Nonlinear Differ. Equ. Appl. (2017) 24:30 © 2017 Springer International Publishing 1021-9722/17/030001-10 published online May 31, 2017 DOI 10.1007/s00030-017-0454-x

Nonlinear Differential Equations and Applications NoDEA

Global bifurcation for problem with mean curvature operator on general domain

Guowei Dai

Abstract. We establish the existence of nontrivial nonnegative solution for the following 0-Dirichlet problem with mean curvature operator in the Minkowski space

$$\begin{cases} -\mathrm{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right) = \lambda f(x,u) \text{ in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where Ω is a general bounded domain of \mathbb{R}^N . By bifurcation and topological methods, we determine the interval of parameter λ in which the above problem has nontrivial nonnegative solution according to sublinear or linear nonlinearity at zero.

Mathematics Subject Classification. 35J65, 35B32, 53A10.

Keywords. Bifurcation, Mean curvature operator, Topological method.

1. Introduction

The aim of this paper is to study the existence of nontrivial nonnegative solution of the following problem by bifurcation and topological methods

$$\begin{cases}
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right) = \lambda f(x,u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1.1)

where λ is a real parameter, Ω is a general C^2 bounded domain of \mathbb{R}^N with $N \geq 1$ and $f : \overline{\Omega} \times [0, d] \to \mathbb{R}_+$ is a continuous function with d denoting the diameter of Ω and $\mathbb{R}_+ = [0, +\infty)$.

The study of spacelike submanifolds of codimension one in the flat Minkowski space \mathbb{L}^{N+1} with prescribed mean extrinsic curvature can lead to the type of problems (1.1), where

$$\mathbb{L}^{N+1} = \left\{ (x,t) : x \in \mathbb{R}^N, t \in \mathbb{R} \right\}$$

endowed with the Lorentzian metric

$$\sum_{i=1}^{N} (dx_i)^2 - (dt)^2,$$

where (x,t) is the canonical coordinate in \mathbb{R}^{N+1} (see [2]). This kind of problems are originated from differential geometry or classical relativity.

There are a large amount of papers in the literature on the existence and on qualitative properties of solutions for this type of problems; see [1,10,18] for zero or constant curvature, [3–6,9,15] for variable curvature. In particular, Bartnik and Simon [2] proved the existence of one strictly spacelike solution when $\lambda=1$ and f is bounded. Recently, using Leray-Schauder degree argument and critical point theory, the authors of [7] obtained some existence results for positive radial solutions of problem (1.1) with $\lambda=1$ and $\Omega=B_R(0):=\{x\in\mathbb{R}^N:|x|< R\}$ for some constant R>0. In [8], they also established some nonexistence, existence and multiplicity results for positive radial solutions of problem (1.1) with $\lambda f(x,s)=\lambda \mu(|x|)s^q$, where q>1, $\mu:[0,+\infty)\to\mathbb{R}$ is continuous and strictly positive on $(0,+\infty)$. Recently, the author of this paper [11] studied the nonexistence, existence and multiplicity positive radial solutions of problem (1.1) on the unit ball via bifurcation analysis method (see [16]).

By a solution u of problem (1.1) we understand that it is a function which belongs to $C^2(\Omega) \cap C^1(\overline{\Omega})$ with $|\nabla u| < 1$ in Ω such that problem (1.1) is satisfied. Of course, it is also a strictly spacelike solution (see [2]). For any $u \in C^1(\overline{\Omega})$ with u = 0 on $\partial\Omega$ and fixed $y \in \partial\Omega$, we can see that

$$u(x) = \int_0^1 \frac{\partial u}{\partial t} \left(tx + (1-t)y \right) dt = \int_0^1 \nabla u \left(tx + (1-t)y \right) \cdot (x-y) dt.$$

It follows that $\|u\|_{\infty} \leq \|\nabla u\|_{\infty} d$, where $\|\cdot\|_{\infty}$ denotes the usual sup-norm on $\overline{\Omega}$. Moreover, if u is a solution of problem (1.1), one has that |u| < d in Ω . So we have that $\|u\|_{\infty} < d$ for any solution u of problem (1.1). Let $\Lambda = \lambda \max_{\overline{\Omega} \times [0,d]} f(x,s)$ for any fixed $\lambda > 0$. From Theorem 3.5 of [2], we know that $\|\nabla u\|_{\infty} < 1$.

Now, we state the following hypothesis on the nonlinearity f: (H_f) there exists $f_0 \in (0, +\infty]$ such that

$$\lim_{s \to 0^+} \frac{f(x,s)}{s} = f_0$$

uniformly for $x \in \Omega$.

Let λ_1 denote the first eigenvalue of

$$\begin{cases}
-\Delta u = \lambda u \text{ in } \Omega, \\
u = 0 \text{ on } \partial\Omega.
\end{cases}$$
(1.2)

It is well known that λ_1 is simple, isolated and the associated eigenfunction has one sign in Ω . Let

$$X = \left\{u \in C^1(\overline{\Omega}) : u = 0 \text{ on } \partial\Omega\right\}$$

FIGURE 1. Bifurcation diagrams of Theorems 1.1 and 1.2. **a** $f_0=1,$ **b** $f_0=+\infty$

with the norm $||u|| = ||\nabla u||_{\infty}$. From the fact of $||u||_{\infty} \le ||\nabla u||_{\infty} d$, it is easy to verify that the norm ||u|| is equivalent to the usual norm $\max_{\overline{\Omega}} |u| + \max_{\overline{\Omega}} |\nabla u|$.

The following theorem is the first main result of this paper.

Theorem 1.1. Let (H_f) hold with $f_0 = 1$. Then there is an unbounded component \mathscr{C} of the set of nontrivial nonnegative solutions of problem (1.1) bifurcating from $(\lambda_1, 0)$ such that $\mathscr{C} \subseteq ((\mathbb{R}_+ \times X) \cup \{(\lambda_1, 0)\})$.

It follows from Theorem 1.1 that problem (1.1) possesses at least one nontrivial nonnegative solution for any $\lambda \in (\lambda_1, +\infty)$, see (a) of Fig. 1.

The condition of $f_0 = 1$ shows that f is linear at 0 and f(x,0) = 0 for any $x \in \Omega$. As for sublinear case at 0, i.e., $f_0 = +\infty$, we have the following theorem.

Theorem 1.2. Assume that (H_f) holds with $f_0 = +\infty$. Then there is an unbounded component $\mathscr C$ of the set of nontrivial nonnegative solutions of problem (1.1) emanating from (0,0) such that $\mathscr C \subseteq ((\mathbb R_+ \times X) \cup \{(0,0)\})$.

Theorem 1.2 gives that problem (1.1) has at least one nontrivial nonnegative solution for any $\lambda \in (0, +\infty)$, see (b) of Fig. 1. Clearly, Theorem 1.2 improves the corresponding results of [7] even in the case of $\lambda = 1$ or $\Omega = B_R(0)$. Moreover, one has $f_0 = +\infty$ if f is bounded. So if f is bounded and $\lambda = 1$, problem (1.1) has at least one nontrivial nonnegative solution, which is essentially the conclusion of Theorem 3.6 of [2]. So Theorem 1.2 also improves the corresponding results of [2].

The rest of this paper is arranged as follows. In Sect. 2, we prove Theorem 1.1. Section 3 is devoted to the proof of Theorem 1.2.

2. Proof of Theorem 1.1

For any $t \in (0,1]$, we first consider the following auxiliary problem

$$\begin{cases}
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-t|\nabla u|^2}}\right) = g(x) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(2.1)

for a given $g \in C(\overline{\Omega})$. Letting $v = \sqrt{tu}$, problem (2.1) is equivalent to

$$\begin{cases} -\operatorname{div}\left(\frac{\nabla v}{\sqrt{1-|\nabla v|^2}}\right) = \sqrt{t}g(x) & \text{in } \Omega, \\ v = 0 & \text{on } \partial\Omega. \end{cases}$$
 (2.2)

By Theorem 3.6 of [2], we know that there exists a unique strictly spacelike solution $v \in C^2(\overline{\Omega})$ to problem (2.2) which is denoted by $\Psi(\sqrt{t}g)$. So $u = v/\sqrt{t}$ is the unique solution of problem (2.1).

We also consider the following auxiliary problem

$$\begin{cases}
-\Delta u = h(x) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(2.3)

for a given $h \in L^{p/(p-1)}(\Omega)$, where $p \in (1, 2^*]$ with

$$2^* = \begin{cases} \frac{2N}{N-2} & \text{if } N \ge 3, \\ +\infty & \text{if } N = 1, 2. \end{cases}$$

By an argument similar to that of Theorem 8.3 of [14], we can easily show that there is a unique weak solution u to problem (2.3) for every given $h \in L^{p/(p-1)}(\Omega)$. Let $\Phi(h)$ denote the unique solution to problem (2.3) for a given $h \in L^{p/(p-1)}(\Omega)$. Clearly, $\Phi: L^{p/(p-1)}(\Omega) \to H^1_0(\Omega)$ is continuous and linear. Moreover, from Theorem 8.34 of [14] we know that if $h \in L^{\infty}(\Omega)$ problem (2.3) has a unique solution in $C^{1,\alpha}(\overline{\Omega})$ with some constant $\alpha \in (0,1)$. So $\Phi: L^{\infty}(\Omega) \to C^1(\overline{\Omega})$ is completely continuous and linear.

For any $g \in C(\overline{\Omega})$, define

$$G(t,g) = \begin{cases} \frac{\Psi(\sqrt{t}g)}{\sqrt{t}} & \text{if } t \in (0,1], \\ \Phi(g) & \text{if } t = 0. \end{cases}$$

Then we can show that:

Lemma 2.1. $G: [0,1] \times C(\overline{\Omega}) \longrightarrow X$ is completely continuous.

Proof. We first show the continuity of G. For any $g_n, g \in C\left(\overline{\Omega}\right)$ and $t_n, t \in [0, 1]$ with $g_n \to g$ in $C\left(\overline{\Omega}\right)$ and $t_n \to t$ in [0, 1] as $n \to +\infty$, it suffices to show that $u_n := G\left(t_n, g_n\right) \to u := G(t, g)$ in X.

If t > 0, without loss of generality, we can assume that $t_n > t/2$ for any $n \in \mathbb{N}$. By Theorem 3.6 of [2], $u_n \sqrt{t_n} := v_n, u \sqrt{t} := v \in C^2\left(\overline{\Omega}\right)$ and $\|v_n\| \le 1 - \theta < 1$ for any $n \in \mathbb{N}$ and some positive constant θ which only depends on g and Ω . Theorem 13.7 of [14] gives an a priori estimate for $\|v_n\|_{C^{1,\alpha}\left(\overline{\Omega}\right)}$ for some $\alpha \in (0,1)$. So, up to a subsequence, there exists $w \in C^1\left(\overline{\Omega}\right)$ such that $v_n \to w$ in $C^1\left(\overline{\Omega}\right)$ as $n \to +\infty$. From Lemma 1.3 of [2] we have that w is the maximum point of

$$I(w) = \int_{\Omega} \left(\sqrt{1 - |\nabla w|^2} - \sqrt{t}g(x)w \right) dx$$

in $\mathscr{C}(\Omega) := \{ w \in C^{0,1}(\Omega) : w = 0 \text{ on } \partial\Omega \text{ and } |\nabla w| \leq 1 \text{ a.e. in } \Omega \}$. Further, Proposition 1.1 of [2] implies that w is also the unique maximum point of

I in $\mathscr{C}(\Omega)$. So we have that w = v and $v_n \to v$ in X as $n \to +\infty$. It follows that $u_n \to u$ in X as $n \to +\infty$.

If t=0 and there exists a subsequence t_{n_i} of t_n such that $t_{n_i}=0$, then $u_{n_i}=G\left(t_{n_i},g_{n_i}\right)=\Phi\left(g_{n_i}\right)\to\Phi\left(g\right)=u$ in X as $i\to+\infty$. So next we can assume that t=0 and $t_n>0$ for any $n\in\mathbb{N}$. From Theorem 3.6 of [2] we know that problem (2.2) has only trivial solution v=0 when t=0. Then reasoning as the above, we can show that $v_n\to0$ in X as $n\to+\infty$.

Note that u_n satisfies

$$\begin{cases} -\frac{1}{\sqrt{1-|\nabla v_n|^2}} \sum_{i,j=1}^n \left(\delta_{ij} + \frac{\nabla_i v_n \nabla_j v_n}{1-|\nabla v_n|^2} \right) \nabla_{ij} u_n = g_n(x) \text{ in } \Omega, \\ u_n = 0 & \text{on } \partial \Omega. \end{cases}$$
(2.4)

The fact of $||v_n|| \leq 1 - \theta < 1$ guarantees that the above problem is a priori uniformly elliptic. So Theorem 13.7 of [14] implies an a priori estimate for $||v_n||_{C^{1,\alpha}(\overline{\Omega})}$. Further, by the argument of [14, Theorem 11.4], we can see that $||u_n||_{C^{2,\alpha}(\overline{\Omega})} \leq C$ for some positive constant C. So, up to a subsequence, there exists $w \in C^2(\overline{\Omega})$ such that $u_n \to w$ in $C^2(\overline{\Omega})$ as $n \to +\infty$. Letting $n \to +\infty$ in (2.4), we obtain that

$$\begin{cases} -\Delta w = g(x) \text{ in } \Omega, \\ w = 0 \text{ on } \partial\Omega. \end{cases}$$

Hence, one has that $w = \Phi(g) = G(0,g) = u$. Furthermore, we obtain that $u_n \to u$ in X as $n \to +\infty$.

Now we show the compactness of G. It is enough to show that G satisfies

- (a) $G(t, \cdot)$ is compact for any $t \in [0, 1]$;
- (b) for any $\varepsilon > 0$ and $g \in C(\overline{\Omega})$, there exists $\delta > 0$ such that $||G(t_1, g) G(t_2, g)|| < \varepsilon$ when $|t_1 t_2| < \delta$ with any $t_1, t_2 \in [0, 1]$.

Clearly, $G(t, \cdot)$ is compact for any $t \in [0, 1]$. So we only need to show (b). Suppose, by contradiction, that there exist $\varepsilon_0 > 0$, $g_0 \in (\overline{\Omega})$ such that for any $n \in \mathbb{N}$, existing t'_n , $t''_n \in [0, 1]$ with $|t'_n - t''_n| < 1/n$ such that

$$||G(t'_n, g_0) - G(t''_n, g_0)|| \ge \varepsilon_0.$$
 (2.5)

Clearly, up to a subsequence, we have $t'_n \to t_0 \in [0,1]$ as $n \to +\infty$. It implies that $t''_n \to t_0 \in [0,1]$ as $n \to +\infty$. Letting $n \to +\infty$ in (2.5), in view of the continuity of G, we have that

$$0 = \lim_{n \to +\infty} \|G(t'_n, g_0) - G(t''_n, g_0)\| \ge \varepsilon_0,$$

which is a contradiction.

For any fixed λ , consider the following problem

$$\begin{cases}
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right) = \lambda u \text{ in } \Omega, \\
u = 0 & \text{on } \partial\Omega.
\end{cases}$$
(2.6)

Clearly, problem (2.6) is equivalent to the operator equation $u = \Psi(\lambda u) := \Psi_{\lambda}(u)$. From Lemma 2.1 we see that $\Psi_{\lambda} : X \to X$ is complete continuous.

Moreover, by virtue of Lemma 2.1, we can obtain the following topological degree jumping result.

Lemma 2.2. For any r > 0, we have that

$$\deg (I - \Psi_{\lambda}, B_r(0), 0) = \begin{cases} 1 & \text{if } \lambda \in (0, \lambda_1), \\ -1 & \text{if } \lambda \in (\lambda_1, \lambda_1 + \delta) \end{cases}$$

for some $\delta > 0$.

Proof. Since λ_1 is isolated, we can choose δ small enough such that there has not any eigenvalue of problem (1.2) in $(\lambda_1, \lambda_1 + \delta)$.

We first show the Leray-Schauder degree $\deg(I - G(t, \lambda \cdot), B_r(0), 0)$ is well defined for any $\lambda \in (0, \lambda_1 + \delta) \setminus \{\lambda_1\}$ and $t \in [0, 1]$. It is obvious for t = 0. So it is enough to show that $u = G(t, \lambda u)$ has no solution with ||u|| = r for r sufficiently small and any $t \in (0, 1]$. Otherwise, there exists a sequence $\{u_n\}$ such that $u_n = \Psi_{\lambda}\left(\sqrt{t}u_n\right)/\sqrt{t}$ and $||u_n|| \to 0$ as $n \to +\infty$. Let $w_n := u_n/||u_n||$, then by an argument similar to that of Lemma 2.1, we can show that for some convenient subsequence $w_n \to w$ as $n \to +\infty$ and w verifies problem (1.2) with ||w|| = 1. This implies that λ is an eigenvalue of problem (1.2), which is a contradiction.

Now from the invariance of the degree under homotopies and Lemma 2.1 we obtain that

$$\deg(I - \Psi_{\lambda}, B_r(0), 0) = \deg(I - G(1, \lambda), B_r(0), 0)$$

= \deg(I - G(0, \lambda), B_r(0), 0) = \deg(I - \lambda \Phi, B_r(0), 0).

Since Φ is compact and linear, by Theorem 8.10 of [13], we have that

$$\deg (I - \lambda \Phi, B_r(0), 0) = \begin{cases} 1 & \text{if } \lambda \in (0, \lambda_1), \\ -1 & \text{if } \lambda \in (\lambda_1, \lambda_1 + \delta). \end{cases}$$

Therefore, we obtain that

$$\deg (I - \Psi_{\lambda}, B_r(0), 0) = \begin{cases} 1 & \text{if } \lambda \in (0, \lambda_1), \\ -1 & \text{if } \lambda \in (\lambda_1, \lambda_1 + \delta). \end{cases}$$

This completes the proof.

Now we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let $\xi: \Omega \times [0,d] \to \mathbb{R}$ be such that

$$f(x,s) = s + \xi(x,s)$$

with

$$\lim_{s \to 0^+} \frac{\xi(x,s)}{s} = 0$$

uniformly for $x \in \Omega$. Let us consider

$$\begin{cases}
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right) = \lambda u + \lambda \xi(x, u) \text{ in } \Omega, \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(2.7)

as a bifurcation problem from the trivial solution axis.

Define

$$F(\lambda, u) = \lambda u + \lambda \xi(x, u) + \operatorname{div}\left(\frac{\nabla u}{\sqrt{1 - |\nabla u|^2}}\right)$$

for any $(\lambda, u) \in \mathbb{R} \times X$. Then, by some simple calculations, we have that

$$F_u(\lambda, 0)v = \lim_{t \to 0} \frac{F(\lambda, tv)}{t} = \lambda v + \Delta v.$$

It follows that if $(\mu, 0)$ is a bifurcation point of problem (2.7), μ is an eigenvalue of problem (1.2).

For any $s \in [0,1]$, we consider the following problem

$$\begin{cases} -\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right) = \lambda u + \lambda s \xi(x,u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
 (2.8)

Then problem (2.8) is equivalent to

$$u = \Psi (\lambda u + \lambda s \xi(x, u)) := F_{\lambda}(s, u).$$

In view of Lemma 2.1, $F_{\lambda}:[0,1]\times X\to X$ is completely continuous. In particular, $H_{\lambda}:=F_{\lambda}(1,\cdot):X\to X$ is completely continuous.

Let

$$\widetilde{\xi}(x,w) = \max_{0 \le s \le w} |\xi(x,s)| \text{ for any } x \in \Omega.$$

Then $\widetilde{\xi}$ is nondecreasing with respect to w and

$$\lim_{w \to 0^+} \frac{\widetilde{\xi}(x, w)}{w} = 0. \tag{2.9}$$

Further it follows from (2.9) that

$$\left|\frac{\xi(x,u)}{\|u\|}\right| \le \frac{\widetilde{\xi}(x,u)}{\|u\|} \le \frac{\widetilde{\xi}(x,\|u\|_{\infty})}{\|u\|} \le d\frac{\widetilde{\xi}(x,d\|u\|)}{d\|u\|} \to 0 \text{ as } \|u\| \to 0$$
 (2.10)

uniformly in $x \in \Omega$.

By (2.10) and an argument similar to that of Lemma 2.2, we can show that the Leray-Schauder degree $\deg(I - F_{\lambda}(s, \cdot), B_r(0), 0)$ is well defined for $\lambda \in (0, \lambda_1 + \delta) \setminus \{\lambda_1\}$. From the invariance of the degree under homotopies we obtain that

$$\deg(I - H_{\lambda}, B_r(0), 0) = \deg(I - F_{\lambda}(1, \cdot), B_r(0), 0) = \deg(I - F_{\lambda}(0, \cdot), B_r(0), 0)$$
$$= \deg(I - \Psi_{\lambda}, B_r(0), 0).$$

So by Lemma 2.2, we have that

$$\deg (I - H_{\lambda}, B_r(0), 0) = \begin{cases} 1 & \text{if } \lambda \in (0, \lambda_1), \\ -1 & \text{if } \lambda \in (\lambda_1, \lambda_1 + \delta). \end{cases}$$

By the global bifurcation Theorem of [17], there exists a continuum $\mathscr C$ of nontrivial solution of problem (1.1) bifurcating from $(\lambda_1,0)$ which is either unbounded or $\mathscr C \cap (\mathbb R \setminus \{\lambda_1\} \times \{0\}) \neq \emptyset$. Since (0,0) is the only solution of problem (1.1) for $\lambda = 0$ and 0 is not an eigenvalue of problem (1.2), so $\mathscr C \cap (\{0\} \times X) = \emptyset$. By Lemma 1.2 of [2], we have $u \geq 0$ for any $(\lambda, u) \in \mathscr C$.

We claim that $\mathscr{C} \cap (\mathbb{R} \setminus \{\lambda_1\} \times \{0\}) = \emptyset$. Otherwise, there exists a nontrivial solution sequence $(\lambda_n, u_n) \in \mathscr{C}$ and $\mu \neq \lambda_1$ such that $\lambda_n \to \mu$ and $u_n \to 0$ as $n \to +\infty$. Let $w_n := u_n / \|u_n\|$, by (2.10) and an argument similar to that of Lemma 2.1, we can show that $w_n \to w$ as $n \to +\infty$ and w verifies problem (1.2) with $\|w\| = 1$. It follows that $\mu = \lambda_1$, a contradiction. Therefore, \mathscr{C} is unbounded. The fact of $\|u\| < 1$ for any $(\lambda, u) \in \mathscr{C}$ implies that the projection of \mathscr{C} on \mathbb{R}_+ is unbounded.

3. Proof of Theorem 1.2

In this section, on the basis of Theorem 1.1, we prove Theorem 1.2. **Proof of Theorem 1.2.** For any $n \in \mathbb{N}$, define

$$f^{n}(x,s) = \begin{cases} ns, & s \in \left[0, \frac{1}{n}\right], \\ \left(f\left(x, \frac{2}{n}\right) - 1\right)ns + 2 - f\left(x, \frac{2}{n}\right), & s \in \left(\frac{1}{n}, \frac{2}{n}\right), \\ f(x,s), & s \in \left[\frac{2}{n}, +\infty\right). \end{cases}$$

Clearly, we can see that $\lim_{n\to+\infty} f^n(x,s) = f(x,s)$ and $f_0^n = n$. Now, we can apply Theorem 1.1 to the following problem

$$\begin{cases} -\operatorname{div}\left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right) = \lambda f^n(x,u) \text{ in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
(3.1)

Then there exists a sequence unbounded continua \mathcal{C}_n of the set of nontrivial nonnegative solutions of problem (3.1) emanating from $(\lambda_1/n, 0)$ such that

$$\mathscr{C}_n \subseteq ((\mathbb{R}_+ \times X) \cup \{(\lambda_1/n, 0)\}).$$

Taking $z^* = (0,0)$, clearly $z^* \in \liminf_{n \to +\infty} \mathscr{C}_n$. The compactness of Ψ implies that $\left(\cup_{n=1}^{+\infty} \mathscr{C}_n \right) \cap B_R$ is pre-compact. Lemma 2.5 of [12] implies that $\mathscr{C} = \limsup_{n \to +\infty} \mathscr{C}_n$ is unbounded and connected such that $z^* \in \mathscr{C}$.

For any $(\lambda, u) \in \mathscr{C}$, the definition of superior limit (see [19]) shows that there exists a sequence $(\lambda_n, u_n) \in \mathscr{C}_n$ such that $(\lambda_n, u_n) \to (\lambda, u)$ as $n \to +\infty$. Clearly, one has that

$$u_n = \Psi \left(\lambda_n f^n \left(x, u_n \right) \right).$$

Letting $n \to +\infty$, we get that

$$u = \Psi \left(\lambda f \left(x, u \right) \right).$$

It follows that u is a solution of problem (1.1). Thus, u is a solution of problem (1.1) for any $(\lambda, u) \in \mathscr{C}$. Clearly, u is nonnegative for any $(\lambda, u) \in \mathscr{C}$ because $u_n \geq 0$ in Ω .

Next we show that u is nontrivial for any $(\lambda, u) \in \mathcal{C}\setminus\{(0,0)\}$. It is sufficient to show that $\mathcal{C}\cap((0,+\infty)\times\{0\})=\emptyset$. Suppose on the contrary that there exists $\mu>0$ such that $(\mu,0)\in\mathcal{C}$. There exists N_0 such that $\mu>\lambda_1/n$ for any $n>N_0$. It follows that $(\mu,0)\notin\mathcal{C}_n$ for any $n>N_0$. So $(\mu,0)\notin\mathcal{C}_n$, an absurd.

References

- [1] Alías, L.J., Palmer, B.: On the Gaussian curvature of maximal surfaces and the Calabi-Bernstein theorem. Bull. Lond. Math. Soc. **33**, 454–458 (2001)
- [2] Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Comm. Math. Phys. 87 131–152 (1982–1983)
- [3] Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces. Proc. Am. Math. Soc. 137, 171–178 (2009)
- [4] Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces. Math. Nachr. 283, 379–391 (2010)
- [5] Bereanu, C., Jebelean, P., Mawhin, J.: Multiple solutions for Neumann and periodic problems with singular φ -Laplacian. J. Funct. Anal. **261**, 3226–3246 (2011)
- [6] Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions of Neumann problems involving mean extrinsic curvature and periodic nonlinearities. Calc. Var. Partial Differ. Equ. 46, 113–122 (2013)
- [7] Bereanu, C., Jebelean, P., Torres, P.J.: Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space. J. Funct. Anal. 264, 270–287 (2013)
- [8] Bereanu, C., Jebelean, P., Torres, P.J.: Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. J. Funct. Anal. 265, 644–659 (2013)
- [9] Bidaut-Véron, M.F., Ratto, A.: Spacelike graphs with prescribed mean curvature. Differ. Integr. Equ. 10, 1003-1017 (1997)
- [10] Cheng, S.-Y., Yau, S.-T.: Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces. Ann. Math. 104, 407–419 (1976)
- [11] Dai, G.: Bifurcation and positive solutions for problem with mean curvature operator in Minkowski space. Calc. Var. 55, 1–17 (2016)
- [12] Dai, G.: Bifurcation and one-sign solutions of the p-Laplacian involving a non-linearity with zeros. Discrete Contin. Dyn. Syst. 36, 5323-5345 (2016)
- [13] Deimling, K.: Nonlinear Functional Analysis. Springer, New-York (1987)
- [14] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)
- [15] López, R.: Stationary surfaces in Lorentz-Minkowski space. Proc. Roy. Soc. Edinburgh Sect. A 138A, 1067–1096 (2008)
- [16] Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

- [17] Schmitt, K., Thompson, R.: Nonlinear Analysis and Differential Equations: An Introduction, Univ. of Utah Lecture Notes, Univ. of Utah Press, Salt Lake City, (2004)
- [18] Treibergs, A.E.: Entire spacelike hypersurfaces of constant mean curvature in Minkowski space. Invent. Math. 66, 39–56 (1982)
- [19] Whyburn, G.T.: Topological Analysis. Princeton University Press, Princeton (1958)

Guowei Dai School of Mathematical Sciences Dalian University of Technology Dalian 116024 People's Republic of China e-mail: daiguowei@dlut.edu.cn

Received: 18 December 2016. Accepted: 25 May 2017.