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Abstract. In this paper we demonstrate the existence and concentra-
tion behavior of semi-classical solutions for the nonlinear Chern—Simons—
Schrodinger systems with external potential. Combining the variational
methods with concentration compactness principle, we prove the exis-
tence of a family of semi-classical solutions concentrating at the minimum
points of the external potential.
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1. Introduction and main result

We study the concentration phenomenon of ground states to the following
Chern-Simons-Schrodinger system (CSS system) in H1(R?)

—&2Au+ V(x)u + Ag(u(x))u + 25:1 A?(u(ac))u = f(u),
01 Ao(u(x)) = Ax(u())[ul?,  e0rAo(u()) = —Ai (u(@))[ul*,
e(OAz(u(z)) — 02A1 (u(z))) = —3u?, 01 A (u(x)) + 02A2(u(z)) =0,
(1.1)
where the parameter ¢ > 0, f(u) = |u[P~2u, p > 6 and the external potential
V(z) satisfies
(V) V(z) € C(R% R) and Vj := iélﬂgz V(z) < Vo := liminf V(x).

|z]—o0

This system arises in the investigation of the standing wave of Chern—
Simons—Schrodinger system, proposed in [9,10] and [5] consists of the
Schrédinger equation augmented by the gauge field, which describes the dy-
namics of large number of particles in a electromagnetic field. This feature
of the model is important for the study of the high-temperature supercon-
ductor, fractional quantum Hall effect and Aharovnov-Bohm scattering. The
Lagrangian density of the abelian Chern—Simons model provide CSS system
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iDo¢ + (D1 D1 + D2D2)é = f(9),

A1 — 0149 = —Im(¢D29), (1.2)
0o Az — 0 Ag = Im(¢pD19), '
DAz — 0, A1 = —1|¢|%.

The CSS system (1.2) is invariant under the following gauge transformation
¢ — ¢elx, A, — A, —0,x where x : R'*2 — R is an arbitrary C* function.
Blowing up time-dependent solutions were investigated by Berge et al. [1] and
local wellposedness was studied by Liu et al. [13].

We suppose that the gauge field satisfies the Coulomb gauge condition
OpAg+01A1+02A2 =0, and A, (x,t) = Ay(z), p=0,1,2. Then the standing
wave 9 (x,t) = e“! u(x) satisfies

—Au+wu + Agu + A2u + Adu = f(u),
81A0 = AQUQ, 82140 = 7A1u2, (13)
81A2 - 82A1 = 7%|U|2, 81A1 + 82A2 =0.

The existence of radial solutions to (1.3) has been investigated by Byeon et
al. [2], under the assumptions of power type nonlinearities, see also [6] and
[7]. A series of existence results of solitary waves has been established in
[3,11,14,15,17,22]. We studied the existence, non-existence, and multiplicity of
standing waves to the nonlinear CSS systems with an external potential V (x)
without the Ambrosetti—-Rabinowitz condition in [18]. Multiplicity and concen-
tration of radial solutions have established by using variational methods [17] in
the general nonlinearities and Yuan [22] studied radial normalized solutions.
Moreover, we show the existence of nontrivial solutions to Chern—Simons—
Schrodinger systems (1.1) by using the concentration compactness principle
with V(z) is a constant and the argument of global compactness with p > 4,
V € C(R?)and 0 < Vy < V(z) < Vi in [19]. For the more physical background
of CSS system, we refer to the references we mentioned above and [4,8].

Inspired by [2,18,19], and [20], the purpose of the present paper is to
study the existence and concentration of ground state for system (1.1) where
p > 6 and the external potential V' (z) satisfies condition (V). We can obtain
the following result.

Theorem 1.1. Let p > 6 and V(x) satisfies condition (V). Then for all e > 0
small,

(i) System (1.1) has at least one least energy solution u. € H'(R?).
(ii) There is a mazimum point & of u. such that as ¢ — 0, u.(ex + &)
converges to a least energy solution of the limit problem in the form of

(1.3) with

=V = inf V(&).
w = V(&) P ()

For this, we employ the variational method joined with Nehari manifolds
and concentration compactness principle [12] to the corresponding energy func-
tional. The difficulty arises in the non-local term A,, & = 0,1,2 depend on
u and a lack of compactness in R?. For the concentration of semiclassical
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limits, we establish the regularity of weak solutions and the exponential decay
of solutions at infinity.

The paper is organized as follows. In Sect. 2 we introduce the workframe
and prove some technical lemmas. Especially, we show some important propo-
sitions of A, @ = 0,1,2. In Sect. 3 we prove the existence of ground states in
Theorem 1.1 and the concentration of solutions in Theorem 1.1.

2. Preliminary

In this section, we discuss the variational framework for the future study. At
end of section, we show the regularity results and exponential decay of weak
solutions.

Let E® denote the usual Sobolev space H'(R?) with

1/2
ull e = ( [ v +au|2dx) ,
]RQ

where a > 0. By using 01 A1 + 024> = 0, we observe that
0= 0201 A9 — 0102 A¢ = Da(Agu?) + 01 (A1u?)
= 2u(A101u + Ax0au) + u? (01 A1 + Do Ay).
This implies that 23:1 A;0ju = 0. Let us denote A, (u(z)) = Ay for a =
0,1, 2. Define the functional

1 1
Je(u) = 3 /]Rz <€2|Vu\2 + V() |u|® + AZ|ul® + A§|u|2) dx — » /}R2 |u|P dx.

(2.1)

Solutions of (1.1) can be obtained as critical points of .J.. Also, if u is a solution
of the following system

—Au+V(ex)u+ Agu + 2321 Alu = |u|P~?u,
Ay = Aslul?,  Ag = —Aul?, (2.2)
Ay — 03A; = —Ju?, 91 A1 + D24y =0,

by scaling x — ¢~z in R?, we have that u(¢~'z) is a solution for the system
(1.1). Let E. to be the Hilbert subspace of H'(R?) under the norm

1/2
IIuIEE—(/ Vu|2+V(ez>|u|2dx> e
R2

We define the energy functional associated with (2.2),

X 1 1
Je(u) == /}R2 (|Vu|2 + V(ex)|ul® + Af|ul* + Ag\u|2) dz — 5/}}{2 |ul? dz.

2
(2.3)
We have the derivative of JA‘s in F. as follow:
(JL(w), n)

= / (Van + V(ex)un + (A + A3)un + Agun — \u|p_2un) dzx, (24)
R2
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for all n € C§°(R?). Since

/ A0u2 dr = -2 A0(81A2 — 82141) dz
R2 R2
= 2/ (A281A0 — A182A0) dx
R2

= 2/ (A3 + Aj)u® dz,
]RZ
we obtain

i), ) = [

g (|vu|2 +V(ex)|ul? + 3(A2 + A2)[ul® - |u\1’) dr.  (2.5)

Let us consider the system
—Au + au + Agu + 2521 AZu = |ulP~?u,
Ay = Asul?, 0240 = —Aqul?, (2.6)
WAy — D9 A = —%UQ, WAL+ 09A5 =0

to compare its energy with the one of (1.1). Define the functional

1 1
Jo(u) = 3 /R2 (|Vu|2 + alul* + Af|ul* + A%\u|2) dz — ];/RZ [ulP dz. (2.7)

Let Voo = liminf), o, V(). We will see that the system in the case a = Vi,
play the role of the limit problem to (1.1).

The components A; of the gauge field can be represented by solving the
elliptic equations

2 2
aa=o (M), an o (1),
2 2
which provide

|ul? 1 z2 — 2 |uf*(y)
A=A =K — ) =—= 2.
1 1(u) 2 % ( o7 Jea o=y 2 dy, (2.8)

Ay = As(u) = —K; = <“|2> ! / 2=y [ul(y) dy,  (2.9)

T om r2 |z —yl2 2

where K; = for j = 1,2 and * denotes the convolution. The iden-

e
27T|l:7|2 )
tity AAg = 01 (Az|ul?) — 2(A1|ul?), gives the following representation of the
component Ag:

Ao = Ao(u) = K1 * (A1|’U,‘2) — K2 * (Ag‘u|2) (210)
We know that J. is well defined in E., J. € C! (E.), and the weak solution
of (2.2) is the critical point of the functional J. from the following properties,

which one can find the proofs in [19]. For the reader’s convenience, we sketch
the formal estimates.

Proposition 2.1. Let 1 < s < 2 and % —

N|—

1
q
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(i) Then there is a constant C depending only on s and q such that

(/R }Tu(x)‘qu)é <c (/R |u(ac)|5dx>i,

where the integral operator T is given by
Tu(x) ::/ )
Rz [T — Y|
(i) If u € H*(R?), then we have that for j = 1,2,
(42 (u) || Lo r2y < C||UH%25(1R2)

and
[ Ao(u)|| a2y < Cllullzs rey 1wl Fa g2y
(iil) For ¢ = ﬁ, i=1,2
[Aj (wull 2@y < [|A4; ()l 2@y [ull 20 (g2)-
Proof. (i) This is the Hardy-Lilltewood-Sobolev inequality.
(ii) Applying (i) to the gauge potential A,, p = 0,1,2, we have the results,

see also [6].
(iii) The statement comes from the Holder inequaity. That is,

/|Aj<u>2|u|2dx<(/ Aj(u)|2qu)q</ |uf_adx)q
R2 R2 R2

We will need the following properties of the convergence for A;.

O

Proposition 2.2. Suppose that u, converges to u a.e. in R? and u, converges
weakly to u in H'(R?). Let Ay := Aa(un(z)), a =0,1,2. Then
(i) Aj;, converges to Aj(u(z)) a.e. in R
(1) fpo A7 unude, [po A7 |ul® dz, and [p, A7, |un|? do converge to [p, AF|ul?
dx, fori=1,2; [po Ao nunude and [po Ao nlu,|? dz converge to [5, Aolul®
dx.
(i8) s [As (=) Pt —ul? d = i | AsCut) P2 dr— fs | As () 202 dar+
on(1), fori=1,2.
Proof. The proof can be found in [19], which follows from the idea of Brezis-
Lieb lemma, we sketch it here.
(i) We see that for i = 1,2

1
= 0 12691 e [ 5]
r(z
1
2 2
+ Hun —u HL%(B;?(I)) La(Bs, (x))
where T'(u fR2 Lay)—u(y) |m y‘ ‘W) dy. Taking n — oo and R — oo, we

obtain that Ai’n( ) Ai(z) and that A?(u,(2))un(z) = A2 (u(x))u(z),
a.e. in R2.
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(ii) By using the Holder inequality we have that for ¢ = 1,2 and ¢’ = -+
| [, A wn(a)ute) da| < 1430 sy Fnl ey [l sy,
| / ?(@) da < 1A Lo ey N -
Thus, {A?,un}, {A7,} are bounded. The weak convergence implies that
/ A? u? dam/ A? upudr — A d.
Rz R2 R2
Hence,

’/ A?’n|un|2dw—/ A?|u\2dm‘
R? R?

g/ |(Af7n—A?)|un\2|dx+/ A2 (Junl? — [uf?)| da
R2 R2

< ([ -aya) ([ b))
R2 R2

4 (/R (Jun? — |u?)3czx>g (/R A?dx)S

Since u,, converges to u a.e. in R?, (i), and Proposition 2.1, we have

/ A2 u dr — A2u2dx
RZ

Similarly, we can obtain [, Agpusudz and [o, Ao nlun|? dz converge
t0 fg2 Aolul? dx.
(iii) By using the Fatou lemma, we obtain that

/ A%u? dx §/ Afnun dzx.
R2 R2

Moreover, there exist small § > 0 and C; > 0 such that

hs == HAM w2 — | Ayt — Agul? — A2u 2‘—5|Alnun—Au|}

< 1A%,

By using the Lebesgue Dominated Convergence Theorem, [g, hs 0,
we know that

limsup/ ‘Aln u? — | A pun — Ajul? — Au 2’d:v<5C2,

n—oo

where Cy := sup ng |A; nun — Ajul? dz < co. The desired result follows
from 6 — 0. ]
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Let us define the Nehari manifold related to the functionals above and
discuss the property of the least energy of the critical points. Let

3 = {w € E\{0}: <j;(w),w) =0},
Ba = {w € H'(R)\{0} : (J5(w), w) = 0}.
Lemma 2.3. Assume p > 6, then S, and S, are smooth manifolds, where

a > 0.

Proof. Here we just give the proof of 3., others are similar. Let

g(u) = <jé(u)’u>7 u € ia-

Then
(g'(u),u) = 2/ (IVul® + V(ex)u® + 9ATu® + 9A3u?) da fp/ |ul? dx.
R2 R2
Since u € 3., we have
/ (IVul]® + V(ex)u® + 3ATu° + 345u*) de = | |uf’ dz.
R2 R2

Hence, if p > 6 we obtain

(o (u)u) =2

(IVul* + V(ex)u® + 9ATW” + 9A3u”) dw — p/
R2

|ulP dx < 0.
R2

By the Implicit Function Theorem, 3. is a smooth manifolds. O

Now we can define critical values for the functionals on the corresponding
manifolds. Define
Co = wlélzf:a Jo(w), i = A,lélrfa tren[g?i,]a('y(t)), = weHll(I]}%fr")\{O} {n;}éJa (tw),

where T, == {v € C([0,1], H}(R?)) : ~(0) = 0,Ja(y(1)) < 0} and a €

kK

{e,&, 00}. Similarly, we can define é., &, é&* on J..

(oR]

Lemma 2.4.

ok k% A sk k%
Cqg =C,=¢C,, Cc=C.=2¢C_.

Proof. For convenience we drop the notation €. Here, we only show the proof

¢ = ¢* = ¢&**. The others are similar. First, we prove ¢ = ¢**. In fact, this will

follow if we can prove that for any u € E.\{0}, the ray R, = {tu : t > 0}
intersects the solution manifold X, once and only once at fu (6 > 0) where
Jo(0u), 6 > 0, achieves its maximum.

(J!(tu), tu) = > (/]R2 (IVul]* + V(ex)u?) dx

+3t4/ (Afu® + ASu®) do — tP2 / |u|? dx) .
R? R?
Let

h(t) = by + t*by — tP"2bg, t € [0, +00),
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where

by = / (|Vul* + V(ex)u?) dz, by = 3/
R2 R

We claim that there exists ¢ty € (0, 400) such that h(tp) = 0. Indeed, by simple
computation, we have that

(ATu® + Aju®) dz, by = / |u|? da.
RQ

2

, . 12b 7
h >O,t<t1-*(m) ’

" o 12b. PilG

(p—2)bs
R (t) = 0 and h(t) is strictly decreasing for ¢ > t3 as well as strictly increasing
for t < t3. Since h(tz) = by > 0 and h(t) — —oo as t — 400, there exists an
unique to > t3 such that h(tg) = 0. Hence, the ray R; intersects 535 only once.
We have shown that ¢ = ¢**.
Next, we prove ¢* = ¢**. It is clear that ¢** > ¢*. Let us show ¢** < ¢*.
Then, we can write

1
Also, there exist to = 0, t3 = ( 4b, )VG satisfying to < t; < t3, such that

o=

with
K={u=tu:u€ E.,u+#0,t<oo}.

Let v € T be a path. If for all v € T, yN K # (), then the inequality is proved.
If there exists v € I such that v(¢) ¢ K for all ¢ € [0, 1], then we have

/RQ (IVAP + V(z)y* 4+ 3BAT ()7 + 3435 ()7°) dx > /RQ Y|P da.

and if p > 6

R 1 1
5) =5 [ (V9P + Vieah® + A + Aoa)?) do— o [ P da
R? P Jr2
1
> 5 [ (VP + Viean? + B + A3(a?) do
R2
1
2 [ (1992 + Viean? + 343007 + 34507 do
R2
>0,

which contradicts the Mountain Pass characterization of ¢*. Consequently,

A%k Ak

O

Next, we will discuss the properties of the energy functionals depend on
different parameters.
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Lemma 2.5. Suppose that V,(z) and Vi (x) satisfy condition (V). If
Va(z) < V() (2.11)

then cy, < cy,. Moreover, if the inequality in (2.11) is strict and V, and Vj,
are constants, then cy, < cy,.

Proof. Let cy, be the corresponding critical value of the energy functional J,.
Define other related notation in the obvious way. Notice that E* ¢ E® and for
any u € E°, J,(u) < Jy(u). By Lemma 2.4,

= 1 > i = .
W = el PEB O 2 iy P t) = v

Next we prove the second assertion. Since V, and V, are constants, we get
that E* = E* = H'(R?). Moreover, by [19], by there exists a ground state
up € HY(R?) such that ¢(V,) = Jyp(up). Then, by Lemma 2.4, we have

= = > i - .
ey, = Jop(up) ??%Jb(tub) > {nza)éJa(tub) > ueHll(%le)\{O} ??%Ja(tu) cv,

O

Lemma 2.6. ¢. > cy,. Moreover, limsup ¢, < cy,.
e—0t

Proof. By Lemma 2.5, we have ¢; > cy,. On the other hand, suppose @ is a
solution of the least energy of the following problem

—Au+V(&)u+ Apu + Z?zl A?u = |ulP~2u,
81A0 = AQ"U,|2, 32A0 = —A1|7.l,|27
81A2 — 82A1 = 7%712, 81A1 + 82A2 =0.

That is, Jy () () = cv(g) and Ji, ¢ (u) = 0. For any R > 0, take a cut-off
function yp € C5°(R?) such that g = 1 in Br(0), ¥g = 0 in B5z(0), and
0 <¢gr <1, |VYgr| < ¢/R. Let ug = Y, u:(z) = ur(x — %“), and t. > 0
such that ¢, < jg(tgua) = gng)éje(tug). We claim that t, — 1 as ¢ — 0. In fact,

by the definition of ., we have

2 [ (V0 + Vi) dot 37 [ (A2l + A do
RQ

R2
:/ |ue|P da.
R2

Changing variable to z —

e

we have

tgfp/ (|VuR|2 + Viex + go)ufz) dx + 3t§*1’/ (A%(uR)u% + Ag(uR)u%) dx
]R2

R2

:/ lug|? dz. (2.12)
R2
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Since J",(go)(uR) = 0, for R large enough, we have

[, (Fun + Vi) do+3 [ (Ab(un)ude+ Aunyid) de
:/ lual? dz + on(1). (2.13)
RQ

Then

7

[, (View+ &) = Vicons) ae

< / V(e + &) — V(&) |u da
Baor

+ / |V (ex + &) — V(&)|u% do

c
2R

< ¢f.

Hence,

lirr(l) V(ex + &)uk do = / V(&)u% da. (2.14)
£— R2 R2

By (2.12), (2.13), (2.14), and Proposition 2.2, we obtain
(1 _tg—P)/ (IVurl? + V(€ohd) d
RQ

+ 2 Po (1) +3(1 — t?‘P)/ (A(ur)uf + A3 (ur)u}) dz = og(1).
R?

Letting R — +o00, we have
(=) [ (VaP + Vig)a?) ds
R2

+ 12 Po (1) + 3(1 — tS*P)/ (Af(a)u® + A3(u)u?) dz = 0.
R2

If t. — oo, then @ = 0. It is absurd. Consequ(intly, t. — 1 as e — 07. Hence,

letting R — +o0 and then & — 0+, we have J.(teue) — Jy (g, (@) as e — 0F.

It follows for all &, € R?

limsup é. < cy(g,), (2.15)
e—0*t
Since & is arbitrary, (2.15) implies lim sup,_,, é: < cyy. O

Proposition 2.7. Let u be weak solution of (1.1). Then
(i) lim w(z)=0and lim Vu(z)=0;

|| —+o00 || —+o00
(il) w satisfies the following exponential decay at infinity, i.e., there exist pos-
itive constant R, C, and & such that |u(z)| < Ce= 07l
Proof. (i) We might as well consider the solution of (2.2). Define

u, |u(z)] <7,
Uy =147, ul@) =7, (2.16)
=, u(w) < —7.
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Then, we have |u,| < |u|, |Vuy| < |Vul|, and Vu, - Vu > 0. We know that for
B >0,

/R Ao us PO da < Ao agen s 7507500 gy

2(8+1
< O|\u|l2Lgs(Rz)||u||2L4(R2)||“7||L(2Bq’w)+l>(R2)’

where 1 — 1 = é, s € (1,2), ¢ = ;4. Multiplying (2.2) by 2P u., then

integrating by parts and together with the above inequality, we obtain
[ (91 2+ V(s )
R2
—/ Agu?|uy [* dx + / lu|P~%u? |uy P da
R2 R2

/ |A0u2|u7|23|dx+/ lu[P~2u?|u, | 2P da. (2.17)
R? R?

IA

IA

We choose g = p%, where ' > 2(p — 2). Then, ¢’ = q%l = p+2 By (2.17),
Sobolev inequalities, Proposition 2.1 and 1+ 3% < (1 + 3)? for £ > 0, we have

2
’ t7
(42 |U|U’Y|B|t dx)

< C’/R2 (IV (uluy|?)|? + V (ez)u?|uy|*?) da
< C/ (IVul?|uy [P + B2 |V, | |u, |2PD) d;c—i—/ V(ex)u?|u,|*’ dx
R? R?

<C(1+p)? </ \Vul?|u, |* dx —|—/ V(ex)u?|u,[* d:17>
R? R?

— 2 1
< O+ B) (lull e oy lall s ey + lallP =) ll 300750 e

By the Fatou’s Lemma in ~, we have

1
2(B+1)

el s gy < (CC1+ B (e oy 0l sy + 1ulP2))
Null 2o o0 2y

Using the Moser iteration, letting By = 8+ 1, 2¢'Bms1 = t/Bn for m =
0,1,2,..., and m — oo, we obtain that u € L!(R?), for all ¢ > 2. By the
Calderon-Zygmund inequality, we conclude that u € W2*!(By(20)), Voo € R2.
Next, by the interior Li-estimates we have

-1
HU”Wz»i(Bl(aco)) <C (”u”Lf(Bz(zo)) + Hu”it(p—l)(BQ(mO))) :

Then, by Sobolev inequalities, for some 7 € (0,1),

—1
lullorr By = € <||“||L‘(Bz<mo>> + ||U\|’£t<p—1><32(m>>) '

Letting |zo| — oo, we have ||ul|¢1.- (B, (z)) — 0, which gives (i).
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(ii) Define & = Me=%U1=L)  where M = max{|u(z)| : |z| = L} for fix
6 > 0 satisfying V > 6%. Then At = (62 — %)ﬂ Let us consider the difference
[0, zeBY,
Or = {blu — 1, x¢€R*\B%.

with b; > 0. By (2.4), choosing = ¢, we have

[, (90nf? +V(ea)ionP) da

< /R (Ca &) — Vo) iR d + /R by [ulP~2u¢r dz + op(1).

We choose R > 0 such that |u[P~2? <V — 62 for |z| > R. Then,

/ Vo2, da < / (Vor|? + V() |or|?) da
|z|>R

|z|>R

<[ (b D)(V - ¢)onda + on(1)
|z|>R

:(%—02)/ ¢% dx + og(1).
|z|>R

This implies ¢ = 0 and gives the desired exponential decay.

3. Proof of Theorem 1.1

We demonstrate Theorem 1.1 in the section.
Part (i) We show the existence of ground states. By Lemma 2.4, there exists a
sequence {u,} be a minimizing sequence of ¢.. Then, we can find a sequence
{u,} such that {u,} cC e, Jo(up) — ée, J'(un) — 0, and |ty —Tin||z. — 0,
as n — 00, which is a direct consequence of the Ekeland’s Variational Principle.
See [21].

Step 1. We show that {u,} is bounded in F..

For n large enough, we have

R B 1, .
Ce + 1+ [Jun| > Je(un) — 5< ;(un), Up,)
11 ,
={3— (|Vun|® + V(ez)u) dx
R2
1
(2 D) [+ )

It follows that ||u,]| is bounded.
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Then, there exist ug € E. and a subsequence of {u,, }, which still denoted
by {u,}, such that u,, — ug weakly in E. as n — oo. Consequence, u,, — ug
strongly in L;, .(R?), for 2 < s < +o0 and almost everywhere in R?.

Step 2. We prove there exists > 0 such that

lim |un|p dx >n. (3.1)

n—0o0

Suppose by contradiction that (3.1) does not hold. Then,

lim |t |P da = 0. (3.2)

n—oo Jp2

Since u,, € ¥, we have

/ (|Vun|2 + V(sx)ui) dx + 3/ (Afnui + A%nui) dx = / |u,|P dz,
R2 R2 R2

where Aj, = A;(uy) for j = 1,2. By (3.2) and the above equality, we have
llunllz. — 0, as n — oo. Since {uy,} is bounded, we have

ée = lim (Jo(un) — %(jé(un), Un))

n—oo

s
1 3

:0’

I
s

which contradicts Lemma 2.6.
Step 3. We show ug # 0.

Otherwise,

u, — 0 strongly in L .(R?), for 2 < s < 4o0. (3.3)

By condition (V), we can choose h > 0 small enough such that
Voo —h > V. (3.4)

By Lemma 2.5, we get

CVomh > CVp- (3.5)

Choose a constant p > 0 sufficiently large such that for || > p
V(z) > Ve — h. (3.6)

From the proof of Lemma 2.4, there exists «,, > 0 such that a,u, € Xy _p.
We obtain that for some b; > 0, by > 0 independent of n such that

af’l/ |un P dx = ai/ (Vg |? + (Voo — h)u? dz
R2 R2

—1—3(1?1/ (A7 ur —|—A2n 2) da
R2

< blai + bgag. (37)
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By (3.1) and (3.7), we obtain {ay,} is bounded. From (3.6), we have

ée = lim J.(u,) = lim maxJ (tuy,) > limsup J. (o)

n— 00 n—oot > 0 n—oo

2
= lim sup [ai/ <|Vun|2 + V(gx)|“n|2) du
n—00 2 Jre
of
+ D [ (Halun + 4 P) do = % [ ]
2 R2 ’
o2
> lim sup [—"/ <|Vun|2 + (Voo — h)|un|2> dx
n—o00 2 R2
NG
+ 9 [ (Al + 4 P) d = % [ s
R2

By (3.3) and {«,,} is bounded, we obtain

a2

lim —”/ (V(ex) = (Voo — ) |un|* dz = 0. (3.9)
n—oo 2 Bp
By (3.8), (3.9), and the boundedness of {a,}, we have é. > cy.__p, which is
impossible for small h according to (3.5) and Lemma 2.6.
Step 4. We prove ug € 3. and g is a positive ground state of (2.2).
We observe that u, — ug in E., u, — ug a.e. in R? as n — oo. Proposi-
tion 2.2 gives ug € .. By Fatou’s Lemma, we obtain

e = tim (o) - %(j;(un), )

_ 1 1 2 >
= nlirr;o { (2 p) /R? (|IVun|® + V(ez)u?) da

() e
> (; — 1) /R (|Vuo* + V(ex)u) dx

p

1 3
+(2—p) /R (A22 + AZu) da

This implies that .J. (up) = é. and hence |ug| is a positive ground state of (2.2).
O

Part (ii) Suppose that e, — 07 as k — oo. We shall show that there exists
a sequence of points {&} in R? such that most of the mass of vy = v, is
contained in a ball centered at & and {ex&x} is bounded. Then the limit & of
{erér} verifies cy (¢ is the least energy of the functional Jy (¢).
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Let v. be a nonnengative ground state of (2.2), and u.(z) = v-(Z) be a
ground state of (1.1).
Notice that for any v on the manifold 3., we have

J(v) = (; - 1) /R (1Yol + V(co)o?) da

p

1
+ ( — 3) / (ATv® + A3v®) da.
2 P R2

Define a measure p. by

e @ = (5= 3) [ (902 4 Vien2) as
+ G _ ;) /Q (A2(0)0% + A2(0)0?) da.

By using Lemma 2.6, up to a subsequence, we assume that as g, — 07,
(k — o0),
Uk(RQ) = Hey, (RQ) - éak — v

It follows that {v.} is bounded in E. when € small enough. By the Concentra-
tion Compactness Lemma in [12] and [16], there exists a subsequence of {uy},
which we will always denote by {u}, satisfying one of the three following
possibilities:

(1) Compactness There is a sequence {£;} C R? such that for any § > 0
there exists a radius p > 0 such that

/ duy > cy, — 9, for all k. (3.10)
Bp(&k)

(2) Vanishing There exists a sequence of {e;} that tends to zero such
that for all p > 0
lim sup/ dpy = 0.
(v)

k—o0 yER2

(3) Dichotomy There exist a constant ¢ with 0 < ¢ < ¢y, sequences
{pr} — o0, {&} C R?, and two nonnegative measures uj, and i satisfying
the following:

0 < g + 13 < bk
sup(u) C By, (), sup(ui) C Bs,, (&),
(R — & pi(R*) —cy, —¢ as k— oo.

Proposition 3.1. Neither vanishing (2) nor dichotomy (3) occurs.

Proof. Claim 1. Vanishing (2) does not occur.
Otherwise, {v} i.e. {vc, }, is also vanishing. That is, there exists a sub-
sequence of {vg}, such that for all p > 0,

lim sup / (IVor|® + V(epz)v}) dz = 0.
By (y)

k—o0 yER2
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By the Lions’ Lemma [12], v, — 0, in L*(R?), s > 2. By using

0= (J!, (0n), vg) = / (IV0l? + V(era)ed + 343 403 + 343,07 — [uyl?) d
R2

and [, [vg[P dz — 0 as k — oo, where Ay := A;(vg) = A1(ve,) and Ay :=
As(v) = Az(ve, ), we obtain

hm (|Vuk|2 + V(era)vp + 343 jup + 3A§7kv,§> dx = 0.

HOOR

Thus,
1 1

0= lim (2 - ) / (|Vvk|2 + V(akx)vi) dx
R2

k—o0 p

+=z—- Al v + A5 v
(2 p) R(lkk 2kk)

= lim ¢, =cy, > 0.
[ s

It is absurd. Thus, Claim 1 holds.

Claim 2. Dichotomy (3) does not occur.

Note that e, — 0 as k — o0o. let us define a cut-off function n; € C}(R?)
such that ny = Lin By, (§), ne = 0in BS,, (&), and 0 < n < 1, [V | < 2/py.,
where &, € R2. Let v, = Ve, 1= V1 + U2k, Where

Uik 1= Vley, = NkVey, U2,k 1= V2, = (1= Nk)0zy.
If the Dichotomy case happens, then, as k — oo,
Tep (W1k) > 1k(Bp, (68)) = 1 (Bp, (&) = pi(R*) — € (3.11)
and
Je(var) = p(Bs,, (&) > pi(B5,, (&) = pi(R?) — ey, 2. (3.12)

Set Q := By, (€k)\Bp, (&k). Then, as k — oo

1 1 1 3
(5-3) [ (o v i (5-2) [ (Mts )
2 p)Ja, 2 p)Ja,

= pur () = e (R?) — pu(By, (&) — 1 (Bs5,, (&)
<k (R?) — i (R?) — pi (R?)
— 0. (313)

Thus, by the Sobolev inequalities, we have ka |vg|P de — 0 as k — oco. Con-
sequently,

/ |vog|P do = / |v1,x|? dz + / |v.k|? dz + o(1). (3.14)
R2 R2 R2
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By (3.13), we obtain
/ (IVoi|* + V(epa)vp) do = /
R2

(IVorel® + V(exx)o7 ),) do
R2
+ / (IVv2i|* + V(kx)v3 ;) da + o(1).
R2
(3.15)

We notice that v ) converges to 0 a.e. in R?, and Aj(vag) — 0 ae. in R2 for
j =1,2,as k — oo. Since ||(1—nx)vg|| is bounded and supp((1—nx)vx) C By, ,
then Proposition 2.1 gives for j =1, 2

dy *
|A; (1= me)or)| < Cllvill 4 .. / ——dy
! FILs (Bﬁk (@) ng (z) |.’E - y|4

1
<C—7 LAY
P

and

Kj(x —y)(1 = mi)nelok(y)[* dy

R2
1
dy 1 1 &
< ||lv? — __d <C—= 50. 3.16
<l ([ i) < i (3.16)
Since [Jug|| < C, for j =1, 2
klir& Aj(’l)gyk) = 0, (317)
[Jim Aj(v1 1) A (var)|v1k|* dz = 0, (3.18)
— 00 R2
lim / |A; (v, 1) |?|v1 1] do = 0. (3.19)
k—oo R2
By (3.16)
1 Xro — yg 1 2
A= —— = d
Lk 27 Jge |z — y|2 2 ‘Ul’k + UQ’kl y
1 To — Y2
=A A - — d
1(v1,5) + A1(va k) o /}R2 |m_y|2vl,kv2,k Yy
= Aj(vik) + Ar(v2,k) + o(1),
we have

2
/2 AT (vg)|ox|* da = /2 (A1(v1k) + A1 (v2,k) + 0(1)) o1k + vo|* do
R R

— [ M @ulonsl + ARzl
R2

+ 241 (v1,6) A (v2,1) ([v1k [ + 2, %) + AT (01,1 02,1
=+ A%(U2,k)|vl,k|2 + 2(A§(U1,k) + A%(”Zk))”l,kvlk
+ 44 (v1,k) A (v2,8)v1,802,] d + 0(1).
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Hence, by using (3.17), (3.18), (3.19), and vy 5, converges to zero a.e. in R?, we
get

/ Ai(vk)wkﬁd:ﬁ:/ A%(v17k)|v1,k2da:+/ A2(0s. ) vap? d + o(1).
R2 R2 R2

(3.20)
Similarly, we have

/ A%(vk)|vk|2d:c:/ A%(vl’k)|vl,k2dm+/ A%(Ug’k)|v2,k‘2dl’+0(1).
R? R2 R?

(3.21)
Then, by (3.14), (3.15), (3.20), and (3.21), we get
cy, = ki%lJr JAE,C (v) = klirg+ (jek (v1) + J;k (va,i) + o(1))
2 liminf Jg, (v1,x) + lLim inf Je, (v2,6)
>+ (ey, — €) = ey
Consequently,
klirng Jop (V1 k) = &, kl_i,r{)l+ Jop (Vo) = ey, — €. (3.22)
Define
Il = / (|V111’k|2 + V(Ekm)vik) dx
RZ
+ 3/2 (A%(va)vik + A%(vl,k)vik) dx — /2 vy k[P dz
R R
and
I} = / (|V1}27k|2 + V(Ekm)v%k) dx
RZ
+ 3/ (Af(vgk)vg,k + A%(v27k)v§7k) dx — / |ve x|P de.
R2 R2
Since v, € ZAlgk, (3.14), (3.15), (3.20), and (3.21), we obtain
I} = —TI% + o(1). (3.23)

Next we show (3.23) is not true. By Lemma 2.4, 367 > 0, such that 61v1 . € 3.,
and then

9% /2 (|V11175|2 + V(Ex)vig) dx + 39§i /2 [A%(vl)s)vig + A%(vl’g)via] dx
R R

= 9%’/ |v1,|P da.
R2
(3.24)
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Case 1 Up to a subsequence, I,i <0.
By (3.24), we have

Hf_p/Z (|Vvl7k|2+V(5kx)vik) da;+39?_p/2 [A%(vl)k)vik—l—Ag(vlyk)vik] dx
R R

:/ |v1,x|P dz
]RQ

> / (|VU1,k\2 + V(ekx)vik) dx + 3/ [A%(vl,k)vik + A%(va)vik] dx.
R? R

2

Let by = [po (Vo1 k]? 4+ V(erz)v? ) do and by = [p. [AT(v14)v] ), + A3(01k)
v%k] dw. Since \(t) = t27Pby + t57Pby is strictly decreasing on any interval
where A(t) > 0. It yields that 6; < 1. Hence, by (3.22), as k — 0
éfk < j€k (01’01’]@) < jﬁk (7)1’]@) — ¢ <y,
which contradicts klim Cep = Cyp > C.
—00
Case 2 Up to a subsequence, I? < 0.
We can repeat the arguments of previous case.
Case 3 Up to a subsequence, I,i > 0 and I,f > 0.

By (3.23), we obtain I} = o0,(1) and I} = o(1). If 6; < 1 + o(1), we
can can argue as in the Case 1. Assume that limy_, g+ #; = 6y > 1. We claim,
up to a subsequence, limy,_q+ (b1 +b2) > 0. Otherwise, limy_o+ [go (Vo1 x]? +
V(akx)vik) dz=0. By Sobolev embedding theorem, we have limy,_o+ [po |v1 %[

dx =0, for 2 < s < +00. Hence, ¢ = limy_, g+ J;k (v1,1) = 0. This is impossible.
Then

k—oo

0= lim I} = lim (b +by —07"by — 67 7"by)
> lim (1—6y7")(by +by) = (1 - 6577 lim (by + )
koo kE—0+t

> 0.
Then, we have a contradiction. We prove Claim 2 and Proposition 3.1. O

Define

wi(z) = v (x + &) = up(er® + exée),

where the sequence {{;} is the one we obtained in (3.10). Then, wy(x) is a
positive ground state of

—Awy, + V(ex + exbr)wp + Ao(wp)wy + Y51 A2 (wy)wy = |wg [P~ 2wy,
01 Ao (wy) = As(wy)|wi]?,  2Ao(wi) = — Ay (wy,) |wg|?,
81142(’11)19) — 82A1(wk) = —%wi, 81A1(wk) =+ 82A2(wk) =0.

(3.25)

Lemma 3.2. If (V) holds, then the sequence {er&} is bounded as k — oo.

Proof. Assume that after there is a subsequence {ex&} such that e, — o0
as € — 0T. Because ¢ is bounded, {wy} is also bounded in E.. Hence, up
to a subsequence, there exists wg € E. such that w; — wg weakly in F. as

k — oo. Consequently, wy — wq strongly in Lj (R?), for 2 < s < 400 and
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almost everywhere in R2. By (3.10), for any 6 > 0, there exists p > 0 such
that

1 1
(2 — ) / (\Vwk|2 + V(erx + 5k§k)w]%) dr < Mk(B;k (&) < 0.
p Bs(&x)

Then, by the Sobolev embedding theorem, we get
wy, — wo in L*(R?) for any s € [2, +00). (3.26)
We notice that

1 1

1 3
+ <2 — > / (A%(wo)wg + A%(wo)wg) dx}
P/ Jr2
. 1 1 2 2
> limsup || = — - (\Vwk| + V(erx + ekfk)wk) dx
k—oo 2 p R2
1 3
+ (2 — > / (A%(wk)w,% + A%(wk)wi) dw}
p R2
= limsup¢,, > cy, > 0.
k—oo

Hence, wo(z) # 0. Take h > 0 such that (3.5) holds. From (3.26), we obtain

2
—Awg + (Voo — h)wg + Ag(wo)wo + Z A?(wo)wo — |wo P~ 2wy

Jj=1
<0 in H '(R?).
Especially,
L, (190l + (Ve =l ) da+3 [ (A3 o)lunf + 4w wol?) do
1
< » /R? |wol? de, (3.27)

since wg # 0. Choose 6 > 0 such that fwy € Xy _p. Then, by (3.27), we have
0 < 1. From €& — oo as k — oo, we have

92
cv,—n < E/ (\Vw0|2 + (Voo — h)|w0|2) dx
R2

6° 2 2 2 2 o P
+ 5 [ (Ao wol® + A3(wo)lwol?) dz — = [ fuwol? dz
R2 b Jgr2

92
< liminf {/ (\Vwk|2 + V(erx + €k§k)|wk‘2) dx
k—o0 2 R2

0° 2 2 2 2 Ll p
+5 [ (Aol + Awe)lwn?) do— = [ Jwyl da
R? D Jr2

= liminf A(9),

k—oo
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where \(0) := %bl + %bg — %(bl + 3b2). We know that by + by > 0, we can
prove that %(f) = b10 + 3b26° — (by + 3b2)0P~1 > 0, for § € (0, 1). Hence,
A(0) < A(1) for 6 € (0, 1). This and Lemma 2.6 imply

v —pn <liminf A\(1) = lim é., < cy,,
hd k—oo e —0t

which contradicts (3.5). O

From the above Lemma, we notice that for any sequence {¢}.} — 0, there
exists a subsequence {ey} such that Ty := exép — &o, wr — wo (wo > 0 and
wo # 0) weakly in F. as e, — 01, Furthermore, (3.26) is true.

Lemma 3.3. cy (¢, = inﬂ£2 cv(z)- Moreover, wy — wq strongly in E., as k —
xTE
00.

Proof. From elliptic regularity theory and (3.26), wy — wp in C7, and

2
—Awg + V(§o)wo + Ao (wo)wo + > AF(wo)wo = [wolP~*wo, x € R,

j=1
Consequently, by (3.10) and (3.26), we have
1 1
Cv(gy) < <2 - ) / (|Vwo|2 + V(ﬁo)wg) dx (3.28)
P/ Jr2
1
+| - 3 / (A% (wo)w§ + A3 (wo)w) dz (3.29)
2 p R2
1 1
< lim inf {( - > / (|Vwi|* + V(e + zp)wy) d (3.30)
k—o0 2 P R2
L3 2 2 2 2
+({z—- (AF (wi)wi; + A5 (wp)wy) do (3.31)
2 p R2
= hnllor.}f ésk < 516111152 CV(&)a (332)

which yields that cy(¢,) = imﬂg2 cy(z)- By (3.28), Proposition 2.2, and (3.26),
xre
we have
Jim (IVwi|® + V(epz + zp)wp) doz = / (|Vwo|® + V(&)wd) dz
— 00 R2 ]R2
From this and w; — wy weakly in E. as k — 0o, we obtain wy — wg strongly
in H'(R?), as k — oo. O

Theorem 3.4. There exists a maximum point & of |ue| such that u.(x + &)
converges to a least energy solution of (1.3) in H*(R?).

Proof. We note that wy obtain in the proof of Lemma 3.3 satisfies the following
system

—Awg + V(&)wo + Ao (wo)wo + Z?:l A% (wo)wo = |wolP~>wo,

01 Ao = Aslwol?, 9240 = —As|wol?,
0149 — DA = —%wg, O1A; + D A5 = 0.
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Since wy has exponential decay at infinity and C?-convergence, wy, decays to
zero at infinity. By the similar proof of Proposition 2.7, wg has maximum
point. Let p € R? and R, § > 0 such that

wo(p) = maxwgy > 6 (3.33)
z€R?

and 0 < wo(z) < 2 for [z| > R. Since
wy, — wo in the sense CF (R?), (3.34)

wy converges to zero at infinity. Take py satisfying wy (pr) = max,epz wi ().
From (3.33), pr. € Br(0). We claim that the maximum points of wy, converge to
the same point. Indeed, recall that wy,(z) = wy(Z-) is a solution of (1.1) where
€k take the place of ¢ and their maximum points py are given by pr = expr +
erék. Hence, as exly — o, we obtain pr — & with cy () = infiere cy ().
Therefore, wy concentrates near &.
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