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Abstract. In this paper, we derive energy estimates and L1−L1 estimates,
for the solution to the Cauchy problem for the doubly dissipative wave
equation {

utt − Δu + ut − Δut = 0, t ≥ 0, x ∈ R
n,

(u, ut)(0, x) = (u0, u1)(x).

The solution is influenced both by the diffusion phenomenon created by
the damping term ut, and by the smoothing effect brought by the damp-
ing term −Δut. Thanks to these two effects, we are able to obtain linear
estimates which may be effectively applied to find global solutions in any
space dimension n ≥ 1, to the problems with power nonlinearities |u|p,
|ut|p and |∇u|p, in the supercritical cases, by only assuming small data
in the energy space, and with L1 regularity. We also derive optimal en-
ergy estimates and L1 − L1 estimates, for the solution to the semilinear
problems.
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1. Introduction

In this paper, we derive energy estimates and L1−L1 estimates, for the solution
to the Cauchy problem for the wave equation with frictional and viscoelastic
damping,
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{
utt − Δu + ut − Δut = 0, t ≥ 0, x ∈ R

n,

(u, ut)(0, x) = (u0, u1)(x),
(1.1)

then we apply these estimates to the semilinear problems with power nonlin-
earities |u|p, |ut|p and |∇u|p. We find global existence of small data solutions
to these semilinear problems, in any space dimension n ≥ 1, for supercritical
powers, and we derive energy estimates and L1 − L1 estimates.

The profile of the solution to (1.1) has been recently studied in [9], in
the L2 setting, by assuming data in the energy space, and in weighted L1

spaces. The solution to (1.1) has many interesting properties, which allow us
to employ techniques and obtain results which are new, if compared with the
corresponding results for the wave equation with only frictional damping ut,
or with only viscoelastic damping −Δut.

The fact that there are two damping terms gives great benefits to the
solution to (1.1). On the one hand, the solution to (1.1) inherits the same
decay properties of the solution to the problem for the wave equation with
only frictional damping ut (see, in particular, [11]), which are sharp, thanks to
the diffusion phenomenon (see [7] and, later, [6,10,14]). On the other hand, it
has the same regularity of the solution to the problem for the wave equation
with only viscoelastic damping −Δut, in particular, a smoothing effect appears
for the time derivatives of the solution (see, in particular, [15]). In other words,
the low-frequencies profile of the solution is modified by the presence of the
damping ut, and the high-frequencies profile of the solution is modified by the
presence of the damping −Δut.

Thanks to the first property, one may effectively use sharp estimates
for (1.1) to prove the global existence of small data solutions to the problem
with power nonlinearity |u|p, in the supercritical case p > 1+2/n, as it happens
for the wave equation with only frictional damping (see, in particular, [16]).
Thanks to the second property, one may obtain well-posedness results in Lq

spaces, L1 −L1 estimates for the solution, and a smoothing effect for the time
derivatives of the solution. We mention that only partial results are known for
the wave equation with only viscoelastic damping and power nonlinearity |u|p
(see [4]).

Also, as a consequence of these properties combined together, we may
obtain global existence to the problem with different power nonlinearities, in
the supercritical case, in any space dimension n ≥ 1, by only assuming small
data in the energy space, with additional L1 regularity. The corresponding
result for the wave equation with only frictional damping and power nonlin-
earity |u|p, only works in space dimensions n = 1, 2 (see [8]) and it can be
extended only up to space dimension n = 5, using Lp −Lq estimates [12]. The
extension to any space dimension n ≥ 1 requires stronger assumptions on the
data (see, in particular, [16]).

In this paper, we show how these bounds on the space dimension can be
removed, thanks to the presence of the viscoelastic damping −Δut. Also, we
obtain sharp estimates for the L1 norm of the solution to the semilinear prob-
lem and its time derivative. Similar properties have been proved for the wave
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equation with structural damping, (−Δ)
1
2 ut, where (−Δ)

1
2 is the fractional

Laplace operator (see [1,2,13]), but in that case the structure of the solution
is much simpler than the structure of the solution to (1.1) (for instance, the
smoothing effect is stronger). More general results about evolution equation-
s with structural damping and power nonlinearities |u|p and |ut|p have been
recently obtained in [3].

If we consider the problem with power nonlinearity |u|p,{
utt − Δu + ut − Δut = |u|p, t ≥ 0, x ∈ R

n,

(u, ut)(0, x) = (u0, u1)(x),
(1.2)

it is very easy to show that the critical exponent is Fujita exponent 1 + 2/n
(the same of the problem without the viscoelastic damping). In particular,
using the test function method, one immediately see that no global solutions
to (1.2) may exist, if p ∈ (1, 1 + 2/n], even in a weak sense (see, for instance,
[5,17]), under a suitable sign assumption on the initial data u0, u1.

To prove the global existence of small data solutions for p > 1+2/n, it is
sufficient to use only energy estimates in space dimension n = 1, 2 (following as
in [8]), but the use of suitable, optimal, Lr −Lq linear estimates, in particular
L1 −L1 estimates, allow us to obtain the result in any space dimension n ≥ 1.

Theorem 1.1. Let n ≥ 1 and p > 1+2/n. Also, assume that p ≤ 1+2/(n−2),
if n ≥ 3. Then there exists ε > 0 such that for any data

(u0, u1) ∈ A .= (L1 ∩ H1) × (L1 ∩ L2), with
‖(u0, u1)‖A

.= ‖u0‖L1 + ‖u0‖H1 + ‖u1‖L1 + ‖u1‖L2 ≤ ε,
(1.3)

there exists a unique solution

u ∈ C([0,∞), L1 ∩ H1) ∩ C1([0,∞), L1 ∩ L2) (1.4)

to (1.2). Moreover, it satisfies the following estimates

‖∇u(t, ·)‖L2 � (1 + t)− n
4 − 1

2 ‖(u0, u1)‖A, (1.5)

‖u(t, ·)‖L2 � (1 + t)− n
4 ‖(u0, u1)‖A, (1.6)

‖ut(t, ·)‖L2 � (1 + t)− n
4 −1‖(u0, u1)‖A, (1.7)

‖u(t, ·)‖L1 � ‖(u0, u1)‖A, (1.8)

‖ut(t, ·)‖L1 � (1 + t)−1‖(u0, u1)‖A. (1.9)

The restrictions from above on p in Theorem 1.1 may be relaxed by
assuming additional regularity on the data.

Our linear estimates also apply to the problem with power nonlineari-
ty |ut|p: {

utt − Δu + ut − Δut = |ut|p, t ≥ 0, x ∈ R
n,

(u, ut)(0, x) = (u0, u1)(x).
(1.10)

In this case, homogeneity arguments lead to expect that the critical exponent
is 1. Indeed, we may prove global existence of small data solutions to (1.10),
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for p > 1, in any space dimension n ≥ 1, by only assuming small initial data
as before.

Theorem 1.2. Let n = 1 and p ∈ (1, 2], or n ≥ 2 and 1 < p < 1 + 2/n. Then
there exists ε > 0 such that for any data as in (1.3), there exists a unique
solution as in (1.4) to (1.10). Moreover, it satisfies estimates (1.5)–(1.9).

The restriction from above on p in Theorem 1.2 may be relaxed to p ≤
2 if n = 2, 3 and to p < 1 + 4/n if n ≥ 4, by dropping the requirement
that ∇u(t, ·) ∈ L2 (see the proof of Theorem 1.2).

Finally, we consider the problem with power nonlinearity |∇u|p:{
utt − Δu + ut − Δut = |∇u|p, t ≥ 0, x ∈ R

n,

(u, ut)(0, x) = (u0, u1)(x).
(1.11)

In this case, we may prove global existence of small data solutions to (1.11),
for p > 1 + 1/(n + 1), in any space dimension n ≥ 1. Clearly, to obtain an
estimate for ‖∇u(t, ·)‖L1 , we also assume ∇u0 ∈ L1, when dealing with (1.11).
Moreover, we ask Δu0 ∈ L2, to get the same upper bound for p, that we have
in Theorem 1.1.

Theorem 1.3. Let n ≥ 1 and p > 1 + 1/(n + 1). Also, assume that p ≤ 1 +
2/(n − 2), if n ≥ 3. Then there exists ε > 0 such that for any data

(u0, u1) ∈ A .= (W 1,1 ∩ H2) × (L1 ∩ L2), with
‖(u0, u1)‖A

.= ‖u0‖W 1,1 + ‖u0‖H2 + ‖u1‖L1 + ‖u1‖L2 ≤ ε,
(1.12)

there exists a unique solution

u ∈ C([0,∞),W 1,1 ∩ H2) ∩ C1([0,∞), L1 ∩ L2) (1.13)

to (1.11). Moreover, it satisfies estimates (1.6)–(1.9), and estimates

‖Δu(t, ·)‖L2 � (1 + t)− n
4 −1‖(u0, u1)‖A, (1.14)

‖∇u(t, ·)‖L1 � (1 + t)− 1
2 ‖(u0, u1)‖A. (1.15)

Assuming also ∇u0 ∈ L1, it would become possible to construct a glob-
al solution to (1.2) and (1.10), which also verifies ∇u(t, ·) ∈ L1, and esti-
mate (1.15). However, this additional regularity property for the solution is not
essential to prove the global existence argument for problems (1.2) and (1.10),
so we avoided to take extra assumptions on the data in the statements of The-
orems 1.1 and 1.2. Of course, the assumption ∇u0 ∈ L1 becomes fundamental,
when dealing with problem (1.11).

Notation. In this paper, we write f � g, when there exists a constant C > 0
such that f ≤ Cg. We write f ≈ g when g � f � g.
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1.1. Main goal

The proofs of Theorems 1.1 and 1.3 are relatively standard, once we prove
suitable linear estimates for (1.1), and we use a contraction argument and
Duhamel’s principle. However, the proof of Theorem 1.2 is more delicate.

First of all, the corresponding result is not true, in absence of the vis-
coelastic damping, since, in that case, regularity issues arise, when p is smaller
than 2. To fix this problem, we use the smoothing effect appearing for the
time derivative of the solution to (1.1), which is a consequence of the presence
of the viscoelastic damping (see Theorem 2.2 in [15]). This smoothing effect
lead to the employment of estimates, which are singular at t = 0, but whose
singularity is integrable.

The use of singular estimates lead, in general, to a possible loss of decay,
but we avoid it by using Lm − L2 singular estimates, with m = 2/p. Indeed,
the power in the loss of decay, described by t

1
m − 1

2 , in Duhamel’s integral, tends
to 0 as p → 1, i.e., to the critical exponent, and it is compensated by other
contributions in the integral, when p is away from 1 (see Remark 3.1).

The description of this interesting effect, which is only attainable if both
damping terms are present in the wave equation, was the first motivation for
this paper.

Another motivation for this paper, is the objective to obtain optimal L1

estimates, for linear and semilinear problems. Estimates in L1 are, in gen-
eral, more difficult to obtain than estimates in Lq, for q > 1. However, the
special structure of the solution to (1.1) allow us to do that, in any space
dimension n ≥ 1. The use of L1 − L1 estimates also makes more elegant the
argument employed to prove the global existence of small data solutions to the
semilinear problems.

2. Linear estimates

After performing the Fourier transform with respect to x, û = Fu, the equation
in (1.1) reads as

ûtt + (1 + |ξ|2)ût + |ξ|2û = 0. (2.1)
Therefore, the characteristic roots of

λ2 + (1 + |ξ|2)λ + |ξ|2 = 0, i.e. (λ + 1)(λ + |ξ|2) = 0,

are given by:

λ− = −1, λ+ = −|ξ|2.
In particular, for any |ξ| �= 1, the solution u may be decomposed in two
components, u = u+ + u−, with

û− =
λ+û0 − û1

λ+ − λ−
eλ−t =

−|ξ|2û0 − û1

1 − |ξ|2 e−t,

û+ =
−λ−û0 + û1

λ+ − λ−
eλ+t =

û0 + û1

1 − |ξ|2 e−t|ξ|2 .
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In order to derive estimates for the solution to (1.1), it is crucial to study the
behavior at low and high frequencies, namely, as ξ → 0 and as |ξ| → ∞.

With no loss of generality, we assume in the following that û0 and û1

vanish in a neighborhood of the unit sphere Sn−1 = {|ξ| = 1}, and therefore
so û itself does. Indeed, in any compact subset of Rn\{0}, one may immedi-
ately prove any of the estimates that we are going to prove in this Section,
since an exponential decay appears for the solution localized at intermediate
frequencies, and the regularity issues do not come into play in compact subsets
of Rn\{0} (see later, Remark 2.7).

Let Ω0 = Ba(0) = {|ξ| < a}, for some a ∈ (0, 1), and Ω1 = R
n\B̄b(0), for

some b > 1, be such that û0, û1 are supported in Ω0∪Ω1. With this assumption,
we are legitimated to write u = u+ + u−.

First of all, we notice that there is not much to say about u−, since:

u−(t, x) = −e−t w0(x), w0
.= (1 + Δ)−1(−Δu0 + u1) = F−1

(
|ξ|2û0 + û1

1 − |ξ|2
)

.

Clearly, w0 is well-defined, thanks to the assumption that û0 and û1 vanish in
a neighborhood of Sn−1. On the other hand, u+ is the solution to the Cauchy
problem for the heat equation{

vt − Δv = 0,

v(0, x) = v0(x),
(2.2)

with initial data

v0 = (1 + Δ)−1(u0 + u1) = F−1

(
û0 + û1

1 − |ξ|2
)

.

Briefly, we will write u+ = etΔv0. Clearly, v0 is well-defined, thanks to the
assumption that û0 and û1 vanish in a neighborhood of Sn−1.

This decomposition makes shorter the proof of the desired estimates for
the solution to (1.1). First of all, we consider energy estimates.

Proposition 2.1. The solution to (1.1) satisfies the following estimates:

‖Δu(t, ·)‖L2 � (1 + t)−1
(‖u0‖H2 + ‖u1‖L2

)
, (2.3)

‖Δu(t, ·)‖L2 � (1 + t)− n
4 −1

(‖u0‖L1 + ‖u0‖H2 + ‖u1‖L1 + ‖u1‖L2

)
, (2.4)

‖ut(t, ·)‖L2 � (1 + t)−1
(‖u0‖L2 + ‖u1‖L2

)
, (2.5)

‖ut(t, ·)‖L2 � (1 + t)− n
4 −1

(‖u0‖L1 + ‖u0‖L2 + ‖u1‖L1 + ‖u1‖L2

)
. (2.6)

Also, for any m ∈ [1, 2], such that

n

(
1
m

− 1
2

)
< 1, (2.7)

it satisfies the following estimates:

‖∇u(t, ·)‖L2 � (1 + t)− 1
2− n

2 ( 1
m − 1

2 )
(‖u0‖Lm + ‖u0‖H1 + ‖u1‖Lm

)
, (2.8)

‖∇u(t, ·)‖L2 � (1 + t)− n
4 − 3

2
(‖u0‖L1 + ‖u0‖H1 + ‖u1‖L1 + ‖u1‖Lm

)
, (2.9)
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whereas for any m ∈ [1, 2] such that

n

(
1
m

− 1
2

)
< 2, (2.10)

it satisfies the following estimates:

‖u(t, ·)‖L2 � (1 + t)− n
2 ( 1

m − 1
2 )

(‖u0‖Lm + ‖u0‖L2 + ‖u1‖Lm

)
, (2.11)

‖u(t, ·)‖L2 � (1 + t)− n
4 −1

(‖u0‖L1 + ‖u0‖L2 + ‖u1‖L1 + ‖u1‖Lm

)
. (2.12)

Proof. First, we consider u−. By Plancherel’s theorem, one immediately ob-
tains:

‖w0‖Hκ � ‖u0‖Hκ + ‖u1‖L2 , κ = 0, 1, 2, (2.13)
so that, u− = −e−tw0 verifies estimates (2.3)–(2.6). Also, by Hölder’s
inequality,

‖(1 − |ξ|2)−1|ξ|j û1‖L2 � ‖û1‖Lm′ � ‖u1‖Lm ,

for any m ∈ [1, 2], satisfying (2.7) if j = 1, or (2.10) if j = 0. Here m′ =
m/(m − 1) is the Hölder conjugate of m. Therefore, u− also verifies (2.8)–
(2.12).

Now we consider u+. By using the Fourier transform mapping properties,
and Hölder’s inequality,

‖∂k
t ∂α

x u+(t, ·)‖L2 � ‖|ξ||α|
∂k

t û+(t, ·)‖L2

� ‖|ξ||α|+2k
e−t|ξ|2‖Lr(Ω0)

(‖û0‖Lm′ (Ω0)
+ ‖û1‖Lm′ (Ω0)

)
+ e−t

(‖û0‖L2(Ω1) + ‖û1‖L2(Ω1)

)
� (1 + t)− n

2r − |α|
2 −k

(‖u0‖Lm + ‖u0‖L2 + ‖u1‖Lm + ‖u1‖L2

)
,

for any |α| + 2k = 0, 1, 2, and for any m ∈ [1, 2], where we set r ∈ [1, 2] such
that

1
r

=
1
2

− 1
m′ =

1
m

− 1
2
. (2.14)

We remark that we used that 1/(1−|ξ|2) is bounded in Ω0 and (1+ |ξ|2)/(1−
|ξ|2) is bounded in Ω1. The exponential decay has been produced by us-
ing e−t|ξ|2 ≤ e−t, for ξ ∈ Ω1, whereas, in the last line, the polynomial decay
has been produced by using

‖|ξ||α|+2k
e−t|ξ|2‖Lr(Ω0) �

{
|Ω0| 1

r if t ∈ [0, 1],
t−

n
2r − |α|

2 −k if t ≥ 1,

i.e. using the well-known self-similarity of the fundamental solution to the heat
equation, only for t ≥ 1. That, is, for t ≥ 1 the change of variable η =

√
t ξ,

gives:

‖|ξ||α|+2k
e−t|ξ|2‖Lr(Ω0) ≤ ‖|ξ||α|+2k

e−t|ξ|2‖Lr(Rn)

= t−
n
2r − |α|

2 −k ‖|η||α|+2ke−|η|2‖Lr(Rn).

The proofs of (2.3) and (2.5) follow by setting m = 2 (so that r = ∞), whereas
the proofs of (2.4) and (2.6) follow by setting m = 1 (so that r = 2).
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Now, let m ∈ [1, 2] satisfy (2.7) or, respectively, (2.10), and r as in (2.14).
To prove (2.8) or, respectively, (2.11), we estimate

‖∇ju+(t, ·)‖L2 � ‖|ξ|j û+(t, ·)‖L2

� ‖|ξ|je−t|ξ|2‖Lr(Ω0)

(‖û0‖Lm′ (Ω0)
+ ‖û1‖Lm′ (Ω0)

)
+ e−t

(‖û0‖Lm′ (Ω1)
+ ‖û1‖Lm′ (Ω1)

)
� (1 + t)− n

2r − j
2

(‖u0‖Lm + ‖u1‖Lm

)
,

whereas, to prove (2.9) and (2.12), we estimate

‖∇ju+(t, ·)‖L2 � ‖|ξ|j û+(t, ·)‖L2

� ‖|ξ|je−t|ξ|2‖L2(Ω0)

(‖û0‖L∞(Ω0) + ‖û1‖L∞(Ω0)

)
+ e−t

(‖û0‖Lm′ (Ω1)
+ ‖û1‖Lm′ (Ω1)

)
� (1 + t)− n

4 − j
2

(‖u0‖L1 + ‖u0‖Lm + ‖u1‖L1 + ‖u1‖Lm

)
.

We remark that we used (2.7) and, respectively, (2.10), to get |ξ|−(2−j) ∈
Lr(Ω1), with j = 1 and, respectively, j = 0.

This concludes the proof. �

Thanks to the very special structure of the solution to (1.1), we may also
easily obtain L1 − L1 estimates.

Proposition 2.2. The solution to (1.1) satisfies the following L1−L1 estimates:

‖u(t, ·)‖L1 �
(‖u0‖L1 + ‖u1‖L1

)
, (2.15)

‖∇u(t, ·)‖L1 � (1 + t)− 1
2
(‖u0‖W 1,1 + ‖u1‖L1

)
, (2.16)

‖ut(t, ·)‖L1 � (1 + t)−1
(‖u0‖L1 + ‖u1‖L1

)
. (2.17)

Proof. First, we consider u−. For any |ξ| < 1, we may write

ŵ0 =
|ξ|2

1 − |ξ|2 (û0 + û1) + û1,

whereas, for any |ξ| > 1, we may write:

ŵ0 = −û0 − 1
|ξ|2 − 1

(û0 + û1).

Therefore, by applying Lemmas A.1 and A.2, thanks to Young inequality, we
derive:

‖w0‖L1 � ‖u0‖L1 + ‖u1‖L1 .

Let us consider ∇w0. For any |ξ| < 1, we may write

iξŵ0 =
|ξ|2

1 − |ξ|2 (iξû0) +
iξ

1 − |ξ|2 û1,
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whereas, for any |ξ| > 1, we may write:

iξŵ0 = −(iξû0) − 1
|ξ|2 − 1

(iξû0) − iξ

|ξ|2 − 1
û1.

By using again Lemmas A.1 and A.2, and Young inequality, we derive:

‖∇w0‖L1 � ‖∇u0‖L1 + ‖u1‖L1 .

Therefore, u− = −e−tw0(x) verifies the desired estimates. Now we consid-
er u+ = etΔv0. Proceeding in a similar way, due to:

v̂0 = û0 + û1 +
|ξ|2

1 − |ξ|2 (û0 + û1),

iξv̂0 =
iξ

1 − |ξ|2 (û0 + û1),

if |ξ| < 1, and

v̂0 = − 1
|ξ|2 − 1

(û0 + û1),

iξv̂0 = − iξ

|ξ|2 − 1
(û0 + û1),

if |ξ| > 1, by using Young inequality, applying Lemmas A.1 and A.2, we obtain

‖v0‖L1 + ‖∇v0‖L1 � ‖u0‖L1 + ‖u1‖L1 . (2.18)

On the other hand, we write Δv0 in the form

−|ξ|2v̂0 =
|ξ|2

|ξ|2 − 1
(û0 + û1), if |ξ| < 1,

−|ξ|2v̂0 = û0 + û1 +
1

|ξ|2 − 1
(û0 + û1), if |ξ| > 1,

so that we also obtain

‖Δv0‖L1 � ‖u0‖L1 + ‖u1‖L1 . (2.19)

Estimates (2.15)–(2.17) follow for u+ = etΔv0 by the well-known L1 − L1

estimates for the solution to the heat equation, in particular:

‖∂k
t ∇ju+(t, ·)‖L1 �

{
‖Δk∇jv0‖L1 , for t ∈ [0, 1],
t−

j
2−k ‖v0‖L1 for t ≥ 1,

for j + k = 0, 1. �

Remark 2.3. Estimate (2.17) requires lesser regularity, with respect to u0, than
the corresponding estimate in [15], for the wave equation with only viscoelastic
damping. This effect is related to the fact that the solution to our problem (1.1)
decomposes in simpler terms, if compared with the corresponding ones in [15].

We also notice that estimate (2.19), which we used to prove (2.17), is
no longer valid, in general, in space dimension n ≥ 2, if we replace Δ by a
different second order operator, like ∂x1∂x2 .
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A peculiarity due to the presence of the viscoelastic damping, is the s-
moothing effect that appears for the time derivatives of the solution to (1.1).
This smoothing effect may also be used at short time, if we allow singular esti-
mates at t = 0 (see Theorem 2.2 in [15]). When studying semilinear problems,
by using Duhamel’s principle, it becomes possible to employ estimates which
are singular at t = 0, provided that the singular power is integrable in 0. These
singular estimates play a fundamental role in the proof of Theorem 1.2.

Proposition 2.4. Let u0 = 0. For any m ∈ [1, 2], such that (2.10) holds, the
solution to (1.1) satisfies the following estimates, for any t > 0:

‖ut(t, ·)‖L2 � (1 + t)−1 t−
n
2 ( 1

m − 1
2 )‖u1‖Lm , (2.20)

‖ut(t, ·)‖L2 � (1 + t)− n
2 (1− 1

m )−1 t−
n
2 ( 1

m − 1
2 )

(‖u1‖L1 + ‖u1‖Lm

)
. (2.21)

Proof. The proof is analogous to the proof of (2.11), (2.12), in Proposition 2.1,
in particular, no change is needed for u−

t . When we consider u+
t , we use the

smoothing effect of etΔ to produce a regularity gain, by paying a singular
power at t = 0.

To prove (2.20), we estimate

‖u+
t (t, ·)‖L2 � ‖|ξ|2û+(t, ·)‖L2

� ‖|ξ|2e−t|ξ|2‖Lr(Ω0) ‖û1‖Lm′ (Ω0)

+ e−t/2 ‖e−t|ξ|2/2‖Lr(Ω1) ‖û1‖Lm′ (Ω1)

� (1 + t)−1− n
2r ‖u1‖Lm + e−t/2t−

n
2r ‖u1‖Lm ,

where r is as in (2.14). We remark that we used that |ξ|2/(1−|ξ|2) is bounded
in Ω1, and that e−t|ξ|2 ≤ e−t/2 e−t|ξ|2/2 in Ω1. We used the self-similarity of the
fundamental solution to the heat equation, namely, the change of variable η =√

t ξ, to obtain the singular power:

‖e−t|ξ|2/2‖Lr(Ω1) ≤ ‖e−t|ξ|2/2‖Lr(Rn) = t−
n
2r ‖e−|η|2/2‖Lr(Rn).

This concludes the proof of (2.20). The proof of (2.21) for u+ follows from the
previous step for t ∈ [0, 1], whereas we may directly estimate

‖u+
t (t, ·)‖L2 � ‖|ξ|2û+(t, ·)‖L2 � ‖|ξ|2e−t|ξ|2‖L2 ‖û1‖L∞ � t−

n
4 −1 ‖u1‖L1 ,

for t ≥ 1. This concludes the proof of (2.21). �

Remark 2.5. The decay rates obtained in the linear estimates are sharp, s-
ince u ∼ v, with v = etΔ(u0 + u1), as t → ∞, in the sense that, for sufficiently
smooth u0, u1, with suitable sign assumption on u0 + u1,

‖∂k
t ∂α

x u(t, ·)‖Lq ∼ ‖∂k
t ∂α

x v(t, ·)‖Lq ∼ t−
n
2 (1− 1

q )− |α|
2 −k,

the so-called diffusion phenomenon. The proof is based on the estimate of
the low frequencies part of u+ − v, since the other components of u and v
exponentially decay as t → ∞.
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Remark 2.6. If we replace equation in (1.1) by

utt − Δu + aut − bΔut = 0, t ≥ 0, x ∈ R
n,

for some a, b > 0, the previous technique to derive linear estimates remain
valid, since the behavior at ξ → 0 and |ξ| → ∞ remains unchanged. Indeed,
the characteristic roots λ±(ξ), of

λ2 + (a + b|ξ|2)λ + |ξ|2 = 0,

have the following behaviors:

λ− →
{

−a as ξ → 0,
−b−1 as |ξ| → ∞,

λ+ ∼
{

−a−1|ξ|2 as ξ → 0,
−b|ξ|2 as |ξ| → ∞.

In particular, the solution can still be “approximated” by e−atw0+eb−1tΔv0, in
a neighborhood of ξ = 0, and by e−a−1tw0+ebtΔv0, for large |ξ|, for some w0, v0,
depending on u0, u1. However, some extra attention is necessary to deal with
the L1 − L1 estimates, which can be harder to obtain (see Remark 2.3).

Remark 2.7. As we claimed in the beginning of this Section, linear estimates in
Propositions 2.1, 2.2 and 2.4 may be trivially proved for initial data localized at
intermediate frequencies, namely, away from ξ → 0 and |ξ| → ∞. For instance,
let us prove (2.3), assuming û0, û1 to be supported in the annulus Aε = {1−ε ≤
|ξ| ≤ 1 + ε}, for some ε ∈ (0, 1). In Aε, it holds

|û(t, ξ)| ≤ Cε

(|û0| + t|û1|
)
e−t(1−ε)2 ,

due to

û =
e−t|ξ|2 − |ξ|2e−t

1 − |ξ|2 û0 +
e−t|ξ|2 − e−t

1 − |ξ|2 û1 for |ξ| �= 1,

û = û0 + t û1 for |ξ| = 1.

In particular, as it is well known, the singularity (1 − |ξ|2)−1 is compensated
by the difference of the two exponential terms, as |ξ| → 1. By Plancherel’s
theorem,

‖Δu(t, ·)‖L2 � ‖|ξ|2û(t, ·)‖L2 ≤ (1 + ε)2 ‖û(t, ·)‖L2

�
(‖û0‖L2 + t‖û1‖L2

)
e−t(1−ε)2 ,

so that (2.3) trivially follows.

3. Proof of Theorems 1.1, 1.2 and 1.3

The proofs of Theorems 1.1, 1.2 and 1.3 rely on a classical contraction argu-
ment.

We may write the (global) solution to the linear Cauchy problem (1.1)
in the form

ulin .= J0(t, x) ∗(x) u0(x) + J1(t, x) ∗(x) u1(x).



5 Page 12 of 23 M. D’Abbicco NoDEA

By Duhamel’s principle, a function u ∈ X, where X is a suitable space, is a
solution to (1.2), (1.10) or (1.11) if, and only if, it satisfies the equality

u(t, x) = ulin(t, x) +
∫ t

0

J1(t − s, x) ∗(x) f(u, ut,∇u)(s, x) ds, in X, (3.1)

where f = |u|p, f = |ut|p or f = |∇u|p. To prove Theorems 1.1 and 1.2, we
define the solution space

X
.= C(

[0,∞), L1 ∩ H1
) ∩ C1

(
[0,∞), L1 ∩ L2

)
, (3.2)

with norm given by

‖u‖X
.= sup

t∈[0,∞)

{
(1 + t)

n
4 ‖u(t, ·)‖L2 + (1 + t)

n
4 + 1

2 ‖∇u(t, ·)‖L2

+ (1 + t)
n
4 + 1

2 ‖ut(t, ·)‖L2 + ‖u(t, ·)‖L1 + (1 + t)‖ut(t, ·)‖L1

}
. (3.3)

In particular, any function u ∈ X satisfies estimates with the same decay rates
as in (1.5)–(1.9).

Thanks to linear estimates (2.6), (2.9), (2.12), (2.15) and (2.17), it follows
that ulin ∈ X and it satisfies

‖ulin‖X ≤ C ‖(u0, u1)‖A. (3.4)

We define the operator F such that, for any u ∈ X,

Fu(t, x) .=
∫ t

0

J1(t − s, x) ∗(x) f(u, ut,∇u)(s, x) ds, (3.5)

then we prove the estimates

‖Fu‖X ≤ C‖u‖p
X , (3.6)

‖Fu − Fv‖X ≤ C‖u − v‖X

(‖u‖p−1
X + ‖v‖p−1

X

)
. (3.7)

By standard arguments, since ulin satisfies (3.4) and p > 1, from (3.6) it
follows that F + ulin maps balls of X into balls of X, for small data in A, and
estimates (3.6), (3.7) lead to the existence of a unique solution to (3.1), that
is, u = ulin +Fu, satisfying (3.4). We simultaneously gain a local and a global
existence result.

Therefore, we shall only prove (3.6) and (3.7). For the sake of brevity, we
will omit the proof of (3.7), which is analogous to the proof of (3.6).

We notice that, for any u ∈ X, it holds:

‖u(t, ·)‖Lq � (1 + t)− n
2 (1− 1

q ) ‖u‖X , (3.8)

for any q ∈ [1,∞] if n = 1, for any q ∈ [1,∞) if n = 2, and for any q ∈
[1, 2n/(n − 2)], if n ≥ 3, and

‖ut(t, ·)‖Lq � (1 + t)− n
2 (1− 1

q )−1 ‖u‖X , (3.9)

for any q ∈ [1, 2]. Indeed, (3.8) and (3.9) hold for q = 1, 2, as a consequence
of (3.3), and so they hold for any q ∈ (1, 2), by interpolation. Moreover, s-
ince (3.3) implies

‖∇u(t, ·)‖L2 � (1 + t)− n
4 − 1

2 ‖u‖X ,
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we may use Gagliardo–Nirenberg inequality to get (3.8), for any q ∈ (2,∞]
if n = 1, for any q ∈ (2,∞) if n = 2, and for any q ∈ (2, 2n/(n − 2)], if n ≥ 3.

In the following, we write p ≤ n/(n − 2)+ to mean that the finite expo-
nent p verifies p ≤ 1 + 2/(n − 2) if n ≥ 3, i.e., that H1 embeds in L2p.

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let f = |u|p. We first prove that

‖∂t(Fu)(t, ·)‖L2 � (1 + t)−1‖u‖p
X . (3.10)

We use estimate (2.6) in [0, t/2], and estimate (2.5) in [t/2, t]. Then

‖∂t(Fu)(t, ·)‖L2 ≤
∫ t

0

‖∂tJ1(t − τ, ·) ∗(x) |u(τ, ·)|p‖L2 dτ

�
∫ t/2

0

(1 + t − τ)− n
4 −1

(‖|u(τ, ·)|p‖L1 + ‖|u(τ, ·)|p‖L2

)
dτ

+
∫ t

t/2

(1 + t − τ)−1 ‖|u(τ, ·)|p‖L2 dτ

�
∫ t/2

0

(1 + t − τ)− n
4 −1

(‖u(τ, ·)‖p
Lp + ‖u(τ, ·)‖p

L2p

)
dτ

+
∫ t

t/2

(1 + t − τ)−1 ‖u(τ, ·)‖p
L2p dτ.

Recalling that p ≤ n/(n − 2)+, we may use u ∈ X and (3.8), to get:

‖u(τ, ·)‖p
Lp � (1 + τ)− n

2 (p−1) ‖u‖p
X ,

‖u(τ, ·)‖p
L2p � (1 + τ)− n

4 − n
2 (p−1) ‖u‖p

X .

Here and in the following, we use:

1 + t − τ ≈ 1 + t, for any τ ∈ [0, t/2],
1 + τ ≈ 1 + t, for any τ ∈ [t/2, t].

Therefore, we obtain:

‖∂t(Fu)(t, ·)‖L2 � ‖u‖p
X

∫ t/2

0

(1 + t − τ)− n
4 −1 (1 + τ)− n

2 (p−1) dτ

+ ‖u‖p
X

∫ t

t/2

(1 + t − τ)−1 (1 + τ)− n
4 − n

2 (p−1) dτ

≈ ‖u‖p
X (1 + t)− n

4 −1

∫ t/2

0

(1 + τ)− n
2 (p−1) dτ

+ ‖u‖p
X (1 + t)− n

4 − n
2 (p−1)

∫ t

t/2

(1 + t − τ)−1 dτ

≈ (1 + t)− n
4 −1 ‖u‖p

X ,

thanks to n(p − 1)/2 > 1, i.e., p > 1 + 2/n.
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Similarly, we may derive the estimates

‖∇(Fu)(t, ·)‖L2 � (1 + t)− 1
2 ‖u‖p

X , (3.11)

‖(Fu)(t, ·)‖L2 � ‖u‖p
X . (3.12)

Using estimate (2.9) or, respectively, estimate (2.12), in [0, t/2], and esti-
mate (2.8) or, respectively, estimate (2.11), in [t/2, t], with m = 2, we get

‖∇j(Fu)(t, ·)‖L2 �
∫ t/2

0

(1 + t − τ)− n
4 − j

2
(‖u(τ, ·)‖p

Lp + ‖u(τ, ·)‖p
L2p

)
dτ

+
∫ t

t/2

(1 + t − τ)− j
2 ‖u(τ, ·)‖p

L2p dτ

� ‖u‖p
X

∫ t/2

0

(1 + t − τ)− n
4 − j

2 (1 + τ)− n
2 (p−1) dτ

+ ‖u‖p
X

∫ t

t/2

(1 + t − τ)− j
2 (1 + τ)− n

4 − n
2 (p−1) dτ

≈ ‖u‖p
X (1 + t)− n

4 − j
2

∫ t/2

0

(1 + τ)− n
2 (p−1) dτ

+ ‖u‖p
X (1 + t)− n

4 − n
2 (p−1)

∫ t

t/2

(1 + t − τ)− j
2 dτ

≈ (1 + t)− n
4 − j

2 ‖u‖p
X ,

for j = 0, 1, where we used again p ≤ n/(n−2)+, u ∈ X, (3.8), and p > 1+2/n.
Finally, we derive the estimates

‖Fu(t, ·)‖L1 � ‖u‖p
X , (3.13)

‖∂t(Fu)(t, ·)‖L1 � (1 + t)−1‖u‖p
X . (3.14)

We may use (2.15) and (2.17) to obtain

‖∂k
t (Fu)(t, ·)‖L1 �

∫ t

0

(1 + t − τ)−k ‖u(τ, ·)‖p
Lp dτ

� ‖u‖p
X

∫ t

0

(1 + t − τ)−k (1 + τ)− n
2 (p−1) dτ

≈ (1 + t)−k ‖u‖p
X ,

for k = 0, 1, where we used again p > 1 + 2/n, u ∈ X, and (3.8).
This concludes the proof of (3.6), for f = |u|p, and so the proof of The-

orem 1.1. �
Proof of Theorem 1.2. Let f = |ut|p. In this case, the proof of (3.6) is more
delicate, and singular linear estimates (2.20) and (2.21) play a fundamental
role.

First we prove (3.10). Thanks to the assumptions p ≤ 2, we may set m =
2/p ∈ [1, 2), and use (2.21) in [0, t/2] and (2.20) in [t/2, t]. We notice that

n

(
1
m

− 1
2

)
=

n(p − 1)
2

< 2, (3.15)
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if, and only if, p < 1 + 4/n, so that the assumption p < 1 + 2/n is sufficient.
Therefore, we get

‖∂t(Fu)(t, ·)‖L2 �
∫ t/2

0

(1 + t − τ)− n
2 (1− 1

m )−1

× (t − τ)− n
2 ( 1

m − 1
2 )

(‖ut(τ, ·)‖p
Lp + ‖ut(τ, ·)‖p

L2

)
dτ

+
∫ t

t/2

(1 + t − τ)−1 (t − τ)− n
2 ( 1

m − 1
2 )‖ut(τ, ·)‖p

L2 dτ.

Now, thanks to u ∈ X and p ≤ 2, using (3.9), we derive

‖ut(τ, ·)‖p
Lp � (1 + τ)− n

2 (p−1)−p ‖u‖p
X ,

‖ut(τ, ·)‖p
L2 � (1 + τ)−(n

4 +1)p ‖u‖p
X .

In the first integral, we may proceed as we did for f = |u|p; the assumption p >
1 is sufficient to get∫ t/2

0

(1 + t − τ)− n
2 (1− 1

m )−1 (t − τ)− n
2 ( 1

m − 1
2 )

(‖ut(τ, ·)‖p
Lp + ‖ut(τ, ·)‖p

L2

)
dτ

� (1 + t)− n
4 −1‖u‖p

X

∫ t/2

0

(1 + τ)− n
2 (p−1)−p dτ ≈ (1 + t)− n

4 −1‖u‖p
X .

In the second integral, we should pay more attention, since we have∫ t

t/2

(1 + t − τ)−1 (t − τ)− n
2 ( 1

m − 1
2 )‖ut(τ, ·)‖p

L2 dτ

� (1 + t)−(n
4 +1)p‖u‖p

X

∫ t

t/2

(1 + t − τ)−1 (t − τ)− n
2 ( 1

m − 1
2 ) dτ.

The difference with respect to the previous cases, is that, integrating, we lose
a power t−

n
2 ( 1

m − 1
2 ), in the estimate:∫ t

t/2

(1 + t − τ)−1 (t − τ)− n
2 ( 1

m − 1
2 ) dτ ≈ 1. (3.16)

We remark that the singular power (t− τ)− n
2 ( 1

m − 1
2 ) is integrable at τ = t, due

to (3.15).
However, the loss in (3.16) does not influence the final estimates, since,

for any p ≥ 1, we get

(1 + t)−(n
4 +1)p‖u‖p

X ≤ (1 + t)− n
4 −1‖u‖p

X . (3.17)

Now we prove (3.11). Setting m = 2/p as before, we have that

n

(
1
m

− 1
2

)
=

n(p − 1)
2

< 1,
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where we now used the assumption p < 1 + 2/n. We use (2.9) in [0, t/2]
and (2.8) in [t/2, t], to obtain:

‖∇u(t, ·)‖L2 �
∫ t/2

0

(1 + t − τ)− n
4 − 1

2
(‖ut(τ, ·)‖p

Lp + ‖ut(τ, ·)‖p
L2

)
dτ

+
∫ t

t/2

(1 + t − τ)− n
2 ( 1

m − 1
2 )− 1

2 ‖ut(τ, ·)‖p
L2 dτ

� (1 + t)− n
4 − 1

2 ‖u‖p
X .

In particular, here we used∫ t

t/2

(1 + t − τ)− n
2 ( 1

m − 1
2 )− 1

2 dτ ≈ (1 + t)− n
2 ( 1

m − 1
2 )+ 1

2 ,

due to (3.15), so that

(1 + t)− n
4 p−p

∫ t

t/2

(1 + t − τ)− n
2 ( 1

m − 1
2 )− 1

2 dτ � (1 + t)
1
2− n

4 p−p ≤ (1 + t)− n
4 − 1

2 .

Similarly, we may prove estimate (3.12). Using (2.12) in [0, t/2] and (2.11)
in [t/2, t], we get:

‖u(t, ·)‖L2 �
∫ t/2

0

(1 + t − τ)− n
4

(‖ut(τ, ·)‖p
Lp + ‖ut(τ, ·)‖p

L2

)
dτ

+
∫ t

t/2

(1 + t − τ)− n
2 ( 1

m − 1
2 )‖ut(τ, ·)‖p

L2 dτ

� (1 + t)− n
4 ‖u‖p

X .

To derive this latter it was sufficient again to use 1 < p < 1 + 4/n. Indeed, if
one is not interested in having a solution with ∇u(t, ·) ∈ L2, the bound of p
from above may be relaxed to p ≤ 2 if n ≤ 3, and p < 1 + 4/n, if n ≥ 4.

Finally, we obtain (3.13), (3.14) by applying (2.15) and (2.17), as in the
case f = |u|p; we obtain

‖∂k
t (Fu)(t, ·)‖L1 �

∫ t

0

(1 + t − τ)−k ‖ut(τ, ·)‖p
Lp dτ

� ‖u‖p
X

∫ t

0

(1 + t − τ)−k (1 + τ)− n
2 (p−1)−p dτ

≈ (1 + t)−k ‖u‖p
X ,

for k = 0, 1, using p > 1. This concludes the proof of (3.6), and so the proof
of Theorem 1.2. �

Remark 3.1. The compensating effect in (3.17) depends on the choice m =
2/p. A different choice for m ∈ [1, 2), verifying (2.10) and mp ≤ 2, would led
to:∫ t

t/2

(1 + t − τ)−1 (t − τ)− n
2 ( 1

m − 1
2 )‖ut(τ, ·)‖p

Lmp dτ � (1 + t)− n
2 (p−1/m)−p ‖u‖p

X ,
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and

n

2

(
p − 1

m

)
+ p ≥ n

4
+ 1 ⇐⇒ p ≥ 1 +

n

n + 2

(
1
m

− 1
2

)
.

In particular, one cannot obtain the desired estimate, by fixing an exponent m,
uniformly chosen for any p close to 1. This delicate situation shows how to grasp
the critical exponent, one has to use the “correct” linear estimate, when it is
necessary to compensate possible losses due to the integration of Duhamel’s
part of the solution.

To prove Theorem 1.3, we may follow the proof of Theorem 1.1, but now
we use the solution space

X
.= C(

[0,∞),W 1,1 ∩ H2
) ∩ C1

(
[0,∞), L1 ∩ L2

)
, (3.18)

with norm given by

‖u‖X
.= sup

t∈[0,∞)

{
(1 + t)

n
4

(
‖u(t, ·)‖L2 + (1 + t)‖(Δu, ut)(t, ·)‖L2

)

+ ‖u(t, ·)‖L1 + (1 + t)
1
2 ‖∇u(t, ·)‖L1 + (1 + t)‖ut(t, ·)‖L1

}
. (3.19)

As we did to prove Theorems 1.1 and 1.2, we will only prove (3.6), where
now X is given by (3.18), (3.19).

For any u ∈ X, it holds:

‖∇u(t, ·)‖Lq � (1 + t)− n
2 (1− 1

q )− 1
2 ‖u‖X , (3.20)

for any q ∈ [1,∞] if n = 1, for any q ∈ [1,∞) if n = 2, and for any q ∈
[1, 2n/(n − 2)], if n ≥ 3. Indeed, on the one hand, (3.20) holds for q = 1, as a
consequence of (3.19). On the other hand, since (3.19) implies

‖u(t, ·)‖Ḣ2 � (1 + t)− n
4 −1 ‖u‖X ,

by the equivalence of the norm of ‖Δf‖L2 and ‖f‖Ḣ2 , we may use Gagliardo–
Nirenberg inequality to get (3.8), for any q ∈ (1,∞] if n = 1, for any q ∈ (1,∞)
if n = 2, and for any q ∈ (1, 2n/(n − 2)], if n ≥ 3.

Proof of Theorem 1.3. We first prove

‖Δ(Fu)(t, ·)‖L2 + ‖∂t(Fu)(t, ·)‖L2 � (1 + t)−1‖u‖p
X , (3.21)

as we did to prove (3.10), in the case f = |u|p. We use estimate (2.4) in [0, t/2],
and estimate (2.3) in [t/2, t]. Then

‖Δ(Fu)(t, ·)‖L2 + ‖∂t(Fu)(t, ·)‖L2

�
∫ t/2

0

(1 + t − τ)− n
4 −1

(‖∇u(τ, ·)‖p
Lp + ‖∇u(τ, ·)‖p

L2p

)
dτ

+
∫ t

t/2

(1 + t − τ)−1 ‖∇u(τ, ·)‖p
L2p dτ.
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Now, using u ∈ X, (3.20), and p ≤ n/(n − 2)+, we get:

‖∇u(τ, ·)‖p
Lp � (1 + τ)− n

2 (p−1)− p
2 ‖u‖p

X ,

‖∇u(τ, ·)‖p
L2p � (1 + τ)− n

4 − n
2 (p−1)− p

2 ‖u‖p
X .

Therefore, we obtain:

‖Δ(Fu)(t, ·)‖L2 + ‖∂t(Fu)(t, ·)‖L2

� ‖u‖p
X

∫ t/2

0

(1 + t − τ)− n
4 −1 (1 + τ)− n

2 (p−1)− p
2 dτ

+ ‖u‖p
X

∫ t

t/2

(1 + t − τ)−1 (1 + τ)− n
4 − n

2 (p−1)− p
2 dτ

≈ ‖u‖p
X (1 + t)− n

4 −1

∫ t/2

0

(1 + τ)− n
2 (p−1)− p

2 dτ

+ ‖u‖p
X (1 + t)− n

4 − n
2 (p−1)− p

2

∫ t

t/2

(1 + t − τ)−1 dτ

≈ (1 + t)− n
4 −1 ‖u‖p

X ,

thanks to p > 1 + 1/(n + 1). Let us prove (3.12). Using estimate (2.12),
in [0, t/2], and estimate (2.11), in [t/2, t], with m = 2, we get

‖(Fu)(t, ·)‖L2 �
∫ t/2

0

(1 + t − τ)− n
4

(‖∇u(τ, ·)‖p
Lp + ‖∇u(τ, ·)‖p

L2p

)
dτ

+
∫ t

t/2

‖∇u(τ, ·)‖p
L2p dτ

� ‖u‖p
X

∫ t/2

0

(1 + t − τ)− n
4 (1 + τ)− n

2 (p−1)− p
2 dτ

+ ‖u‖p
X

∫ t

t/2

(1 + τ)− n
4 − n

2 (p−1)− p
2 dτ

≈ ‖u‖p
X (1 + t)− n

4

∫ t/2

0

(1 + τ)− n
2 (p−1)− p

2 dτ

+ ‖u‖p
X (1 + t)− n

4 − n
2 (p−1)− p

2

∫ t

t/2

1 dτ

≈ (1 + t)− n
4 ‖u‖p

X ,

where we used again u ∈ X, (3.20), p ≤ n/(n − 2)+ and p > 1 + 1/(n + 1).
Finally, we derive estimates (3.13), (3.14), and

‖∇(Fu)(t, ·)‖L1 � (1 + t)− 1
2 ‖u‖p

X . (3.22)
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We may use (2.15), (2.16), and (2.17), to estimate

‖∇j∂k
t (Fu)(t, ·)‖L1 �

∫ t

0

(1 + t − τ)− j
2−k ‖∇u(τ, ·)‖p

Lp dτ

� ‖u‖p
X

∫ t

0

(1 + t − τ)− j
2−k (1 + τ)− n

2 (p−1)− p
2 dτ

� (1 + t)− j
2−k ‖u‖p

X ,

for j + k = 0, 1, where we used again p > 1 + 1/(n + 1), u ∈ X, and (3.20).
This concludes the proof of (3.6), for f = |∇u|p, and so the proof of

Theorem 1.3. �

Appendix A: L1 multipliers estimates

In this appendix we prove an L1 estimate for multipliers, localized at low and
high frequencies. The employment of these estimates allow us to derive L1−L1

estimates for the solution to (1.1). The technique employed is well-known, but
we give some details for the ease of reading.

Lemma A.1. Let n ≥ 1 and χ0 be a C∞ function, supported in B1(0) = {|ξ| <
1}, and constant in some neighborhood of the origin. Then:

K2 = F−1

(
|ξ|2

1 − |ξ|2 χ0

)
∈ L1, K1 = F−1

(
ξ

1 − |ξ|2 χ0

)
∈ L1. (A.1)

Proof. Let a ∈ (0, 1) be such that suppχ0 ⊂ Ba(0) = {|ξ| < a}, and
let g2(ξ) = |ξ|2 and g1(ξ) = ξ. Then

Kj(x) = (2π)−n

∫
|ξ|≤a

eixξ gj(ξ)
1 − |ξ|2 χ0(ξ) dξ.

It is clear that Kj ∈ L∞, in particular, it is in L1
loc. Let |x| ≥ a−1. Thanks to

eixξ =
n∑

j=1

−ixj

|x|2 ∂ξj
eixξ, (A.2)

after integrating by parts n − 1 times (the boundary terms vanish, since χ0

identically vanishes near {|ξ| = a}), we obtain:

Kj(x) = |x|−(n−1)
∑

|γ|=n−1

cn,γ

(
ix

|x|
)γ ∫

|ξ|≤a

eixξ ∂γ
ξ

(
gj(ξ)

1 − |ξ|2 χ0(ξ)

)
dξ.
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Indeed,

Kj(x) = (2π)−n
n∑

�=1

ix�

|x|2
∫

|ξ|≤a

eixξ ∂ξ�

(
gj(ξ)

1 − |ξ|2 χ0(ξ)

)
dξ

= (2π)−n
n∑

�=1

n∑
k=1

−x�xk

|x|4
∫

|ξ|≤a

eixξ ∂ξk
∂ξ�

(
gj(ξ)

1 − |ξ|2 χ0(ξ)

)
dξ

= · · ·
We split each of the integral in Kj into two parts. We immediately get∫

|ξ|≤|x|−1

∣∣∣∣∣∂γ
ξ

(
gj(ξ)

1 − |ξ|2 χ0(ξ)

)∣∣∣∣∣ dξ �
∫

|ξ|≤|x|−1
|ξ|j−(n−1)

dξ � |x|−1−j .

Integrating one more time the remaining integral, we obtain:∫
|x|−1≤|ξ|≤a

eixξ ∂γ
ξ

(
gj(ξ)

1 − |ξ|2 χ0(ξ)

)
dξ

=
n∑

j=1

−ixj

|x|2
∫

|ξ|=|x|−1
eixξ ∂γ

ξ

(
gj(ξ)

1 − |ξ|2 χ0(ξ)

)
dS

+
n∑

j=1

ixj

|x|2
∫

|x|−1≤|ξ|≤a

eixξ ∂ξj
∂γ

ξ

(
gj(ξ)

1 − |ξ|2 χ0(ξ)

)
dξ.

The first term in the right-hand side is bounded by |x|−1−j , whereas we may
perform one more step of integration on the second one, which leads us to
estimate ∫

|x|−1≤|ξ|≤a

|ξ|j−(n+1)
dξ �

{
1 if j = 2,
1 + log |x| if j = 1.

In turns, we obtain: |K1(x)| � |x|−(n+1)(1 + log |x|), and |K2(x)| � |x|−(n+1),
for large |x|. That is, Kj ∈ L1. �

Lemma A.2. Let n ≥ 1 and χ1 be a C∞ function, supported in R
n\B̄1(0) =

{|ξ| > 1}, and constant for |x| ≥ R, for some R > 1. Then:

K0 = F−1

(
1

|ξ|2 − 1
χ1

)
∈ L1, K1 = F−1

(
ξ

|ξ|2 − 1
χ1

)
∈ L1. (A.3)

Proof. Let b > 1, be such that suppχ1 ⊂ R
n\B̄b(0) = {|ξ| > b}. Recall-

ing (A.2), and following the proof of Lemma A.1, we integrate by parts n − 1
times:

Kj(x) = |x|−(n−1) (2π)−n
∑

|γ|=n−1

(
ix

|x|
)γ ∫

|ξ|≥a

eixξ ∂γ
ξ

(
gj(ξ)

|ξ|2 − 1
χ1(ξ)

)
dξ,

(A.4)
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with g0(ξ) = 1 and g1(ξ) = ξ. We immediately obtain

|K0(x)| � |x|−(n−1)

∫
|ξ|≥a

|ξ|−2−(n−1)
dξ � |x|−(n−1),

whereas, to treat K1 for small |x|, we split (A.4) into two integrals. On the
one hand, we easily obtain:

|x|−(n−1)

∫
a≤|ξ|≤|x|−1

|ξ|−1−(n−1)
dξ � |x|−(n−1)(1 + | log |x||).

On the other hand, performing one more step of integration by parts of the
remaining integral, we get∫

|x|−1≤|ξ|
eixξ ∂γ

ξ

(
ξ

|ξ|2 − 1
χ1(ξ)

)
dξ

=
n∑

j=1

−ixj

|x|2
∫

|ξ|=|x|−1
eixξ ∂γ

ξ

(
ξ

|ξ|2 − 1
χ1(ξ)

)
dS

+
n∑

j=1

ixj

|x|2
∫

|x|−1≤|ξ|
eixξ ∂ξj

∂γ
ξ

(
ξ

|ξ|2 − 1
χ1(ξ)

)
dξ,

which we may control by |x|−(n−1). To estimate Kj , j = 0, 1, for large |x|, it is
sufficient to perform two more steps of integration by parts in (A.4), obtaining:

|Kj(x)| � |x|−(n+1)

∫
|ξ|≥a

|ξ|j−(n+3)
dξ � |x|−(n+1).

Summarizing, we proved that K0,K1 ∈ L1 (and also in Lq, for any q < n/(n−
1)). �
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