] × C
(
Ω

) −→ X is completely continuous.

Proof. We first show the continuity of G. For any gn, g ∈ C
(
Ω

)
and tn, t ∈ [0, 1]

with gn → g in C
(
Ω

)
and tn → t in [0, 1] as n → +∞, it suffices to show that

un := G (tn, gn) → u := G(t, g) in X.
If t > 0, without loss of generality, we can assume that tn > t/2 for any

n ∈ N. By Theorem 3.6 of [2], un

√
tn := vn, u

√
t := v ∈ C2

(
Ω

)
and ‖vn‖ ≤

1 − θ < 1 for any n ∈ N and some positive constant θ which only depends on
g and Ω. Theorem 13.7 of [14] gives an a priori estimate for ‖vn‖C1,α(Ω) for

some α ∈ (0, 1). So, up to a subsequence, there exists w ∈ C1
(
Ω

)
such that

vn → w in C1
(
Ω

)
as n → +∞. From Lemma 1.3 of [2] we have that w is the

maximum point of

I(w) =
∫

Ω

(√
1 − |∇w|2 − √

tg(x)w
)

dx

in C (Ω) :=
{
w ∈ C0,1(Ω) : w = 0 on ∂Ω and |∇w| ≤ 1 a.e. in Ω

}
. Further,

Proposition 1.1 of [2] implies that w is also the unique maximum point of
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I in C (Ω). So we have that w = v and vn → v in X as n → +∞. It follows
that un → u in X as n → +∞.

If t = 0 and there exists a subsequence tni
of tn such that tni

= 0, then
uni

= G (tni
, gni

) = Φ (gni
) → Φ(g) = u in X as i → +∞. So next we can

assume that t = 0 and tn > 0 for any n ∈ N. From Theorem 3.6 of [2] we know
that problem (2.2) has only trivial solution v = 0 when t = 0. Then reasoning
as the above, we can show that vn → 0 in X as n → +∞.

Note that un satisfies
{

− 1√
1−|∇vn|2

∑n
i,j=1

(
δij + ∇ivn∇jvn

1−|∇vn|2
)

∇ijun = gn(x) in Ω,

un = 0 on ∂Ω.
(2.4)

The fact of ‖vn‖ ≤ 1 − θ < 1 guarantees that the above problem is a priori
uniformly elliptic. So Theorem 13.7 of [14] implies an a priori estimate for
‖vn‖C1,α(Ω). Further, by the argument of [14, Theorem 11.4], we can see that
‖un‖C2,α(Ω) ≤ C for some positive constant C. So, up to a subsequence, there

exists w ∈ C2
(
Ω

)
such that un → w in C2

(
Ω

)
as n → +∞. Letting n → +∞

in (2.4), we obtain that
{−Δw = g(x) in Ω,

w = 0 on ∂Ω.

Hence, one has that w = Φ(g) = G(0, g) = u. Furthermore, we obtain that
un → u in X as n → +∞.

Now we show the compactness of G. It is enough to show that G satisfies
(a) G(t, ·) is compact for any t ∈ [0, 1];
(b) for any ε > 0 and g ∈ C

(
Ω

)
, there exists δ > 0 such that ‖G (t1, g) −

G (t2, g) ‖ < ε when |t1 − t2| < δ with any t1, t2 ∈ [0, 1].
Clearly, G(t, ·) is compact for any t ∈ [0, 1]. So we only need to show (b).
Suppose, by contradiction, that there exist ε0 > 0, g0 ∈ (

Ω
)

such that for any
n ∈ N, existing t′n, t′′n ∈ [0, 1] with |t′n − t′′n| < 1/n such that

‖G (t′n, g0) − G (t′′n, g0)‖ ≥ ε0. (2.5)

Clearly, up to a subsequence, we have t′n → t0 ∈ [0, 1] as n → +∞. It implies
that t′′n → t0 ∈ [0, 1] as n → +∞. Letting n → +∞ in (2.5), in view of the
continuity of G, we have that

0 = lim
n→+∞ ‖G (t′n, g0) − G (t′′n, g0)‖ ≥ ε0,

which is a contradiction. �

For any fixed λ, consider the following problem
⎧
⎨

⎩

−div
(

∇u√
1−|∇u|2

)

= λu in Ω,

u = 0 on ∂Ω.
(2.6)

Clearly, problem (2.6) is equivalent to the operator equation u = Ψ(λu) :=
Ψλ(u). From Lemma 2.1 we see that Ψλ : X → X is complete continuous.
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Moreover, by virtue of Lemma 2.1, we can obtain the following topological
degree jumping result.

Lemma 2.2. For any r > 0, we have that

deg (I − Ψλ, Br(0), 0) =
{

1 if λ ∈ (0, λ1) ,
−1 if λ ∈ (λ1, λ1 + δ)

for some δ > 0.

Proof. Since λ1 is isolated, we can choose δ small enough such that there has
not any eigenvalue of problem (1.2) in (λ1, λ1 + δ).

We first show the Leray-Schauder degree deg (I − G(t, λ·), Br(0), 0) is
well defined for any λ ∈ (0, λ1 + δ) \ {λ1} and t ∈ [0, 1]. It is obvious for
t = 0. So it is enough to show that u = G(t, λu) has no solution with ‖u‖ = r
for r sufficiently small and any t ∈ (0, 1]. Otherwise, there exists a sequence
{un} such that un = Ψλ

(√
tun

)
/
√

t and ‖un‖ → 0 as n → +∞. Let wn :=
un/ ‖un‖, then by an argument similar to that of Lemma 2.1, we can show
that for some convenient subsequence wn → w as n → +∞ and w verifies
problem (1.2) with ‖w‖ = 1. This implies that λ is an eigenvalue of problem
(1.2), which is a contradiction.

Now from the invariance of the degree under homotopies and Lemma 2.1
we obtain that

deg (I − Ψλ, Br(0), 0) = deg (I − G(1, λ·), Br(0), 0)
= deg (I − G(0, λ·), Br(0), 0) = deg (I − λΦ, Br(0), 0) .

Since Φ is compact and linear, by Theorem 8.10 of [13], we have that

deg (I − λΦ, Br(0), 0) =
{

1 if λ ∈ (0, λ1) ,
−1 if λ ∈ (λ1, λ1 + δ) .

Therefore, we obtain that

deg (I − Ψλ, Br(0), 0) =
{

1 if λ ∈ (0, λ1) ,
−1 if λ ∈ (λ1, λ1 + δ) .

This completes the proof. �
Now we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let ξ : Ω × [0, d] → R be such that

f(x, s) = s + ξ(x, s)

with

lim
s→0+

ξ(x, s)
s

= 0

uniformly for x ∈ Ω. Let us consider
⎧
⎨

⎩

−div
(

∇u√
1−|∇u|2

)

= λu + λξ(x, u) in Ω,

u = 0 on ∂Ω
(2.7)

as a bifurcation problem from the trivial solution axis.
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Define

F (λ, u) = λu + λξ(x, u) + div

(
∇u

√
1 − |∇u|2

)

for any (λ, u) ∈ R × X. Then, by some simple calculations, we have that

Fu(λ, 0)v = lim
t→0

F (λ, tv)
t

= λv + Δv.

It follows that if (μ, 0) is a bifurcation point of problem (2.7), μ is an eigenvalue
of problem (1.2).

For any s ∈ [0, 1], we consider the following problem
⎧
⎨

⎩

−div
(

∇u√
1−|∇u|2

)

= λu + λsξ(x, u) in Ω,

u = 0 on ∂Ω.
(2.8)

Then problem (2.8) is equivalent to

u = Ψ (λu + λsξ(x, u)) := Fλ(s, u).

In view of Lemma 2.1, Fλ : [0, 1] × X → X is completely continuous. In
particular, Hλ := Fλ(1, ·) : X → X is completely continuous.

Let

ξ̃(x,w) = max
0≤s≤w

|ξ(x, s)| for any x ∈ Ω.

Then ξ̃ is nondecreasing with respect to w and

lim
w→0+

ξ̃(x,w)
w

= 0. (2.9)

Further it follows from (2.9) that
∣
∣
∣
∣
ξ(x, u)
‖u‖

∣
∣
∣
∣ ≤ ξ̃(x, u)

‖u‖ ≤ ξ̃ (x, ‖u‖∞)
‖u‖ ≤ d

ξ̃(x, d‖u‖)
d‖u‖ → 0 as ‖u‖ → 0 (2.10)

uniformly in x ∈ Ω.
By (2.10) and an argument similar to that of Lemma 2.2, we can show

that the Leray-Schauder degree deg (I − Fλ(s, ·), Br(0), 0) is well defined for
λ ∈ (0, λ1 + δ) \ {λ1}. From the invariance of the degree under homotopies we
obtain that

deg (I − Hλ, Br(0), 0) = deg (I − Fλ(1, ·), Br(0), 0) = deg (I − Fλ(0, ·), Br(0), 0)
= deg (I − Ψλ, Br(0), 0) .

So by Lemma 2.2, we have that

deg (I − Hλ, Br(0), 0) =
{

1 if λ ∈ (0, λ1) ,
−1 if λ ∈ (λ1, λ1 + δ) .

By the global bifurcation Theorem of [17], there exists a continuum C of
nontrivial solution of problem (1.1) bifurcating from (λ1, 0) which is either
unbounded or C ∩ (R\ {λ1} × {0}) 
= ∅. Since (0,0) is the only solution of
problem (1.1) for λ = 0 and 0 is not an eigenvalue of problem (1.2), so C ∩
({0} × X) = ∅. By Lemma 1.2 of [2], we have u ≥ 0 for any (λ, u) ∈ C .
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We claim that C ∩(R\ {λ1} × {0}) = ∅. Otherwise, there exists a nontriv-
ial solution sequence (λn, un) ∈ C and μ 
= λ1 such that λn → μ and un → 0
as n → +∞. Let wn := un/ ‖un‖, by (2.10) and an argument similar to that
of Lemma 2.1, we can show that wn → w as n → +∞ and w verifies problem
(1.2) with ‖w‖ = 1. It follows that μ = λ1, a contradiction. Therefore, C is
unbounded. The fact of ‖u‖ < 1 for any (λ, u) ∈ C implies that the projection
of C on R+ is unbounded. �

3. Proof of Theorem 1.2

In this section, on the basis of Theorem 1.1, we prove Theorem 1.2.
Proof of Theorem 1.2. For any n ∈ N, define

fn(x, s) =

⎧
⎪⎨

⎪⎩

ns, s ∈ [
0, 1

n

]
,

(
f

(
x, 2

n

) − 1
)
ns + 2 − f

(
x, 2

n

)
, s ∈ (

1
n , 2

n

)
,

f(x, s), s ∈ [
2
n ,+∞)

.

Clearly, we can see that limn→+∞ fn(x, s) = f(x, s) and fn
0 = n. Now, we can

apply Theorem 1.1 to the following problem
⎧
⎨

⎩

−div
(

∇u√
1−|∇u|2

)

= λfn(x, u) in Ω,

u = 0 on ∂Ω.
(3.1)

Then there exists a sequence unbounded continua Cn of the set of nontrivial
nonnegative solutions of problem (3.1) emanating from (λ1/n, 0) such that

Cn ⊆ ((R+ × X) ∪ {(λ1/n, 0)}) .

Taking z∗ = (0, 0), clearly z∗ ∈ lim infn→+∞ Cn. The compactness of Ψ
implies that

(∪+∞
n=1Cn

) ∩ BR is pre-compact. Lemma 2.5 of [12] implies that
C = lim supn→+∞ Cn is unbounded and connected such that z∗ ∈ C .

For any (λ, u) ∈ C , the definition of superior limit (see [19]) shows that
there exists a sequence (λn, un) ∈ Cn such that (λn, un) → (λ, u) as n → +∞.
Clearly, one has that

un = Ψ (λnfn (x, un)) .

Letting n → +∞, we get that

u = Ψ (λf (x, u)) .

It follows that u is a solution of problem (1.1). Thus, u is a solution of problem
(1.1) for any (λ, u) ∈ C . Clearly, u is nonnegative for any (λ, u) ∈ C because
un ≥ 0 in Ω.

Next we show that u is nontrivial for any (λ, u) ∈ C \{(0, 0)}. It is suf-
ficient to show that C ∩ ((0,+∞) × {0}) = ∅. Suppose on the contrary that
there exists μ > 0 such that (μ, 0) ∈ C . There exists N0 such that μ > λ1/n
for any n > N0. It follows that (μ, 0) 
∈ Cn for any n > N0. So (μ, 0) 
∈ C , an
absurd. �
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