Concentration of semi-classical solutions to the Chern-Simons-Schrödinger systems

Youyan Wan and Jinggang Tan

Abstract

In this paper we demonstrate the existence and concentration behavior of semi-classical solutions for the nonlinear Chern-SimonsSchrödinger systems with external potential. Combining the variational methods with concentration compactness principle, we prove the existence of a family of semi-classical solutions concentrating at the minimum points of the external potential.

Mathematics Subject Classification. 35J50, 35J10.
Keywords. Chern-Simons gauge field, Schrödinger equation, Variational methods, Concentration.

1. Introduction and main result

We study the concentration phenomenon of ground states to the following Chern-Simons-Schrödinger system (CSS system) in $H^{1}\left(\mathbb{R}^{2}\right)$

$$
\left\{\begin{array}{l}
-\varepsilon^{2} \Delta u+V(x) u+A_{0}(u(x)) u+\sum_{j=1}^{2} A_{j}^{2}(u(x)) u=f(u) \tag{1.1}\\
\varepsilon \partial_{1} A_{0}(u(x))=A_{2}(u(x))|u|^{2}, \quad \varepsilon \partial_{2} A_{0}(u(x))=-A_{1}(u(x))|u|^{2} \\
\varepsilon\left(\partial_{1} A_{2}(u(x))-\partial_{2} A_{1}(u(x))\right)=-\frac{1}{2} u^{2}, \quad \partial_{1} A_{1}(u(x))+\partial_{2} A_{2}(u(x))=0
\end{array}\right.
$$

where the parameter $\varepsilon>0, f(u)=|u|^{p-2} u, p>6$ and the external potential $V(x)$ satisfies
(V) $V(x) \in C\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and $V_{0}:=\inf _{x \in \mathbb{R}^{2}} V(x)<V_{\infty}:=\liminf _{|x| \rightarrow \infty} V(x)$.

This system arises in the investigation of the standing wave of Chern-Simons-Schrödinger system, proposed in $[9,10]$ and [5] consists of the Schrödinger equation augmented by the gauge field, which describes the dynamics of large number of particles in a electromagnetic field. This feature of the model is important for the study of the high-temperature superconductor, fractional quantum Hall effect and Aharovnov-Bohm scattering. The Lagrangian density of the abelian Chern-Simons model provide CSS system

$$
\left\{\begin{array}{l}
\mathrm{i} D_{0} \phi+\left(D_{1} D_{1}+D_{2} D_{2}\right) \phi=f(\phi), \tag{1.2}\\
\partial_{0} A_{1}-\partial_{1} A_{0}=-\operatorname{Im}\left(\bar{\phi} D_{2} \phi\right), \\
\partial_{0} A_{2}-\partial_{2} A_{0}=\operatorname{Im}\left(\bar{\phi} D_{1} \phi\right), \\
\partial_{1} A_{2}-\partial_{2} A_{1}=-\frac{1}{2}|\phi|^{2}
\end{array}\right.
$$

The CSS system (1.2) is invariant under the following gauge transformation $\phi \rightarrow \phi e^{\mathrm{i} \chi}, \quad A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \chi$ where $\chi: \mathbb{R}^{1+2} \rightarrow \mathbb{R}$ is an arbitrary C^{∞} function. Blowing up time-dependent solutions were investigated by Berge et al. [1] and local wellposedness was studied by Liu et al. [13].

We suppose that the gauge field satisfies the Coulomb gauge condition $\partial_{0} A_{0}+\partial_{1} A_{1}+\partial_{2} A_{2}=0$, and $A_{\mu}(x, t)=A_{\mu}(x), \mu=0,1,2$. Then the standing wave $\psi(x, t)=e^{\mathrm{i} \omega t} u(x)$ satisfies

$$
\left\{\begin{array}{l}
-\Delta u+\omega u+A_{0} u+A_{1}^{2} u+A_{2}^{2} u=f(u) \tag{1.3}\\
\partial_{1} A_{0}=A_{2} u^{2}, \quad \partial_{2} A_{0}=-A_{1} u^{2} \\
\partial_{1} A_{2}-\partial_{2} A_{1}=-\frac{1}{2}|u|^{2}, \quad \partial_{1} A_{1}+\partial_{2} A_{2}=0
\end{array}\right.
$$

The existence of radial solutions to (1.3) has been investigated by Byeon et al. [2], under the assumptions of power type nonlinearities, see also [6] and [7]. A series of existence results of solitary waves has been established in $[3,11,14,15,17,22]$. We studied the existence, non-existence, and multiplicity of standing waves to the nonlinear CSS systems with an external potential $V(x)$ without the Ambrosetti-Rabinowitz condition in [18]. Multiplicity and concentration of radial solutions have established by using variational methods [17] in the general nonlinearities and Yuan [22] studied radial normalized solutions. Moreover, we show the existence of nontrivial solutions to Chern-SimonsSchrödinger systems (1.1) by using the concentration compactness principle with $V(x)$ is a constant and the argument of global compactness with $p>4$, $V \in C\left(\mathbb{R}^{2}\right)$ and $0<V_{0}<V(x)<V_{\infty}$ in [19]. For the more physical background of CSS system, we refer to the references we mentioned above and $[4,8]$.

Inspired by $[2,18,19]$, and [20], the purpose of the present paper is to study the existence and concentration of ground state for system (1.1) where $p>6$ and the external potential $V(x)$ satisfies condition (V). We can obtain the following result.

Theorem 1.1. Let $p>6$ and $V(x)$ satisfies condition (V). Then for all $\varepsilon>0$ small,
(i) System (1.1) has at least one least energy solution $u_{\varepsilon} \in H^{1}\left(\mathbb{R}^{2}\right)$.
(ii) There is a maximum point ξ_{ε} of u_{ε} such that as $\varepsilon \rightarrow 0, u_{\varepsilon}\left(\varepsilon x+\varepsilon \xi_{\varepsilon}\right)$ converges to a least energy solution of the limit problem in the form of (1.3) with

$$
\omega=V\left(\xi_{0}\right)=\inf _{\xi \in \mathbb{R}^{2}} V(\xi)
$$

For this, we employ the variational method joined with Nehari manifolds and concentration compactness principle [12] to the corresponding energy functional. The difficulty arises in the non-local term $A_{\alpha}, \alpha=0,1,2$ depend on u and a lack of compactness in \mathbb{R}^{2}. For the concentration of semiclassical
limits, we establish the regularity of weak solutions and the exponential decay of solutions at infinity.

The paper is organized as follows. In Sect. 2 we introduce the workframe and prove some technical lemmas. Especially, we show some important propositions of $A_{\alpha}, \alpha=0,1,2$. In Sect. 3 we prove the existence of ground states in Theorem 1.1 and the concentration of solutions in Theorem 1.1.

2. Preliminary

In this section, we discuss the variational framework for the future study. At end of section, we show the regularity results and exponential decay of weak solutions.

Let E^{a} denote the usual Sobolev space $H^{1}\left(\mathbb{R}^{2}\right)$ with

$$
\|u\|_{E^{a}}=\left(\int_{\mathbb{R}^{2}}|\nabla u|^{2}+a|u|^{2} d x\right)^{1 / 2}
$$

where $a>0$. By using $\partial_{1} A_{1}+\partial_{2} A_{2}=0$, we observe that

$$
\begin{aligned}
0 & =\partial_{2} \partial_{1} A_{0}-\partial_{1} \partial_{2} A_{0}=\partial_{2}\left(A_{2} u^{2}\right)+\partial_{1}\left(A_{1} u^{2}\right) \\
& =2 u\left(A_{1} \partial_{1} u+A_{2} \partial_{2} u\right)+u^{2}\left(\partial_{1} A_{1}+\partial_{2} A_{2}\right)
\end{aligned}
$$

This implies that $\sum_{j=1}^{2} A_{j} \partial_{j} u=0$. Let us denote $A_{\alpha}(u(x))=A_{\alpha}$ for $\alpha=$ $0,1,2$. Define the functional

$$
\begin{equation*}
J_{\varepsilon}(u)=\frac{1}{2} \int_{\mathbb{R}^{2}}\left(\varepsilon^{2}|\nabla u|^{2}+V(x)|u|^{2}+A_{1}^{2}|u|^{2}+A_{2}^{2}|u|^{2}\right) d x-\frac{1}{p} \int_{\mathbb{R}^{2}}|u|^{p} d x . \tag{2.1}
\end{equation*}
$$

Solutions of (1.1) can be obtained as critical points of J_{ε}. Also, if u is a solution of the following system

$$
\left\{\begin{array}{l}
-\Delta u+V(\varepsilon x) u+A_{0} u+\sum_{j=1}^{2} A_{j}^{2} u=|u|^{p-2} u \tag{2.2}\\
\partial_{1} A_{0}=A_{2}|u|^{2}, \quad \partial_{2} A_{0}=-A_{1}|u|^{2} \\
\partial_{1} A_{2}-\partial_{2} A_{1}=-\frac{1}{2} u^{2}, \quad \partial_{1} A_{1}+\partial_{2} A_{2}=0
\end{array}\right.
$$

by scaling $x \mapsto \varepsilon^{-1} x$ in \mathbb{R}^{2}, we have that $u\left(\varepsilon^{-1} x\right)$ is a solution for the system (1.1). Let E_{ε} to be the Hilbert subspace of $H^{1}\left(\mathbb{R}^{2}\right)$ under the norm

$$
\|u\|_{E_{\varepsilon}}=\left(\int_{\mathbb{R}^{2}}|\nabla u|^{2}+V(\varepsilon x)|u|^{2} d x\right)^{1 / 2}<+\infty
$$

We define the energy functional associated with (2.2),

$$
\begin{equation*}
\hat{J}_{\varepsilon}(u)=\frac{1}{2} \int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+V(\varepsilon x)|u|^{2}+A_{1}^{2}|u|^{2}+A_{2}^{2}|u|^{2}\right) d x-\frac{1}{p} \int_{\mathbb{R}^{2}}|u|^{p} d x \tag{2.3}
\end{equation*}
$$

We have the derivative of \hat{J}_{ε} in E_{ε} as follow:

$$
\begin{align*}
& \left\langle\hat{J}_{\varepsilon}^{\prime}(u), \eta\right\rangle \\
& \quad=\int_{\mathbb{R}^{2}}\left(\nabla u \nabla \eta+V(\varepsilon x) u \eta+\left(A_{1}^{2}+A_{2}^{2}\right) u \eta+A_{0} u \eta-|u|^{p-2} u \eta\right) d x \tag{2.4}
\end{align*}
$$

for all $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$. Since

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} A_{0} u^{2} d x & =-2 \int_{\mathbb{R}^{2}} A_{0}\left(\partial_{1} A_{2}-\partial_{2} A_{1}\right) d x \\
& =2 \int_{\mathbb{R}^{2}}\left(A_{2} \partial_{1} A_{0}-A_{1} \partial_{2} A_{0}\right) d x \\
& =2 \int_{\mathbb{R}^{2}}\left(A_{1}^{2}+A_{2}^{2}\right) u^{2} d x
\end{aligned}
$$

we obtain

$$
\begin{equation*}
\left\langle\hat{J}_{\varepsilon}^{\prime}(u), u\right\rangle=\int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+V(\varepsilon x)|u|^{2}+3\left(A_{1}^{2}+A_{2}^{2}\right)|u|^{2}-|u|^{p}\right) d x . \tag{2.5}
\end{equation*}
$$

Let us consider the system

$$
\left\{\begin{array}{l}
-\Delta u+a u+A_{0} u+\sum_{j=1}^{2} A_{j}^{2} u=|u|^{p-2} u \tag{2.6}\\
\partial_{1} A_{0}=A_{2}|u|^{2}, \quad \partial_{2} A_{0}=-A_{1}|u|^{2} \\
\partial_{1} A_{2}-\partial_{2} A_{1}=-\frac{1}{2} u^{2}, \quad \partial_{1} A_{1}+\partial_{2} A_{2}=0
\end{array}\right.
$$

to compare its energy with the one of (1.1). Define the functional

$$
\begin{equation*}
J_{a}(u)=\frac{1}{2} \int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+a|u|^{2}+A_{1}^{2}|u|^{2}+A_{2}^{2}|u|^{2}\right) d x-\frac{1}{p} \int_{\mathbb{R}^{2}}|u|^{p} d x . \tag{2.7}
\end{equation*}
$$

Let $V_{\infty}=\liminf _{|x| \rightarrow \infty} V(x)$. We will see that the system in the case $a=V_{\infty}$ play the role of the limit problem to (1.1).

The components A_{j} of the gauge field can be represented by solving the elliptic equations

$$
\Delta A_{1}=\partial_{2}\left(\frac{|u|^{2}}{2}\right), \quad \Delta A_{2}=-\partial_{1}\left(\frac{|u|^{2}}{2}\right)
$$

which provide

$$
\begin{align*}
& A_{1}=A_{1}(u)=K_{2} *\left(\frac{|u|^{2}}{2}\right)=-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \frac{x_{2}-y_{2}}{|x-y|^{2}} \frac{|u|^{2}(y)}{2} d y \tag{2.8}\\
& A_{2}=A_{2}(u)=-K_{1} *\left(\frac{|u|^{2}}{2}\right)=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \frac{x_{1}-y_{1}}{|x-y|^{2}} \frac{|u|^{2}(y)}{2} d y \tag{2.9}
\end{align*}
$$

where $K_{j}=\frac{-x_{j}}{2 \pi|x|^{2}}$, for $j=1,2$ and $*$ denotes the convolution. The identity $\Delta A_{0}=\partial_{1}\left(A_{2}|u|^{2}\right)-\partial_{2}\left(A_{1}|u|^{2}\right)$, gives the following representation of the component A_{0} :

$$
\begin{equation*}
A_{0}=A_{0}(u)=K_{1} *\left(A_{1}|u|^{2}\right)-K_{2} *\left(A_{2}|u|^{2}\right) . \tag{2.10}
\end{equation*}
$$

We know that \hat{J}_{ε} is well defined in $E_{\varepsilon}, \hat{J}_{\varepsilon} \in C^{1}\left(E_{\varepsilon}\right)$, and the weak solution of (2.2) is the critical point of the functional \hat{J}_{ε} from the following properties, which one can find the proofs in [19]. For the reader's convenience, we sketch the formal estimates.

Proposition 2.1. Let $1<s<2$ and $\frac{1}{s}-\frac{1}{q}=\frac{1}{2}$.
(i) Then there is a constant C depending only on s and q such that

$$
\left(\int_{\mathbb{R}^{2}}|T u(x)|^{q} d x\right)^{\frac{1}{q}} \leq C\left(\int_{\mathbb{R}^{2}}|u(x)|^{s} d x\right)^{\frac{1}{s}}
$$

where the integral operator T is given by

$$
T u(x):=\int_{\mathbb{R}^{2}} \frac{u(y)}{|x-y|} d y
$$

(ii) If $u \in H^{1}\left(\mathbb{R}^{2}\right)$, then we have that for $j=1,2$,

$$
\left\|A_{j}^{2}(u)\right\|_{L^{q}\left(\mathbb{R}^{2}\right)} \leq C\|u\|_{L^{2 s}\left(\mathbb{R}^{2}\right)}^{2}
$$

and

$$
\left\|A_{0}(u)\right\|_{L^{q}\left(\mathbb{R}^{2}\right)} \leq C\|u\|_{L^{2 s}\left(\mathbb{R}^{2}\right)}^{2}\|u\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{2} .
$$

(iii) For $q^{\prime}=\frac{q}{q-1}, j=1,2$

$$
\left\|A_{j}(u) u\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq\left\|A_{j}(u)\right\|_{L^{2 q}\left(\mathbb{R}^{2}\right)}\|u\|_{L^{2 q^{\prime}}\left(\mathbb{R}^{2}\right)}
$$

Proof. (i) This is the Hardy-Lilltewood-Sobolev inequality.
(ii) Applying (i) to the gauge potential $A_{\mu}, \mu=0,1,2$, we have the results, see also [6].
(iii) The statement comes from the Hölder inequaity. That is,

$$
\int_{\mathbb{R}^{2}}\left|A_{j}(u)\right|^{2}|u|^{2} d x \leq\left(\int_{\mathbb{R}^{2}}\left|A_{j}(u)\right|^{2 q} d x\right)^{\frac{1}{q}}\left(\int_{\mathbb{R}^{2}}|u|^{\frac{2 q}{q-1}} d x\right)^{\frac{q-1}{q}}
$$

We will need the following properties of the convergence for A_{j}.
Proposition 2.2. Suppose that u_{n} converges to u a.e. in \mathbb{R}^{2} and u_{n} converges weakly to u in $H^{1}\left(\mathbb{R}^{2}\right)$. Let $A_{\alpha, n}:=A_{\alpha}\left(u_{n}(x)\right), \alpha=0,1,2$. Then
(i) $A_{j, n}$ converges to $A_{j}(u(x))$ a.e. in \mathbb{R}^{2}.
(ii) $\int_{\mathbb{R}^{2}}^{2} A_{i, n}^{2} u_{n} u d x, \int_{\mathbb{R}^{2}} A_{i, n}^{2}|u|^{2} d x$, and $\int_{\mathbb{R}^{2}} A_{i, n}^{2}\left|u_{n}\right|^{2} d x$ converge to $\int_{\mathbb{R}^{2}} A_{i}^{2}|u|^{2}$ $d x$, for $i=1,2 ; \int_{\mathbb{R}^{2}} A_{0, n} u_{n} u d x$ and $\int_{\mathbb{R}^{2}} A_{0, n}\left|u_{n}\right|^{2} d x$ converge to $\int_{\mathbb{R}^{2}} A_{0}|u|^{2}$ $d x$.
(iii) $\int_{\mathbb{R}^{2}}\left|A_{i}\left(u_{n}-u\right)\right|^{2}\left|u_{n}-u\right|^{2} d x=\int_{\mathbb{R}^{2}}\left|A_{i}\left(u_{n}\right)\right|^{2}\left|u_{n}\right|^{2} d x-\int_{\mathbb{R}^{2}}\left|A_{i}(u)\right|^{2}|u|^{2} d x+$ $o_{n}(1)$, for $i=1,2$.
Proof. The proof can be found in [19], which follows from the idea of BrezisLieb lemma, we sketch it here.
(i) We see that for $i=1,2$

$$
\begin{aligned}
\left|A_{i, n}-A_{1}\right| \leq & \left|T\left(u_{n}^{2}-u^{2}\right)\right| \leq\left\|u_{n}^{2}-u^{2}\right\|_{L^{4}\left(B_{R}(x)\right)}\left\|\frac{1}{x-y}\right\|_{L^{4 / 3}\left(B_{R}(x)\right)} \\
& +\left\|u_{n}^{2}-u^{2}\right\|_{L^{\frac{4}{3}}\left(B_{R}^{c}(x)\right)}\left\|\frac{1}{x-y}\right\|_{L^{4}\left(B_{R}^{c}(x)\right)},
\end{aligned}
$$

where $T\left(u_{n}^{2}-u^{2}\right)=\int_{\mathbb{R}^{2}} \frac{u_{n}^{2}(y)-u^{2}(y)}{|x-y|} d y$. Taking $n \rightarrow \infty$ and $R \rightarrow \infty$, we obtain that $A_{i, n}(x) \xrightarrow{n} A_{i}(x)$ and that $A_{i}^{2}\left(u_{n}(x)\right) u_{n}(x) \xrightarrow{n} A_{i}^{2}(u(x)) u(x)$, a.e. in \mathbb{R}^{2}.
(ii) By using the Hölder inequality we have that for $i=1,2$ and $q^{\prime}=\frac{q}{q-1}$,

$$
\begin{gathered}
\left|\int_{\mathbb{R}^{2}} A_{i, n}^{2} u_{n}(x) u(x) d x\right| \leq\left\|A_{i}^{2}\left(u_{n}\right)\right\|_{L^{q}\left(\mathbb{R}^{2}\right)}\left\|u_{n}\right\|_{L^{2 q^{\prime}}\left(\mathbb{R}^{2}\right)}\|u\|_{L^{2 q^{\prime}}\left(\mathbb{R}^{2}\right)}, \\
\left|\int_{\mathbb{R}^{2}} A_{i, n}^{2} u^{2}(x) d x\right| \leq\left\|A_{i}^{2}\left(u_{n}\right)\right\|_{L^{q}\left(\mathbb{R}^{2}\right)}\|u\|_{L^{2 q^{\prime}}\left(\mathbb{R}^{2}\right)}^{2}
\end{gathered}
$$

Thus, $\left\{A_{i, n}^{2} u_{n}\right\},\left\{A_{i, n}^{2}\right\}$ are bounded. The weak convergence implies that

$$
\int_{\mathbb{R}^{2}} A_{i, n}^{2} u^{2} d x, \int_{\mathbb{R}^{2}} A_{i, n}^{2} u_{n} u d x \rightarrow \int_{\mathbb{R}^{2}} A_{i}^{2} u^{2} d x
$$

Hence,

$$
\begin{aligned}
& \left.\left|\int_{\mathbb{R}^{2}} A_{i, n}^{2}\right| u_{n}\right|^{2} d x-\int_{\mathbb{R}^{2}} A_{i}^{2}|u|^{2} d x \mid \\
& \quad \leq\left.\int_{\mathbb{R}^{2}}\left|\left(A_{i, n}^{2}-A_{i}^{2}\right)\right| u_{n}\right|^{2}\left|d x+\int_{\mathbb{R}^{2}}\right| A_{i}^{2}\left(\left|u_{n}\right|^{2}-|u|^{2}\right) \mid d x \\
& \quad \leq\left(\int_{\mathbb{R}^{2}}\left(A_{i, n}^{2}-A_{i}^{2}\right)^{3} d x\right)^{\frac{1}{3}}\left(\int_{\mathbb{R}^{2}}\left|u_{n}\right|^{3} d x\right)^{\frac{2}{3}} \\
& \quad+\left(\int_{\mathbb{R}^{2}}\left(\left|u_{n}\right|^{2}-|u|^{2}\right)^{\frac{3}{2}} d x\right)^{\frac{2}{3}}\left(\int_{\mathbb{R}^{2}} A_{i}^{6} d x\right)^{\frac{1}{3}}
\end{aligned}
$$

Since u_{n} converges to u a.e. in \mathbb{R}^{2}, (i), and Proposition 2.1, we have

$$
\int_{\mathbb{R}^{2}} A_{i, n}^{2} u_{n}^{2} d x \rightarrow \int_{\mathbb{R}^{2}} A_{i}^{2} u^{2} d x
$$

Similarly, we can obtain $\int_{\mathbb{R}^{2}} A_{0, n} u_{n} u d x$ and $\int_{\mathbb{R}^{2}} A_{0, n}\left|u_{n}\right|^{2} d x$ converge to $\int_{\mathbb{R}^{2}} A_{0}|u|^{2} d x$.
(iii) By using the Fatou lemma, we obtain that

$$
\int_{\mathbb{R}^{2}} A_{i}^{2} u^{2} d x \leq \int_{\mathbb{R}^{2}} A_{i, n}^{2} u_{n}^{2} d x
$$

Moreover, there exist small $\delta>0$ and $C_{1}>0$ such that

$$
\begin{aligned}
h_{\delta} & :=\left[\left|A_{i, n}^{2} u_{n}^{2}-\left|A_{i, n} u_{n}-A_{i} u\right|^{2}-A_{i}^{2} u^{2}\right|-\delta\left|A_{i, n} u_{n}-A_{i} u\right|^{2}\right]_{+} \\
& \leq C_{1} A_{i}^{2} u^{2} .
\end{aligned}
$$

By using the Lebesgue Dominated Convergence Theorem, $\int_{\mathbb{R}^{2}} h_{\delta} \xrightarrow{n} 0$, we know that

$$
\limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{2}}\left|A_{i, n}^{2} u_{n}^{2}-\left|A_{i, n} u_{n}-A_{i} u\right|^{2}-A_{i}^{2} u^{2}\right| d x \leq \delta C_{2}
$$

where $C_{2}:=\sup \int_{\mathbb{R}^{2}}\left|A_{i, n} u_{n}-A_{i} u\right|^{2} d x<\infty$. The desired result follows from $\delta \rightarrow 0$.

Let us define the Nehari manifold related to the functionals above and discuss the property of the least energy of the critical points. Let

$$
\begin{aligned}
& \hat{\Sigma}_{\varepsilon}=\left\{w \in E_{\varepsilon} \backslash\{0\}:\left\langle\hat{J}_{\varepsilon}^{\prime}(w), w\right\rangle=0\right\} \\
& \Sigma_{a}=\left\{w \in H^{1}\left(\mathbb{R}^{2}\right) \backslash\{0\}:\left\langle J_{a}^{\prime}(w), w\right\rangle=0\right\}
\end{aligned}
$$

Lemma 2.3. Assume $p \geq 6$, then $\hat{\Sigma}_{\varepsilon}$ and Σ_{a} are smooth manifolds, where $a>0$.

Proof. Here we just give the proof of $\hat{\Sigma}_{\varepsilon}$, others are similar. Let

$$
g(u)=\left\langle\hat{J}_{\varepsilon}^{\prime}(u), u\right\rangle, \quad u \in \hat{\Sigma}_{\varepsilon} .
$$

Then

$$
\left\langle g^{\prime}(u), u\right\rangle=2 \int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+V(\varepsilon x) u^{2}+9 A_{1}^{2} u^{2}+9 A_{2}^{2} u^{2}\right) d x-p \int_{\mathbb{R}^{2}}|u|^{p} d x
$$

Since $u \in \hat{\Sigma}_{\varepsilon}$, we have

$$
\int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+V(\varepsilon x) u^{2}+3 A_{1}^{2} u^{2}+3 A_{2}^{2} u^{2}\right) d x=\int_{\mathbb{R}^{2}}|u|^{p} d x .
$$

Hence, if $p \geq 6$ we obtain

$$
\left\langle g^{\prime}(u), u\right\rangle=2 \int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+V(\varepsilon x) u^{2}+9 A_{1}^{2} u^{2}+9 A_{2}^{2} u^{2}\right) d x-p \int_{\mathbb{R}^{2}}|u|^{p} d x<0
$$

By the Implicit Function Theorem, $\hat{\Sigma}_{\varepsilon}$ is a smooth manifolds.
Now we can define critical values for the functionals on the corresponding manifolds. Define

$$
c_{a}=\inf _{w \in \Sigma_{a}} J_{a}(w), c_{a}^{*}=\inf _{\gamma \in \Gamma_{a}} \max _{t \in[0,1]} J_{a}(\gamma(t)), c_{a}^{* *}=\inf _{w \in H^{1}\left(\mathbb{R}^{2}\right) \backslash\{0\}} \max _{t \geq 0} J_{a}(t w),
$$

where $\Gamma_{a}:=\left\{\gamma \in C\left([0,1], H^{1}\left(\mathbb{R}^{2}\right)\right): \gamma(0)=0, J_{a}(\gamma(1))<0\right\}$ and $a \in$ $\{\varepsilon, \xi, \infty\}$. Similarly, we can define $\hat{c}_{\varepsilon}, \hat{c}_{\varepsilon}^{*}, \hat{c}_{\varepsilon}^{* *}$ on \hat{J}_{ε}.

Lemma 2.4.

$$
c_{a}=c_{a}^{*}=c_{a}^{* *}, \quad \hat{c}_{\varepsilon}=\hat{c}_{\varepsilon}^{*}=\hat{c}_{\varepsilon}^{* *}
$$

Proof. For convenience we drop the notation ε. Here, we only show the proof $\hat{c}=\hat{c}^{*}=\hat{c}^{* *}$. The others are similar. First, we prove $\hat{c}=\hat{c}^{* *}$. In fact, this will follow if we can prove that for any $u \in E_{\varepsilon} \backslash\{0\}$, the ray $R_{t}=\{t u: t \geq 0\}$ intersects the solution manifold $\hat{\Sigma}_{\varepsilon}$ once and only once at $\theta u(\theta>0)$ where $\hat{J}_{\varepsilon}(\theta u), \theta \geq 0$, achieves its maximum.

$$
\begin{aligned}
\left\langle\hat{J}_{\varepsilon}^{\prime}(t u), t u\right\rangle= & t^{2}\left(\int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+V(\varepsilon x) u^{2}\right) d x\right. \\
& \left.+3 t^{4} \int_{\mathbb{R}^{2}}\left(A_{1}^{2} u^{2}+A_{2}^{2} u^{2}\right) d x-t^{p-2} \int_{\mathbb{R}^{2}}|u|^{p} d x\right) .
\end{aligned}
$$

Let

$$
h(t)=b_{1}+t^{4} b_{2}-t^{p-2} b_{3}, \quad t \in[0,+\infty),
$$

where

$$
b_{1}=\int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+V(\varepsilon x) u^{2}\right) d x, b_{2}=3 \int_{\mathbb{R}^{2}}\left(A_{1}^{2} u^{2}+A_{2}^{2} u^{2}\right) d x, b_{3}=\int_{\mathbb{R}^{2}}|u|^{p} d x .
$$

We claim that there exists $t_{0} \in(0,+\infty)$ such that $h\left(t_{0}\right)=0$. Indeed, by simple computation, we have that

$$
\left\{\begin{array}{l}
h^{\prime \prime}>0, t<t_{1}:=\left(\frac{12 b_{2}}{(p-2)(p-3) b_{3}}\right)^{\frac{1}{p-6}} \\
h^{\prime \prime}<0, t>t_{1}:=\left(\frac{12 b_{2}}{(p-2)(p-3) b_{3}}\right)^{\frac{1}{p-6}}
\end{array}\right.
$$

Also, there exist $t_{2}=0, t_{3}=\left(\frac{4 b_{2}}{(p-2) b_{3}}\right)^{\frac{1}{p-6}}$ satisfying $t_{2}<t_{1}<t_{3}$, such that $h^{\prime}(t)=0$ and $h(t)$ is strictly decreasing for $t \geq t_{3}$ as well as strictly increasing for $t \leq t_{3}$. Since $h\left(t_{2}\right)=b_{1}>0$ and $h(t) \rightarrow-\infty$ as $t \rightarrow+\infty$, there exists an unique $t_{0}>t_{3}$ such that $h\left(t_{0}\right)=0$. Hence, the ray R_{t} intersects $\hat{\Sigma}_{\varepsilon}$ only once. We have shown that $\hat{c}=\hat{c}^{* *}$.

Next, we prove $\hat{c}^{*}=\hat{c}^{* *}$. It is clear that $\hat{c}^{* *} \geq c^{*}$. Let us show $\hat{c}^{* *} \leq \hat{c}^{*}$. Then, we can write

$$
\hat{c}^{* *}=\inf _{u \in K} \hat{J}_{\varepsilon}(u)
$$

with

$$
K=\left\{\bar{u}=\bar{t} u: u \in E_{\varepsilon}, u \neq 0, \bar{t}<\infty\right\} .
$$

Let $\gamma \in \Gamma$ be a path. If for all $\gamma \in \Gamma, \gamma \cap K \neq \emptyset$, then the inequality is proved. If there exists $\gamma \in \Gamma$ such that $\gamma(t) \notin K$ for all $t \in[0,1]$, then we have

$$
\int_{\mathbb{R}^{2}}\left(|\nabla \gamma|^{2}+V(\varepsilon x) \gamma^{2}+3 A_{1}^{2}(\gamma) \gamma^{2}+3 A_{2}^{2}(\gamma) \gamma^{2}\right) d x>\int_{\mathbb{R}^{2}}|\gamma|^{p} d x
$$

and if $p>6$

$$
\begin{aligned}
\hat{J}_{\varepsilon}(\gamma)= & \frac{1}{2} \int_{\mathbb{R}^{2}}\left(|\nabla \gamma|^{2}+V(\varepsilon x) \gamma^{2}+A_{1}^{2}\left(\gamma_{1}\right) \gamma^{2}+A_{2}^{2}\left(\gamma_{2}\right) \gamma^{2}\right) d x-\frac{1}{p} \int_{\mathbb{R}^{2}}|\gamma|^{p} d x \\
> & \frac{1}{2} \int_{\mathbb{R}^{2}}\left(|\nabla \gamma|^{2}+V(\varepsilon x) \gamma^{2}+A_{1}^{2}\left(\gamma_{1}\right) \gamma^{2}+A_{2}^{2}\left(\gamma_{2}\right) \gamma^{2}\right) d x \\
& -\frac{1}{p} \int_{\mathbb{R}^{2}}\left(|\nabla \gamma|^{2}+V(\varepsilon x) \gamma^{2}+3 A_{1}^{2}(\gamma) \gamma^{2}+3 A_{2}^{2}(\gamma) \gamma^{2}\right) d x \\
> & 0
\end{aligned}
$$

which contradicts the Mountain Pass characterization of \hat{c}^{*}. Consequently,

$$
\hat{c}^{*}=\hat{c}^{* *} .
$$

Next, we will discuss the properties of the energy functionals depend on different parameters.

Lemma 2.5. Suppose that $V_{a}(x)$ and $V_{b}(x)$ satisfy condition (V). If

$$
\begin{equation*}
V_{a}(x) \leq V_{b}(x), \tag{2.11}
\end{equation*}
$$

then $c_{V_{a}} \leq c_{V_{b}}$. Moreover, if the inequality in (2.11) is strict and V_{a} and V_{b} are constants, then $c_{V_{a}}<c_{V_{b}}$.

Proof. Let $c_{V_{a}}$ be the corresponding critical value of the energy functional J_{a}. Define other related notation in the obvious way. Notice that $E^{b} \subset E^{a}$ and for any $u \in E^{b}, J_{a}(u) \leq J_{b}(u)$. By Lemma 2.4,

$$
c_{V_{b}}=\inf _{u \in E^{b} \backslash\{0\}} \max _{t \geq 0} J_{b}(t u) \geq \inf _{u \in E^{a} \backslash\{0\}} \max _{t \geq 0} J_{a}(t u)=c_{V_{a}}
$$

Next we prove the second assertion. Since V_{a} and V_{b} are constants, we get that $E^{b}=E^{a}=H^{1}\left(\mathbb{R}^{2}\right)$. Moreover, by [19], by there exists a ground state $u_{b} \in H^{1}\left(\mathbb{R}^{2}\right)$ such that $c\left(V_{b}\right)=J_{b}\left(u_{b}\right)$. Then, by Lemma 2.4, we have

$$
c_{V_{b}}=J_{b}\left(u_{b}\right)=\max _{t \geq 0} J_{b}\left(t u_{b}\right)>\max _{t \geq 0} J_{a}\left(t u_{b}\right) \geq \inf _{u \in H^{1}\left(\mathbb{R}^{2}\right) \backslash\{0\}} \max _{t \geq 0} J_{a}(t u)=c_{V_{a}}
$$

Lemma 2.6. $\hat{c}_{\varepsilon} \geq c_{V_{0}}$. Moreover, $\limsup _{\varepsilon \rightarrow 0^{+}} \hat{c}_{\varepsilon} \leq c_{V_{0}}$.
Proof. By Lemma 2.5, we have $\hat{c}_{\varepsilon} \geq c_{V_{0}}$. On the other hand, suppose \bar{u} is a solution of the least energy of the following problem

$$
\left\{\begin{array}{l}
-\Delta u+V\left(\xi_{0}\right) u+A_{0} u+\sum_{j=1}^{2} A_{j}^{2} u=|u|^{p-2} u \\
\partial_{1} A_{0}=A_{2}|u|^{2}, \quad \partial_{2} A_{0}=-A_{1}|u|^{2} \\
\partial_{1} A_{2}-\partial_{2} A_{1}=-\frac{1}{2} u^{2}, \quad \partial_{1} A_{1}+\partial_{2} A_{2}=0
\end{array}\right.
$$

That is, $J_{V\left(\xi_{0}\right)}(\bar{u})=c_{V\left(\xi_{0}\right)}$ and $J_{V\left(\xi_{0}\right)}^{\prime}(\bar{u})=0$. For any $R>0$, take a cut-off function $\psi_{R} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ such that $\psi_{R} \equiv 1$ in $B_{R}(0), \psi_{R} \equiv 0$ in $B_{2 R}^{c}(0)$, and $0 \leq \psi_{R} \leq 1,\left|\nabla \psi_{R}\right| \leq c / R$. Let $u_{R}=\psi_{R} \bar{u}, u_{\varepsilon}(x)=u_{R}\left(x-\frac{\xi_{0}}{\varepsilon}\right)$, and $t_{\varepsilon}>0$ such that $\hat{c}_{\varepsilon} \leq \hat{J}_{\varepsilon}\left(t_{\varepsilon} u_{\varepsilon}\right)=\max _{t \geq 0} \hat{J}_{\varepsilon}\left(t u_{\varepsilon}\right)$. We claim that $t_{\varepsilon} \rightarrow 1$ as $\varepsilon \rightarrow 0$. In fact, by the definition of t_{ε}, we have

$$
\begin{aligned}
& t_{\varepsilon}^{2-p} \int_{\mathbb{R}^{2}}\left(\left|\nabla u_{\varepsilon}\right|^{2}+V(\varepsilon x) u_{\varepsilon}^{2}\right) d x+3 t_{\varepsilon}^{6-p} \int_{\mathbb{R}^{2}}\left(A_{1}^{2}\left(u_{\varepsilon}\right) u_{\varepsilon}^{2}+A_{2}^{2}\left(u_{\varepsilon}\right) u_{\varepsilon}^{2}\right) d x \\
& \quad=\int_{\mathbb{R}^{2}}\left|u_{\varepsilon}\right|^{p} d x
\end{aligned}
$$

Changing variable to $x-\frac{\xi_{0}}{\varepsilon}$, we have

$$
\begin{align*}
& t_{\varepsilon}^{2-p} \int_{\mathbb{R}^{2}}\left(\left|\nabla u_{R}\right|^{2}+V\left(\varepsilon x+\xi_{0}\right) u_{R}^{2}\right) d x+3 t_{\varepsilon}^{6-p} \int_{\mathbb{R}^{2}}\left(A_{1}^{2}\left(u_{R}\right) u_{R}^{2}+A_{2}^{2}\left(u_{R}\right) u_{R}^{2}\right) d x \\
& \quad=\int_{\mathbb{R}^{2}}\left|u_{R}\right|^{p} d x \tag{2.12}
\end{align*}
$$

Since $J_{V\left(\xi_{0}\right)}^{\prime}\left(u_{R}\right)=0$, for R large enough, we have

$$
\begin{align*}
& \int_{\mathbb{R}^{2}}\left(\left|\nabla u_{R}\right|^{2}+V\left(\xi_{0}\right) u_{R}^{2}\right) d x+3 \int_{\mathbb{R}^{2}}\left(A_{1}^{2}\left(u_{R}\right) u_{R}^{2}+A_{2}^{2}\left(u_{R}\right) u_{R}^{2}\right) d x \\
& \quad=\int_{\mathbb{R}^{2}}\left|u_{R}\right|^{p} d x+o_{R}(1) \tag{2.13}
\end{align*}
$$

Then,

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{2}}\left(V\left(\varepsilon x+\xi_{0}\right)-V\left(\xi_{0}\right) u_{R}^{2}\right) d x\right| \leq & \int_{B_{2 R}}\left|V\left(\varepsilon x+\xi_{0}\right)-V\left(\xi_{0}\right)\right| u_{R}^{2} d x \\
& +\int_{B_{2 R}^{c}}\left|V\left(\varepsilon x+\xi_{0}\right)-V\left(\xi_{0}\right)\right| u_{R}^{2} d x \\
< & c \delta .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{2}} V\left(\varepsilon x+\xi_{0}\right) u_{R}^{2} d x=\int_{\mathbb{R}^{2}} V\left(\xi_{0}\right) u_{R}^{2} d x \tag{2.14}
\end{equation*}
$$

By (2.12), (2.13), (2.14), and Proposition 2.2, we obtain

$$
\begin{aligned}
& \left(1-t_{\varepsilon}^{2-p}\right) \int_{\mathbb{R}^{2}}\left(\left|\nabla u_{R}\right|^{2}+V\left(\xi_{0}\right) u_{R}^{2}\right) d x \\
& \quad+t_{\varepsilon}^{2-p} o_{\varepsilon}(1)+3\left(1-t_{\varepsilon}^{6-p}\right) \int_{\mathbb{R}^{2}}\left(A_{1}^{2}\left(u_{R}\right) u_{R}^{2}+A_{2}^{2}\left(u_{R}\right) u_{R}^{2}\right) d x=o_{R}(1)
\end{aligned}
$$

Letting $R \rightarrow+\infty$, we have

$$
\begin{aligned}
& \left(1-t_{\varepsilon}^{2-p}\right) \int_{\mathbb{R}^{2}}\left(|\nabla \bar{u}|^{2}+V\left(\xi_{0}\right) \bar{u}^{2}\right) d x \\
& \quad+t_{\varepsilon}^{2-p} O_{\varepsilon}(1)+3\left(1-t_{\varepsilon}^{6-p}\right) \int_{\mathbb{R}^{2}}\left(A_{1}^{2}(\bar{u}) \bar{u}^{2}+A_{2}^{2}(\bar{u}) \bar{u}^{2}\right) d x=0
\end{aligned}
$$

If $t_{\varepsilon} \rightarrow \infty$, then $\bar{u}=0$. It is absurd. Consequently, $t_{\varepsilon} \rightarrow 1$ as $\varepsilon \rightarrow 0^{+}$. Hence, letting $R \rightarrow+\infty$ and then $\varepsilon \rightarrow 0+$, we have $\hat{J}_{\varepsilon}\left(t_{\varepsilon} u_{\varepsilon}\right) \rightarrow J_{V\left(\xi_{0}\right)}(\bar{u})$ as $\varepsilon \rightarrow 0^{+}$. It follows for all $\xi_{0} \in \mathbb{R}^{2}$

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0^{+}} \hat{c}_{\varepsilon} \leq c_{V\left(\xi_{0}\right)} \tag{2.15}
\end{equation*}
$$

Since ξ_{0} is arbitrary, (2.15) implies $\limsup _{\varepsilon \rightarrow 0} \hat{c}_{\varepsilon} \leq c_{V_{0}}$.
Proposition 2.7. Let u be weak solution of (1.1). Then
(i) $\lim _{|x| \rightarrow+\infty} u(x)=0$ and $\lim _{|x| \rightarrow+\infty} \nabla u(x)=0$;
(ii) u satisfies the following exponential decay at infinity, i.e., there exist positive constant R, C, and δ such that $|u(x)| \leq C e^{-\delta|x|}$.

Proof. (i) We might as well consider the solution of (2.2). Define

$$
u_{\gamma}= \begin{cases}u, & |u(x)| \leq \gamma \tag{2.16}\\ \gamma, & u(x) \geq \gamma \\ -\gamma, & u(x) \leq-\gamma\end{cases}
$$

Then, we have $\left|u_{\gamma}\right| \leq|u|,\left|\nabla u_{\gamma}\right| \leq|\nabla u|$, and $\nabla u_{\gamma} \cdot \nabla u \geq 0$. We know that for $\beta>0$,

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} A_{0}(u)\left|u_{\gamma}\right|^{2(\beta+1)} d x & \leq\left\|A_{0}(u)\right\|_{L^{q}\left(\mathbb{R}^{2}\right)}\left\|u_{\gamma}\right\|_{L^{2 q^{\prime}(\beta+1)}\left(\mathbb{R}^{2}\right)}^{2(\beta+1)} \\
& \leq C\|u\|_{L^{2 s}\left(\mathbb{R}^{2}\right)}^{2}\|u\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{2}\left\|u_{\gamma}\right\|_{L^{2 q^{\prime}(\beta+1)}\left(\mathbb{R}^{2}\right)}^{2(\beta+1)}
\end{aligned}
$$

where $\frac{1}{s}-\frac{1}{2}=\frac{1}{q}, s \in(1,2), q^{\prime}=\frac{q}{q-1}$. Multiplying (2.2) by $\left|u_{\gamma}\right|^{2 \beta} u_{\gamma}$ then integrating by parts and together with the above inequality, we obtain

$$
\begin{align*}
& \int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}\left|u_{\gamma}\right|^{2 \beta}+V(\varepsilon x) u^{2}\left|u_{\gamma}\right|^{2 \beta}\right) d x \\
& \quad \leq-\int_{\mathbb{R}^{2}} A_{0} u^{2}\left|u_{\gamma}\right|^{2 \beta} d x+\int_{\mathbb{R}^{2}}|u|^{p-2} u^{2}\left|u_{\gamma}\right|^{2 \beta} d x \\
& \quad \leq\left.\left.\int_{\mathbb{R}^{2}}\left|A_{0} u^{2}\right| u_{\gamma}\right|^{2 \beta}\left|d x+\int_{\mathbb{R}^{2}}\right| u\right|^{p-2} u^{2}\left|u_{\gamma}\right|^{2 \beta} d x \tag{2.17}
\end{align*}
$$

We choose $q=\frac{t^{\prime}}{p-2}$, where $t^{\prime}>2(p-2)$. Then, $q^{\prime}=\frac{q}{q-1}=\frac{t^{\prime}}{t^{\prime}-p+2}$. By (2.17), Sobolev inequalities, Proposition 2.1 and $1+\beta^{2} \leq(1+\beta)^{2}$ for $\beta \geq 0$, we have

$$
\begin{aligned}
& \left(\left.\left.\int_{\mathbb{R}^{2}}|u| u_{\gamma}\right|^{\beta}\right|^{t^{\prime}} d x\right)^{\frac{2}{t^{\prime}}} \\
& \quad \leq C \int_{\mathbb{R}^{2}}\left(\left|\nabla\left(u\left|u_{\gamma}\right|^{\beta}\right)\right|^{2}+V(\varepsilon x) u^{2}\left|u_{\gamma}\right|^{2 \beta}\right) d x \\
& \quad \leq C \int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}\left|u_{\gamma}\right|^{2 \beta}+\beta^{2} u^{2}\left|\nabla u_{\gamma}\right|^{2}\left|u_{\gamma}\right|^{2(\beta-1)}\right) d x+\int_{\mathbb{R}^{2}} V(\varepsilon x) u^{2}\left|u_{\gamma}\right|^{2 \beta} d x \\
& \quad \leq C(1+\beta)^{2}\left(\int_{\mathbb{R}^{2}}|\nabla u|^{2}\left|u_{\gamma}\right|^{2 \beta} d x+\int_{\mathbb{R}^{2}} V(\varepsilon x) u^{2}\left|u_{\gamma}\right|^{2 \beta} d x\right) \\
& \quad \leq C(1+\beta)^{2}\left(\|u\|_{L^{2 s}\left(\mathbb{R}^{2}\right)}^{2}\|u\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{2}+\|u\|^{p-2}\right)\|u\|_{L^{2 q^{\prime}(\beta+1)\left(\mathbb{R}^{2}\right)}}^{2(\beta+1)} .
\end{aligned}
$$

By the Fatou's Lemma in γ, we have

$$
\begin{aligned}
\|u\|_{L^{(\beta+1) t^{\prime}\left(\mathbb{R}^{2}\right)}} \leq & \left(C(1+\beta)^{2}\left(\|u\|_{L^{2 s}\left(\mathbb{R}^{2}\right)}^{2}\|u\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{2}+\|u\|^{p-2}\right)\right)^{\frac{1}{2(\beta+1)}} \\
& \cdot\|u\|_{L^{2 q^{\prime}(\beta+1)}\left(\mathbb{R}^{2}\right)}
\end{aligned}
$$

Using the Moser iteration, letting $\beta_{0}=\beta+1,2 q^{\prime} \beta_{m+1}=t^{\prime} \beta_{m}$ for $m=$ $0,1,2, \ldots$, and $m \rightarrow \infty$, we obtain that $u \in L^{t}\left(\mathbb{R}^{2}\right)$, for all $t \geq 2$. By the Calderon-Zygmund inequality, we conclude that $u \in W^{2, t}\left(B_{2}\left(x_{0}\right)\right), \forall x_{0} \in \mathbb{R}^{2}$. Next, by the interior L^{t}-estimates we have

$$
\|u\|_{W^{2, t}\left(B_{1}\left(x_{0}\right)\right)} \leq C\left(\|u\|_{L^{t}\left(B_{2}\left(x_{0}\right)\right)}+\|u\|_{L^{t(p-1)}\left(B_{2}\left(x_{0}\right)\right)}^{p-1}\right) .
$$

Then, by Sobolev inequalities, for some $\tau \in(0,1)$,

$$
\|u\|_{C^{1, \tau}\left(\overline{\left.B_{1}\left(x_{0}\right)\right)}\right.} \leq C\left(\|u\|_{L^{t}\left(B_{2}\left(x_{0}\right)\right)}+\|u\|_{L^{t(p-1)}\left(B_{2}\left(x_{0}\right)\right)}^{p-1}\right) .
$$

Letting $\left|x_{0}\right| \rightarrow \infty$, we have $\|u\|_{C^{1, \tau}\left(B_{1}\left(x_{0}\right)\right)} \rightarrow 0$, which gives (i).
(ii) Define $\tilde{u}=M e^{-\theta(|x|-L)}$, where $M=\max \{|u(x)|:|x|=L\}$ for fix $\theta>0$ satisfying $V_{0}>\theta^{2}$. Then $\Delta \tilde{u}=\left(\theta^{2}-\frac{\theta}{|x|}\right) \tilde{u}$. Let us consider the difference

$$
\phi_{R}=\left\{\begin{array}{l}
0, \quad x \in B_{R}^{o}, \\
b_{1} u-\tilde{u}, \quad x \in \mathbb{R}^{2} \backslash B_{R}^{o} .
\end{array}\right.
$$

with $b_{1}>0$. By (2.4), choosing $\eta=\phi_{R}$, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}}\left(\left|\nabla \phi_{R}\right|^{2}+V(\varepsilon x)\left|\phi_{R}\right|^{2}\right) d x \\
& \quad \leq \int_{\mathbb{R}^{2}}\left(\left(\theta^{2}-\frac{\theta}{|x|}\right)-V_{0}\right) \tilde{u} \phi_{R} d x+\int_{\mathbb{R}^{2}} b_{1}|u|^{p-2} u \phi_{R} d x+o_{R}(1)
\end{aligned}
$$

We choose $R>0$ such that $|u|^{p-2} \leq V_{0}-\theta^{2}$ for $|x|>R$. Then,

$$
\begin{aligned}
\int_{|x|>R} V_{0} \phi_{R}^{2} d x & \leq \int_{|x|>R}\left(\left|\nabla \phi_{R}\right|^{2}+V(\varepsilon x)\left|\phi_{R}\right|^{2}\right) d x \\
& \leq \int_{|x|>R}\left(b_{1} u-\tilde{u}\right)\left(V_{0}-\theta^{2}\right) \phi_{R} d x+o_{R}(1) \\
& =\left(V_{0}-\theta^{2}\right) \int_{|x|>R} \phi_{R}^{2} d x+o_{R}(1)
\end{aligned}
$$

This implies $\phi_{R} \equiv 0$ and gives the desired exponential decay.

3. Proof of Theorem 1.1

We demonstrate Theorem 1.1 in the section.
Part (i) We show the existence of ground states. By Lemma 2.4, there exists a sequence $\left\{\bar{u}_{n}\right\}$ be a minimizing sequence of \hat{c}_{ε}. Then, we can find a sequence $\left\{u_{n}\right\}$ such that $\left\{u_{n}\right\} \subset \subset \hat{\Sigma}_{\varepsilon}, \hat{J}_{\varepsilon}\left(u_{n}\right) \rightarrow \hat{c}_{\varepsilon}, \hat{J}_{\varepsilon}^{\prime}\left(u_{n}\right) \rightarrow 0$, and $\left\|u_{n}-\bar{u}_{n}\right\|_{E_{\varepsilon}} \rightarrow 0$, as $n \rightarrow \infty$, which is a direct consequence of the Ekeland's Variational Principle. See [21].

Step 1. We show that $\left\{u_{n}\right\}$ is bounded in E_{ε}.
For n large enough, we have

$$
\begin{aligned}
\hat{c}_{\varepsilon}+1+\left\|u_{n}\right\| \geq & \hat{J}_{\varepsilon}\left(u_{n}\right)-\frac{1}{p}\left\langle\hat{J}_{\varepsilon}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
= & \left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{2}}\left(\left|\nabla u_{n}\right|^{2}+V(\varepsilon x) u_{n}^{2}\right) d x \\
& +\left(\frac{1}{2}-\frac{3}{p}\right) \int_{\mathbb{R}^{2}}\left(A_{1, n}^{2} u_{n}^{2}+A_{2, n}^{2} u_{n}^{2}\right) d x \\
\geq & \left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{2}}\left(\left|\nabla u_{n}\right|^{2}+V(\varepsilon x) u_{n}^{2}\right) d x \\
= & \left(\frac{1}{2}-\frac{1}{p}\right)\left\|u_{n}\right\|_{E_{\varepsilon}}^{2} .
\end{aligned}
$$

It follows that $\left\|u_{n}\right\|$ is bounded.

Then, there exist $u_{0} \in E_{\varepsilon}$ and a subsequence of $\left\{u_{n}\right\}$, which still denoted by $\left\{u_{n}\right\}$, such that $u_{n} \rightharpoonup u_{0}$ weakly in E_{ε} as $n \rightarrow \infty$. Consequence, $u_{n} \rightarrow u_{0}$ strongly in $L_{\text {loc }}^{s}\left(\mathbb{R}^{2}\right)$, for $2 \leq s<+\infty$ and almost everywhere in \mathbb{R}^{2}.

Step 2. We prove there exists $\eta>0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{2}}\left|u_{n}\right|^{p} d x>\eta \tag{3.1}
\end{equation*}
$$

Suppose by contradiction that (3.1) does not hold. Then,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{2}}\left|u_{n}\right|^{p} d x=0 \tag{3.2}
\end{equation*}
$$

Since $u_{n} \in \hat{\Sigma}_{\varepsilon}$, we have

$$
\int_{\mathbb{R}^{2}}\left(\left|\nabla u_{n}\right|^{2}+V(\varepsilon x) u_{n}^{2}\right) d x+3 \int_{\mathbb{R}^{2}}\left(A_{1, n}^{2} u_{n}^{2}+A_{2, n}^{2} u_{n}^{2}\right) d x=\int_{\mathbb{R}^{2}}\left|u_{n}\right|^{p} d x
$$

where $A_{j, n}=A_{j}\left(u_{n}\right)$ for $j=1,2$. By (3.2) and the above equality, we have $\left\|u_{n}\right\|_{E_{\varepsilon}} \rightarrow 0$, as $n \rightarrow \infty$. Since $\left\{u_{n}\right\}$ is bounded, we have

$$
\begin{aligned}
\hat{c}_{\varepsilon}= & \lim _{n \rightarrow \infty}\left(\hat{J}_{\varepsilon}\left(u_{n}\right)-\frac{1}{p}\left\langle\hat{J}_{\varepsilon}^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right) \\
= & \lim _{n \rightarrow \infty}\left[\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{2}}\left(\left|\nabla u_{n}\right|^{2}+V(\varepsilon x) u_{n}^{2}\right) d x\right. \\
& \left.+\left(\frac{1}{2}-\frac{3}{p}\right) \int_{\mathbb{R}^{2}}\left(A_{1, n}^{2} u_{n}^{2}+A_{2, n}^{2} u_{n}^{2}\right) d x\right] \\
= & 0
\end{aligned}
$$

which contradicts Lemma 2.6.
Step 3 . We show $u_{0} \not \equiv 0$.
Otherwise,

$$
\begin{equation*}
u_{n} \rightarrow 0 \text { strongly in } L_{l o c}^{s}\left(\mathbb{R}^{2}\right), \text { for } 2 \leq s<+\infty \tag{3.3}
\end{equation*}
$$

By condition (V), we can choose $h>0$ small enough such that

$$
\begin{equation*}
V_{\infty}-h>V_{0} . \tag{3.4}
\end{equation*}
$$

By Lemma 2.5, we get

$$
\begin{equation*}
c_{V_{\infty}-h}>c_{V_{0}} \tag{3.5}
\end{equation*}
$$

Choose a constant $\rho>0$ sufficiently large such that for $|x|>\rho$

$$
\begin{equation*}
V(x)>V_{\infty}-h . \tag{3.6}
\end{equation*}
$$

From the proof of Lemma 2.4, there exists $\alpha_{n}>0$ such that $\alpha_{n} u_{n} \in \Sigma_{V_{\infty}-h}$. We obtain that for some $b_{1}>0, b_{2}>0$ independent of n such that

$$
\begin{align*}
\alpha_{n}^{p} \int_{\mathbb{R}^{2}}\left|u_{n}\right|^{p} d x= & \alpha_{n}^{2} \int_{\mathbb{R}^{2}}\left|\nabla u_{n}\right|^{2}+\left(V_{\infty}-h\right) u_{n}^{2} d x \\
& +3 \alpha_{n}^{6} \int_{\mathbb{R}^{2}}\left(A_{1, n}^{2} u_{n}^{2}+A_{2, n}^{2} u_{n}^{2}\right) d x \\
\leq & b_{1} \alpha_{n}^{2}+b_{2} \alpha_{n}^{6} . \tag{3.7}
\end{align*}
$$

By (3.1) and (3.7), we obtain $\left\{\alpha_{n}\right\}$ is bounded. From (3.6), we have

$$
\begin{align*}
\hat{c}_{\varepsilon}= & \lim _{n \rightarrow \infty} \hat{J}_{\varepsilon}\left(u_{n}\right)=\lim _{n \rightarrow \infty} \max _{t \geq 0} \hat{J}_{\varepsilon}\left(t u_{n}\right) \geq \limsup _{n \rightarrow \infty} \hat{J}_{\varepsilon}\left(\alpha_{n} u_{n}\right) \\
= & \limsup _{n \rightarrow \infty}\left[\frac{\alpha_{n}^{2}}{2} \int_{\mathbb{R}^{2}}\left(\left|\nabla u_{n}\right|^{2}+V(\varepsilon x)\left|u_{n}\right|^{2}\right) d x\right. \\
& \left.+\frac{\alpha_{n}^{6}}{2} \int_{\mathbb{R}^{2}}\left(A_{1, n}^{2}\left|u_{n}\right|^{2}+A_{2, n}^{2}\left|u_{n}\right|^{2}\right) d x-\frac{\alpha_{n}^{p}}{p} \int_{\mathbb{R}^{2}}\left|u_{n}\right|^{p} d x\right] \\
\geq & \limsup _{n \rightarrow \infty}\left[\frac{\alpha_{n}^{2}}{2} \int_{\mathbb{R}^{2}}\left(\left|\nabla u_{n}\right|^{2}+\left(V_{\infty}-h\right)\left|u_{n}\right|^{2}\right) d x\right. \\
& +\frac{\alpha_{n}^{6}}{2} \int_{\mathbb{R}^{2}}\left(A_{1, n}^{2}\left|u_{n}\right|^{2}+A_{2, n}^{2}\left|u_{n}\right|^{2}\right) d x-\frac{\alpha_{n}^{p}}{p} \int_{\mathbb{R}^{2}}\left|u_{n}\right|^{p} d x \\
& \left.+\frac{\alpha_{n}^{2}}{2} \int_{B_{\frac{\rho}{\varepsilon}}}\left(\left(V(\varepsilon x)-\left(V_{\infty}-h\right)\right)\left|u_{n}\right|^{2}\right) d x\right] \tag{3.8}
\end{align*}
$$

By (3.3) and $\left\{\alpha_{n}\right\}$ is bounded, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\alpha_{n}^{2}}{2} \int_{B \frac{\rho}{\varepsilon}}\left(V(\varepsilon x)-\left(V_{\infty}-h\right)\right)\left|u_{n}\right|^{2} d x=0 \tag{3.9}
\end{equation*}
$$

By (3.8), (3.9), and the boundedness of $\left\{\alpha_{n}\right\}$, we have $\hat{c}_{\varepsilon} \geq c_{V_{\infty}-h}$, which is impossible for small h according to (3.5) and Lemma 2.6.

Step 4. We prove $u_{0} \in \hat{\Sigma}_{\varepsilon}$ and u_{0} is a positive ground state of (2.2).
We observe that $u_{n} \rightharpoonup u_{0}$ in $E_{\varepsilon}, u_{n} \rightarrow u_{0}$ a.e. in \mathbb{R}^{2} as $n \rightarrow \infty$. Proposition 2.2 gives $u_{0} \in \hat{\Sigma}_{\varepsilon}$. By Fatou's Lemma, we obtain

$$
\begin{aligned}
\hat{c}_{\varepsilon}= & \lim _{n \rightarrow \infty}\left(\hat{J}_{\varepsilon}\left(u_{n}\right)-\frac{1}{p}\left\langle\hat{J}_{\varepsilon}^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right) \\
= & \lim _{n \rightarrow \infty}\left[\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{2}}\left(\left|\nabla u_{n}\right|^{2}+V(\varepsilon x) u_{n}^{2}\right) d x\right. \\
& \left.+\left(\frac{1}{2}-\frac{3}{p}\right) \int_{\mathbb{R}^{2}}\left(A_{1, n}^{2} u_{n}^{2}+A_{2, n}^{2} u_{n}^{2}\right) d x\right] \\
\geq & \left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{2}}\left(\left|\nabla u_{0}\right|^{2}+V(\varepsilon x) u_{0}^{2}\right) d x \\
& +\left(\frac{1}{2}-\frac{3}{p}\right) \int_{\mathbb{R}^{2}}\left(A_{1}^{2} u_{0}^{2}+A_{2}^{2} u_{0}^{2}\right) d x \\
= & \hat{J}_{\varepsilon}\left(u_{0}\right) \geq \hat{c}_{\varepsilon} .
\end{aligned}
$$

This implies that $\hat{J}_{\varepsilon}\left(u_{0}\right)=\hat{c}_{\varepsilon}$ and hence $\left|u_{0}\right|$ is a positive ground state of (2.2).

Part (ii) Suppose that $\varepsilon_{k} \rightarrow 0^{+}$as $k \rightarrow \infty$. We shall show that there exists a sequence of points $\left\{\xi_{k}\right\}$ in \mathbb{R}^{2} such that most of the mass of $v_{k}=v_{\varepsilon_{k}}$ is contained in a ball centered at ξ_{k} and $\left\{\varepsilon_{k} \xi_{k}\right\}$ is bounded. Then the limit ξ of $\left\{\varepsilon_{k} \xi_{k}\right\}$ verifies $c_{V(\xi)}$ is the least energy of the functional $J_{V(\xi)}$.

Let v_{ε} be a nonnengative ground state of (2.2), and $u_{\varepsilon}(x)=v_{\varepsilon}\left(\frac{x}{\varepsilon}\right)$ be a ground state of (1.1).

Notice that for any v on the manifold $\hat{\Sigma}_{\varepsilon}$, we have

$$
\begin{aligned}
\hat{J}_{\varepsilon}(v)= & \left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{2}}\left(|\nabla v|^{2}+V(\varepsilon x) v^{2}\right) d x \\
& +\left(\frac{1}{2}-\frac{3}{p}\right) \int_{\mathbb{R}^{2}}\left(A_{1}^{2} v^{2}+A_{2}^{2} v^{2}\right) d x
\end{aligned}
$$

Define a measure μ_{ε} by

$$
\begin{aligned}
\mu_{\varepsilon}(\Omega)= & \left(\frac{1}{2}-\frac{1}{p}\right) \int_{\Omega}\left(\left|\nabla v_{\varepsilon}\right|^{2}+V(\varepsilon x) v_{\varepsilon}^{2}\right) d x \\
& +\left(\frac{1}{2}-\frac{3}{p}\right) \int_{\Omega}\left(A_{1}^{2}\left(v_{\varepsilon}\right) v_{\varepsilon}^{2}+A_{2}^{2}\left(v_{\varepsilon}\right) v_{\varepsilon}^{2}\right) d x .
\end{aligned}
$$

By using Lemma 2.6, up to a subsequence, we assume that as $\varepsilon_{k} \rightarrow 0^{+}$, $(k \rightarrow \infty)$,

$$
\mu_{k}\left(\mathbb{R}^{2}\right)=\mu_{\varepsilon_{k}}\left(\mathbb{R}^{2}\right)=\hat{c}_{\varepsilon_{k}} \rightarrow c_{V_{0}} .
$$

It follows that $\left\{v_{\varepsilon}\right\}$ is bounded in E_{ε} when ε small enough. By the Concentration Compactness Lemma in [12] and [16], there exists a subsequence of $\left\{\mu_{k}\right\}$, which we will always denote by $\left\{\mu_{k}\right\}$, satisfying one of the three following possibilities:
(1) Compactness There is a sequence $\left\{\xi_{k}\right\} \subset \mathbb{R}^{2}$ such that for any $\delta>0$ there exists a radius $\rho>0$ such that

$$
\begin{equation*}
\int_{B_{\rho}\left(\xi_{k}\right)} d \mu_{k} \geq c_{V_{0}}-\delta, \quad \text { for all } k \tag{3.10}
\end{equation*}
$$

(2) Vanishing There exists a sequence of $\left\{\varepsilon_{k}\right\}$ that tends to zero such that for all $\rho>0$

$$
\lim _{k \rightarrow \infty} \sup _{y \in \mathbb{R}^{2}} \int_{B_{\rho}(y)} d \mu_{k}=0
$$

(3) Dichotomy There exist a constant \bar{c} with $0<\bar{c}<c_{V_{0}}$, sequences $\left\{\rho_{k}\right\} \rightarrow \infty,\left\{\xi_{k}\right\} \subset \mathbb{R}^{2}$, and two nonnegative measures μ_{k}^{1} and μ_{k}^{2} satisfying the following:

$$
\begin{aligned}
0 & \leq \mu_{k}^{1}+\mu_{k}^{2} \leq \mu_{k}, \\
\sup \left(\mu_{k}^{1}\right) & \subset B_{\rho_{k}}\left(\xi_{k}\right), \quad \sup \left(\mu_{k}^{2}\right) \subset B_{2 \rho_{k}}^{c}\left(\xi_{k}\right), \\
\mu_{k}^{1}\left(\mathbb{R}^{2}\right) & \rightarrow \bar{c}, \quad \mu_{k}^{2}\left(\mathbb{R}^{2}\right) \rightarrow c_{V_{0}}-\bar{c}, \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

Proposition 3.1. Neither vanishing (2) nor dichotomy (3) occurs.
Proof. Claim 1. Vanishing (2) does not occur.
Otherwise, $\left\{v_{k}\right\}$ i.e. $\left\{v_{\varepsilon_{k}}\right\}$, is also vanishing. That is, there exists a subsequence of $\left\{v_{k}\right\}$, such that for all $\rho>0$,

$$
\lim _{k \rightarrow \infty} \sup _{y \in \mathbb{R}^{2}} \int_{B_{\rho}(y)}\left(\left|\nabla v_{k}\right|^{2}+V\left(\varepsilon_{k} x\right) v_{k}^{2}\right) d x=0 .
$$

By the Lions' Lemma [12], $v_{k} \rightarrow 0$, in $L^{s}\left(\mathbb{R}^{2}\right), s \geq 2$. By using

$$
0=\left\langle\hat{J}_{\varepsilon_{k}}^{\prime}\left(v_{k}\right), v_{k}\right\rangle=\int_{\mathbb{R}^{2}}\left(\left|\nabla v_{k}\right|^{2}+V\left(\varepsilon_{k} x\right) v_{k}^{2}+3 A_{1, k}^{2} v_{k}^{2}+3 A_{2, k}^{2} v_{k}^{2}-\left|v_{k}\right|^{p}\right) d x
$$

and $\int_{\mathbb{R}^{2}}\left|v_{k}\right|^{p} d x \rightarrow 0$ as $k \rightarrow \infty$, where $A_{1, k}:=A_{1}\left(v_{k}\right)=A_{1}\left(v_{\varepsilon_{k}}\right)$ and $A_{2, k}:=$ $A_{2}\left(v_{k}\right)=A_{2}\left(v_{\varepsilon_{k}}\right)$, we obtain

$$
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{2}}\left(\left|\nabla v_{k}\right|^{2}+V\left(\varepsilon_{k} x\right) v_{k}^{2}+3 A_{1, k}^{2} v_{k}^{2}+3 A_{2, k}^{2} v_{k}^{2}\right) d x=0
$$

Thus,

$$
\begin{aligned}
0= & \lim _{k \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{2}}\left(\left|\nabla v_{k}\right|^{2}+V\left(\varepsilon_{k} x\right) v_{k}^{2}\right) d x \\
& +\left(\frac{1}{2}-\frac{3}{p}\right) \int_{\mathbb{R}^{2}}\left(A_{1, k}^{2} v_{k}^{2}+A_{2, k}^{2} v_{k}^{2}\right) d x \\
= & \lim _{k \rightarrow \infty} \hat{c}_{\varepsilon_{k}}=c_{V_{0}}>0 .
\end{aligned}
$$

It is absurd. Thus, Claim 1 holds.
Claim 2. Dichotomy (3) does not occur.
Note that $\varepsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$. let us define a cut-off function $\eta_{k} \in C_{0}^{1}\left(\mathbb{R}^{2}\right)$ such that $\eta_{k} \equiv 1$ in $B_{\rho_{k}}\left(\xi_{k}\right), \eta_{k} \equiv 0$ in $B_{2 \rho_{k}}^{c}\left(\xi_{k}\right)$, and $0 \leq \eta_{k} \leq 1,\left|\nabla \eta_{k}\right| \leq 2 / \rho_{k}$, where $\xi_{k} \in \mathbb{R}^{2}$. Let $v_{k}=v_{\varepsilon_{k}}:=v_{1, k}+v_{2, k}$, where

$$
v_{1, k}:=v_{1, \varepsilon_{k}}=\eta_{k} v_{\varepsilon_{k}}, \quad v_{2, k}:=v_{2, \varepsilon_{k}}=\left(1-\eta_{k}\right) v_{\varepsilon_{k}} .
$$

If the Dichotomy case happens, then, as $k \rightarrow \infty$,

$$
\begin{equation*}
\hat{J}_{\varepsilon_{k}}\left(v_{1, k}\right) \geq \mu_{k}\left(B_{\rho_{k}}\left(\xi_{k}\right)\right) \geq \mu_{k}^{1}\left(B_{\rho_{k}}\left(\xi_{k}\right)\right)=\mu_{k}^{1}\left(\mathbb{R}^{2}\right) \rightarrow \bar{c} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{J}_{\varepsilon_{k}}\left(v_{2, k}\right) \geq \mu_{k}\left(B_{2 \rho_{k}}^{c}\left(\xi_{k}\right)\right) \geq \mu_{k}^{2}\left(B_{2 \rho_{k}}^{c}\left(\xi_{k}\right)\right)=\mu_{k}^{2}\left(\mathbb{R}^{2}\right) \rightarrow c_{V_{0}}-\bar{c} . \tag{3.12}
\end{equation*}
$$

Set $\Omega_{k}:=B_{2 \rho_{k}}\left(\xi_{k}\right) \backslash B_{\rho_{k}}\left(\xi_{k}\right)$. Then, as $k \rightarrow \infty$

$$
\begin{align*}
& \left(\frac{1}{2}-\frac{1}{p}\right) \int_{\Omega_{k}}\left(\left|\nabla v_{k}\right|^{2}+V\left(\varepsilon_{k} x\right) v_{k}^{2}\right) d x+\left(\frac{1}{2}-\frac{3}{p}\right) \int_{\Omega_{k}}\left(A_{1, k}^{2} v_{k}^{2}+A_{2, k}^{2} v_{k}^{2}\right) d x \\
& \quad=\mu_{k}\left(\Omega_{k}\right)=\mu_{k}\left(\mathbb{R}^{2}\right)-\mu_{k}\left(B_{\rho_{k}}\left(\xi_{k}\right)\right)-\mu_{k}\left(B_{2 \rho_{k}}^{c}\left(\xi_{k}\right)\right) \\
& \quad \leq \mu_{k}\left(\mathbb{R}^{2}\right)-\mu_{k}^{1}\left(\mathbb{R}^{2}\right)-\mu_{k}^{2}\left(\mathbb{R}^{2}\right) \\
& \quad \rightarrow 0 \tag{3.13}
\end{align*}
$$

Thus, by the Sobolev inequalities, we have $\int_{\Omega_{k}}\left|v_{k}\right|^{p} d x \rightarrow 0$ as $k \rightarrow \infty$. Consequently,

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left|v_{k}\right|^{p} d x=\int_{\mathbb{R}^{2}}\left|v_{1, k}\right|^{p} d x+\int_{\mathbb{R}^{2}}\left|v_{2, k}\right|^{p} d x+o(1) . \tag{3.14}
\end{equation*}
$$

By (3.13), we obtain

$$
\begin{align*}
\int_{\mathbb{R}^{2}}\left(\left|\nabla v_{k}\right|^{2}+V\left(\varepsilon_{k} x\right) v_{k}^{2}\right) d x= & \int_{\mathbb{R}^{2}}\left(\left|\nabla v_{1, k}\right|^{2}+V\left(\varepsilon_{k} x\right) v_{1, k}^{2}\right) d x \\
& +\int_{\mathbb{R}^{2}}\left(\left|\nabla v_{2, k}\right|^{2}+V(k x) v_{2, k}^{2}\right) d x+o(1) \tag{3.15}
\end{align*}
$$

We notice that $v_{2, k}$ converges to 0 a.e. in \mathbb{R}^{2}, and $A_{j}\left(v_{2, k}\right) \rightarrow 0$ a.e. in \mathbb{R}^{2} for $j=1,2$, as $k \rightarrow \infty$. Since $\left\|\left(1-\eta_{k}\right) v_{k}\right\|$ is bounded and $\operatorname{supp}\left(\left(1-\eta_{k}\right) v_{k}\right) \subset B_{\rho_{k}}^{c}$, then Proposition 2.1 gives for $j=1,2$

$$
\begin{aligned}
\left|A_{j}\left(\left(1-\eta_{k}\right) v_{k}\right)\right| & \leq C\left\|v_{k}^{2}\right\|_{L^{\frac{4}{3}}\left(B_{\rho_{k}}^{c}(x)\right)}\left(\int_{B_{\rho_{k}}^{c}(x)} \frac{d y}{|x-y|^{4}} d y\right)^{\frac{1}{4}} \\
& \leq C \frac{1}{\rho_{k}^{1 / 2}} \xrightarrow{k} 0
\end{aligned}
$$

and

$$
\begin{align*}
& \left.\left|\int_{\mathbb{R}^{2}} K_{j}(x-y)\left(1-\eta_{k}\right) \eta_{k}\right| v_{k}(y)\right|^{2} d y \mid \\
& \quad \leq\left\|v_{k}^{2}\right\|_{L^{\frac{4}{3}}\left(\Omega_{k}\right)}\left(\int_{\Omega_{k}} \frac{d y}{|x-y|^{4}} d y\right)^{\frac{1}{4}} \leq C \frac{1}{\rho_{k}^{1 / 2}} \xrightarrow{k} 0 . \tag{3.16}
\end{align*}
$$

Since $\left\|v_{k}\right\| \leq C$, for $j=1,2$

$$
\begin{gather*}
\lim _{k \rightarrow \infty} A_{j}\left(v_{2, k}\right)=0 \tag{3.17}\\
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{2}} A_{j}\left(v_{1, k}\right) A_{j}\left(v_{2, k}\right)\left|v_{1, k}\right|^{2} d x=0 \tag{3.18}\\
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{2}}\left|A_{j}\left(v_{2, k}\right)\right|^{2}\left|v_{1, k}\right|^{2} d x=0 \tag{3.19}
\end{gather*}
$$

By (3.16)

$$
\begin{aligned}
A_{1, k} & =-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \frac{x_{2}-y_{2}}{|x-y|^{2}} \frac{1}{2}\left|v_{1, k}+v_{2, k}\right|^{2} d y \\
& =A_{1}\left(v_{1, k}\right)+A_{1}\left(v_{2, k}\right)-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \frac{x_{2}-y_{2}}{|x-y|^{2}} v_{1, k} v_{2, k} d y \\
& =A_{1}\left(v_{1, k}\right)+A_{1}\left(v_{2, k}\right)+o(1),
\end{aligned}
$$

we have

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} A_{1}^{2}\left(v_{k}\right)\left|v_{k}\right|^{2} d x= & \int_{\mathbb{R}^{2}}\left(A_{1}\left(v_{1, k}\right)+A_{1}\left(v_{2, k}\right)+o(1)\right)^{2}\left|v_{1, k}+v_{2, k}\right|^{2} d x \\
= & \int_{\mathbb{R}^{2}}\left[A_{1}^{2}\left(v_{1, k}\right)\left|v_{1, k}\right|^{2}+A_{1}^{2}\left(v_{2, k}\right)\left|v_{2, k}\right|^{2}\right. \\
& +2 A_{1}\left(v_{1, k}\right) A_{1}\left(v_{2, k}\right)\left(\left|v_{1, k}\right|^{2}+\left|v_{2, k}\right|^{2}\right)+A_{1}^{2}\left(v_{1, k}\right)\left|v_{2, k}\right|^{2} \\
& +A_{1}^{2}\left(v_{2, k}\right)\left|v_{1, k}\right|^{2}+2\left(A_{1}^{2}\left(v_{1, k}\right)+A_{1}^{2}\left(v_{2, k}\right)\right) v_{1, k} v_{2, k} \\
& \left.+4 A_{1}\left(v_{1, k}\right) A_{1}\left(v_{2, k}\right) v_{1, k} v_{2, k}\right] d x+o(1)
\end{aligned}
$$

Hence, by using (3.17), (3.18), (3.19), and $v_{2, k}$ converges to zero a.e. in \mathbb{R}^{2}, we get

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} A_{1}^{2}\left(v_{k}\right)\left|v_{k}\right|^{2} d x=\int_{\mathbb{R}^{2}} A_{1}^{2}\left(v_{1, k}\right)\left|v_{1, k}\right|^{2} d x+\int_{\mathbb{R}^{2}} A_{1}^{2}\left(v_{2, k}\right)\left|v_{2, k}\right|^{2} d x+o(1) \tag{3.20}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} A_{2}^{2}\left(v_{k}\right)\left|v_{k}\right|^{2} d x=\int_{\mathbb{R}^{2}} A_{2}^{2}\left(v_{1, k}\right)\left|v_{1, k}\right|^{2} d x+\int_{\mathbb{R}^{2}} A_{2}^{2}\left(v_{2, k}\right)\left|v_{2, k}\right|^{2} d x+o(1) . \tag{3.21}
\end{equation*}
$$

Then, by (3.14), (3.15), (3.20), and (3.21), we get

$$
\begin{aligned}
c_{V_{0}} & =\lim _{k \rightarrow 0^{+}} \hat{J}_{\varepsilon_{k}}\left(v_{k}\right)=\lim _{k \rightarrow 0^{+}}\left(\hat{J}_{\varepsilon_{k}}\left(v_{1, k}\right)+\hat{J}_{\varepsilon_{k}}\left(v_{2, k}\right)+o(1)\right) \\
& \geq \liminf _{k \rightarrow 0^{+}} \hat{J}_{\varepsilon_{k}}\left(v_{1, k}\right)+\liminf _{k \rightarrow 0^{+}} \hat{J}_{\varepsilon_{k}}\left(v_{2, k}\right) \\
& \geq \bar{c}+\left(c_{V_{0}}-\bar{c}\right)=c_{V_{0}} .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\lim _{k \rightarrow 0^{+}} \hat{J}_{\varepsilon_{k}}\left(v_{1, k}\right)=\bar{c}, \lim _{k \rightarrow 0^{+}} \hat{J}_{\varepsilon_{k}}\left(v_{2, k}\right)=c_{V_{0}}-\bar{c} \tag{3.22}
\end{equation*}
$$

Define

$$
\begin{aligned}
I_{k}^{1}= & \int_{\mathbb{R}^{2}}\left(\left|\nabla v_{1, k}\right|^{2}+V\left(\varepsilon_{k} x\right) v_{1, k}^{2}\right) d x \\
& +3 \int_{\mathbb{R}^{2}}\left(A_{1}^{2}\left(v_{1, k}\right) v_{1, k}^{2}+A_{2}^{2}\left(v_{1, k}\right) v_{1, k}^{2}\right) d x-\int_{\mathbb{R}^{2}}\left|v_{1, k}\right|^{p} d x
\end{aligned}
$$

and

$$
\begin{aligned}
I_{k}^{2}= & \int_{\mathbb{R}^{2}}\left(\left|\nabla v_{2, k}\right|^{2}+V\left(\varepsilon_{k} x\right) v_{2, k}^{2}\right) d x \\
& +3 \int_{\mathbb{R}^{2}}\left(A_{1}^{2}\left(v_{2, k}\right) v_{2, k}^{2}+A_{2}^{2}\left(v_{2, k}\right) v_{2, k}^{2}\right) d x-\int_{\mathbb{R}^{2}}\left|v_{2, k}\right|^{p} d x
\end{aligned}
$$

Since $v_{\varepsilon_{k}} \in \hat{\Sigma}_{\varepsilon_{k}}$, (3.14), (3.15), (3.20), and (3.21), we obtain

$$
\begin{equation*}
I_{k}^{1}=-I_{k}^{2}+o(1) \tag{3.23}
\end{equation*}
$$

Next we show (3.23) is not true. By Lemma 2.4, $\exists \theta_{1}>0$, such that $\theta_{1} v_{1, \varepsilon} \in \hat{\Sigma}_{\varepsilon}$, and then

$$
\begin{align*}
& \theta_{1}^{2} \int_{\mathbb{R}^{2}}\left(\left|\nabla v_{1, \varepsilon}\right|^{2}+V(\varepsilon x) v_{1, \varepsilon}^{2}\right) d x+3 \theta_{1}^{6} \int_{\mathbb{R}^{2}}\left[A_{1}^{2}\left(v_{1, \varepsilon}\right) v_{1, \varepsilon}^{2}+A_{2}^{2}\left(v_{1, \varepsilon}\right) v_{1, \varepsilon}^{2}\right] d x \\
& \quad=\theta_{1}^{p} \int_{\mathbb{R}^{2}}\left|v_{1, \varepsilon}\right|^{p} d x \tag{3.24}
\end{align*}
$$

Case 1 Up to a subsequence, $I_{k}^{1} \leq 0$.
By (3.24), we have

$$
\begin{aligned}
\theta_{1}^{2-p} & \int_{\mathbb{R}^{2}}\left(\left|\nabla v_{1, k}\right|^{2}+V\left(\varepsilon_{k} x\right) v_{1, k}^{2}\right) d x+3 \theta_{1}^{6-p} \int_{\mathbb{R}^{2}}\left[A_{1}^{2}\left(v_{1, k}\right) v_{1, k}^{2}+A_{2}^{2}\left(v_{1, k}\right) v_{1, k}^{2}\right] d x \\
& =\int_{\mathbb{R}^{2}}\left|v_{1, k}\right|^{p} d x \\
& \geq \int_{\mathbb{R}^{2}}\left(\left|\nabla v_{1, k}\right|^{2}+V\left(\varepsilon_{k} x\right) v_{1, k}^{2}\right) d x+3 \int_{\mathbb{R}^{2}}\left[A_{1}^{2}\left(v_{1, k}\right) v_{1, k}^{2}+A_{2}^{2}\left(v_{1, k}\right) v_{1, k}^{2}\right] d x .
\end{aligned}
$$

Let $b_{1}=\int_{\mathbb{R}^{2}}\left(\left|\nabla v_{1, k}\right|^{2}+V\left(\varepsilon_{k} x\right) v_{1, k}^{2}\right) d x$ and $b_{2}=\int_{\mathbb{R}^{2}}\left[A_{1}^{2}\left(v_{1, k}\right) v_{1, k}^{2}+A_{2}^{2}\left(v_{1, k}\right)\right.$ $\left.v_{1, k}^{2}\right] d x$. Since $\lambda(t)=t^{2-p} b_{1}+t^{6-p} b_{2}$ is strictly decreasing on any interval where $\lambda(t)>0$. It yields that $\theta_{1} \leq 1$. Hence, by (3.22), as $k \rightarrow 0^{+}$

$$
\hat{c}_{\varepsilon_{k}} \leq \hat{J}_{\varepsilon_{k}}\left(\theta_{1} v_{1, k}\right) \leq \hat{J}_{\varepsilon_{k}}\left(v_{1, k}\right) \rightarrow \bar{c}<c_{V_{0}},
$$

which contradicts $\lim _{k \rightarrow \infty} \hat{\varepsilon}_{\varepsilon_{k}}=c_{V_{0}}>\bar{c}$.
Case 2 Up to a subsequence, $I_{k}^{2} \leq 0$.
We can repeat the arguments of previous case.
Case 3 Up to a subsequence, $I_{k}^{1}>0$ and $I_{k}^{2}>0$.
By (3.23), we obtain $I_{k}^{1}=o_{n}(1)$ and $I_{k}^{2}=o(1)$. If $\theta_{1} \leq 1+o(1)$, we can can argue as in the Case 1. Assume that $\lim _{k \rightarrow 0^{+}} \theta_{1}=\theta_{0}>1$. We claim, up to a subsequence, $\lim _{k \rightarrow 0^{+}}\left(b_{1}+b_{2}\right)>0$. Otherwise, $\lim _{k \rightarrow 0^{+}} \int_{\mathbb{R}^{2}}\left(\left|\nabla v_{1, k}\right|^{2}+\right.$ $\left.V\left(\varepsilon_{k} x\right) v_{1, k}^{2}\right) d x=0$. By Sobolev embedding theorem, we have $\lim _{k \rightarrow 0^{+}} \int_{\mathbb{R}^{2}}\left|v_{1, k}\right|^{s}$ $d x=0$, for $2 \leq s<+\infty$. Hence, $\bar{c}=\lim _{k \rightarrow 0^{+}} \hat{J}_{\varepsilon_{k}}\left(v_{1, k}\right)=0$. This is impossible. Then

$$
\begin{aligned}
0 & =\lim _{k \rightarrow \infty} I_{k}^{1}=\lim _{k \rightarrow 0^{+}}\left(b_{1}+b_{2}-\theta_{1}^{2-p} b_{1}-\theta_{1}^{6-p} b_{2}\right) \\
& \geq \lim _{k \rightarrow \infty}\left(1-\theta_{1}^{6-p}\right)\left(b_{1}+b_{2}\right)=\left(1-\theta_{0}^{6-p}\right) \lim _{k \rightarrow 0^{+}}\left(b_{1}+b_{2}\right) \\
& >0 .
\end{aligned}
$$

Then, we have a contradiction. We prove Claim 2 and Proposition 3.1.
Define

$$
w_{k}(x):=v_{k}\left(x+\xi_{k}\right)=u_{k}\left(\varepsilon_{k} x+\varepsilon_{k} \xi_{k}\right),
$$

where the sequence $\left\{\xi_{k}\right\}$ is the one we obtained in (3.10). Then, $w_{k}(x)$ is a positive ground state of

$$
\left\{\begin{array}{l}
-\Delta w_{k}+V\left(\varepsilon_{k} x+\varepsilon_{k} \xi_{k}\right) w_{k}+A_{0}\left(w_{k}\right) w_{k}+\sum_{j=1}^{2} A_{j}^{2}\left(w_{k}\right) w_{k}=\left|w_{k}\right|^{p-2} w_{k}, \tag{3.25}\\
\partial_{1} A_{0}\left(w_{k}\right)=A_{2}\left(w_{k}\right)\left|w_{k}\right|^{2}, \quad \partial_{2} A_{0}\left(w_{k}\right)=-A_{1}\left(w_{k}\right)\left|w_{k}\right|^{2}, \\
\partial_{1} A_{2}\left(w_{k}\right)-\partial_{2} A_{1}\left(w_{k}\right)=-\frac{1}{2} w_{k}^{2}, \quad \partial_{1} A_{1}\left(w_{k}\right)+\partial_{2} A_{2}\left(w_{k}\right)=0
\end{array}\right.
$$

Lemma 3.2. If (V) holds, then the sequence $\left\{\varepsilon_{k} \xi_{k}\right\}$ is bounded as $k \rightarrow \infty$.
Proof. Assume that after there is a subsequence $\left\{\varepsilon_{k} \xi_{k}\right\}$ such that $\varepsilon_{k} \xi_{k} \rightarrow \infty$ as $\varepsilon_{k} \rightarrow 0^{+}$. Because \hat{c}_{ε} is bounded, $\left\{w_{k}\right\}$ is also bounded in E_{ε}. Hence, up to a subsequence, there exists $w_{0} \in E_{\varepsilon}$ such that $w_{k} \rightharpoonup w_{0}$ weakly in E_{ε} as $k \rightarrow \infty$. Consequently, $w_{k} \rightarrow w_{0}$ strongly in $L_{l o c}^{s}\left(\mathbb{R}^{2}\right)$, for $2 \leq s<+\infty$ and
almost everywhere in \mathbb{R}^{2}. By (3.10), for any $\delta>0$, there exists $\rho>0$ such that

$$
\left(\frac{1}{2}-\frac{1}{p}\right) \int_{B_{\rho}^{c}\left(\xi_{k}\right)}\left(\left|\nabla w_{k}\right|^{2}+V\left(\varepsilon_{k} x+\varepsilon_{k} \xi_{k}\right) w_{k}^{2}\right) d x \leq \mu_{k}\left(B_{\rho_{k}}^{c}\left(\xi_{k}\right)\right)<\delta
$$

Then, by the Sobolev embedding theorem, we get

$$
\begin{equation*}
w_{k} \rightarrow w_{0} \text { in } L^{s}\left(\mathbb{R}^{2}\right) \text { for any } s \in[2,+\infty) \tag{3.26}
\end{equation*}
$$

We notice that

$$
\begin{aligned}
& {\left[\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{2}}\left(\left|\nabla w_{0}\right|^{2}+V_{\infty} w_{0}^{2}\right) d x\right.} \\
& \left.\quad+\left(\frac{1}{2}-\frac{3}{p}\right) \int_{\mathbb{R}^{2}}\left(A_{1}^{2}\left(w_{0}\right) w_{0}^{2}+A_{2}^{2}\left(w_{0}\right) w_{0}^{2}\right) d x\right] \\
& \quad \geq \limsup _{k \rightarrow \infty}\left[\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{2}}\left(\left|\nabla w_{k}\right|^{2}+V\left(\varepsilon_{k} x+\varepsilon_{k} \xi_{k}\right) w_{k}^{2}\right) d x\right. \\
& \left.\quad+\left(\frac{1}{2}-\frac{3}{p}\right) \int_{\mathbb{R}^{2}}\left(A_{1}^{2}\left(w_{k}\right) w_{k}^{2}+A_{2}^{2}\left(w_{k}\right) w_{k}^{2}\right) d x\right] \\
& \quad=\underset{k \rightarrow \infty}{\limsup } \hat{c}_{\varepsilon_{k}} \geq c_{V_{0}}>0 .
\end{aligned}
$$

Hence, $w_{0}(x) \not \equiv 0$. Take $h>0$ such that (3.5) holds. From (3.26), we obtain

$$
\begin{aligned}
& -\Delta w_{0}+\left(V_{\infty}-h\right) w_{0}+A_{0}\left(w_{0}\right) w_{0}+\sum_{j=1}^{2} A_{j}^{2}\left(w_{0}\right) w_{0}-\left|w_{0}\right|^{p-2} w_{0} \\
& \quad \leq 0 \text { in } H^{-1}\left(\mathbb{R}^{2}\right) .
\end{aligned}
$$

Especially,

$$
\begin{align*}
& \int_{\mathbb{R}^{2}}\left(\left|\nabla w_{0}\right|^{2}+\left(V_{\infty}-h\right)\left|w_{0}\right|^{2}\right) d x+3 \int_{\mathbb{R}^{2}}\left(A_{1}^{2}\left(w_{0}\right)\left|w_{0}\right|^{2}+A_{2}^{2}\left(w_{0}\right)\left|w_{0}\right|^{2}\right) d x \\
& \quad<\frac{1}{p} \int_{\mathbb{R}^{2}}\left|w_{0}\right|^{p} d x \tag{3.27}
\end{align*}
$$

since $w_{0} \not \equiv 0$. Choose $\theta>0$ such that $\theta w_{0} \in \Sigma_{V_{\infty}-h}$. Then, by (3.27), we have $\theta<1$. From $\varepsilon_{k} \xi_{k} \rightarrow \infty$ as $k \rightarrow \infty$, we have

$$
\begin{aligned}
c_{V_{\infty}-h} \leq & \frac{\theta^{2}}{2} \int_{\mathbb{R}^{2}}\left(\left|\nabla w_{0}\right|^{2}+\left(V_{\infty}-h\right)\left|w_{0}\right|^{2}\right) d x \\
& +\frac{\theta^{6}}{2} \int_{\mathbb{R}^{2}}\left(A_{1}^{2}\left(w_{0}\right)\left|w_{0}\right|^{2}+A_{2}^{2}\left(w_{0}\right)\left|w_{0}\right|^{2}\right) d x-\frac{\theta^{p}}{p} \int_{\mathbb{R}^{2}}\left|w_{0}\right|^{p} d x \\
\leq & \liminf _{k \rightarrow \infty}\left[\frac{\theta^{2}}{2} \int_{\mathbb{R}^{2}}\left(\left|\nabla w_{k}\right|^{2}+V\left(\varepsilon_{k} x+\varepsilon_{k} \xi_{k}\right)\left|w_{k}\right|^{2}\right) d x\right. \\
& \left.+\frac{\theta^{6}}{2} \int_{\mathbb{R}^{2}}\left(A_{1}^{2}\left(w_{k}\right)\left|w_{k}\right|^{2}+A_{2}^{2}\left(w_{k}\right)\left|w_{k}\right|^{2}\right) d x-\frac{\theta^{p}}{p} \int_{\mathbb{R}^{2}}\left|w_{k}\right|^{p} d x\right] \\
= & \liminf _{k \rightarrow \infty} \lambda(\theta),
\end{aligned}
$$

where $\lambda(\theta):=\frac{\theta^{2}}{2} b_{1}+\frac{\theta^{6}}{2} b_{2}-\frac{\theta^{p}}{p}\left(b_{1}+3 b_{2}\right)$. We know that $b_{1}+b_{2}>0$, we can prove that $\frac{d \lambda(\theta)}{d \theta}=b_{1} \theta+3 b_{2} \theta^{5}-\left(b_{1}+3 b_{2}\right) \theta^{p-1}>0$, for $\theta \in(0,1)$. Hence, $\lambda(\theta)<\lambda(1)$ for $\theta \in(0,1)$. This and Lemma 2.6 imply

$$
c_{V_{\infty}-h} \leq \liminf _{k \rightarrow \infty} \lambda(1)=\lim _{\varepsilon_{k} \rightarrow 0^{+}} \hat{c}_{\varepsilon_{k}} \leq c_{V_{0}}
$$

which contradicts (3.5).
From the above Lemma, we notice that for any sequence $\left\{\varepsilon_{k}^{\prime}\right\} \rightarrow 0$, there exists a subsequence $\left\{\varepsilon_{k}\right\}$ such that $\bar{x}_{k}:=\varepsilon_{k} \xi_{k} \rightarrow \xi_{0}, w_{k} \rightharpoonup w_{0}\left(w_{0} \geq 0\right.$ and $\left.w_{0} \not \equiv 0\right)$ weakly in E_{ε} as $\varepsilon_{k} \rightarrow 0^{+}$. Furthermore, (3.26) is true.

Lemma 3.3. $c_{V\left(\xi_{0}\right)}=\inf _{x \in \mathbb{R}^{2}} c_{V(x)}$. Moreover, $w_{k} \rightarrow w_{0}$ strongly in E_{ε}, as $k \rightarrow$ ∞.

Proof. From elliptic regularity theory and (3.26), $w_{k} \rightarrow w_{0}$ in $C_{l o c}^{2}$ and

$$
-\Delta w_{0}+V\left(\xi_{0}\right) w_{0}+A_{0}\left(w_{0}\right) w_{0}+\sum_{j=1}^{2} A_{j}^{2}\left(w_{0}\right) w_{0}=\left|w_{0}\right|^{p-2} w_{0}, \quad x \in \mathbb{R}^{2}
$$

Consequently, by (3.10) and (3.26), we have

$$
\begin{align*}
c_{V\left(\xi_{0}\right)} \leq & \left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{2}}\left(\left|\nabla w_{0}\right|^{2}+V\left(\xi_{0}\right) w_{0}^{2}\right) d x \tag{3.28}\\
& +\left(\frac{1}{2}-\frac{3}{p}\right) \int_{\mathbb{R}^{2}}\left(A_{1}^{2}\left(w_{0}\right) w_{0}^{2}+A_{2}^{2}\left(w_{0}\right) w_{0}^{2}\right) d x \tag{3.29}\\
\leq & \liminf _{k \rightarrow \infty}\left[\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{2}}\left(\left|\nabla w_{k}\right|^{2}+V\left(\varepsilon_{k} x+\bar{x}_{k}\right) w_{k}^{2}\right) d x\right. \tag{3.30}\\
& \left.+\left(\frac{1}{2}-\frac{3}{p}\right) \int_{\mathbb{R}^{2}}\left(A_{1}^{2}\left(w_{k}\right) w_{k}^{2}+A_{2}^{2}\left(w_{k}\right) w_{k}^{2}\right) d x\right] \tag{3.31}\\
= & \liminf _{k \rightarrow \infty} \hat{c}_{\varepsilon_{k}} \leq \inf _{\xi \in \mathbb{R}^{2}} c_{V(\xi)}, \tag{3.32}
\end{align*}
$$

which yields that $c_{V\left(\xi_{0}\right)}=\inf _{x \in \mathbb{R}^{2}} c_{V(x)}$. By (3.28), Proposition 2.2, and (3.26), we have

$$
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{2}}\left(\left|\nabla w_{k}\right|^{2}+V\left(\varepsilon_{k} x+\bar{x}_{k}\right) w_{k}^{2}\right) d x=\int_{\mathbb{R}^{2}}\left(\left|\nabla w_{0}\right|^{2}+V\left(\xi_{0}\right) w_{0}^{2}\right) d x
$$

From this and $w_{k} \rightharpoonup w_{0}$ weakly in E_{ε} as $k \rightarrow \infty$, we obtain $w_{k} \rightarrow w_{0}$ strongly in $H^{1}\left(\mathbb{R}^{2}\right)$, as $k \rightarrow \infty$.

Theorem 3.4. There exists a maximum point ξ_{ε} of $\left|u_{\varepsilon}\right|$ such that $u_{\varepsilon}\left(x+\xi_{\varepsilon}\right)$ converges to a least energy solution of (1.3) in $H^{1}\left(\mathbb{R}^{2}\right)$.

Proof. We note that w_{0} obtain in the proof of Lemma 3.3 satisfies the following system

$$
\left\{\begin{array}{l}
-\Delta w_{0}+V\left(\xi_{0}\right) w_{0}+A_{0}\left(w_{0}\right) w_{0}+\sum_{j=1}^{2} A_{j}^{2}\left(w_{0}\right) w_{0}=\left|w_{0}\right|^{p-2} w_{0}, \\
\partial_{1} A_{0}=A_{2}\left|w_{0}\right|^{2}, \quad \partial_{2} A_{0}=-A_{1}\left|w_{0}\right|^{2} \\
\partial_{1} A_{2}-\partial_{2} A_{1}=-\frac{1}{2} w_{0}^{2}, \quad \partial_{1} A_{1}+\partial_{2} A_{2}=0
\end{array}\right.
$$

Since w_{0} has exponential decay at infinity and C^{2}-convergence, w_{k} decays to zero at infinity. By the similar proof of Proposition 2.7, w_{0} has maximum point. Let $\hat{p} \in \mathbb{R}^{2}$ and $R, \delta>0$ such that

$$
\begin{equation*}
w_{0}(\hat{p})=\max _{x \in \mathbb{R}^{2}} w_{0} \geq \delta \tag{3.33}
\end{equation*}
$$

and $0<w_{0}(x) \leq \frac{\delta}{4}$ for $|x| \geq R$. Since

$$
\begin{equation*}
w_{k} \rightarrow w_{0} \text { in the sense } C_{l o c}^{2}\left(\mathbb{R}^{2}\right) \tag{3.34}
\end{equation*}
$$

w_{k} converges to zero at infinity. Take \hat{p}_{k} satisfying $w_{k}\left(\hat{p}_{k}\right)=\max _{x \in \mathbb{R}^{2}} w_{k}(x)$. From (3.33), $\hat{p}_{k} \in \bar{B}_{R}(0)$. We claim that the maximum points of w_{k} converge to the same point. Indeed, recall that $\bar{w}_{k}(x)=w_{k}\left(\frac{x}{\varepsilon_{k}}\right)$ is a solution of (1.1) where ε_{k} take the place of ε and their maximum points \bar{p}_{k} are given by $\bar{p}_{k}=\varepsilon_{k} \hat{p}_{k}+$ $\varepsilon_{k} \xi_{k}$. Hence, as $\varepsilon_{k} \xi_{k} \rightarrow \xi_{0}$, we obtain $\bar{p}_{k} \rightarrow \xi_{0}$ with $c_{V\left(\xi_{0}\right)}=\inf _{x \in \mathbb{R}^{2}} c_{V(x)}$. Therefore, w_{k} concentrates near ξ_{0}.

Acknowledgements

Both authors were supported by Jianghan University. Y. W. was supported by Scientific Research Program of Hubei Provincial Department of Education(B2016299). J. T. was supported by Chile Government Grant Fondecyt 1120105, Fondecyt 1160519, Proy. USM 121402, 121568; CMM in Universidad de Chile and Spain Government Grant MTM2011-27739-C04-01.

References

[1] Berge, L., De Bouard, A., Saut, J.-C.: Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation. Nonlinearity 8, 235-253 (1995)
[2] Byeon, J., Huh, H., Seok, J.: Standing waves of nonlinear Schrödinger equations with the gauge field. J. Funct. Anal. 263, 1575-1608 (2012)
[3] Cunha, P.L., d'Avenia, P., Pomponio, A., Siciliano, G.: A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity. NoDEA Nonlinear Differ. Equ. Appl. 22, 1831-1850 (2015)
[4] Deser, S., Jackiw, R., Templeton, S.: Topologically massive gauge theories. Ann. Phys. 140, 372-411 (1982)
[5] Dunne, V.: Self-Dual Chern-Simons Theories. Springer, New York (1995)
[6] Huh, H.: Standing waves of the Schrödinger equation coupled with the ChernSimons gauge field. J. Math. Phys. 53, 063702 (2012)
[7] Huh, H.: Nonexistence results of semilinear elliptic equations coupled the the Chern-Simons gauge field. Abstr. Appl. Anal. 2013, 1-5 (2013)
[8] Hagen, C.: A new gauge theory without an elementary photon. Ann. Phys. 157, 342-359 (1984)
[9] Jackiw, R., Pi, S.-Y.: Classical and quantal nonrelativistic Chern-Simons theory. Phys. Rev. D 42, 3500-3513 (1990)
[10] Jackiw, R., Pi, S.-Y.: Self-dual Chern-Simons solitons. Prog. Theor. Phys. Suppl. 107, 1-40 (1992)
[11] Jiang, Y., Pomponio, A., Ruiz, D.: Standing waves for a gauged nonlinear Schrödinger equation with a vortex point. Commun. Contemp. 18, 1550074 (2016)
[12] Lions, P.L.: The concentration-compactness principle in the calculus of variation. The locally compact case. Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223-283 (1984)
[13] Liu, B., Smith, P., Tataru, D.: Local wellposedness of Chern-SimonsSchrödinger. Int. Math. Res. Notices. doi:10.1093/imrn/rnt161
[14] Pomponio, A., Ruiz, D.: A variational analysis of a gauged nonlinear Schrödinger equation. J. Eur. Math. Soc. 17, 1463-1486 (2015)
[15] Pomponio, A., Ruiz, D.: Boundary concentration of a gauged nonlinear Schrödinger equation on large balls. Calc. Var. PDEs 53, 289-316 (2015)
[16] Struwe, M.: Variational Methods, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34. Springer, Berlin (1996)
[17] Tang, X., Zhang, J., Zhang, W.: Existence and concentration of solutions for the Chern-Simons-Schrödinger system with general nonlinearity. Results Math. 71(3), 643-655 (2017)
[18] Wan, Y., Tan, J.: Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition. J. Math. Anal. Appl. 415, 422-434 (2014)
[19] Wan, Y., Tan, J.: The existence of nontrivial solutions to Chern-SimonsSchrödinger systems. Discrete Contin. Dyn. Syst. Ser. A (2017). doi:10.3934/ dcds. 2017119
[20] Wang, X., Zeng, B.: On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions. SIAM J. Math. Anal. 28, 633-655 (1997)
[21] Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
[22] Yuan, J.: Multiple normalized solutions of Chern-Simons-Schrödinger system. NoDEA Nonlinear Differ. Equ. Appl. 22, 1801-1816 (2015)

Youyan Wan
Department of Mathematics
Jianghan University
Wuhan 430056 Hubei
China
e-mail: wanyouyan@jhun.edu.cn

Jinggang Tan

Departamento de Matemática
Universidad Técnica Federico Santa María
Avda. España 1680
Valparaíso
Chile
e-mail: jinggang.tan@usm.cl

Received: 18 October 2016.
Accepted: 10 April 2017.

