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Abstract. In this paper we give a new, less restrictive condition for remov-
ability of singular sets, E, of smooth solutions to the m-Hessian equation
(and also for more general fully nonlinear elliptic equations) in Ω\E,
Ω ⊂ R

n. Besides the existence and regularity results for these equations,
the proof only makes use of the classical elliptic theory, i.e. the classical
maximum principles and a Hopf lemma.
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1. Introduction

We are primarily concerned with the question of removability of singular sets
of smooth solutions for elliptic m-Hessian equations which are of the form

Fm(D2u) = f(x) in Ω, u = ϕ on ∂Ω, (1.1)

or in the setting with singularities

Fm(D2u) = f(x) in Ω\E, u = ϕ on ∂Ω, (1.2)

where m ≤ n, Ω is a domain of Rn, f a sufficient smooth, positive function in
Ω, ϕ a sufficient smooth function on ∂Ω, and E the singular set of the solution
u. Of course, we have to impose certain conditions on the singular set E and
also on the solution u in order to ensure removability of E. We describe these
in detail in Sect. 3.

The m-Hessian operator Fm is defined by

Fm(D2u) =: Sm(λ)1/m :=

⎛
⎝ ∑

1≤i1<···<im≤n

λi1 · · · λim

⎞
⎠

1/m

,

where λ stands for the vector of eigenvalues λ1, . . . , λn of the Hessian matrix,
D2u. They are special cases of equations of Hessian type, as considered e.g.
in [4].
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For m = 1 we get the Laplace operator, but for m ≥ 2 the m-Hessian
equation becomes a fully nonlinear partial differential equation which is ellip-
tic if u is m-admissible, i.e. Sk(λ(D2u)) > 0 for each k = 1, . . . , m. A very
important special case is the Monge–Ampère equation, i.e. m = n, see e.g.
[14].

The necessary definitions and results about m-Hessian equations will be
given in the next section, see e.g. [4,15,16].

Before stating our contribution to the question of removability, we briefly
want to mention the history of the problem.

Jörgens [6] proved that an isolated singular point, p, of a C2-solution, u, of
the Monge–Ampère equation det(D2u) = 1 in two dimensions is removable if u
is continuously differentiable along one line through p. Later Schulz and Wang
[11] generalized this to higher dimensions under the same constraints using
classical elliptic theory, and Beyerstedt [2] to more general elliptic Monge–
Ampère equations det(D2u) = ψ(x, u,Du) using the Aleksandrov maximum
principle.

Exploiting a notion of capacity and weak solution the results in Labutin
[8] and Trudinger and Wang [14] make it plausible that for m ≤ n/2 and if
the (n − 2m)-dimensional Hausdorff measure of E is finite there should be no
additional constraints on the solution necessary to guarantee removability. But,
at least for the Monge–Ampère equation in R

2, it is known that even a point
singularity of a continuous solution to (1.2) does not need to be removable
without further assumptions, see [1,6]. Another way to ensure removability
can be found in [17] for F (D2u) = f(x) later Schulz [10] was able to handle
more general equations of the form F (Du,D2u) = ψ(x, u,Du) including the
Monge–Ampère, the Hessian and the Weingarten equations by taking up the
idea of [2]. In both, more general elliptic equations are considered, and the
proofs rely on versions of the Aleksandrov maximum principle. Hence, the
conditions involve in a way the Lebegues measure of the union over the image
of the lower normal mapping of the function u − v in the singular set, where
u is the singular solution and v a classical solution of (1.2) on Ω. From their
condition Wang and Zhu derive in [17] (stated here for the case of m-Hessian
equations).

Let u ∈ C2(Ω\E)∩Lip(Ω)∩C(Ω) be an m-admissible solution of equation
(1.2) such that the Dirichlet problem (1.1) has an m-admissible solution v ∈
C2(Ω) ∩ C(Ω) with ϕ = u|∂Ω. Let E ⊂⊂ Ω be a measurable set of dimension
l < n. Then E is removable, i.e. (v =)u ∈ C2(Ω), if for every x ∈ E there are
l + 1 independent C2-curves {rxi} through x, i ∈ {1, 2, . . . , l + 1}, such that
u(rxi) ∈ C1.

In this paper we are able to weaken their assumptions partly and prove
the following.

Corollary 1.1. (Corollary 3.9) Let u ∈ C2(Ω\E) ∩ C(Ω) be an m-admissible
solution of equation (1.2) such that the Dirichlet problem (1.1) has an m-
admissible solution v ∈ C2(Ω) ∩ C(Ω) with ϕ = u|∂Ω. Let E ⊂⊂ Ω be a closed
subset of a C1,1-submanifold, M , of dimension l < n. Then E is removable,
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i.e. (v =)u ∈ C2(Ω), if for every x ∈ E there is one continuous curve γ through
x, which is differentiable at x and transversal (i.e. not tangential) to M at x,
such that u is differentiable at x along γ.

In fact we achieve more, see our main Theorem 3.5, where E is not
necessarily a subset of a submanifold, only relatively compact in Ω, and γ not
even a continuous curve, see Sect. 3 for details. We also demonstrate how our
method could be applied to other elliptic equations, see Theorem 3.11.

We use the idea of Schulz and Wang from [11] and expand it according
to the goals of this paper. In contrast to [17] we utilize, besides the existence
and regularity results for m-Hessian equations (see [4,16]), only classical lin-
ear elliptic theory, i.e. a generalized Hopf lemma (see Appendix A), and the
classical maximum principles. But here as well as in [10,17] the final aim is
to show that the singular solution agrees with the classical solution of the
corresponding Dirichlet problem in Ω.

The paper is structured as follows. In Sect. 2 we summarize some known
results about m-Hessian equations and provide important comparison results
in Sect. 2.1 which will be used in the proof of our main theorem. In Sect. 3 we
first introduce a few definitions which will help us formulate our main result
(Theorem 3.5) in a concise and general way. Finally, in Sect. 3.1 we briefly
point out what is needed for a general elliptic equation F (x, u,∇u,D2u) = 0
in order to carry our approach through.

In Appendix A we give a generalization of the usual Hopf lemma, see e.g.
[5, Lemma 3.4], because it is fundamental for our approach. It seems to be well
known, see the remark in [5] after Lemma 3.4. But we could not spot a direct
proof in the literature, hence, we would like to shortly present one. For the
convenience of the reader, we also cite the comparison and strong maximum
principle, which are used throughout the paper.

In order to deduce Corollary 3.9 from the main theorem we need to
establish the existence of a touching ball with prescribed normal unit vector
to every point of a C1,1-submanifold. This is done in Appendix B. Note that
this is a generalization of the (interior/exterior) sphere condition.

Notation We adopt in this paper the convention that over doubly occurring
indices a summation is understood.
For a matrix (aij)

j=1,...,n
i=1,...,n we just write (aij) if there should be no danger of

confusion. So (uij) = D2u denotes the Hessian matrix of u.
Br(p) will always stand for a ball with center p and radius r.
If Ω′ ⊂ Ω and u is a function of Ω we write u|Ω′ for the restriction of u to Ω′.
Furthermore, a domain, Ω, is assumed to be an open, connected, and bounded
subset of Rn.

2. m−Hessian equations

Now we give the relevant definitions and facts, which we need later. These can
be found e.g. in [4,15,16].
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Let Ω ⊂ R
n be a domain and u ∈ C2(Ω), then the m-Hessian operator

(m = 1, . . . , n) acts on u as

Fm(D2u) =: Sm(λ(D2u))1/m :=
(∑

1≤i1<···<im≤n
λi1 · · · λim

)1/m

,

where λ(D2u) = (λ1, . . . , λn) is the vector of eigenvalues of the Hessian matrix,
D2u, and Sm is the m-th elementary symmetric function. Sm(λ(D2u)) can also
be written as the sum of the m×m-principal minors of D2u. F1 is the Laplace
operator, but for m ≥ 2 the operator becomes fully nonlinear with the Monge–
Ampère case det(D2u), i.e. m = n, as the most prominent example.

We call a function u ∈ C2(Ω) m-admissible if Sk(λ(D2u)) > 0 for each
k = 1, . . . , m. Of course, an m-admissible function is k-admissible for k ≤ m,
where 1-admissible agrees with strictly subharmonic and n-admissible with
strictly convex. It follows immediately from the definition that the right hand
side of (1.2) must be positive for m-admissible solutions.

The following two properties of m-admissible functions will be important
for us (see [4, Section 1 especially Proposition 1.1 and Section 3] or [16, Sections
2.1, 2.2]. Note that in the definition of m-admissible in [16] the inequality is
not strict, so m-admissible corresponds only to degenerate elliptic there).

Lemma 2.1. The set of m-admissible functions constitutes an open convex cone
in C2(Ω). Furthermore, Fm(D2u) is elliptic whenever u is m-admissible, i.e.
for each ξ ∈ R

n\{0} we have ∂Fm(D2u)
∂uij

ξiξj > 0 in Ω.

A C2-domain Ω is called (m − 1)-convex if its boundary satisfies the
condition Sm−1(κ) ≥ c0 > 0 on ∂Ω for some positive constant c0, where
κ = (κ1, . . . , κn−1) denotes the principle curvatures of ∂Ω with respect to its
inner normal. We want to explicitly mention that every ball is (m − 1)-convex
for every m.

We will also make heavy use of the following existence result, see [16,
Theorem 3.4] and [12].

Theorem 2.2. Let Ω be an (m − 1)-convex domain in R
n, ∂Ω ∈ C3,1, f ∈

C1,1(Ω) with f(x) ≥ f0 > 0 and ϕ ∈ C3,1(∂Ω). Then there exists a unique
m-admissible function u ∈ C3,α(Ω), α ∈ (0, 1), solving the Dirichlet problem

(DP )

{
Fm(D2u) = f in Ω
u = ϕ on ∂Ω.

Remark 2.3. The regularity theory for elliptic equations gives better regular-
ity, i.e. u ∈ Ck+2,α, if f ∈ Ck,α, k ≥ 1 and 0 < α < 1, as this holds for
solutions of second order equations, F (x, u,∇u,D2u) = 0, in general, if F is
elliptic with regard to u, see [5, Lemma 17.16].

As mentioned in [16] at the end of Section 3.1, Fm is automatically uni-
formly elliptic with regard to this solution.

It is also known that the regularity assumptions can be reduced for the
Monge–Ampère equation, see [14, Theorem 4.1].
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2.1. Comparison lemmata

Let us consider for the moment a general function

F (x, z, p, r) ∈ C1(Ω,R,Rn,Rn×n) (2.1)

and the differential equation

F [u] = F (x, u,∇u,D2u) = 0, x ∈ Ω. (2.2)

Assume v0, v1 ∈ C2(Ω) are solutions of (2.2) (or e.g. v1 a subsolution, i.e.
F [v1] ≥ 0). We define w = v1 − v0 and wθ = θv1 + (1 − θ)v0, θ ∈ [0, 1]. Then
w is a solution (subsolution) of the following linear equation (as in the proof
of Theorem 17.1 from [5]):

L(v1, v0)w = Lw = aij(x)
∂2w

∂xi∂xj
+ bi(x)

∂w

∂xi
+ c(x)w = 0(≥ 0) (2.3)

with

aij :=
∫ 1

0

∂F [wθ]
∂rij

dθ, bi :=
∫ 1

0

∂F [wθ]
∂pi

dθ, c :=
∫ 1

0

∂F [wθ]
∂z

dθ.

Let λ(x) be the least and Λ(x) the greatest eigenvalue of the symmetric matrix
(aij(x)). These depend continuously on x ∈ Ω if (aij(x)) does (see e.g. [7,
Chapter 2, Sections 5.2, 5.7]).

We also write

aθ
ij(x) :=

∂F [wθ]
∂rij

, bθ
i (x) :=

∂F [wθ]
∂pi

, cθ(x) :=
∂F [wθ]

∂z
.

We call the linear operator L = L(v1, v0) = L(F ; v1, v0) the linearization of v1

and v0.

Proposition 2.4. Let U ⊂ C2(Ω) be a convex set such that F is elliptic for all
elements of U . Let v0, v1 ∈ U and L(v1, v0) as in (2.3). Then the following
holds true:

(i) L(v1, v0) is elliptic in Ω.
(ii) Let Ω′ ⊂⊂ Ω. Then the coefficients aij, bi and c are bounded in Ω′.

Furthermore, L(v1, v0) is uniformly elliptic in Ω′, i.e. there are constants
λ0,Λ0 with 0 < λ0 ≤ Λ0 < ∞ such that λ0 ≤ λ(x) ≤ Λ(x) ≤ Λ0 for
every x ∈ Ω′. In other words, L(v1, v0) is locally uniformly elliptic and
its coefficients are locally bounded in Ω.

(iii) If F ∈ C1(Ω,R,Rn,Rn×n) and v0, v1 ∈ C2(Ω) and a1
ij or a0

ij is positive
definite in Ω, i.e. F is uniformly elliptic in Ω with regard to v1 or v0,
then L is uniformly elliptic in Ω and its coefficients are bounded.

(iv) If in addition ∂F (x,z,p,r)
∂z =: Fz ≤ 0, then c ≤ 0.

Proof. (i) Due to the convexity of U , F is elliptic for every wθ, that is every
aθ

ij is positive definite. Hence, L(v1, v0) is elliptic.
(ii) As F ∈ C1(Ω,R,Rn,Rn×n) and v0, v1 ∈ C2(Ω) all functions aθ

ij(x), bθ
i (x),

and cθ(x) depend for θ ∈ [0, 1] equicontinuously on x. Hence, aij(x), bi(x),
and c(x) depend continuously on x. This implies the boundedness of the
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coefficients as well as of λ(x) and Λ(x) on Ω
′
. Moreover, λ(x) > 0 on Ω

′
,

so λ(x) ≥ λ0 > 0.
(iii) Observe first that for every x ∈ Ω aθ

ij(x) is positive semi-definite and, say,
a1

ij(x) positive definite. Furthermore, aθ
ij(x) depends continuously on θ,

hence, aij(x) is positive definite. So the same argument as in (ii) finishes
the proof.

(iv) This follows immediately from the definition of c. �

Corollary 2.5. The Proposition is, in particular, applicable to the linearization

L(v1, v0)w =
∫ 1

0

∂Fm[wθ]
∂rij

dθ
∂2w

∂xi∂xj
= aij

∂2w

∂xi∂xj

of two m-admissible solutions, v1 and v0, of the m-Hessian equation (1.1).

Proof. This follows from the above Proposition and Lemma 2.1. �

Lemma 2.6. Let Ω ⊂ R
n be a domain, a and x1 boundary points of Ω, x1 	= a.

Suppose v1 and v0 are functions such that v1 ∈ C0(Ω) and v0 ∈ Ck,α(Ω)
with k ∈ N and 0 ≤ α ≤ 1. Furthermore v1 ≤ v0 in Ω, v1(a) = v0(a) and
v1(x1) < v0(x1). Then there exists an intermediate function ϕ2 ∈ Ck,α(Ω)
satisfying ⎧⎨

⎩
v1 = ϕ2 = v0 at a
v1 < ϕ2 < v0 at x1

v1 ≤ ϕ2 ≤ v0 in Ω.
(2.4)

Proof. Because of v0 − v1 ∈ C0(Ω) and (v0 − v1)(x1) > 0 there exists an ε > 0
and a closed ball, Bε(x1), around x1, such that v0 − v1 > 0 in Bε(x1) ∩ Ω and
a lies in its complement Bε(x1)c.

The minimum

min
Bε(x1)∩Ω

(v0 − v1)(x) := δ′′ > 0

exists. Define δ′ := 1
2δ′′ and the intermediate function

ϕ2 := v0 − δ′ψ(x),

where ψ(x) ∈ C∞(Ω) denotes a smooth function in Ω such that

ψ(x) :=

⎧⎨
⎩

1 at x1,
∈ [0, 1] for 0 < |x − x1| < ε,
0 for |x − x1| ≥ ε.

This implies δ′ψ ∈ C∞(Ω) and ϕ2 ∈ Ck,α(Ω). Moreover, ϕ2 satisfies (2.4) by
construction. �

The lemma below is an adaption to our more general situation of two
lemmata from [11].

Lemma 2.7. Given a ball B ⊂ R
n and two m-admissible solutions, v0, v1 ∈

C0(B) ∩ C2(B), of the m-Hessian equation

Fm(D2u) = f(x) ≥ f0 > 0, f ∈ C1,1(B), x ∈ B.
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Furthermore, we assume v0 ≥ v1 on ∂B and that there exist two boundary
points a, x1 ∈ ∂B with v0(a) = v1(a) and v0(x1) > v1(x1).

Then the following comparison results hold true (note that the case +∞
is allowed):

(i) v0(x) ≥ v1(x) for all x ∈ B and, therefore,

lim inf
x→a, x∈B

(v0 − v1)(x)
‖x − a‖ ≥ 0.

(ii) If v0, v1 ∈ C2(B) and Fm is uniformly elliptic in B with regard to, say,
v1, then

lim inf
x→a, x∈K(a)∩B

(v0 − v1)(x)
‖x − a‖ > 0

for every closed convex cone, K(a), with apex a and such that K(a) ∩
Bε(a) ⊂ B for ε > 0 small enough (see also Appendix A.1).

(iii) If v1 ∈ C0(B) ∩ C2(B), v0 ∈ C3,1(B), then it also follows for every cone
K(a) as above that

lim inf
x→a, x∈K(a)∩B

(v0 − v1)(x)
‖x − a‖ > 0.

Proof. In this proof let w := v1 − v0 as before. Then, w(a) = 0, w(x1) < 0 and
w ≤ 0 on ∂B by assumption.

(i) The linearization L = L(v1, v0) is, due to Proposition 2.4(i) and Corol-
lary 2.5, elliptic in B and Lw = 0 by (2.3). The comparison principle
(Theorem A.3, here b ≡ c ≡ 0) gives us v1 − v0 = w ≤ 0 in B.

(ii) In this case, Proposition 2.4(iii) and Corollary 2.5 say that L(v1, v0) is
uniformly elliptic in B. By assumption w(a) = 0, and the strong maxi-
mum principle (Theorem A.4, here b ≡ c ≡ 0) yields because of w ≤ 0 on
∂B and w(x1) < 0 that w = v1 − v0 < 0 in B, so we can invoke the Hopf
lemma, Lemma A.1 and get

lim inf
x→a, x∈K(a)∩B

w(a) − w(x)
‖x − a‖ > 0 or lim inf

x→a, x∈K(a)∩B

(v0 − v1)(x)
‖x − a‖ > 0.

(iii) We first observe that Fm is uniformly elliptic in B with regard to v0, see
Remark 2.3. Since we know by (i) that v1 ≤ v0 in B, we can construct,
according to Lemma 2.6, an intermediate function ϕ2 ∈ C3,1(B) with

⎧⎪⎨
⎪⎩

v1 = ϕ2 = v0 at a

v1 < ϕ2 < v0 at x1

v1 ≤ ϕ2 ≤ v0 on ∂B.

(2.5)

By dint of the existence Theorem 2.2, there exists an m-admissible func-
tion u2 ∈ C3,α(B) solving the Dirichlet problem

Fm(D2u2) = f(x) in B and u2 = ϕ2 on ∂B.
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This allows replacing ϕ2 by u2 in (2.5). Therefore, v1 and u2 satisfy the
requirements of item (i), whereas u2 and v0 those of item (ii). We get

lim inf
x→a, x∈K(a)∩B

(v0 − v1)(x)

‖x − a‖ ≥ lim inf
x→a, x∈K(a)∩B

(v0 − u2)(x)

‖x − a‖
+ lim inf

x→a, x∈K(a)∩B

(u2 − v1)(x)

‖x − a‖ > 0. �

3. Removability of singularities

First, we need some definitions to formulate our conditions appropriately.

Definition 3.1. Given a domain Ω ⊂ R
n and a relatively closed subset E ⊂ Ω.

Set A := {U |U is a connected component of Ω\E}.
We define inductively the following sets:

E0 := ∂Ω,

A1 := {U ∈ A|U ∩ E0 	= ∅}, E1 := {x ∈ E| ∃U ∈ A1 s.t. x ∈ U},

Ai := {U ∈ A\ ∪i−1
j=1 Aj |U ∩ Ei−1 	= ∅} (for i > 1),

Ei := {x ∈ E\ ∪i−1
j=1 Ej | ∃U ∈ Ai s.t. x ∈ U} (for i > 1);

and we say that such a relatively closed set is admissible if

Ω = {x| ∃i ∈ N, U ∈ Ai s.t. x ∈ U}.

Remark 3.2. In particular, we have by definition E =
⋃

i∈N
Ei for an admissi-

ble set E.
Obviously, every relatively closed set E ⊂ Ω with no interior points and

such that Ω\E has only finite many connected components is admissible; e.g.,
if E has Hausdorff dimension strictly less than n − 1 because in this case Ω\E
is connected.

A not admissible set is, for example, the union of countable many con-
centric spheres inside a ball.

Definition 3.3. 1. We call a sequence (xi)i∈Z ⊂ R
n doubly convergent to x

if

xi = x iff i = 0 and lim
i→∞

xi = x = lim
i→−∞

xi.

2. A doubly convergent sequence to x is called straight if the limits exist
and

x− = lim
i→−∞

x0 − xi

‖x0 − xi‖ = lim
i→∞

xi − x0

‖x0 − xi‖ = x+.

3. Given a set E ⊂ R
n. We say that the sequence (xi)i∈Z ⊂ R

n is semi-
transversal to E at x ∈ E if

• (xi)i∈Z is doubly convergent to x,
• there exists a ball B with x ∈ ∂B, B ∩ E = {x},
• there exists a closed convex cone K(x) with apex x such that K(x)∩

Bε(x) ⊂ B for ε > 0 small enough,
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• there exists an N < 0 with xi ∈ K(x) for every i < N .
Furthermore, if Ω ⊂ R

n is a domain and E ⊂ Ω admissible, we say that
the sequence (xi)i∈Z ⊂ R

n is outer semi-transversal to E at x ∈ Ei, i ≥ 1,
if, in addition,

• B ⊂ U for one U ∈ Ai.
4. A function u defined on the elements of a doubly convergent sequence

(xi)i∈Z converging to x = x0 is said to be differentiable with regard to
(xi)i∈Z at x if the limits exist and

u+ = lim
i→∞

u(x) − u(xi)
‖x − xi‖ = lim

i→−∞
u(xi) − u(x)

‖x − xi‖ = u−.

Remark 3.4. Similarly, one could define the above notions also for a continuous
curve. Then “straight” just means that γ is differentiable at 0 with non-zero
tangent vector.

We want to emphasize that xi ∈ E for i ≥ 0 and also xi = x−i are allowed
in a semi-transversal sequence. In the latter case u+ = u− = −u+ = 0 if u is
differentiable with regard to (xi)i∈Z. Especially, one can see that a C1-function
defined in a neighbourhood of x = x0 does not need to be differentiable with
regard to a doubly convergence sequence unless the sequence is straight, see
also Corollary 3.7.

Let us also mention that for E = {x} a straight doubly convergent se-
quence to x is automatically (semi-)transversal to E at x and every doubly
convergent sequence to x has a semi-transversal subsequence.

Now, we are in the position to state our main theorem. One could vary
the assumptions therein a bit to cover other situations. We will briefly indicate
these variations afterwards.

Theorem 3.5. Given a domain Ω and E ⊂ Ω admissible. Let u ∈ C2(Ω\E) ∩
C(Ω) be an m-admissible solution of

Fm(D2u) = Sm(λ(D2u))1/m = f(x) in Ω\E (3.1)

with 0 < f ∈ Ck,α(Ω), k ≥ 2, α ∈ (0, 1) such that the Dirichlet problem

Fm(D2v) = f(x) in Ω, v = ϕ on ∂Ω (3.2)

with ϕ = u|∂Ω has an m-admissible solution v ∈ C2(Ω) ∩ C(Ω).
Then u can be extended to a solution u ∈ Ck+2,α(Ω) if for every x ∈ E

there exists an outer semi-transversal sequence (xi)i∈Z to E at x such that
u − v is differentiable with regard to (xi)i∈Z.

Proof. For sake of clarity we will first assume Ω =
⋃

A1
∪E1 with A1 and E1

as in Definition 3.1, i.e. E = E1 and Ω\E =
⋃

A1
.

We prove u = v in Ω by contradiction, where v ∈ Ck+2,α(Ω) follows from
the inner regularity, see Remarks 2.3.
Step 1 Suppose there exists x ∈ Ω with u(x) > v(x). Then, the function
w = u − v ∈ C(Ω) attains its maximum, ε > 0, at some point p ∈ Ω. Write
P := {p ∈ Ω|w(p) = ε}. Then,

w(x) = u(x) − v(x) ≤ ε = u(p) − v(p) = w(p) for all x ∈ Ω, p ∈ P.



6 Page 10 of 18 H. Car and R. Pröpper NoDEA

Step 2 Since ∂Ω ∩ P = ∅
(a) (Ω\E) ∩ P 	= ∅ or (b) E ∩ P 	= ∅. (3.3)

We will exclude both cases and thereby achieve u ≤ v. u ≥ v can be shown
analogously.

(a) By Proposition 2.4 and Corollary 2.5 the linearization L(u, v) is locally
uniformly elliptic and the strong maximum principle (Theorem A.4, here
b ≡ c ≡ 0) applied to w, remind L(u, v)w = 0, yields that w ≡ ε > 0
is constant on every component U ∈ A1 that contains some p ∈ P . But
w ∈ C(Ω), w = 0 on ∂Ω and U ∩ ∂Ω 	= ∅ for U ∈ A1. This forbids case
(a).

(b) If p ∈ E ∩P , then there exists by assumption an (outer) semi-transversal
sequence (xi)i∈Z to E at p such that u − v is differentiable with regard
to (xi)i∈Z. In particular, there is a ball B ⊂ Ω\E with B ∩ E = {p} and
a cone K(p) as in the comparison Lemma 2.7 such that xi ∈ B ∩ K(p)
for i < 0. We can choose B such that B ⊂⊂ Ω.

Set v1 = u|B − ε ∈ C2(B) ∩ C(B) and v0 = v|B ∈ Ck+2,α(B).
Observe that v0, but also v1 is a solution of

Fm(D2u) = f(x) in B.

Furthermore, v0 > v1 on B\{p} as proved in (a) and v0(p) = v1(p).
v0 ∈ Ck+2,α gives v0 ∈ C3,1(B) as k ≥ 2. Hence, Lemma 2.7(iii) yields

lim inf
i→−∞

(v + ε − u)(xi)
‖xi − p‖ = lim inf

i→−∞
(v0 − v1)(xi)

‖xi − p‖ > 0.

But ŵ := v + ε − u ≥ 0 is by assumption differentiable with regard to
(xi)i∈Z and ŵ has a minimum at p. This means

0 ≥ ŵ+ = lim
i→∞

ŵ(p) − ŵ(xi)
‖p − xi‖ = lim

i→−∞
ŵ(xi) − ŵ(p)

‖p − xi‖ = ŵ− ≥ 0,

and we arrive at the contradiction

0 = lim
i→−∞

ŵ(xi) − ŵ(p)
‖p − xi‖ = lim inf

i→−∞
(v + ε − u)(xi)

‖xi − p‖ > 0.

This finishes the proof under the additional assumption Ω =
⋃

A1
∪E1.

Now, we drop this request and allow E to be an arbitrary admissible
set. Then, the proof goes by induction. Step 1 is the same. But instead of
only two possibilities for a p ∈ P to lie in as in (3.3) we conclude, since
E is admissible:

There is an i ∈ N such that there exists U ∈ Ai with U ∩ P 	= ∅ or
Ei ∩ P 	= ∅.

The case i = 1 is already treated above. One only has to observe
that the ball used in part (b) is contained in a component U ∈ A1 because
the sequence (xi)i∈Z is by assumption outer semi-transversal to E at p.

Assume we have already excluded the cases j ≤ i. Hence, especially
Ei ∩ P = ∅. Then a similar argument as in (a) leads to U ∩ P = ∅ for
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U ∈ Ai+1 since by definition U ∩ Ei 	= ∅ and we already know that the
maximum is not attained at any point of Ei.

Hence, U ∩ P = ∅ for every U ∈ Ai+1. But then, by the same argu-
ments as in (b), the existence of a p ∈ Ei+1 ∩ P leads to a contradiction
because of the existence of an outer semi-transversal sequence to E at
p, i.e. a semi-transversal sequence where the requested ball lies in some
U ∈ Ai+1. �

Remark 3.6. The proof can easily be adjusted if we demand only that for
every i ≥ 2 and every U ∈ Ai there exists at least one x ∈ U ∩ Ei−1 where the
requested semi-transversal sequence is outer semi-transversal. This includes
for example a tulip like the one in Fig. 1 into our approach. Whereas the
existence of a semi-transversal sequence for every x ∈ E, in particular a ball
B with B ∩ E = {x} seems to be fundamental for our approach. Thus, e.g. a
cross as in Fig. 1 defies our efforts to remove it.

Nevertheless, contemplating on Remark 3.4 one can see that the general
formulation here gives some new insight even in the case of a point singularity;
it implies, for example, that if u = v on a sequence converging to the point
singularity then u ≡ v on the whole of Ω.

Of course, one can also apply the theorem if there is an Ω′ ⊂ Ω with
E ⊂ Ω′ such that the requirements of the theorem for Ω are satisfied for Ω′;
e.g. if Ω′ ⊂⊂ Ω is an (m−1)-convex domain with C3,1-boundary and E ⊂⊂ Ω′,
then the existence of v is already guaranteed by Theorem 2.2. It would also
be enough that E could be decomposed such that for every component there
exists such an Ω′.

Following Remark 2.3, one could weaken the regularity assumptions in
case of the Monge–Ampère equation.

The constraint that u−v has to be differentiable is a bit annoying because
it depends on the presumed classical solution v. We can remedy the situation
by demanding a little bit more.

Corollary 3.7. With the same assumptions and notations as in Theorem 3.5 it
also holds true that u can be extended to a solution u ∈ Ck+2,α(Ω) if for every
x ∈ E there exists a straight outer semi-transversal sequence (xi)i∈Z to E at
x such that u is differentiable with regard to (xi)i∈Z.

Figure 1. Two examples of admissible sets
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Proof. We only have to prove that for a straight doubly convergent sequence
(xi)i∈Z a function v ∈ C1(Ω) is automatically differentiable with regard to this
sequence. This follows from

v+ = −∇v(x) · x+ = ∇v(x) · (−x−) = v−,

using the notations of Definition 3.3. �

Remark 3.8. The examples in [3] based on [9] demonstrate that, in general,
one has to assume the existence of the classical solution v, at least if E is only
relatively closed and not compactly contained in Ω. But one can also read it
the other way, i.e. that one cannot expect a classical solution for the Monge–
Ampère Dirichlet problem if the boundary value ϕ is of regularity less than
C1,1−2/n, even for a ball and analytic right hand side. So one purpose of this
kind of result could be in the negative, i.e. to show nonexistence of classical
solutions in a similar way for other equations. More about the existence of
non-classical solutions for m-Hessian equations can be found in [15].

Now, we come to our main example, already mentioned in the introduc-
tion, when E is a subset of a C1,1-submanifold.

Corollary 3.9. Let u ∈ C2(Ω\E) ∩ C(Ω) be an m-admissible solution of
equation (1.2) such that the Dirichlet problem (1.1) has an m-admissible so-
lution v ∈ C2(Ω) ∩ C(Ω) with ϕ = u|∂Ω. Let E ⊂⊂ Ω be a closed subset of
a C1,1-submanifold, M , of Rn of dimension l < n. Then E is removable, i.e.
(v =)u ∈ C2(Ω), if for every x ∈ E there is one continuous curve γ through
x, which is differentiable at x and transversal (i.e. not tangential) to M at x,
such that u is differentiable at x along γ.

Remark 3.10. Instead of E ⊂⊂ Ω we could again ask for E just relatively
closed in Ω, but then we have to add the assumption of admissibility of E.

Proof. We start by showing that E is admissible. To this end, we prove that
Ω\E has only finitely many connected components. Otherwise one could find
infinitely many points of E lying on the boundaries of infinitely many different
connected components. But then there would exists an accumulation point,
y ∈ E, every whose neighborhood intersecting infinitely many connected com-
ponents of Ω\E and therefore also of Ω\M in contradiction to y ∈ M .

Let x ∈ E. By assumption, there is a continuous curve, γ : (−δ, δ) �→ R
n

with γ(0) = x such that the derivative, γ′(0) = tγ(x), exists at x with tγ(x) 	∈
TM (x) (the tangent space of M at x), and u is differentiable at x along γ.

It remains to prove the existence of a straight outer semi-transversal
sequence to E at x. Project tγ(x) orthogonally to the normal space of M at
x and let n1 	= 0 be its image. By Proposition B.1 there exist a ball B+ and
a ball B− such that B

+ ∩ M = B
− ∩ M = {x} and n1 is an inner resp.

outer normal vector of ∂B+ resp. ∂B− at x. We choose a sequence of the form
(γ(ti))i∈Z with t0 = 0, ti < 0 for i < 0 and ti > 0 for i > 0 or vice versa,
and limi→∞ ti = 0, limi→−∞ ti = 0, ti small enough for all i ∈ Z. It is easy to
check that such a sequence is indeed straight and outer semi-transversal and
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that u is differentiable with respect to it since u is differentiable at x along γ
and tγ(x) 	= 0. �

3.1. General equations

Let Ω be a domain and E ⊂ Ω admissible. In this section we come back to
a general function, F ∈ Ck,α(Ω,R,Rn,Rn×n), k ≥ 1, 0 < α < 1, and the
corresponding second order partial differential operators:

F (x, z, p, r) : (Ω,R,Rn,Rn×n) �→ R; F [u] = F (x, u,∇u,D2u).

(A) Our first assumption is that for every open Ω′ ⊆ Ω there exists a convex
set U(Ω′) ⊆ C2(Ω′) for whose elements the operator F becomes elliptic;
of course, one could and should always demand that U(Ω′) ⊂ U(Ω′′) if
Ω′′ ⊂ Ω′ (with the natural identification by restriction).

We call a function v ∈ C2(Ω) F -admissible in Ω (in an open subset,
O ⊂ Ω) if v|Ω′ ∈ U(Ω′) for every Ω′ ⊆ Ω (Ω′ ⊆ O).

Let u ∈ C2(Ω\E) ∩ C(Ω) be an F -admissible solution of F [u] = 0
in Ω\E. Assume also that there is an F -admissible solution v ∈ C2(Ω) ∩
C(Ω) of the Dirichlet problem

F [v] = F (x, v,∇v,D2v) = 0 in Ω, v = u on ∂Ω.

We have u ∈ Ck+2,α(Ω\E) and v ∈ Ck+2,α(Ω) by Remark 2.3.
We want to establish our main Theorem in this general setting, too.

Scrutinizing the proofs of Theorem 3.5 and Lemma 2.7 we see that, using
Proposition 2.4, the only additional assumptions we have to impose are:

(B) ∂F (x,z,p,r)
∂z = Fz ≤ 0 and, hence, F is decreasing in z.

(C) For every a ∈ E there exists an F -admissible solution, u2 ∈ C2(B), of
the Dirichlet problem

F [u2] = 0 in B, u2 = ϕ2 for each ϕ2 ∈ Ck+2,α(∂B),

where B is a ball, requested in the definition of a semi-transversal se-
quence to E at a; of course, we can always choose these balls as small as
we want.

Assumption B is needed to apply the strong maximum and the comparison
principle. Because c 	≡ 0 is now possible, one has to observe in the application
of the Hopf lemma that w(a) = 0 in the proof of Lemma 2.7(iii). At one
further instance one has to be a bit cautious; i.e. that the function v1 = u|B −ε
which appears in the proof of the main Theorem is not necessarily a solution of
F [v1] = 0 in B when F (x, u,∇u,D2u) depends also on u, but with assumption
B it is a subsolution, F [v1] ≥ 0. Hence, w = v1 − u2 (with u2 as in the proof
of Lemma 2.7(iii)) is a subsolution of L(v1, u2)w ≥ 0 and we can apply the
comparison lemma as before in the proof of Lemma 2.7.

We want to summarize our analysis of the general case in the following
theorem.

Theorem 3.11. Let there be given a domain Ω and E ⊂ Ω admissible. Assume
F ∈ Ck,α(Ω,R,Rn,Rn×n), k ≥ 1, 0 < α < 1, satisfies assumptions A, B and
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C. Let u ∈ C2(Ω\E) ∩ C(Ω) be an F -admissible solution of

F [u] = F (x, u,∇u,D2u) = 0 in Ω\E (3.4)

such that the Dirichlet problem

F [v] = 0 in Ω, v = ϕ on ∂Ω (3.5)

with ϕ = u|∂Ω has an F -admissible solution v ∈ C2(Ω) ∩ C(Ω).
Then u can be extended to a solution u ∈ Ck+2,α(Ω) if for every x ∈ E

there exists an outer semi-transversal sequence (xi)i∈Z to E at x such that
u − v is differentiable with regard to (xi)i∈Z.

Remark 3.12. Of course, the remarks we made in the m-Hessian case remain
valid and, in particular, Corollaries 3.7 and 3.9.

Examples can be found, for example, in [4,12].
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Appendix A: A Hopf lemma

In this appendix we want to formulate and prove a generalization of the usual
Hopf lemma, see [5, Lemma 3.4] and the remark thereafter, which is essential
in our proofs.

We consider a second order differential operator of the form

Lu = aij(x)Diju + bi(x)Diu + c(x)u, aij = aji,

where x lies in a domain Ω ⊂ R
n.

Let λ(x) denote the smallest and Λ(x) the greatest eigenvalue of aij(x).
L is elliptic on Ω if λ(x) > 0 for every x ∈ Ω, and uniformly elliptic if Λ(x)

λ(x)

is bounded on Ω what is especially the case if 0 < λ0 ≤ λ(x) ≤ Λ(x) ≤ Λ0.
For a ball B ⊂ R

n and a point x0 ∈ ∂B we henceforth denote with K(x0)
a closed convex cone with apex x0 such that K(x0) ∩ Bε(x0) ⊂ B for ε > 0
small enough. Such a cone is always contained in a cone with apex x0 and
aperture π/2 − δ of the form

Kδ(x0) :=
{

x| arccos
〈x0 − x, x0 − y〉

‖x0 − x‖‖x0 − y‖ ≤ π

2
− δ

}
,

where y is the center of the ball B and 0 < δ ≤ π/2, i.e. Kδ(x0) is symmetric
with regard to the inner normal vector of ∂B at x0.



NoDEA Removable singularities of m-Hessian equations Page 15 of 18 6

Lemma A.1. (Hopf lemma) Given a ball B ⊂ R
n, a point x0 ∈ ∂B and a

function u ∈ C2(B) ∩ C(B) such that

(i) u(x0) > u(x) for all x ∈ B, (ii) Lu ≥ 0.

Furthermore, assume L is uniformly elliptic, ‖b‖/λ with b = (b1, . . . , bn) and
|c|/λ are bounded in B, and c ≡ 0, or c ≤ 0 and u(x0) ≥ 0, or u(x0) = 0 and
c of arbitrary sign. Then

lim inf
x→x0,x∈K(x0)∩B

u(x0) − u(x)
‖x − x0‖ > 0.

The analogue holds true for the lim sup by reversing all inequalities involving
u.

First we prove an auxiliary lemma that contains all what is needed to
adjust the proof of Lemma 3.4 in [5].

Lemma A.2. Given an annular region R = Br(0)\Bρ(0) ⊂ R
n, r > ρ, an

α > 0, and a point x0 ∈ ∂Br(0).
Assume u ∈ C(R) ∩ C2(R) and that for an ε > 0 holds

u(x0) − u(x) ≥ ε
(
e−α‖x‖2 − e−αr2

)
.

Then there exists for every 0 < δ ≤ π
2 an ε′ > 0 such that we have for any

x ∈ Kδ(x0) ∩ R ∩ Bδ′(x0) with δ′ = 1
2r cos(π

2 − δ)

u(x0) − u(x)
‖x − x0‖ ≥ ε′ε > 0. (A.1)

Proof. Fix x ∈ Kδ(x0) ∩ R ∩ Bδ′(x0) and define h(t) := e−α‖x0+t(x−x0)‖2
,

0 ≤ t ≤ 1. Then there exists 0 < ζ < 1 such that

e−α‖x‖2 − e−αr2

= h(1) − h(0) = h′(ζ)

= −2α(x − x0) · (x0 + ζ(x − x0))e−α‖x0+ζ(x−x0)‖2

= 2αe−α‖x0+ζ(x−x0)‖2‖x − x0‖(‖x0‖ cos �(x0, x0 − x) − ζ‖x − x0‖)

≥ 2αe−αr2‖x − x0‖(r cos(π/2 − δ) − r/2 cos(π/2 − δ))

≥ αe−αr2
r cos(π/2 − δ)‖x − x0‖ = ε′‖x − x0‖ > 0.

Inequality (A.1) follows immediately. �

Now, we sketch the proof of Lemma A.1, following closely the proof of
Lemma 3.4 in [5].

Proof of Lemma A.1. Assume w.l.o.g. B = Br(0). Take 0 < ρ < r and define
v(x) := e−α‖x‖2 − e−αr2

in R with R := Br(0)\Bρ(0). We compute

(L − c+)v(x) = e−α‖x‖2
[4α2aijxixj − 2α(aii + bixi)] − c−v

≥ e−αr2
[4α2λ(x)ρ2 − 2α(aii + ‖b‖r) − c−] ≥ 0
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in R for α large enough because aii/λ, ‖b‖/λ and c/λ are bounded in B.
(c+ := max{0, c}, c− := −min{0, c})

Furthermore, the assumptions imply that u − u(x0) + εv ≤ 0 on ∂R for
an ε > 0 and (L − c+)(u − u(x0) + εv) ≥ −c+u + c−u(x0) ≥ 0 in R.

Therewith, the comparison principle yields u − u(x0) + εv ≤ 0 in the
whole of R and Lemma A.2 finishes the proof. �

Because of their importance in our method, we briefly cite the comparison
and strong maximum principle from [5, Theorems 3.3, 3.5], compare also the
comments after Theorem 3.1 and Theorem 3.5 for the assumptions on the
coefficients.

Theorem A.3. (Comparison principle) Let u, v ∈ C2(Ω)∩C(Ω), let L be elliptic
with c ≤ 0 and ‖b‖/λ locally bounded such that Lu ≥ Lv in Ω and u ≤ v on
∂Ω. Then u ≤ v in Ω.

Theorem A.4. (Strong maximum principle) Let u ∈ C2(Ω), let L be locally
uniformly elliptic with c ≤ 0 and ‖b‖/λ, |c|/λ locally bounded such that Lu = 0
in Ω. If u achieves a non-negative maximum or non-positive minimum in the
interior of Ω, then u is constant.

Appendix B: Existence of a ball

The proof of Corollary 3.9 is based on the observation that we can always find
suitable balls, touching the points of E, if E is a subset of C1,1-submanifold.
This observation is justified by the following proposition.

Proposition B.1. Given a l-dimensional submanifold M ⊂ R
n of class C1,1, a

point p ∈ M , a neighborhood Ũp of p, an affine hyperplane T̃ through p with
TpM ⊂ T̃ for the tangent space TpM of M , dim M = l < n, and n1 one of the
two unit normal vectors of T̃ at p.

Denote by Br the balls of radius r with p ∈ ∂Br and Tp∂Br = T̃ such
that n1 is the inner normal vector of ∂Br at p.

Then there exists an r0 > 0 such that Br ⊂ Ũp and Br ∩M = {p} for all
r ≤ r0.

Proof. We assume w.l.o.g. p = 0 and choose a cartesian coordinate system
(x1, . . . , xn) = x1t1 + · · · + xltl + xl+1n1 + · · · + xnnn−l where t1, . . . , tl is
an orthonormal basis of TpM and n1, . . . ,nn−l an orthonormal basis of the
normal space NpM with n1 as above and n2, . . . ,nn−l ∈ T̃ .

In a neighborhood U = U ′ × U ′′ ⊂ Ũp we can parametrize

M ∩ U = {(x′, ϕ(x′)) =: M(x′)|x′ ∈ U ′}
with ϕ = (ϕ1, . . . , ϕn−l) ∈ C1,1(U ′, U ′′), (U ′ ⊂ R

l, U ′′ ⊂ R
n−l). We note that

with this choice |ϕ1| is the distance from M to T̃ .
Let r > 0 be so small that Br ⊂ U . Write for x ∈ R

n

l(x) = l(x1, . . . , xl, xl+1, . . . , xn) = ‖(x1, . . . , xl, 0, xl+2, . . . , xn)‖Rn .



NoDEA Removable singularities of m-Hessian equations Page 17 of 18 6

Define for 0 < r ≤ r the cylinder Zr and the set Vr ⊂ U ′ by

Zr := {x = (x1, . . . , xn)|l(x) ≤ r}, Vr := {x′ ∈ U ′|M(x′) ∈ Zr}.

Now, fix 0 < r ≤ r. For x′ ∈ Vr let

P (x′) := P (M(x′)) := M(x′) − ϕ1(x′)n1

be the orthogonal projection of M(x′) on T̃ and set

R(x′) := P (x′) + λ(x′)n1 with λ(x′) = min{λ ∈ R|P (x′) + λn1 ∈ Br}.

We have |λ(x′)| = r − √
r2 − l(M(x′))2.

Moreover, Br ∩ M = {p} if |ϕ1(x′)| < |λ(x′)| for all x′ ∈ Vr\{p′}.
Take x′ ∈ Vr\{p′}. Set l1 = ‖x′‖Rl and l2 = l(M(x′)). Of course, l1 ≤ l2.
Define h(s) := ϕ1(sx′

l1
) for 0 ≤ s ≤ l1. We have h ∈ C1,1[0, l1] and

h(l1) = ϕ1(x′), h(0) = ϕ1(0) = 0, h′(s) =
l∑

i=1

∂ϕ1(sx′
l1

)
∂xi

xi

l1
, h′(0) = 0.

Furthermore, h′(s) ≤ cs if c is the Lipschitz constant of ∇ϕ1 in U ′. Since l1 ≤ r
we can conclude if r ≤ r0 := min{1/c, r}

|ϕ1(x′)| = |h(l1)| = |h(0) +
∫ l1

0

h′(s) ds| ≤
∫ l1

0

csds =
c

2
l21

≤ 1
2

l21
r

< r −
√

r2 − l21 ≤ r −
√

r2 − l22 = |λ(x′)|.
�

Remark B.2. Note that this is a generalization of the (interior/exterior) sphere
condition, i.e. if M is the boundary of a C1,1-domain in R

n.
The regularity C1,1 is optimal as the graphs of the C1,α-functions f(t) =

|t|1+α, 0 < α < 1, show.
If one takes the above proposition for an (n−1)-dimensional submanifold

for granted, it is also possible to prove it by extending M around p locally to
an (n − 1)-dimensional submanifold with the desired unit normal vector.
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