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Abstract. We classify all possible algebraic traveling solutions for the fam-
ily of second order reaction-diffusion equations

∂u

∂t
= −d f(u)(f ′(u) + r) + d

∂2u

∂x2

where f is a polynomial function and d > 0 and r are real constants.
In particular, we provide all the algebraic traveling wave solutions of the
celebrated Nagumo equation.
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1. Introduction and statement of the main results

In past years the study of reaction-diffusion equations received a lot of atten-
tion due to its widespread areas of application and the richness of their sets of
solutions. Such equations arise in models of diverse natural phenomena, with
biology and chemistry as main examples. Because of the strong connection be-
tween reaction-diffusion equations and applied sciences, the main research of
this type of equations comes from models from natural phenomena. Reaction-
diffusion models can explain important aspects of the spatial phenomena like
the existence of wave solutions in the system, the formation of patterns in a
homogeneous space, etc. There is a vast amount of literature on wave prop-
agation in biological systems. For example the book by Britton [3] is a good
complete introduction to the topic (see also all the references therein).
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The simplest reaction-diffusion equation is in one spatial dimension in
plane geometry:

∂u

∂t
= D

∂2u

∂x2
+ R(u),

where u is the unknown, D is the diffusion coefficient and R accounts for the
local reaction. Well known models of reaction-diffusion equations in one spatial
dimension are the Fisher’s equation [4] (with the choice R(u) = u(1 − u)),
the Newell–Whitehead–Segel equation [9] (with the choice R(u) = u(1 − u2))
and the general Zeldovich equation [11] (with R(u) = u(1 − u)(u − α) and
0 < α < 1), among many others.

Most of these nonlinear differential equations do not have explicit exact
solutions. These explicit exact solutions of such equations are important to
understand the dynamics of these equations. Among the possible solutions,
the so-called traveling wave solutions have been widely studied. A traveling
wave can be defined as a solution of a system of differential equations that
travels as a constant speed with a fixed shape. It is important to point out
that there are many different kinds of traveling waves in different systems of
equations. Typical systems that have a traveling wave as a solution are the
so-called excitable systems. One example of this type of systems in biology is
the propagation of an action potential along the axon of a nerve.

An important distinction that we should make is between the two most
important types of traveling waves in excitable systems. The first type are the
ones that we denote as traveling fronts and in the phase portrait of a dynamical
system: traveling fronts corresponds to a heteroclinic orbits. The second type
are the ones called traveling pulses, and the phase space orbit for this solution
corresponds to homoclinic orbits.

The theory of traveling wave solutions for these systems is a rapidly
growing area of applied mathematics. From the point of view of applications,
traveling wave solutions usually describe a transition process between steady
states. The most typical type of transition occurs from one equilibrium state
to another, but a more complicated behavior can occur.

There are various approaches for constructing traveling wave solutions.
Some of these approaches are the Jacobi elliptic function method [7], the in-
verse scattering method [1] and the homogeneous balance method [10], to cite
just a few. Most of the methods may sometimes fail or can only lead to a
kind of special solution and these methods become very complex and difficult
to solve as the degree of the nonlinearity increases. In [5] the authors gave a
necessary and sufficient condition for a partial differential equation to have
algebraic traveling waves (see below for a precise definition). More precisely,
they showed that for a general n-th order partial differential equation a travel-
ing wave solutions exist if and only if the associated n-dimensional first order
ordinary differential equation has some invariant algebraic curve. More pre-
cisely, for n = 2, consider the 2-nd order partial differential equations of the
form

∂2u

∂x2
= F

(
u,

∂u

∂x
,
∂u

∂t

)
, (1)
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where x and t are real variables and F is a smooth map. The traveling wave
solutions of system (1) are particular solutions of the form u = u(x, t) =
U(x − ct), where U(s) satisfies the boundary conditions

lim
s→−∞ U(s) = A and lim

s→∞ U(s) = B, (2)

being A and B solutions, not necessarily different, of F (u, 0, 0) = 0 (if A and
B are different the traveling wave is a traveling front, otherwise is a traveling
pulse). Plugging u(x, t) = U(x − ct) into (1) we get that U(s) has to be a
solution, defined for all s ∈ R, of the 2-nd order ordinary differential equation

U (2) = F (U,U ′,−cU ′) = F̃ (U,U ′), (3)

where U(s) and the derivatives are taken with respect to s. The parameter c
is called the speed of the traveling wave solution.

Definition 1. We say that u(x, t) = U(x − ct) is an algebraic traveling wave
solution if U(s) is a nonconstant function that satisfies (2) and (3) and there
exists a real polynomial p such that p(U(s), U ′(s)) = 0.

The main result that we will use is the following theorem, see [5] for its
proof.

Theorem 2. The partial differential equation (1) has an algebraic traveling
wave solution with respect to c if and only if the first order differential system{

y′
1 = y2,

y′
2 = Gc(y1, y2),

(4)

where

Gc(y1, y2) = F (y1, y2,−cy1) = F̃ (y1, y2)

has an invariant algebraic curve containing the critical points (A, 0) and (B, 0)
and no other critical points between them.

In this paper, using Theorem 2, we want to study the existence of alge-
braic traveling wave solutions for the second order reaction-diffusion equations

∂u

∂t
= −df(u)(f ′(u) + r) + d

∂2u

∂x2
, (5)

where f is a polynomial function of degree at most one, and d > 0 and r are
real constants. Writing

f(x) =
n∑

j=0

ajx
j , n ≥ 1 (6)

we will restrict to the case in which an−1 �= 0 (note that an �= 0). Therefore in
this paper we will make the following assumption: writing f(x) in system (5)
as in (6), we have an−1 �= 0.

We will see that by studying the algebraic traveling wave solutions of (5)
we will recover the results presented in [8, Ch 11]. In particular we will find
all the algebraic traveling waves for the Zeldovich equation that arises in com-
bustion theory which is a particular case of the Nagumo equation related with
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the FitzHugh–Nagumo model for the nerve action potentials. The Nagumo
equation is a simplification for a model of signal transmission on nerve axis in
a cardiac tissue. This system of equations is given by

∂u

∂t
= a(u − u1)(u − u2)(u − u3) + d

∂2u

∂x2
,

where a, d > 0 and u1 < u2 < u3 with u1 + u3 �= 0, are given real constants.
Note that this equation can be written as in (5) with

f(u) =
√

a

2d
(u − u1)(u − u3)

that satisfies the assumption because a1 = u3 + u1 �= 0. Our main theorem is
the following.

Theorem 3. The following statements hold for Eq. (5) under the assumption
an−1 �= 0.

a If deg (f) = 1, Eq. (5) has no algebraic traveling wave solutions.
b If deg (f) ≥ 2, Eq. (5) has algebraic traveling wave solutions if and only if

c = dr and the polynomial ordinary differential equation U ′(s)−f(U(s)) =
0 has global solutions satisfying (2) with A and B being solutions of the
equation f(x)(f ′(x)+r) = 0. In this case the traveling wave solutions are
of the form u(x, t) = U(x − ct).

Theorem 3 is proved in Sect. 2. In [5] the authors show that one algebraic
traveling wave solution for system (5) with deg (f) ≥ 2 is indeed the one given
in Theorem 3(b) but they are not able to show that it is the unique one. This
is the main contribution of this paper and this allows us to classify all possible
algebraic traveling wave solutions for system (5). In order to prove Theorem
3 we will show that each (weighted) homogeneous component of the algebraic
invariant curve (see below for a definition) that gives rise to the algebraic
traveling wave solution must fulfill an algebraic homological equation. The
key point is to classify all the solutions of such homological equation with
are (weighted) polynomials. It is important to note that Theorem 3 gives
necessary and sufficient conditions for the partial differential equation (5) to
have explicit algebraic traveling wave solutions, but Theorem 3 says nothing
about the existence of non-algebraic traveling wave solutions.

2. Proof of Theorem 3

We separate the proof of Theorem 3 into two different results, one for deg (f) =
1 and the other for deg (f) ≥ 2.

When deg (f) = 1 we will use a work of Hayashi in [6] that characterizes
the invariant algebraic curves of all systems of the form

x′ = y, y′ = −g1(x) − f1(x)y, (7)

where g1(x) and f1(x) are polynomials. More precisely, he proved the following
result.
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Theorem 4. System (7) with deg(g1) = deg(f1) + 1 has an invariant algebraic
curve g(x, y) = 0 if and only if g(x, y) = y − P (x), where P (x) satisfies

g1(x) = −(f1(x) + P ′(x))P (x) (8)

where
1. either P (x) has degree one;
2. or P (x) is such that P (x) +

∫
f1(x) dx is a polynomial of degree one.

Theorem 5. Equation (5) with deg (f) = 1 has no travelling wave solutions.

Proof. The planar system (4) associated to system (5) with f(x) = γx + β
with γ, β ∈ R, γ �= 0 is

x′ = y,

y′ = − c

d
y + (γx + β)(γ + r),

(9)

which is of the form (7) with g1(x) = −(γx + β)(γ + r) and f1(x) = c/d.
Note that deg(g1) = deg(f1) + 1. It follows from Theorem 4 that if system
(9) has an invariant algebraic curve then it is of the form g(x, y) = y − P (x)
where P (x) satisfies condition (8) and either P (x) is of degree one or P (x) =
−∫

f1(x) dx + Q(x) being Q(x) a polynomial of degree one. Since in this case
f1(x) is constant, we get that both conditions on P can be written as P (x)
being a polynomial of degree one. We write it as P (x) = Ax + B with A,B ∈
R, A �= 0. It follows from the condition (8) that

−γ(γ + r) = −
( c

d
+ A

)
A and − β(γ + r) = −

( c

d
+ A

)
B.

Solving it we get B = Aβ/γ and

A = A∗ = −1
2

(
c

d
±

√
c2

d2
+ 4(γ + r)γ

)
,

whenever the discriminant is non-negative. An invariant algebraic curve of
system (9) must be of the form

g(x, y) = y − A∗

γ
(γx + β) = 0.

Note that from x′ = y we obtain

x′(s) =
A∗

γ
(γx(s) + β)

and so for the function U(s) = y1(x) = x(s) we get the differential equation

U ′(s) =
A∗

γ
(γU(s) + β).

The non-constant solutions that are defined for all s ∈ R are

U(s) = −β

γ
+ κeA∗s,

for some constant κ �= 0 (otherwise U is constant). Note that the function
U(s) does not satisfy condition (2), and so, in this case, no algebraic traveling
wave solutions can exist. �
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Now we consider the case in which deg(f) ≥ 2. We will prove the following
result.

Theorem 6. System (5) with deg(f) ≥ 2 and under the assumption (H1) has
algebraic traveling wave solutions if and only if c = dr, and in this case
p(U,U ′) = U ′(s) − f(U(s)).

In order to prove Theorem 6 we will first state and prove some results.
Note that the planar system (4) associated to system (5) is

x′ = y,

y′ = − c

d
y + f(x)(f ′(x) + r),

(10)

where deg (f) ≥ 2.

Theorem 7. System (10) with deg (f) ≥ 2 has an invariant algebraic curve if
and only if r = c/d. In this case the invariant algebraic curve is

g(x, y) = y − f(x) = 0.

We note that to prove Theorem 6 is equivalent to prove Theorem 7 and
so we will only prove Theorem 7.

Proof of Theorem 7. We will need some preliminary definitions and results.
For irreducible polynomials we have the following algebraic characteriza-

tion of invariant algebraic curves: Given an irreducible polynomial g(x, y) of
degree deg (g) (not being a constant), we have that g(x, y) = 0 is an invariant
algebraic curve for the system x′ = P (x, y), y′ = Q(x, y) for P,Q ∈ C[x, y], if
there exists a polynomial K(x, y) of degree at most max{degree (P ),degree (Q)}
− 1, called the cofactor of g, such that

P (x, y)
∂g(x, y)

∂x
+ Q(x, y)

∂g(x, y)
∂y

= K(x, y)g(x, y). (11)

Note that g(x, y) = 0 is invariant by the system. �

Lemma 8. If system (10) with n ≥ 2 has an algebraic invariant curve, then
K(x, y) = k0(x), where k0(x) is a polynomial of degree at most 2n − 2.

Proof. Since system (10) has degree 2n − 1, the cofactor of an invariant alge-
braic curve g(x, y) = 0 must have degree at most 2n − 2.

We write both g and K in their power series in the variable y as

K(x, y) =
2n−2∑
j=0

K2n−2−j(x)yj , g =
�∑

j=0

gj(x)yj ,

for some integer � and where K2n−2−j(x) is a polynomial of degree at most
2n− 2− j and g and K satisfy (11). Without loss of generality, since g �= 0 we
can assume that g� = g�(x) �= 0. Moreover:

y
∂g

∂x
+

(
− c

d
y + f(x)(f ′(x) + r)

)∂g

∂y
= Kg. (12)
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We compute the coefficient of y�+2n−2 in (12) and we get g�K2n−2 = 0, that
is K2n−2 = 0 because g� �= 0. Now we proceed by backwards induction on the
degree in y of (12). Computing the coefficient of y�+j for j = 2n − 3, . . . , 2 in
(12) and using that g� �= 0 we get g�kj = 0, that is, Kj = 0 for j = 2n−3, . . . , 2.
So, K(x, y) = K0(x) + K1(x)y. Computing the coefficient of y�+1 in (12) we
get

g′
�(x) = K1g�

which yields g� = κe
∫

K1(x) dx, for κ ∈ C\{0}. Since g� must be a polynomial
we get K1 = 0. This implies that K(x) = K0(x) and completes the proof of
the lemma. �

We introduce the change of variables

Y = y − f(x), X = x

Then system (10) in these variables becomes

X ′ = Y + f(X),

Y ′ = − c

d
(Y + f(X)) + f(X)f ′(X) + f(X)r − f ′(X)(Y + f(X))

= −
( c

d
+ f ′(X)

)
Y + Af(X),

(13)

where A = r − c/d.
Note that any irreducible Darboux polynomial g(x, y) = g̃(X,Y ) of sys-

tem (10) is an irreducible Darboux polynomial of system (13) and vice-versa.
Moreover, any irreducible Darboux polynomial g̃ of (13) satisfies

(Y + f(X))
∂g̃

∂X̃
+

(
−

( c

d
+ f ′(X)

)
Y + Af(X)

)
∂g̃

∂Ỹ
= K0(X)g̃.

We write

f(X) =
n∑

j=0

ajX
j , K0(X) =

2n−2∑
j=0

kjX
j .

Now we introduce the weight-change of variables of the form

X = μ−1x1, Y = μ−ny1, t = μn−1τ

with μ ∈ R\{0}. Then system (13) becomes

x′
1 = y1 + μnf(μ−1x1) = y1 + anxn

1 + an−1μxn−1
1 + · · · + a0μ

n,

y′
1 = μn−1

( − c

d
− f ′(μ−1x1)

)
y1 + Aμ2n−1f(μ−1x1)

= − c

d
μn−1y1 − (nanxn−1

1 + · · · + a1μ
n−1)y1

+ Aanμn−1xn
1 + · · · + Aμ2n−1a0

= −nanxn−1
1 y1 − (n − 1)an−1x

n−2
1 y1 − · · · − a1μ

n−1y1 − c

d
μn−1y1

+ Aanμn−1xn
1 + · · · + Aμ2n−1a0,

(14)

where the prime denotes now derivative in τ .
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A polynomial G(x1, y1) is said to be weight-homogeneous of degree N ∈ N

with respect to the weight exponent s = (s1, s2) if for all μ ∈ R\{0} we have

G(μs1x1, μ
s2y1) = μNG(x1, y1).

In our case, we set

G(x1, y1) = μNg(μ−1x1, μ
−ny1) =

N∑
i=0

μiGi(x1, y1)

where Gi is the weight homogeneous part with weight-degree N − i of G, and
N is the weight degree of G with the weight exponent s = (1, n). Obviously
g = G|μ=1. Take now K(x) = μn−1K0(μ−1x1), i.e.

K = μn−1(k0 + k1μ
−1x1 + · · · + kn−1μ

−n+1xn−1
1

+ knμ−nxn
1 + · · · + k2n−2μ

−2n+2x2n−2
1 )

= k2n−2μ
−n+1x2n−2

1 + · · · + knμ−1xn
1

+ kn−1x
n−1
1 + kn−2μxn−2

1 + · · · + k0μ
n−1.

We note that G = 0 is an invariant algebraic curve of system (14) with cofactor
K:

dG(x1, y1)
dτ

= μNμn−1 dg(μ−1x1, μ
−ny1)

dt

= μNKg(μ−1x1, μ
−ny1) = KG(x1, y1).

From (11) we have
(

y1 +
n∑

j=0

an−jμ
jxn−1

1

) N∑
i=0

μi ∂Gi

∂x1
−

(
y1

n−1∑
j=0

(n − j)an−jμ
jxn−j−1

1

+
c

d
μn−1y1 − A

n∑
j=0

an−jμ
n−1+jxn−j

1

) N∑
i=0

μi ∂Gi

∂y1

=
2n−2∑
j=0

k2n−2−jμ
−n+1+jx2n−2−j

1

N∑
i=0

μiGi. (15)

Equating the terms with μ−j for j = n + 1, . . . , 1 we get k2n−2 = · · · =
kn = 0 (note that if G0 = 0, then g is a constant, which is not possible because
g = 0 is an invariant algebraic curve). Moreover, equating the terms with μ0

we get
L[G0] = kn−1x

n−1
1 G0 (16)

where

L = (y1 − anxn
1 )

∂

∂x1
+ nanxn−1

1 y1
∂

∂y1
.

Now we use the method of characteristic curves for solving linear partial differ-
ential equations (see, for instance, Bleecker and Csordas [2]). The characteristic
equations associated with the linear partial differential equation (16) are
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dx1

dy1
=

y1 + anxn
1

−nanxn−1
1 y1

.

This system has the general solution y2
1/2+anxn

1y1 = κ, where κ is a constant.
According to the method of characteristics we make the change of variables

u = y2
1/2 + anxn

1y1, v = y1. (17)

Its inverse transformation is

x1 =
(2u − v2

2anv

)1/n

, y1 = v. (18)

Under changes (17) and (18), the partial differential equation (16) becomes
the following ordinary differential equation (for fixed u)

−nanv
dG0

dv
= kn−1G0,

where G0 is G0 written in the variables u, v. In what follows we always write
θ to denote a function θ = θ(x1, y1) written in the (u, v) variables, that is,
θ = θ(u, v). The above equation has the general solution

G0 = F 0(u)v−kn−1/(nan),

where F 0 is an arbitrary smooth function in the variable u. In order that G0

be a weight homogenous polynomial with weight degree N , since x1 and y1
have weight degrees 1 and n respectively we get that G0 should be of weight
degree N = j + 2�n for some convenient j, � ∈ N. So,

kn−1 = −jnan, G0 = b�

(
y2
1/2 + anxn

1y1)�yj
1.

Without loss of generality we can assume that b� = 1. We will prove by induc-
tion that

Gi = 0, � = 0, kn−1−i = −j(n − i)an−i for i = 1, . . . , n − 2. (19)

Indeed, computing the term in μ in (15) we get

L[G1] − kn−1x
n−1
1 G1 + an−1x

n−1
1

∂G0

∂x1

−(n − 1)an−1x
n−2
1 y1

∂G0

∂y1
= kn−2x

n−2
1 G0.

Using G0 and doing some computations we obtain that

L[G1] + jnanxn−2
1 G1

= R�−1xn−2
1 yj

1

[
an−1

(
− �nanxn

1y1 + (n − 1)�(anx1y1 + y2
1)

+(n − 1)j
(y2

1

2
+ anxn

1y1

))
+ kn−2

(y2
1

2
+ anxn

1y1

)]

= R�−1xn−2
1 yj

1

[
an−1

(
(n − 1)�y2

1 − �anxn
1y1 + (n − 1)jR

)
+ kn−2R

]

= R�−1xn−2
1 yj

1

[
an−1

(
− �R + (2n − 1)�

y2
1

2
+ (n − 1)jR

)
+ kn−2R

]
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= R�−1xn−2
1 yj

1

[
R

(
kn−2 +

(
(n − 1)j − �

)
an−1

)
+

2n − 1
2

�an−1y
2
1

]

= B1x
n−2
1 R�yj

1 + B2x
n−2
1 R�−1yj+2

1 ,

where R = y2
1/2 + anxn

1y1. Under changes (17) and (18), we can rewrite

L[G1] + jnanxn−1
1 G1 = B1x

n−2
1

(
y2
1/2 + anxn

1y1
)�

yj
1

+B2x
n−2
1

(
y2
1/2 + anxn

1y1
)�−1

yj+2
1

as the following ordinary differential equation (for fixed u)

dG1

dv
= − j

v
G1 +

21/nB1

na
(n−1)/n
n

vju� 1
v(n−1)/n(2u − v2)1/n

+
21/nB2

na
(n−1)/n
n

vju�−1 v(n+1)/n

(2u − v2)1/n
.

(20)

Note that it can be written as
dG1

dv
= − j

v
G1 + G̃1(v),

whose general solution is

G1 = F 1(u)vj + vj

∫
v−jG̃1(v) dv,

being F 1(u) a smooth function in the variable u. Hence, the solution of the
linear differential equation (20) is

G1 = F 1(u)vj +
21/nB1

na
(n−1)/n
n

vju�

∫
1

v(n−1)/n(2u − v2)1/n
dv

+
21/nB2

na
(n−1)/n
n

vju�−1

∫
v(n+1)/n

(2u − v2)1/n
dv

= F 1(u)vj +
2(1−n)/nB1

a
(n−1)/n
n

vj+1/nu�−1(2u − v2)(n−1)/n

× 2F1

(
1,

2n − 1
2n

,
2n + 1

2n
,
v2

2u

)

+
2(1−n)/nB2

(1 + 2n)a(n−1)/n
n

u�−2vj+2+1/n(2u − v2)(n−1)/n

× 2F1

(
1,

4n − 1
2n

,
4n + 1

2n
,
v2

2u

)
,

(21)

where

2F1(a, b, c, x) =
∞∑

k=0

a(a + 1) · · · (a + k − 1)
b(b + 1) · · · (b + k − 1)c(c + 1) · · · (c + k − 1)

xk

k!
(22)

is the hypergeometric function that is is well defined if b, c are not negative
integers. In particular, it is a polynomial if and only if a is a negative integer.
Note that in our case a = 1, b = (2n−1)/2n and c = (2n+1)/(2n) in the first
hypergeometric function and a = 1, b = (4n − 1)/2n and c = (4n + 1)/(2n)
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in the second one. Hence, both hypergeometric functions are well defined and
are never polynomials. Moreover, (21) can be rewritten as

G1 = F 1(u)vj +
1

a
(n−1)/n
n

u�−2vj+1/n(2u − v2)(n−1)/n)
(
21/nB1u

+ ((2n − 1)B1 + B2)
∑
j≥1

21/n−j
∏j

r=2(2rn − 1)∏j
r=1(1 + 2rn)

v2j

uj−1

)
,

(23)

where
∏j

r=2(2rn − 1) = 1 whenever j ≤ 2. Since G1(x1, y1) = G1(u, v) must
be a weight-homogeneous polynomial with weight degree N −1 = j −1 (in the
variables x1, y1) and n is a positive integer we must have (2n−1)B1 +B2 = 0.
Taking into account the definition of B1 and B2 this implies

kn−2 = −an−1

2
(2j(n − 1) − �). (24)

Then B1 = −�an−1/2 and B2 = (2n−1)�an−1/2. Imposing it in (23) we obtain

G1 = F 1(u)vj − 2−1+1/n

a
(n−1)/n
n

an−1�u
�−1vj+1/n(2u − v2)(n−1)/n. (25)

Note that G1 must have weight-degree N − 1 = 2�n+ j − 1. Note that by (25)
we have that the degree of G1 is

(� − 1)2n + n(j + 1/n) + 2(n − 1) = 2n� + nj − 1.

Taking into account that it must be equal to 2�n + j − 1 we must have n = 1,
which is not possible because n ≥ 2. So, Gn−1 − F 1(u)vj must be zero. This
implies that � = 0. But then also F 1 = 0 and G1 = 0. Since � = 0 it follows
from (24) that kn−2 = −j(n − 1)an−1. In short N = j and

G0 = yj , G1 = 0, kn−2 = −j(n − 1)an−1.

Now proceeding inductively as we did for G1 using that � = 0 we get that
Gi = 0 and kn−1−i = −j(n − i)an−i for i = 1, . . . , n − 2. This yields (19).

Computing the term in μn−1 in (15) and using (19) we get

L[Gn−1] + njanxn−1
1 Gn−1 = −a1x1

∂G0

∂x1
+

c

d
y1

∂G0

∂y1
− Aanxn

1

∂G0

∂y1
+ k0G0.

Hence,

L[Gn−1] = −njanxn−1
1 Gn−1 +

c

d
jyj

1 − Aanxn
1 jyj−1

1 + k0y
j
1

= −njanxn−1
1 Gn−1

(
k0 + j

c

d

)
yj
1 − Aanjxn

1yj−1
1 .
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Under changes (17) and (18), we can rewrite the above equation as an ordinary
differential equation (for fixed u) whose solution gives

Gn−1 = Fn−1(u)vj − k0 + jc/d

na
1/n
n

2(n−1)/nvj

∫
1

v1/n(2u − v2)(n−1)/n
dv

+
2(n−1)/njAa

(n−1)/n
n

n
vj

∫
1

v(n+1)/n(2u − v2)(n−1)/n
dv

= Fn−1(u)vj − k0 + jc/d

(n − 1)a1/n
n

2−1/nu−1vj+1−1/n(2u − v2)1/n

2F1

(
1,

n + 1
2n

,
3n − 1

2n
,
v2

2u

)

− 2−1/njAa(n−1)/n
n vj−1/nu−1(2u − v2)1/n

2F1

(
1,

1
2n

,
2n − 1

2n
,
v2

2u

)
,

where Fn−1 is a smooth function in variable u and 2F1 is the hypergeometric
function introduced in (22). Again both hypergeometric functions are well
defined and none of them are polynomials. Since Gn−1 must be a polynomial,
j = N > 0 and the above hypergeometric functions cannot combine to give a
polynomial (in contrast to what happens in (21) because of the terms vj+1−1/n

and vj−1/n whose exponents have different parity while the variable in the
hypergeometric functions is the same: v2/(2u)), we must have

k0 + jc/d = 0 and A = r − c

d
= 0.

Hence, r = c/d and k0 = −jc/d. Again, since Gn−1 must be a weight-
homogeneous polynomial of weight-degree n(j − 1) and yj

1 has weight degree
nj we must have Fn−1(u) = 0 and so Gn−1 = 0.

Since G0 does not depend on x1, we have

L[Gn] + njanxn−1
1 Gn = 0

which yields Gn = 0. Proceeding inductively we get that G = G0. Therefore,
g(X,Y ) = G|μ=1 = Y j . Since g must be irreducible we must have j = 1. Then
the unique irreducible invariant algebraic curve is Y = y − f(x) = 0 and it
occurs when r = c/d. It has cofactor K = −(c/d + f ′(x)). This concludes the
proof of the theorem. �

Proof of Theorem 3. Statement (a) in Theorem 3 follows directly from Theo-
rem 5.

For statement (b), note that by Theorem 6, system (5) with deg (f) ≥ 2
and under the assumption an−1 �= 0, has a traveling wave solution if and only
if c = dr and in this case it must satisfy U ′(s) − f(U(s)) = 0. The solution
of this equation under adequate boundary conditions satisfying condition (2)
with A and B being solutions of f(x)(f ′(x) + r) = 0 defined for all s ∈ R give
the algebraic traveling wave solutions u(x, t) = U(x− ct) of Eq. (5) with speed
c = dr. This concludes the proof. �
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