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Abstract. We study analytically the orbital stability of the standing waves
with a peak-Gausson profile for a nonlinear logarithmic Schrödinger equa-
tion with δ-interaction (attractive and repulsive). A major difficulty is to
compute the number of negative eigenvalues of the linearized operator
around the standing wave. This is overcome by the perturbation method,
the continuation arguments, and the theory of extensions of symmetric
operators.
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1. Introduction

Bialynicki-Birula and Mycielski [14] built a model of nonlinear wave mechanics
based on the following Schrödinger equation with a logarithmic non-linearity
(NLS-log equation henceforth)

i∂tu + Δu + uLog|u|2 = 0, (1.1)

where u = u(t, x) : R × R
n → C, n ≥ 1. This equation has been proposed in

order to obtain a nonlinear equation which helped to quantify departures from
the strictly linear regime, preserving in any number of dimensions some fun-
damental aspects of quantum mechanics, such as separability and additivity of
total energy of noninteracting subsystems. The NLS-log equation admits appli-
cations to dissipative systems [32], quantum mechanics, quantum optics [15],
nuclear physics [30], transport and diffusion phenomena (for example, magma
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transport) [23], open quantum systems, effective quantum gravity, theory of
superfluidity, and Bose–Einstein condensation (see [30,40] and the references
therein). We refer to [16,18] for a study of existence and uniqueness of the solu-
tions to the associated Cauchy problem in a suitable functional framework, as
well as for a study of the asymptotic behavior of its solutions and their orbital
stability.

In this paper we study the following nonlinear logarithmic Schrödinger
equation with δ-interaction (NLS-log-δ henceforth) on the line

i∂tu − Hδ
γu + uLog|u|2 = 0. (1.2)

Here u = u(t, x) : R × R → C, γ ∈ R\{0}, and Hδ
γ is the self-adjoint operator

on L2(R) defined by

Hδ
γ = − d2

dx2
,

dom(Hδ
γ) = {f ∈ H1(R) ∩ H2(R\{0}) : f ′(0+) − f ′(0−) = −γf(0)}.

(1.3)

The operator Hδ
γ corresponds to the formal expression lδγ = − d2

dx2 − γδ
(see [7] for details). Equation (1.2) can be viewed as a model of a singular
interaction between nonlinear wave and an inhomogeneity. The delta potential
can be used to model an impurity, or defect, localized at the origin. Formally
the NLS-log-δ model can be described by the following problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i∂tu(t, x) + ∂2
xu(t, x) = −u(t, x)Log|u(t, x)|2, x �= 0, t ∈ R,

lim
x→0+

[u(t, x) − u(t,−x)] = 0,

lim
x→0+

[∂xu(t, x) − ∂xu(t,−x)] = −γu(t, 0),

lim
x→±∞ u(t, x) = 0.

A similar formal model with power nonlinearity has been introduced in [21].
Our aim is to investigate an orbital stability of standing wave solutions

u(t, x) = eiωtϕω,γ for Eq. (1.2) with peak-Gausson profile

ϕω,γ(x) = e
ω+1
2 e− 1

2 (|x|+ γ
2 )2 . (1.4)

The main stability result of this paper is the following.

Theorem 1.1. Let γ �= 0 and ϕω,γ be defined by (1.4). Let also W̃ be defined
by (2.5). Then the following assertions hold.

(i) If γ > 0, then the standing wave eiωtϕω,γ is orbitally stable in W̃ .
(ii) If γ < 0, then the standing wave eiωtϕω,γ is orbitally unstable in W̃ .
(iii) The standing wave eiωtϕω,γ is orbitally stable in W̃rad.

The proof of Theorem 1.1 is based on the approach established by Gril-
lakis et al. [28,29]. We prove the well-posedness of the Cauchy problem for
NLS-log-δ equation on W̃ in Sect. 3. For this purpose we use the idea of the
proof of [17, Theorem 9.3.4]. Namely, we approximate the logarithmic nonlin-
earity by a Lipschitz continuous nonlinearities, construct a sequence of global
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solutions of the regularized Cauchy problem in C(R,H1(R)), then we pass to
the limit using standard compactness results, and finally we extract a subse-
quence which converges to the solution of limiting equation (1.2). Section 4 is
devoted to the proof of Theorem 1.1. We emphasize that our stability approach
does not use variational methods which are standard in the study of the sta-
bility of standing waves for the NLS with point defects (see [4,5,24,25,27]).
In Sect. 4.1 we linearize NLS-log-δ equation around the peak-Gausson profile
ϕω,γ via the key functional Sω,γ = E + (ω + 1)Q. As a result we obtain two
self-adjoint Schrödinger operators of harmonic oscillator type

Lγ
1 = − d2

dx2
+
(
|x| +

γ

2

)2

− 3, Lγ
2 = − d2

dx2
+
(
|x| +

γ

2

)2

− 1.

Stability study requires investigation of the certain spectral properties of Lγ
1

and Lγ
2 on the domain

dom(Lγ
j ) =

{
f ∈ dom(Hδ

γ) : x2f ∈ L2(R)
}
, j ∈ {1, 2}.

The main difficulty is to count the number of negative eigenvalues of Lγ
1 .

We propose two specific approaches to do this. For γ > 0 we give a novel
approach based on the theory of extensions of symmetric operators of Krein-
von Neumann. For γ < 0 we use the analytic perturbation theory and the
classical continuation argument based on the Riesz-projection. At the end of
the Sect. 4.2 we give the proof of Theorem 1.1.

Let us also mention that the extension theory was applied in [9] to inves-
tigate the stability of standing waves of the NLS equation with δ′-interaction
on a star graph G (see also [2,3,12])

i∂tU − Hδ′
λ U + |U|p−1U = 0,

where Hδ′
λ is the self-adjoint operator on L2(G) defined for λ ∈ R\{0} by

(Hδ′
λ U)(x) =

(−u′
j(x)

)N

j=1
, x �= 0,

dom(Hδ′
λ ) =

⎧
⎨

⎩

U = (uj)N
j=1 ∈ H2(G) : u′

1(0) = · · · = u′
N (0),

N∑

j=1

uj(0) = λu′
1(0)

⎫
⎬

⎭
.

Notation We denote by L2(R) the Hilbert space equipped with the inner prod-
uct (u, v) := Re

∫

R
u(x)v(x)dx. Its norm is denoted by || · ||2. By H1(R),

H2(R\{0}) = H2(R−) ⊕ H2(R+) we denote Sobolev spaces. We denote by
W̃ and W̃rad the weighted Hilbert spaces

{
f ∈ H1(R) : xf ∈ L2(R)

}
and

{
f ∈ H1(R) : xf ∈ L2(R), f(x) = f(−x)

}
respectively.

Let A be a densely defined symmetric operator in a Hilbert space H. The
deficiency numbers of A are denoted by n±(A) := dim ker(A∗ ∓ iI), where
I is the identity operator. The number of negative eigenvalues is denoted by
n(A) (counting multiplicities). The spectrum (resp. point spectrum) and the
resolvent set of A are denoted by σ(A) (resp. σp(A)) and ρ(A).

The space dual to H is denoted by H′, and B(W̃ , W̃ ′) denotes the space
of bounded operators from W̃ to W̃ ′.
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2. Previous results and basic notions

For completeness of the exposition, below we will discuss key results on the
standing waves of NLS-log equation. First, let us give a definition of the orbital
stability. The basic symmetry associated to Eq. (1.2) is the phase-invariance
(while the translation invariance does not hold due to the defect). Thus, the
definition of stability takes into account only this type of symmetry and is
formulated as follows.

Definition 2.1. Let X be a Hilbert space. For η > 0 let

Uη(ϕω,γ) =
{

v ∈ X : inf
θ∈R

‖v − eiθϕω,γ‖X < η
}
.

The standing wave eiωtϕω,γ is (orbitally) stable in X if for any ε > 0 there
exists η > 0 such that for any u0 ∈ Uη(ϕω,γ), the solution u(t) of (1.2) with
u(0) = u0 satisfies u(t) ∈ Uε(ϕω,γ) for all t ∈ R. Otherwise, eiωtϕω,γ is said to
be (orbitally) unstable in X.

It is interesting to note that NLS-log equation (1.1) possesses standing-
wave solutions u(t, x) = eiωtϕω(x) of the Gaussian shape

ϕω(x) = e
ω+n

2 e− 1
2 |x|2

for any dimension n and any frequency ω (see [14]). The orbital stability prop-
erties of the Gaussian profile ϕω in the relevant class

W (Rn) = {f ∈ H1(Rn) : |f |2Log|f |2 ∈ L1(Rn)} (2.1)

have been studied in [16]. Cazenave showed that standing waves with Gaussian
profile are stable in W (Rn) under radial perturbations for n ≥ 2. The proof of
this result is based on the fact that the space H1

rad(Rn) is compactly embedded
into L2(Rn) for n ≥ 2. Later Cazenave and Lions in [20, Remark II.3] showed
that such standing waves are orbitallly stable on all W (Rn) for n ≥ 1.

We also remark that Angulo and Hernandez in [10] showed (via the vari-
ational approach) the orbital stability of the ground states ϕω,γ in the space
W (R) in the case of attractive δ-interaction (γ > 0). In should be noted that
investigation of the orbital stability of ϕω,γ in the case of repulsive δ-interaction
(γ < 0) via constrained minimizer for the action or the energy functional is
not applicable (see [10, Remark 4.5]).

Recently has been considered NLS-log equation with an external potential
V satisfying specific conditions

i∂tu + Δu − V (x)u + uLog|u|2 = 0.

From the result of Ji and Szulkin in [33] it follows that there exist infinitely
many profiles of standing wave u(x, t) = eiωtϕω (see also [38]) for coercive V .
Namely, the elliptic equation

− Δϕω + (V (x) + ω)ϕω = ϕωLog|ϕω|2 (2.2)

has infinitely many solutions for V ∈ C(Rn,R) such that lim
|x|→∞

V (x) = +∞.

Moreover they showed the existence of a ground state solution (a nontrivial
positive solution with least possible energy) for bounded potential such that
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(a) (b)

Figure 1. a ϕω,γ(x) for γ > 0, b ϕω,γ(x) for γ < 0

ω + 1 + V∞ > 0, in which V∞ := lim
|x|→∞

V (x) = supx∈Rn V (x), and σ(−Δ +

V (x) + ω + 1) ⊂ (0,+∞). For V ≡ 0 and n ≥ 3, the authors in [22] showed
the existence of infinitely many weak solutions to (2.2). Also they showed that
the Gaussian profile ϕ−n is nondegenerated, that is ker(L) = span{∂xi

ϕ−n :
i = 1, 2, . . . , N}, where Lu = −Δu + (|x|2 − n − 2)u is the linearized operator
for −Δu − nu = uLog|u|2 at ϕ−n.

The main advantage of using the delta potential V (x) = −γδ(x) is the
existence of explicit expression (1.4) for the profile ϕω,γ (see Fig. 1a, b) satis-
fying the equation

Hδ
γϕ + ωϕ − ϕLog|ϕ|2 = 0. (2.3)

This peak-Gausson profile is constructed from the known solution of (2.3)
in the case γ = 0 on each side of the defect pasted together at x = 0 to satisfy
the continuity and the jump condition ϕ′(0+) − ϕ′(0−) = −γϕ(0) at x = 0.
Moreover, the following result holds.

Theorem 2.2. The set of all solutions to (2.3) is given by {eiθϕω,γ : θ ∈ R}.
The proof of this theorem can be found in Appendix.

As it was announced in Theorem 1.1, our stability analysis is elaborated
in the specific space W̃ . To explain the choice of this space let us introduce
the following two basic functionals associated with Eq. (1.2):

• “charge” functional

Q(u) =
1
2

∫

R

|u(x)|2dx,

• “energy” functional

E(u) = 1
2 ||∂xu||22 − 1

2

∫

R

|u(x)|2Log|u(x)|2dx − γ

2
|u(0)|2. (2.4)

These functionals are continuosly differentiable in W (R) defined by (2.1) (see
[16]). Moreover, at least formally, E is conserved by the flow of (1.2). The
use of the space W (R) is mainly due to the fact that the functional E fails
to be continuosly differentiable on H1(R) (see [16]). As we use the approch
by Grillakis et al. [28,29], the functional E needs to be twice continuously
differentiable at the ϕω,γ . To satisfy this condition we propose the “weighted
space” (i.e., X coincides with W̃ in Definition 2.1)
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W̃ = H1(R) ∩ L2(x2dx) =
{
f ∈ H1(R) : xf ∈ L2(R)

}
. (2.5)

In particular, the space W̃ naturally appears in definition of the linearization
of the second derivative of Sω,γ = E +(ω +1)Q at ϕω,γ . Note that, due to the
inclusion W̃ ⊂ W (R) (see Lemma 3.1 below), the functional E is continuously
differentiable on W̃ .

3. The Cauchy problem in W̃

In this section we prove the well-posedness of the Cauchy problem for (1.2)
in the space W̃ . The idea of the proof is an adaptation of the proof of [17,
Theorem 9.3.4]. The following lemma implies that Q and E are well-defined
on W̃ .

Lemma 3.1. Let W (R) and W̃ be the Banach spaces defined by

W (R) = {f ∈ H1(R) : |f |2 Log |f |2 ∈ L1(R)},

W̃ =
{
f ∈ H1(R) : xf ∈ L2(R)

}
.

Then W̃ ⊂ W (R).

Proof. (1) It is easily seen that W̃ ⊂ L1(R). Indeed, for f ∈ W̃ and
−∞ < a < 0 < b < ∞ we have

∫

R

|f |dx =
∫ a

−∞
|f |dx +

∫ b

a

|f |dx +
∫ ∞

b

|f |dx

=
∫ a

−∞
|f | · x · 1

x
dx +

∫ b

a

|f |dx +
∫ ∞

b

|f | · x · 1
x

dx

≤
(∫ a

−∞
(xf)2dx

) 1
2
(∫ a

−∞

1
x2

dx
) 1

2
+ (b − a) sup

[a,b]

|f |

+
( ∞∫

b

(xf)2dx
) 1

2
(∫ ∞

b

1
x2

dx
) 1

2
< ∞.

(2) Let again f ∈ W̃ , then
∫

R

|f |2|Log|f ||dx =
∫

{x∈R:|f |<1}
|f |2|Log|f ||dx +

∫

{x∈R:|f |≥1}
|f |2|Log|f ||dx.

(3.1)
Note also that

|Log|f || <
1
|f | for |f | < 1, and |Log|f || < |f | for |f | ≥ 1. (3.2)
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Since f ∈ H1(R), there exists c > 0 such that |f | < 1 for R\[−c, c]. Thus,
from (3.1), (3.2), and the inclusion W̃ ⊂ L1(R) we get

∫

R

|f |2|Log|f ||dx ≤
∫

{x∈R:|f |<1}
|f |dx +

∫

{x∈R:|f |≥1}
|f |3dx

≤
∫

{x∈R:|f |<1}
|f |dx + 2c sup

[−c,c]

|f |3 < ∞.

The assertion is proved. �

The global well-posedness property of the Cauchy problem for (1.2) is
ensured by the following theorem.

Theorem 3.2. If u0 ∈ W̃ , there is a unique solution u(t) of (1.2) such that
u(t) ∈ C(R, W̃ ) and u(0, x) = u0. Furthermore, the conservation of energy
and charge hold, i.e., for any t ∈ R, we have

E(u(t)) = E(u0), Q(u(t)) = Q(u0).

Moreover, if an initial data u0 is even, the solution u(t) is also even.

Proof. Generally we use an approach proposed in [18] with few natural modi-
fications. The proof can be divided into three parts.

(1) We introduce the “reduced” Cauchy problem
{

i∂tun − Hδ
γun + unfn(|un|2) = 0,

un(0) = u0.
(3.3)

Here fn(s) = inf{n, sup{−n, f(s)}} with f(s) = Logs, s > 0. We define

Fn(s) =
s∫

0

fn(σ)dσ. By Theorem 3.3.1 in [17], we imply that for any

u0 ∈ H1(R) there exists unique global solution un of (3.3) such that
un ∈ C(R,H1(R)) and un(0) = u0. Moreover, the conservation of charge
and energy hold, i.e., for all t

||un(t)||2 = ||u0||2, En(un(t)) = En(u0),

En(u(t)) = 1
2 ||∂xu(t)||22 − 1

2

∫

R

Fn(|u(t, x)|2)dx − γ
2 |u(t, 0)|2.

Indeed, we may check the assumptions of Theorem 3.3.1 in [17]. Note
that fn is Lipschitz continuous from R+ to R. We also notice that Hδ

γ

defined in (1.3) satisfies Hδ
γ ≥ −m, where m = γ2/4 if γ > 0, and m = 0

if γ < 0. Thus, A = −Hδ
γ − m is the self-adjoint negative operator in

X = L2(R) on the domain dom(A) = dom(Hδ
γ). Moreover, in our case

the norm

||v||2XA
= ||v′||22 + (m + 1)||v||22 − γ|v(0)|2

is equivalent to the usual H1(R)-norm.
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(2) The second step is analogous to Lemma 2.3.5 in [18]. In particular, it
can be shown that there exists solution u of (1.2) in the sense of dis-
tributions (which appears to be weak-∗ limit of solutions unk

of Cauchy
problem (3.3)) such that conservation of charge holds. Further, conserva-
tion of energy E(u) defined by (2.4) follows from its monotonicity. Thus,
inclusion u ∈ C(R,H1(R)) follows from conservation laws.

(3) The last step is to show that the inclusion xu0 ∈ L2(R) implies the
inclusion xu ∈ L2(R). The proof of this fact repeats one of Lemma 7.6.2
from [19]. �

Remark 3.3. For the completeness of the exposition we remark that for γ > 0
the unitary group Gγ(t) = e−itHδ

γ associated to Eq. (3.3) (or equivalently to
(1.2)) is given explicitly by the formula (see [6,26])

Gγ(t)φ(x) = eitΔ(φ ∗ τγ)(x)χ0
+ +

[
eitΔφ(x) + eitΔ(φ ∗ ργ)(−x)

]
χ0

−,

where

ργ(x) = −γ

2
e

γ
2 xχ0

−, τγ(x) = δ(x) + ργ(x).

Here χ0
+ and χ0

− denote the characteristic functions of [0,+∞) and (−∞, 0]
respectively.

4. Proof of the main result

In this Section we prove Theorem 1.1. Initially we define key functional Sω,γ

associated with NLS-log-δ equation. Next we establish the relation between the
second variation of Sω,γ and the self-adjoint operators Lγ

2 and Lγ
1 . Verifying

the spectral properties of Lγ
2 and Lγ

1 , we arrive at the assertions of Theorem
1.1. In our analysis we follow some ideas from [35].

4.1. Linearization of NLS-log-δ equation

We start introducing the key functional Sω,γ = E + (ω + 1)Q. It can be easily
verified that the profile ϕω,γ is a critical point of Sω,γ . Indeed, for u, v ∈ W̃ ,

S′
ω,γ(u)v =

d

dt
Sω,γ(u + tv)|t=0

= Re
[∫

R

u′v′dx −
∫

R

uv(Log|u|2 − ω)dx − γu(0)v(0)
]

.

Since ϕω,γ satisfies (2.3), S′
ω,γ(ϕω,γ) = 0.

In the approach by [29] crucial role is played by spectral properties of
the linear operator associated with the second variation of Sω,γ calculated at
ϕω,γ . To express S′′

ω,γ(ϕω,γ) it is convenient to split u, v ∈ W̃ into real and
imaginary parts: u = u1 + iu2, v = v1 + iv2. Then we get
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S′′
ω,γ(ϕω,γ)(u, v) =

∫

R

u′
1v

′
1dx −

∫

R

u1v1(Log|ϕω,γ |2 − ω + 2)dx − γu1(0)v1(0)

+
∫

R

u′
2v

′
2dx −

∫

R

u2v2(Log|ϕω,γ |2 − ω)dx − γu2(0)v2(0)

=
∫

R

u′
1v

′
1dx +

∫

R

u1v1

((|x| + γ
2

)2 − 3
)

dx − γu1(0)v1(0)

+
∫

R

u′
2v

′
2dx +

∫

R

u2v2

((|x| + γ
2

)2 − 1
)

dx − γu2(0)v2(0).

Therefore, S′′
ω,γ(ϕω,γ)(u, v) can be formally rewritten as

S′′
ω,γ(ϕω,γ)(u, v) = Bγ

1 (u1, v1) + Bγ
2 (u2, v2), (4.1)

where

Bγ
1 (f, g) =

∫

R

f ′g′dx +
∫

R

fg
((|x| + γ

2

)2 − 3
)

dx − γf(0)g(0),

Bγ
2 (f, g) =

∫

R

f ′g′dx +
∫

R

fg
((|x| + γ

2

)2 − 1
)

dx − γf(0)g(0),
(4.2)

and dom(Bγ
j ) = W̃ × W̃ , j ∈ {1, 2}. Note that the forms Bγ

j , j ∈ {1, 2}, are
bilinear bounded from below and closed. Therefore, by the First Representa-
tion Theorem (see [34, Chapter VI, Section 2.1]), they define operators Lγ

1 and
Lγ

2 such that for j ∈ {1, 2}
dom(Lγ

j ) = {v ∈ W̃ : ∃w ∈ L2(R) s.t. ∀z ∈ W̃ , Bγ
j (v, z) = (w, z)},

Lγ
j v = w.

(4.3)

In the following theorem we describe the operators Lγ
1 and Lγ

2 in more explicit
form. We show that they are basically the harmonic oscillator operators with
δ-interaction.

Theorem 4.1. The operators Lγ
1 and Lγ

2 determined in (4.3) are given by

Lγ
1 = − d2

dx2
+
(
|x| +

γ

2

)2

− 3, Lγ
2 = − d2

dx2
+
(
|x| +

γ

2

)2

− 1

on the domain Dγ := {f ∈ dom(Hδ
γ) : x2f ∈ L2(R)}.

Proof. Since the proof for Lγ
2 is similar to the one for Lγ

1 , we deal with Lγ
1 .

Let Bγ
1 = Bγ + B1, where Bγ : H1(R) × H1(R) → R and B1 : W̃ × W̃ → R

are defined by

Bγ(u, v) = (u′, v′) − γu(0)v(0), B1(u, v) = (V γ
1 u, v),

and V γ
1 (x) =

(
|x| + γ

2

)2

− 3. We denote by Lγ (resp. L1) the self-adjoint

operator on L2(R) associated (by the First Representation Theorem) with Bγ

(resp. B1). Thus,

dom(Lγ) = {v ∈ H1(R) : ∃w ∈ L2(R) s.t. ∀z ∈ H1(R), Bγ(v, z) = (w, z)},

Lγv = w.
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We claim that Lγ is a self-adjoint extension of the following symmetric operator

L0 = − d2

dx2
, dom(L0) = {f ∈ H2(R) : f(0) = 0}.

Indeed, let v ∈ dom(L0) and w = −v′′ ∈ L2(R). Then for every z ∈ H1(R)
we have Bγ(v, z) = (w, z). Thus, v ∈ dom(Lγ) and Lγv = w = −v′′. Hence,
L0 ⊂ Lγ , which yields the claim. Therefore, by [7, Theorem 3.1.1], there exists
β ∈ R such that Lγ = −Δβ , where

− Δβ = − d2

dx2
,

dom(−Δβ) = {f ∈ H1(R) ∩ H2(R\{0}) : f ′(0+) − f ′(0−) = βf(0)}.

Next we shall prove that β = −γ. Take v ∈ dom(Lγ) with v(0) �= 0, then we
obtain

(Lγv, v) = (v′(0+) − v′(0−))v(0) + ‖v′‖2
2 = ‖v′‖2

2 + β|v(0)|2,
which should be equal to Bγ(v, v) = ‖v′‖2

2 − γ|v(0)|2. Therefore, β = −γ.
Again, by the First Representation Theorem,

dom(L1) = {v ∈ W̃ : ∃w ∈ L2(R) s.t. ∀z ∈ W̃ , B1(v, z) = (w, z)},

L1v = w.

Note that L1 is the self-adjoint extension of the following multiplication oper-
ator

L0,1f = V γ
1 f, dom(L0,1) = {f ∈ H2(R) : V γ

1 f ∈ L2(R)}.

Indeed, for v ∈ dom(L0,1) we have v ∈ W̃ , and we define w = V γ
1 v ∈ L2(R).

Then for every z ∈ W̃ we get B1(v, z) = (w, z). Thus, v ∈ dom(L1) and
L1v = w = V γ

1 v. Hence, L0,1 ⊆ L1. Since L0,1 is self-adjoint, L1 = L0,1. The
Theorem is proved. �

Remark 4.2. (i) We mention that W̃ coincides with the natural domain of
the bilinear forms Bγ

1 and Bγ
2 which additionally justifies the choice of

the space W̃ for investigation of the orbital stability.
(ii) It’s worth mentioning that the operators Lγ

1 and Lγ
2 coincide up to a

constant term, namely, Lγ
1 = Lγ

2 − 2. This is a special feature of the
logarithmic nonlinearity that clarifies and simplifies the spectral analysis
implemented in the next Subsection.

(iii) We remark that it is also possible to propose an alternative proof of
Theorem 4.1 avoiding the decomposition of the forms Bγ

j into the the
sum of two forms, though it will require more extensive proof. Indeed,
the self-adjoint operator Lγ

1 associated with the form Bγ
1 is a self-adjoint

extension of the symmetric operator L0 defined in (4.11). By [36, Chapter
IV,§14, Theorems 7 and 8], we get

dom(Lγ
1) =

{
f : f = f0 + cfi + ceiθf−i,

f0 ∈ dom(L0), c ∈ C, θ ∈ [0, 2π)

}

, (4.4)
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where f±i are deficiency vectors, namely, ker(L∗
0 ∓ iI) = span{f±i}. The

deficiency vector fi has the form (we note that f−i = fi)

fi(x) =

⎧
⎨

⎩

C1U
(

− 3+i
2 ,

√
2(x + |γ|

2 )
)
, x > 0,

C2U
(

− 3+i
2 ,

√
2(x − |γ|

2 )
)
, x < 0,

where C1, C2 are fixed constants that guarantee continuity of fi at x = 0.
The function U

(
− 3+i

2 , ·
)

was found reducing the equation

−f ′′(x) + (|x| + γ
2 )2f(x) − (3 + i)f(x) = 0,

via change of variables to the Weber equation (see (19.1.2) in [1])

g′′(z) − ( 1
4z2 − 3+i

2 )g(z) = 0.

This equation has the solution U(a, z) (with a = − 3+i
2 ) such that

lim
|z|→∞

U(a, z) = 0 (see (19.8.1) in [1] and also [11, Chapter 6]). In partic-

ular, U(a, z) is given by (see (19.3.1), (19.3.3), (19.3.4) in [1])

U(a, z) =
1

2ξ
√

π

[
cos(ξπ)Γ(1/2 − ξ) y1(a, z) −

√
2 sin(ξπ)Γ(1 − ξ) y2(a, z)

]
,

where ξ = 1
2a + 1

4 and

y1(a, z) = exp(−z2/4)1F1

(
1
2a + 1

4 ; 1
2 ;

z2

2

)

,

y2(a, z) = z exp(−z2/4)1F1

(
1
2a + 3

4 ; 3
2 ;

z2

2

)

,

in which 1F1(·; ·; ·) is the confluent hypergeometric function (see [1, Chap-
ter 13]). The function U(a, z) is called parabolic cylinder function. Using
the definition of y1(a, z) and y2(a, z), it can be shown (after laborious
calculations) that the set (4.4) coincides with Dγ .

Next, we consider the form S′′
ω,γ(ϕω,γ) : W̃ ×W̃ → C as a linear operator

Hω,γ : W̃ → W̃ ′. Our main stability result follows from the next theorem (see
[29, Instability Theorem and Stability Theorem]).

Theorem 4.3. Let γ �= 0 and

pγ(ω0) =

{
1, if ∂ω‖ϕω,γ‖2

2 > 0, at ω = ω0,

0, if ∂ω‖ϕω,γ‖2
2 < 0, at ω = ω0.

Then the following assertions hold.
(i) If n(Hω0,γ) = pγ(ω0), then the standing wave eiωtϕω,γ is orbitally stable

in W̃ .
(ii) If n(Hω0,γ) − pγ(ω0) is odd, then the standing wave eiωtϕω,γ is orbitally

unstable in W̃ .

Remark 4.4. Analogous result holds for the case of the space W̃rad.
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Due to [29], the proof of this theorem requires verification of Assumptions
1,2,3.

Assumption 1 and Assumption 2 obviously hold:
• well-posedness of equation (1.2) (Theorem 3.2),
• the existence of a smooth curve of peak standing-wave ω → ϕω,γ (see

(1.4)).
Checking Assumption 3 in [29] is equivalent to the following Theorem.

Theorem 4.5. Let γ �= 0, then for any ω ∈ R the following assertions hold.
(i) The operator Hω,γ has only a finite number of negative eigenvalues.
(ii) The kernel of Hω,γ coincides with span{iϕω,γ}.
(iii) The rest of the spectrum of Hω,γ is positive and bounded away from zero.

This Theorem will be proved below. From (4.1) we can define formally

Hω,γu = Lγ
1u1 + iLγ

2u2, (4.5)

where u1 = Re(u), u2 = Im(u). In connection with Theorem 4.3 and Theorem
4.5 our aim is to investigate the following three spectral conditions associated
to Lγ

1 and Lγ
2 :

• the operator Lγ
2 has ker(Lγ

2) = span{ϕω,γ} and inf(σ(Lγ
2)\{0}) > ε > 0;

• the operator Lγ
1 has a trivial kernel for all γ ∈ R\{0}, and inf(σ(Lγ

1) ∩
R+) > ε > 0, while σ(Lγ

1) ∩ R− = {λk}n
k=1, where n < ∞;

• the number of negative eigenvalues of the operator Lγ
1 .

These three conditions will be studied in the next Subsection. The main diffi-
culty is to count the number of negative eigenvalues of Lγ

1 . We use two specific
approaches to do this. For γ > 0 we apply exclusively the theory of extensions
of symmetric operators. In the case γ < 0, we consider Lγ

1 as a real-holomorphic
perturbation of the one-dimensional harmonic oscillator operator

L0
1 = − d2

dx2
+ x2 − 3, dom(L0

1) = {f ∈ H2(R) : x2f ∈ L2(R)}. (4.6)

Using the perturbation theory, we claim that the point spectrum of Lγ
1 depends

holomorphically on the spectrum of L0
1. In particular, for γ < 0 we show the

equality n(Lγ
1) = 2, while for γ > 0 we obtain n(Lγ

1) = 1. Moreover, we show
that n(Lγ

1) = 1 in the space W̃rad for any γ ∈ R\{0}.

4.2. Spectral properties of Lγ
1 and Lγ

2

Below we discuss the spectral properties of Lγ
j , j ∈ {1, 2}. Let us make few

general observations. First, since

lim
|x|→+∞

(
|x| +

γ

2

)2

= +∞,

the operators Lγ
j , j ∈ {1, 2}, have a discrete spectrum, σ(Lγ

j ) = σp(Lγ
j ) =

{λj
k}k∈N (see [13, Chapter II]). In particular, we have the following distribution

of the eigenvalues

λj
0 < λj

1 < · · · < λj
k < · · · ,
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with λj
k → +∞ as k → +∞. Due to semi-boundedness of V 1

γ = (|x| + γ
2 )2 − 3

and V 2
γ = (|x|+ γ

2 )2−1, we obtain that any nontrivial solution of the equation

Lγ
j v = λj

kv, v ∈ dom(Lγ
j ),

is unique up to a constant factor (see [13]). Therefore, each eigenvalue λj
k is

simple. Moreover, the following Proposition holds.

Proposition 4.6. Let γ ∈ R\{0}. Then ker(Hω,γ) = span{iϕω,γ}.
Proof. Since ϕω,γ ∈ Dγ and Lγ

2ϕω,γ = 0, we obtain immediately ker(Lγ
2) =

span{ϕω,γ}. Now, suppose that u ∈ ker(Lγ
1) and u �= 0. It means that u ∈

H1(R) ∩ H2(R\{0}) and

− u′′ + ((|x| + γ
2 )2 − 3)u = 0, x �= 0, (4.7)

u′(0+) − u′(0−) = −γu(0). (4.8)

Consider (4.7) on (0,∞). Then, the fact that ker(Lγ
2) = span{ϕω,γ} implies

− ϕ′′
ω,γ + ((|x| + γ

2 )2 − 1)ϕω,γ = 0 on (0,∞). (4.9)

Differentiating (4.9), we obtain that ϕ′
ω,γ satisfies (4.7) on (0,∞). Since we look

for L2(R)-solution, every solution of (4.7) in (0,∞) is of the form μϕ′
ω,γ , μ ∈ R

[13, Chapter II]. Analogously, every solution in (−∞, 0) is given by νϕ′
ω,γ , ν ∈

R. Thus, the solution u of (4.7)-(4.8) has the form

u =
{−μϕ′

ω,γ , x ∈ (−∞, 0),
μϕ′

ω,γ , x ∈ (0,∞).

Since u ∈ H1(R) and ϕω,γ satisfies condition (4.8), we get

u(0) = −μϕ′
ω,γ(0−) = μϕ′

ω,γ(0+) = −μ
2 γϕω,γ(0).

On the other hand, the fact that ϕω,γ satisfies (4.9) implies

u′(0±) = ±μϕ′′
ω,γ(0±) = ±μ(γ2

4 − 1)ϕω,γ(0).

Finally, using (4.8), we arrive at

2μ(γ2

4 − 1)ϕω,γ(0) = μ
2 γ2ϕω,γ(0).

This is a contradiction, therefore μ = 0 and u ≡ 0. The equality ker(Hω,γ) =
span{iϕω,γ} follows from (4.5). �

Summarizing the above facts we arrive at the proof of Lemma 4.5.
The following result implies non-negativity of the operator Lγ

2 .

Proposition 4.7. Let γ ∈ R\{0}. Then n(Lγ
2) = 0.

The proof of Proposition 4.7 follows from positivity of ϕω,γ and the fol-
lowing generalization of the classical Sturm oscillation theorem to the case of
point interaction (see [13]).
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Lemma 4.8. Let V (x) be a real-valued continuous function on R. Let also
ϕ1, ϕ2 ∈ L2(R) be eigenfunctions of the operator

LV = − d2

dx2
+ V (x), dom(LV ) =

{
f ∈ dom(Hδ

γ) : LV f ∈ L2(R)
}

,

corresponding to the eigenvalues λ1 < λ2 respectively. Suppose that n1 and n2

are the number of zeroes of ϕ1, ϕ2 respectively. Then n2 > n1.

Proof. Suppose that ϕ1(a) = ϕ1(b) = 0 and −∞ < a < 0 < b ≤ ∞, besides
ϕ1(∞) = 0 is understood in the sense of limit. Let also ϕ1 > 0 in (a, b). Then
ϕ′

1(a) > 0 and ϕ′
1(b) ≤ 0. The “equality” ϕ′

1(b) = 0 takes place only if b = ∞
since ϕ1 ∈ H2(0,∞). Suppose that ϕ2 has no zeros in (a, b) and ϕ2 > 0 in
(a, b). Using the fact that ϕ1, ϕ2 are eigenfunctions of LV , we arrive at

0 =

∫ b

a

(ϕ1ϕ
′′
2 − ϕ′′

1ϕ2)dx +

∫ b

a

(λ2 − λ1)ϕ1ϕ2dx

=

∫ −0

a

d

dx
(ϕ1ϕ

′
2 − ϕ′

1ϕ2)dx +

∫ b

+0

d

dx
(ϕ1ϕ

′
2 − ϕ′

1ϕ2)dx +

∫ b

a

(λ2 − λ1)ϕ1ϕ2dx

=
[
ϕ1ϕ

′
2 − ϕ′

1ϕ2

]b
a

+
[
ϕ′

1ϕ2 − ϕ1ϕ
′
2

]+0

−0
+

∫ b

a

(λ2 − λ1)ϕ1ϕ2dx.

(4.10)

Since ϕ1, ϕ2 ∈ dom(Hδ
γ), we get [ϕ′

1ϕ2 − ϕ1ϕ
′
2]

+0
−0 = 0. Therefore, from (4.10)

and initial assumptions it easily follows that

0 > [ϕ1ϕ
′
2 − ϕ′

1ϕ2]
b
a = ϕ′

1(a)ϕ2(a) − ϕ′
1(b)ϕ2(b) > 0,

which is a contradiction. Thus, ϕ2 has at least one zero in (a, b). Analogously,
we can prove that there exists ξ ∈ (−∞, a] such that ϕ2(ξ) = 0. Thereby,
between two finite zeroes of ϕ1 there exists a zero of ϕ2, and between the last
finite zero of ϕ1 and ∞ (between the first finite zero of ϕ1 and −∞ respectively)
there is at least one zero of ϕ2. The proof is completed. �
Remark 4.9. Note that from ker(Lγ

2) = span{ϕω,γ} and inf(σ(Lγ
2)\{0}) > ε >

0 it follows that n(Hω,γ) = n(Lγ
1).

The number of negative eigenvalues n(Lγ
1) for γ > 0

Below we will show the following result.

Proposition 4.10. Let γ > 0, then n(Lγ
1) = 1. Moreover, for Lγ

1 restricted
to W̃rad we also have n(Lγ

1) = 1. In particular, the unique negative simple
eigenvalue equals −2, and ϕω,γ is the corresponding eigenfunction.

The proof of this proposition relies on the theory of extension of symmetric
operators. We start with two preliminary results.

Lemma 4.11. The operator defined by

L0 = − d2

dx2
+
(
|x| +

γ

2

)2

− 3,

dom(L0) =
{
f ∈ H2(R) : x2f ∈ L2(R), f(0) = 0

}
(4.11)

is a densely defined symmetric operator with equal deficiency indices n±(L0) =
1.
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Proof. First, we establish the scale of Hilbert spaces associated with the self-
adjoint operator (see [8, Section I, §1.2.2])

L = − d2

dx2
+
(
|x| +

γ

2

)2

, dom(L) = {f ∈ H2(R) : x2f ∈ L2(R)}.

Define for s ≥ 0 the space

Hs(L) =
{
f ∈ L2(R) : ‖f‖s,2 =

∥
∥
∥(L + I)s/2f

∥
∥
∥

2
< ∞}

.

The space Hs(L) with norm ‖ · ‖s,2 is complete. The dual space of Hs(L) will
be denoted by H−s(L) = Hs(L)′. The norm in the space H−s(L) is defined
by the formula

‖ψ‖−s,2 =
∥
∥
∥(L + I)−s/2ψ

∥
∥
∥

2
.

The spaces Hs(L) form the following chain

... ⊂ H2(L) ⊂ H1(L) ⊂ L2(R) = H0(L) ⊂ H−1(L) ⊂ H−2(L) ⊂ ....

Thus, the space H2(L) coincides with the domain of the operator L. The norm
of the space H1(L) can be calculated as follows

‖f‖2
1,2 = ((L + I)1/2f, (L + I)1/2f)

=
∫

R

(

|f ′(x)|2 + |f(x)|2 +
(
|x| +

γ

2

)2

|f(x)|2
)

dx.

Therefore, we have the embedding H1(L) ↪→ H1(R) and, by Sobolev embed-
ding, H1(L) ↪→ L∞(R). From the former remark we obtain that the δ-
functional, δ : H1(L) → C acting as δ(ψ) = ψ(0) belongs to H1(L)′ = H−1(L)
and consequently δ ∈ H−2(L). Therefore, using [8, Lemma 1.2.3], it follows
that the restriction L0 of the operator L to the domain

dom(L′
0) = {ψ ∈ dom(L) : δ(ψ) = ψ(0) = 0}

is a densely defined symmetric operator with equal deficiency indices
n±(L′

0) = 1. Next, since B = −3I is a bounded operator, we have from [36,
Chapter IV, Theorem 6] that the operators L′

0 and L0 = L′
0 +B have the same

deficiency indices. This finishes the proof of the Lemma. �

To investigate the number of negative eigenvalues of Lγ
1 we will use the

following abstract result (see [36, Chapter IV, §14]).

Proposition 4.12. Let A be a densely defined lower semi-bounded symmetric
operator (i.e., A ≥ mI) with finite deficiency indices n±(A) = k < ∞ in
the Hilbert space H. Let also Ã be a self-adjoint extension of A. Then the
spectrum of Ã in (−∞,m) is discrete and consists of at most k eigenvalues
counting multiplicities.

Remark 4.13. Proposition 4.12 holds for upper semi-bounded operator A (A ≤
MI) and interval (M,∞), respectively.
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Proof of Proposition 4.10. Recall that Lγ
1 is the self-adjoint extension of the

symmetric operator L0 defined by (4.11) (see proof of Theorem 4.1 above).
Lemma 4.11 implies the equality n±(L0) = 1.

Next, since γ > 0 (ϕ′
ω,γ �= 0 for x �= 0) we can verify that for f ∈ dom(L0)

we have (see [5, Subsection 6.1])

− f ′′ +
[(

|x| +
γ

2

)2

− 3
]

f =
−1
ϕ′

ω,γ

d

dx

[

(ϕ′
ω,γ)2

d

dx

(
f

ϕ′
ω,γ

)]

, x �= 0.

(4.12)
Now using (4.12) and integrating by parts, we get

(L0f, f) =
∫ 0−

−∞
(ϕ′

ω,γ)2
∣
∣
∣
∣

d

dx

(
f

ϕ′
ω,γ

)∣
∣
∣
∣

2

dx

+
∫ ∞

0+

(ϕ′
ω,γ)2

∣
∣
∣
∣

d

dx

(
f

ϕ′
ω,γ

)∣
∣
∣
∣

2

dx +
[

f ′f − |f |2 ϕ′′
ω,γ

ϕ′
ω,γ

]0+

0−
.

(4.13)

The integral terms in (4.13) are nonnegative. Due to the condition f(0) = 0,
non-integral term vanishes, and we get L0 ≥ 0. Therefore, from Proposi-
tion 4.12 we obtain n(Lγ

1) ≤ 1. From the other hand,

Lγ
1ϕω,γ = (Lγ

2 − 2)ϕω,γ = −2ϕω,γ , (4.14)

since Lγ
2ϕω,γ = 0. Thus, n(Lγ

1) = 1. The second assertion of Proposition 4.10
follows from (4.14) and the fact that ϕω,γ is even. �

The number of negative eigenvalues n(Lγ
1) for γ < 0

The analysis previously applied to calculate the number n(Lγ
1) was based

essentially on the fact that ϕ′
ω,γ(x) �= 0 for x �= 0 in the case γ > 0. For γ < 0

the function ϕ′
ω,γ(x) has exactly two zeroes x = ±γ

2 , and the formula (4.12)
could not be applied. To study the case of negative γ we will use the theory
of analytic perturbations for linear operators (see [34,37]).

The following lemma states the analyticity of the families of operators
Lγ

j , j ∈ {1, 2}.

Lemma 4.14. As a function of γ, (Lγ
1) and (Lγ

2) are two real-analytic families
of self-adjoint operators of type (B) in the sense of Kato.

Proof. By Theorem 4.1 and [34, Theorem VII-4.2], it suffices to prove that the
families of bilinear forms (Bγ

1 ) and (Bγ
2 ) defined in (4.2) are real-analytic of

type (B). Indeed, it is immediate that they are bounded from below and closed.
Moreover, the decomposition of Bγ

1 into Bγ and B1, implies that γ → (Bγ
1 v, v)

is analytic. The proof for the family (Bγ
2 ) is similar. �

In what follows we also use the following classical result about the har-
monic oscillator operator (4.6) (see [13]).

Lemma 4.15. Let operator L0
1 be defined by (4.6). Then the following assertions

hold.
(i) L0

1 has two simple nonpositive eigenvalues: the first one is negative and
the second one is zero.
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(ii) ker(L0
1) = span{ϕ′

ω,0}.
(iii) The rest of the spectrum of L0

1 is positive.

Indeed, the above Lemma follows from the known fact σ(L0
1) = {2n − 2 :

n = 0, 1, 2, . . .}.

Proposition 4.16. There exist γ0 > 0 and two analytic functions Π :
(−γ0, γ0) → R and Ω : (−γ0, γ0) → L2(R) such that

(i) Π(0) = 0 and Ω(0) = ϕ′
ω,0.

(ii) For all γ ∈ (−γ0, γ0), Π(γ) is the simple isolated second eigenvalue of
Lγ

1 , and Ω(γ) is the associated eigenvector for Π(γ).
(iii) γ0 can be chosen small enough to ensure that for γ ∈ (−γ0, γ0) the spec-

trum of Lγ
1 is positive, except at most the first two eigenvalues.

Proof. Using the spectral structure of the operator L0
1 (see Lemma 4.15), we

can separate the spectrum σ(L0
1) into two parts σ0 = {λ0

1, 0} and σ1 by a closed
curve Γ (for example, a circle), such that σ0 belongs to the inner domain of
Γ and σ1 to the outer domain of Γ (note that σ1 ⊂ (ε,+∞) for ε > 0).
Next, Lemma 4.14 and analytic perturbations theory imply that Γ ⊂ ρ(Lγ

1) for
sufficiently small |γ|, and σ(Lγ

1) is likewise separated by Γ into two parts, such
that the part of σ(Lγ

1) inside Γ consists of a finite number of eigenvalues with
total multiplicity (algebraic) two. Therefore, we obtain from the Kato–Rellich
Theorem (see [37, Theorem XII.8]) the existence of two analytic functions
Π,Ω defined in a neighborhood of zero such that the items (i), (ii) and (iii)
hold. �

Below we will study how the perturbed second eigenvalue Π(γ) changes
depending on the sign of γ. For small γ we have the following result.

Proposition 4.17. There exists 0 < γ1 < γ0 such that Π(γ) < 0 for any γ ∈
(−γ1, 0), and Π(γ) > 0 for any γ ∈ (0, γ1).

Proof. From Taylor’s theorem we have the following expansions

Π(γ) = βγ + O(γ2) and Ω(γ) = ϕ′
ω,0 + γψ0 + O(γ2), (4.15)

where β ∈ R (β = Π′(0)) and ψ0 ∈ L2(R) (since ψ0 = Ω′(0)). The desired
result will follow if we show that β > 0. We compute (Lγ

1Ω(γ), ϕ′
ω,0) in two

different ways.
From (4.15) we obtain

Π(γ)Ω(γ) = βγϕ′
ω,0 + O(γ2). (4.16)

Since Lγ
1Ω(γ) = Π(γ)Ω(γ), it follows from (4.16) that

(Lγ
1Ω(γ), ϕ′

ω,0) = βγ‖ϕ′
ω,0‖2

2 + O(γ2). (4.17)

Having ϕ′
ω,0 ∈ dom(Lγ

1) (ϕ′
ω,0(0) = 0) and L0

1ϕ
′
ω,0 = 0, we obtain

Lγ
1ϕ′

ω,0 = L0
1ϕ

′
ω,0 + (γ|x| + γ2

4 )ϕ′
ω,0 = (γ|x| + γ2

4 )ϕ′
ω,0. (4.18)
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Since Lγ
1 is self-adjoint, we obtain from (4.15) and (4.18) that

(Lγ
1Ω(γ), ϕ′

ω,0) = (Ω(γ),Lγ
1ϕ′

ω,0) = (ϕ′
ω,0, (γ|x| + γ2

4 )ϕ′
ω,0) + O(γ2)

= γ

∫

R

|x||ϕ′
ω,0(x)|2dx + O(γ2).

(4.19)

Finally, combination of (4.17) and (4.19) leads to

β =

∫

R
|x||ϕ′

ω(x)|2dx

‖ϕ′
ω,0‖2

2

+ O(γ). (4.20)

From (4.20) it follows that β > 0, and, therefore, assertion is proved. �

Now we can count the number of negative eigenvalues of Lγ
1 for any γ

using a classical continuation argument based on the Riesz-projection.

Proposition 4.18. Let γ ∈ R\{0}. Then we have
(i) n(Lγ

1) = 2 for γ < 0.
(ii) n(Lγ

1) = 1 for γ > 0.
(iii) n(Lγ

1) = 1 for Lγ
1 restricted to W̃rad.

Proof. Recall that ker(Lγ
1) = {0} for γ �= 0. Let γ < 0 and define γ∞ by

γ∞ = inf{r < 0 : Lγ
1 has exactly two negative eigenvalues for all γ ∈ (r, 0)}.

Proposition 4.17 implies that γ∞ is well defined and γ∞ ∈ [−∞, 0). We
claim that γ∞ = −∞. Suppose that γ∞ > −∞. Let N = n(Lγ∞

1 ) and Γ be a
closed curve (for example, a circle or a rectangle) such that 0 ∈ Γ ⊂ ρ(Lγ∞

1 ),
and all the negative eigenvalues of Lγ∞

1 belong to the inner domain of Γ. The
existence of such Γ can be deduced from the lower semi-boundedness of the
quadratic form associated to Lγ∞

1 . Indeed, for f ∈ dom(Lγ∞
1 )

(Lγ∞
1 f, f) =

∫

R

((f ′)2 + V 1
γ∞f2)dx − γ|f(0)|2 ≥ −3‖f‖2

2

since V 1
γ∞(x) ≥ −3 for all x.

Next, from Lemma 4.14 it follows that there is ε > 0 such that for γ ∈
[γ∞ − ε, γ∞ + ε] we have Γ ⊂ ρ(Lγ

1) and for ξ ∈ Γ, γ → (Lγ
1 − ξ)−1 is analytic.

Therefore, the existence of an analytic family of Riesz-projections γ → P (γ)
given by

P (γ) = − 1
2πi

∫

Γ

(Lγ
1 − ξ)−1dξ

implies that dim(RanP (γ)) = dim(Ran P (γ∞)) = N for all γ ∈ [γ∞ − ε, γ∞ +
ε]. Next, by definition of γ∞, there exists r0 ∈ (γ∞, γ∞ + ε), and Lγ

1 has
exactly two negative eigenvalues for all γ ∈ (r0, 0). Therefore, Lγ∞+ε

1 has
two negative eigenvalues and N = 2, hence Lγ

1 has two negative eigenvalues
for γ ∈ (γ∞ − ε, 0), which contradicts with the definition of γ∞. Therefore,
γ∞ = −∞. Similar analysis can be applied to the case γ > 0. The last assertion
was proved for γ > 0 in Proposition 4.10. In the case γ < 0 the statement
follows from item (i), the fact that any eigenfunction of Lγ

1 is either even or
odd, and the Sturm oscillation result in Lemma 4.8. �
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Remark 4.19. We note that the curve Γ above can be chosen independently
of the parameter γ ∈ R. Indeed, the relation V γ

1 (x) ≥ −3 for any γ implies
inf σ(Lγ

1) ≥ −3. Thus, Γ can be chosen as the rectangle Γ = ∂R, in which

R = {z ∈ C : z = z1 + iz2, (z1, z2) ∈ [−4, 0] × [−a, a], for some a > 0}.

Proof of Theorem 1.1. (i) Let γ > 0 and E : W̃ −→ R be the energy func-
tional defined by (2.4). From [16, Lemma 2.6] (with −Δ substituted
by Hδ

γ) and the continuous embedding W̃ ↪→ W (R) we deduce that
E ′′(ϕω,γ) ∈ B(W̃ , W̃ ′), where E ′′(ϕω,γ) is the operator associated with
the form E′′(ϕω,γ)(u, v). Using Proposition 4.10, positivity of ∂ω||ϕω,γ ||22,
Remark 4.9, and Theorem 4.5 we arrive at item (i) in Theorem 4.3 which
induces the orbital stability of eiωtϕω,γ in W̃ .

(ii) Let γ < 0. From item (i) of Proposition 4.18, the positivity of ∂ω||ϕω,γ ||22,
and Theorem 4.5, we get item (ii) of Theorem 4.3 which implies the
instability of eiωtϕω,γ in W̃ .

(iii) Stability of eiωtϕω,γ in W̃rad follows from item (iii) of Propositon 4.18
and item (i) in Theorem 4.3. �

Appendix

In this Appendix we show the uniqueness of the peak-standing wave solution
ϕω,γ stated in Theorem 2.2. The proof is based on the ideas from [14,24,31,39].

Proof of Theorem 2.2. We divide the proof in 3 steps. Let ϕ be a solution to
(2.3).
(1) We show initially that if ϕ ∈ H2(R+) is a solution to

− ϕ′′ + ωϕ − ϕLog|ϕ|2 = 0 (4.21)

on R+, then ϕ = eiθ+e
ω+1

2 e− (x−x+)2

2 , where θ+, x+ ∈ R. Indeed, writing
ϕ(x) = eiθ(x)ρ(x), where θ and ρ are real-valued functions, we obtain
from equation (4.21)

−ρ′′ + ρ(ω + (θ′)2) − ρLogρ2 + i(θ′′ρ + 2θ′ρ′) = 0.

Thus, in order to make the imaginary part vanish, we get θ′′ρ+2θ′ρ′ = 0,
which implies ρ2θ′ ≡ const := C. Next, since

|ϕ′|2 = (ρ′)2 + (θ′)2ρ2 ≥ (θ′)2ρ2 ≥ 0

and lim
x→∞|ϕ′| = 0, we get lim

x→∞(θ′)2ρ2 = C lim
x→∞θ′ = 0. Therefore, lim

x→∞θ′

exists. Now, since |ϕ| = ρ, we obtain lim
x→∞ρ2 = 0, and thus C = 0, which

implies θ(x) ≡ const := θ+. Thereby, ϕ(x) = eiθ+ρ(x), where ρ satisfies

− ρ′′ + ωρ − ρLogρ2 = 0, x ∈ R+. (4.22)

From [39, Theorem 1] it follows that ρ(x) > 0.
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(2) Multiplying (4.22) by ρ′ and integrating we arrive at

(ρ′)2 = (1 + ω)ρ2 − ρ2 ln |ρ|2 + K. (4.23)

Since ρ ∈ H2(R+), we get K = 0. Therefore, integrating (4.23) we obtain

ρ(x) = e
ω+1

2 e− (x−x+)2

2 , x+ ∈ R.

Thus, we get ϕ = eiθ+e
ω+1

2 e− (x−x+)2

2 on R+. Analogously, we can show
that the H2(R−)-solution of (4.21) on R− is given by

ϕ = eiθ−e
ω+1

2 e− (x−x−)2

2 , θ−, x− ∈ R.

(3) From items (1)–(2) above we obtain that the solution to (4.21) on R\{0}
is given by

ϕ =

⎧
⎪⎨

⎪⎩

eiθ+e
ω+1

2 e− (x−x+)2

2 , x > 0,

eiθ−e
ω+1

2 e− (x−x−)2

2 , x < 0.

Next, our aim is to find explicitly x± and θ±. Let f(s) = −ωs+ sLog(s2)
and F (s) =

∫ s

0
f(t)dt. Multiplying (4.21) by ϕ′ and integrating from 0 to

R, we get as R → ∞
1
2
(ϕ′(0+))2 + F (ϕ(0+)) = 0.

Similarly, we obtain

1
2
(ϕ′(0−))2 + F (ϕ(0−)) = 0.

Since ϕ need to be continuous at x = 0, we get |ϕ′(0−)| = |ϕ′(0+)|.
Therefore, |x−| = |x+| and again by continuity condition we obtain θ− =
θ+ =: θ. To conclude the proof we need to recall that ϕ satisfies jump
condition ϕ′(0+)−ϕ′(0−) = −γϕ(0), which yields x+ = −γ

2 and x− = γ
2 .

�
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