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Resonant tori of arbitrary codimension
for quasi-periodically forced systems

Livia Corsi and Guido Gentile

Abstract. We consider a system of rotators subject to a small quasi-
periodic forcing. We require the forcing to be analytic and satisfy a time-
reversibility property and we assume its frequency vector to be Bryuno.
Then we prove that, without imposing any non-degeneracy condition on
the forcing, there exists at least one quasi-periodic solution with the same
frequency vector as the forcing. The result can be interpreted as a theo-
rem of persistence of lower-dimensional tori of arbitrary codimension in
degenerate cases.

Mathematics Subject Classification. 34C45, 34C23, 37J40, 70H08, 70H33.

1. Introduction

In this paper we deal with the problem of persistence of lower-dimensional
tori for nearly integrable Hamiltonian systems without assumptions of non-
degeneracy on the perturbation. Consider an analytic Hamiltonian function of
the form

H(ϕ, J) = H0(J) + εf(ϕ, J), (1.1)
where (J, ϕ) ∈ Rn×Tn are conjugate action-angle variables, with T = R/2πZ,
and ε ∈ R. The function H0 will be referred to as the unperturbed Hamilton-
ian, while f will be called the perturbation. For ε = 0 the phase space is foliated
into n-dimensional invariant tori; on each torus the action J is constant and
the motion is quasi-periodic with frequency vector ω0(J) := ∂JH0(J).

We say that a frequency vector ω0 ∈ Rn is resonant with multiplicity r
if there is a rank r subgroup G of Zn such that ω0 · ν = 0 for all ν ∈ G and
ω0 · ν �= 0 for all ν ∈ Zn\G. It is a long standing conjecture that, in nearly
integrable Hamiltonian systems with Hamiltonian function of the form (1.1),
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under a convexity assumption on H0, for any r ≤ n − 1 and for most families
of unperturbed tori whose frequency vectors are resonant with multiplicity r,
at least r + 1 tori survive any perturbation for ε small enough [8,20]. When
this happens one says that the surviving torus has codimension r. In the case
r = n − 1, where the surviving tori reduce to closed orbits, this has been
shown by Bernstein and Katok [2]. The case r < n − 1 is harder, because
of the presence of small divisors. For r = 1 the conjecture has been proved
by Cheng [6], while only partial results exist for 1 < r < n − 1, requiring
non-degeneracy hypotheses on the perturbation [7,16,24].

A somewhat different but related problem is the following. Let the fre-
quency vector ω0 be resonant with multiplicity r and fix J0 such that ω0(J0) =
ω0. Then, after a suitable change of coordinates, one can rewrite (1.1) as

H(α, β,A,B) = H0(A,B) + εf(α, β,A,B), (1.2)

where (A,B) ∈ Rd × Rr and (α, β) ∈ Td × Tr are such that d + r = n
and ω0(A0, B0) = (ω, 0), with ω ∈ Rd non-resonant; not to overwhelm the
notation, we are denoting with the same symbol the Hamiltonian obtained by
composing the original Hamiltonian with the change of coordinates. Assume
some Diophantine condition on ω and consider the particular family of tori of
the unperturbed system with that frequency vector. Then look at the fate of
the family when the perturbation is switched on. For Hamiltonian functions
(1.2), again assuming H0 to be convex, in general one expects only that at least
one torus in the family survives any perturbation f for ε small enough. In fact,
the persistence of one such torus is known to hold for any r only if one assumes
a non-degeneracy condition on f . More precisely, the perturbation averaged
on the unperturbed torus is taken to have a non-degenerate maximum [24]; see
also [14,19], where the analyticity properties of the tori in the perturbation
parameter are investigated. By weakening the non-degeneracy assumptions on
the perturbation partial results have been obtained for r = 1 in [15,25].

Despite the fact that assumptions on the perturbations are commonly
believed to be unnecessary, so far the only result existing in the literature for
Hamiltonian functions (1.2) is in the case of tori with codimension 1 and is
due to Cheng [5]. An analogous result of persistence of at least one lower-
dimensional torus of codimension 1, without assuming any hypothesis on the
perturbation, has been recently proved for a suitable class of non-convex H0

with a saddle point [9,21,22].
In the present paper we consider a system with “partially isochronous”

unperturbed Hamiltonian and perturbation depending only on the angles,
namely

H(α, β,A,B) = ω · A +
1
2
B2 + εf(α, β), (1.3)

and, under a mild Diophantine condition on ω ∈ Rd, we prove the existence
of at least one quasi-periodic solution with frequency vector ω for the corre-
sponding Hamilton equations, requiring on f a parity condition with respect
to the variable α; see Hypothesis 2 below. Such assumption can be seen as a
time-reversibility condition on the Hamiltonian system.
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For non-convex Hamiltonians (1.3) with r = 1, the same result of persis-
tence of at least one invariant torus has been proved in [11] without assuming
Hypothesis 2 on the perturbation; the result has been extended to more gen-
eral one-dimensional systems in [12]. Strictly speaking, Cheng’s result does
not imply the result in [11,12], because the unperturbed Hamiltonian is not
convex; however Cheng’s method can be adapted to such a case; see [13] for an
explicit implementation. Moreover in [11,12] the frequency vector is allowed to
satisfy the Bryuno condition, a weaker condition with respect to the standard
Diophantine condition considered in both [5] and [13]; in [12] non-Hamiltonian
systems have been considered as well: in that case further conditions have
to be assumed in general on the perturbation (in the Hamiltonian case such
conditions are automatically satisfied).

For the general case (1.1) with r > 1, the problem of persistence of at least
one lower-dimensional torus without requiring any non-degeneracy assumption
on the perturbation is still open. As far as we know, Theorem 1 below is the
first result in that direction.

The time reversibility hypothesis we assume on the perturbation is a
symmetry property, not a non-degeneracy condition, and aims to ensure a
suitable cancellation (precisely the one in Lemma 3.5) that we need in the
proof. Indeed the rest of the proof could be easily adapted to the general
case, whereas at the moment we are not able to obtain a result analogous to
Lemma 3.5 without the reversibility hypothesis, except when r = 1. Ultimately
this is related to a commutator between two matrices appearing in the small
divisor; see Remark 3.7. In the non-degenerate case the contribution of the
commutator is negligible, when r = 1 the matrices are just numbers and in
the reversible case the matrices are equal to each other: thus in all cases above
either the commutator is negligible or it vanishes. In the general case there is no
reason for the commutator to vanish; therefore in principle it is even possible
that there are Diophantine frequencies for which no lower-dimensional torus
persists, when r ≥ 1, for degenerate and non-reversible perturbations.

1.1. Statement of the results

Let us write the Hamiltonian (1.3) in the non-autonomous form

H(β,B, t) =
1
2
B2 + εf(ωt, β), (1.4)

where (B, β) ∈ Rr × Tr are conjugate action-angle variables, ω ∈ Rd is the
frequency vector, f is analytic in the complexified torus Td+r

ξ := {ϕ ∈ Cd+r :
Re ϕk ∈ T, |Imϕk| ≤ ξ} and ε ∈ R is a small parameter (perturbation parame-
ter). Without loss of generality, we may and shall assume that ω has rationally
independent components and ε ≥ 0.

The corresponding Hamilton equations can be written as

β̈ = −ε∂βf(ωt, β) (1.5)

and hence describe an r-dimensional system of rotators with a quasi-periodic
forcing.
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We consider d > 1 in the following, since the periodic case d = 1 is well
understood; see [10] and references within. For ω ∈ Rd define

αm(ω) := inf
0<|ν|≤2m

|ω · ν|, B(ω) :=
∞∑

m=0

1
2m

log
1

αm(ω)
, (1.6)

where · denotes the inner product in Rd and |ν| := |ν1|+ . . .+ |νd|, if ν1, . . . , νd

are the components of ν. We assume the following hypotheses on ω and f .

Hypothesis 1. ω ∈ Rd, with d > 1, satisfies the condition B(ω) < ∞.

Hypothesis 2. f is even in α, that is f(−α, β) = f(α, β).

Hypothesis 1 is a weak Diophantine condition on the frequency vector,
known in the literature as the Bryuno condition. Hypothesis 2 is a time re-
versibility condition on the forcing. We shall prove the following result.

Theorem 1. Consider the Hamiltonian (1.4) and assume Hypotheses 1 and 2.
Then for ε small enough there exists at least one quasi-periodic solution to the
corresponding Hamilton equation (1.5) with frequency vector ω.

1.2. Informal presentation of the proof

We look for quasi-periodic solutions to (1.5) with frequency vector ω (response
solutions), so we split

β(t) = β0 + b(ωt), [b(·)]0 :=
1

(2π)d

∫

Td

dα b(α) = 0,

and separate (1.5) into the so-called “range” and “bifurcation” equations

(ω · ∂α)2b + ε (∂βf(α, β0 + b) − [∂βf(·, β0 + b(·))]0) = 0, (1.7a)
[ε∂βf(·, β0 + b(·))]0 = 0. (1.7b)

The range equation (1.7a) can be seen as an implicit function equation
of the form

Dωb + εF (β0 + b) = 0, (1.8)

where the differential operator Dω := (ω ·∂α)2 is diagonal on the Fourier basis
{eiν·α}ν∈Zd . As it is well known, the standard implicit function theorem fails
to apply since the inverse of Dω is unbounded (small divisor problem). In
order to overcome this difficulty, one can implement a fast iterative scheme
(KAM, Nash–Moser or Renormalisation Group). At any iterative step one has
to impose Diophantine conditions involving the parameter β0, so as to control
the small divisors: at the n-step one requires β0 to be restricted to some set
Cn ⊂ Tr. Eventually one obtains a function b = b(α, ε, β0) which solves the
range equation for β0 in a set C = ∩∞

n=0Cn. Then one passes to the bifurcation
equation (1.7b). Formally (i.e. by assuming that a solution to (1.7a) exists
for β0 in a non-empty set C), by relying on the variational structure of the
Hamilton equation one has the identity

[ε∂βf(·, β0 + b(·, ε, β0))]0 = −∂β0L(ε, β0), (1.9)
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where L(ε, β0) is the average with respect to α of the Lagrangian computed
along b(α, ε, β0); see for instance [1,3,23]. However, without requiring any as-
sumption on the perturbation, it is difficult to have any control on the set
C. Even assuming that the solution can be extended to the torus Tr, so as
to ensure L(ε, β0) to have a critical point, it is by no way obvious that such
a critical point falls inside C. In fact, the non-degeneracy condition usually
assumed in the literature aims exactly to make the left hand side of (1.9) to
vanish for a suitable value of β0 for which the Diophantine conditions are sat-
isfied. So, if no non-degeneracy condition is assumed on the perturbation, we
have to proceed in a different way.

In the present paper, we use a Renormalisation Group approach; see
for instance [4,17]. We proceed as follows. Choose a subsequence αmn

(ω),
n ≥ 0, in such a way that it is strictly decreasing, and define an integer vector
ν ∈ Zd\{0} to be on scale n ≥ 1 if αmn+1(ω) ≤ |ω · ν| < αmn

(ω) and on scale
n = 0 if |ω ·ν| ≥ αm0(ω) (actually, for technical reasons, we shall use a smooth
partition). Roughly, the higher the scale of ν is, the smaller the quantity αn(ω)
associated with ν. Introducing the notation

b =
∑

n≥0

bn, b≥m =
∑

n≥m

bn, bn =
∑

ν on scale n

eiν·ωtbn,ν ,

the idea is to solve the range equation “scale by scale”, by fixing iteratively
the “components” bn in terms of the “corrections” b≥n+1, i.e. bn = bn(b≥n+1).
Starting from scale n = 0 we obtain from (1.8)

(ω · ν)2b0,ν − [εF (β0 + b0 + b≥1)]ν = 0,

so that linearising at b = 0 we have

(ω · ν)2b0,ν − [ε∂F (β0)b0]ν − [ε∂F (β0)b≥1]ν + O(b2) = 0,

with ∂ denoting derivative with respect to the argument. Then we correct the
differential operator by adding the diagonal part (with respect to the Fourier
basis) of −ε∂F (β0); denoting M0 := diagν(ε∂F (β0)) and N0 := ε∂F (β0) −
M0, we write

D0(ν) b0,ν = [N0b0]ν + [ε∂F (β0)b≥1]ν + O(b2), D0(ν) := (ω · ν)21 − M0,

where 1 is the r×r identity matrix. If the equation can be solved, we obtain b0

expressed in terms of b≥1. Iterating, at the n-th step we write b = b≤n−1(b≥n)+
b≥n, where

b≤n−1(b≥n) :=
∑

m≤n−1

bm,n(b≥n),

with each bm,n(b≥n) recursively expressed in terms of b≥n; an explicit computa-
tion gives bn−1,n(x) = bn−1(x) and bm,n(x) = bm(bm+1,n(x)+ . . .+bn−1,n(x)+
x) for 0 ≤ m ≤ n − 2. Hence, for ν on scale n, (1.8) reduces to

(ω · ν)2bn,ν − [εF (β0 + b≤n−1(b≥n) + b≥n)]ν = 0.

We linearise at b≥n = 0, so as to obtain

(ω ·ν)2bn,ν − [ε∂F (β0 +b≤n−1(0))(1+∂b≤n−1(0)) (bn +b≥n+1)]ν +O(b2
≥n) = 0,
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and add the correction diagν(−ε∂F (β0 + b≤n−1(0))(1 + ∂b≤n−1(0))) to the
differential operator. In other words, the corrections to (ω · ν)2 at each step
are diagonal with respect to the Fourier indices ν. Moreover they turn out
to depend on ν only through ω · ν, so that we can denote the correction
−Mn(ω · ν; ε, β0). In conclusion, at each step n, we have to deal with an
equation of the form

Dn(ν) bn,ν = [Nnbn]ν +[ε∂F (β0 +b≤n−1(0))(1+∂b≤n−1(0)) b≥n+1]ν +O(b2
≥n),

(1.10)
where Nn := ε∂F (β0 + b≤n−1(0))(1 + ∂b≤n−1(0)) − Mn(ω · ν; ε, β0) and the
operator Dn(ν) has the form

Dn(ν) = (ω · ν)21 − Mn(ω · ν; ε, β0). (1.11)

By using a version of the Siegel–Bryuno bound (see Lemma 2.1), we show that
the convergence of such iterative scheme would follow if one had a bound like

‖(ω · ν)21 − Mn(ω · ν; ε, β0)‖ ≥ (ω · ν)2

2
, (1.12)

with ‖ ·‖ denoting the r-dimensional L2 operator norm. A second order Taylor
expansion of (1.11) at ω · ν = 0 gives

(ω · ν)21 − (Mn(0; ε, β0) + ∂Mn(0; ε, β0)(ω · ν) + O(ε(ω · ν)2)
)
. (1.13)

The time reversibility assumption in Hypothesis 2 ensures that Mn(ω ·ν; ε, β0)
is even in ω · ν, so that the linear term in (1.13) vanishes identically and
hence one has to control Mn(0; ε, β0) only. Formally (i.e. assuming the bound
(1.12)) one can show that, up to corrections, Mn(0; ε, β0) = −∂2

β0
Ln(ε, β0),

where Ln(ε, β0) is the average of the Lagrangian computed along the n-step
approximate solution b≤n := b≤n(0). If one could take β0 as a maximum of
Ln(ε, β0), the eigenvalues of Mn(0; ε, β0) would be all non-positive, so implying
the bound (1.12). However, we are not really allowed to proceed that way since
Ln(ε, β0) is not defined for all β0 and in any case β0 cannot be fixed at a
different value at every intermediate step n.

The idea is to define recursively an auxiliary function b(α; ε, β0), ob-
tained recursively from (1.10) by modifing the operators (1.11) in such a
way that a bound like (1.12) automatically holds. To this aim we replace
recursively Mn(0; ε, β0) with −∂2

β0
Ln(ε, β0)ξn(ε, β0), where Ln(ε, β0) is the

average of the Lagrangian computed along the (n − 1)-step approximation
of the auxiliary function and ξn is a suitable cut-off function. The presence
of the cut-off functions allows the auxiliary function to be well defined for
all β0 ∈ Tr and thus one can pass to the limit n → ∞. Of course for β0

varying in Tr the function b(α; ε, β0) is no longer a solution of the range equa-
tion. Then we show recursively that taking β0 = β0(ε) as a maximum of
L∞(ε, β0), one has Mn(0; ε, β0(ε)) = −∂2

β0
Ln(ε, β0(ε))ξn(ε, β0(ε)), implying

that b(α; ε, β0(ε)) = b(α; ε, β0(ε)). Therefore both the range and the bifurca-
tion equations are satisfied.

We note that, unlike [11], because of the higher dimension we cannot
consider directly the linearisation Mn(0; ε, β0) and then construct its second
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antiderivatives with respect to β0. On the contrary, we have to take full ad-
vantage of the variational structure of the Hamilton equations, hence compute
the Lagrangian along the solution of the range equation and thence exploit the
fact that Mn(0; ε, β0) is formally its second derivative. As explained above, it
is not obvious that this can be achieved, because there is a priori no control
on the set of values of β0 for which all those functions are well defined: to do
this we have to introduce the auxiliary function for which everything is well
defined and eventually to prove that, by carefully choosing β0, such a function
reduces to the true solution.

Finally we stress again that the reversibility assumption is not used to
solve the bifurcation equation, but in order to obtain the invertibility of the
operators Dn(ν).

2. Multiscale analysis

We start by introducing the tree formalism; this is an efficient way to take into
account the combinatorics in the expression of the formal solution b described
in Sect. 1.2. We shall associate a numerical value with each tree in such a way
that the sum over trees of such values equals the components bj of b, with
j ∈ {1, . . . , r} As we shall see, many notations are very similar to those in [11]
apart from the fact that here we are dealing with an r-dimensional problem
and hence we need to take into account the components j ∈ {1, . . . , r}. In
particular some of the results in [11] do not depend on r and hence hold word
by word also in the present case. Some other bounds discussed in the first part
of the next section differ from [11] only because of the presence of r-dependent
constants, but they can be proved by reasoning essentially in the same way.

2.1. Oriented trees

An oriented tree θ is a graph (that is a set of points and lines connecting them)
with no cycle, such that all the lines are oriented toward a single point (root)
which has only one incident line �θ (root line). All the points in a tree except
the root are called nodes. The orientation of the lines in a tree induces a partial
ordering relation (�) between the nodes and the lines: we can imagine that
each line carries an arrow pointing toward the root. Given two nodes v and
w, we write w ≺ v every time v is along the path (of lines) which connects w
to the root. Given a node v, we denote by π(v) the unique point immediately
following v.

We denote by N(θ) and L(θ) the sets of nodes and lines in θ respectively.
Since a line � ∈ L(θ) is uniquely identified by the node v which it leaves, we
may write � = �v. We write �w ≺ �v if w ≺ v, and w ≺ � = �v if w � v; if � and
�′ are two comparable lines, i.e. �′ ≺ �, we denote by P(�, �′) the (unique) path
of lines connecting �′ to �, with � and �′ not included (in particular P(�, �′) = ∅
if �′ enters the node � exits).

Given a tree θ we call order of θ the number k(θ) = |N(θ)| = |L(θ)|
(for any finite set S we denote by |S| its cardinality). A subset T ⊂ θ is a
subgraph of θ if it is formed by a set of nodes N(T ) ⊆ N(θ) and a set of lines
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L(T ) ⊆ L(θ) in such a way that N(T ) ∪ L(T ) is connected. If T is a subgraph
of θ we call order of T the number k(T ) = |N(T )|. We say that a line enters
T if it connects a node v /∈ N(T ) to a node w ∈ N(T ), and we say that a line
exits T if it connects a node v ∈ N(T ) to a node w /∈ N(T ) or to the root
(which is not included in T in this case). Of course, if a line � enters or exits
T , then � /∈ L(T ).

2.2. Labels

In (1.4) we can write

f(α, β) =
∑

ν∈Zd

eiν·αfν(β),

where |∂s
βfν(β)| ≤ s!Φ0Φs

1e
−ξ|ν| for suitable positive constants Φ0 and Φ1, by

the analyticity assumption on f ; note that f−ν(β) = fν(β) by Hypothesis 2.
With each node v ∈ N(θ) we associate a mode label νv ∈ Zd and we

denote by sv the number of lines entering v. With each line � we associate
a momentum ν� ∈ Zd

∗, except for the root line which can have either zero
momentum or not (i.e. ν�θ

∈ Zd), and a pair of component labels (e�, u�) ∈
{1, . . . , r}2. We call total momentum of θ the momentum associated with �θ.
Finally, we associate with each line � also a scale label such that n� = −1 if
ν� = 0, while n� ∈ Z+ if ν� �= 0; note that one can have n� = −1 only if � is
the root line of θ. We impose the following conservation law

ν� =
∑

w∈N(θ)
w≺�

νw. (2.1)

A labelled oriented tree is an oriented tree with labels associated with its
nodes and lines. In the following, for simplicity’s sake, we shall call trees tout
court the labelled oriented trees and we shall term unlabelled tree the oriented
trees without labels. We shall say that two trees are equivalent if they can be
transformed into each other by continuously deforming the lines in such a way
that these do not cross each other and also labels match. This provides an
equivalence relation on the set of the trees. From now on we shall call trees
such equivalence classes.

2.3. Clusters and self-energy clusters

A cluster T on scale n is a maximal subgraph of a tree θ such that all the lines
have scales n′ ≤ n and there is at least a line with scale n. The lines entering
the cluster T and the line coming out from it (unique if existing at all) are
called the external lines of T .

A self-energy cluster is a cluster T such that (i) T has only one entering
line �′

T and one exiting line �T , (ii) one has ν�T
= ν�′

T
and hence

∑
v∈N(T ) νv =

0 by (2.1).
For any self-energy cluster T , set PT = P(�T , �′

T ). We shall say that a
self-energy cluster is on scale −1, if N(T ) = {v} with of course νv = 0 (so that
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PT = ∅). Given a self-energy cluster T , for all � ∈ PT one can write

ν� = ν0
� + ν�′

T
, ν0

� :=
∑

w∈N(T )
w≺�

νw. (2.2)

Note that the momenta of the lines along PT are the only labels of T depending
on the labels outside T . We say that two self-energy clusters T1 and T2 have
the same structure if setting ν�′

T1
= ν�′

T2
= 0 one has T1 = T2. Of course this

provides an equivalence relation on the set of all self-energy clusters; from now
on we shall call self-energy clusters tout court such equivalence classes.

2.4. Renormalised trees, node factors and propagators

Once we associate a numerical value with each labelled tree, it will be clear that
a self-energy cluster represents a contribution to the diagonal of the linearised
vector field described in Sect. 1.2. Our resummation procedure implies that
the self-energy clusters must appear in the small divisor and not in the vector
field. Therefore we shall consider renormalised trees, i.e. trees in which no self-
energy clusters appear; analogously a renormalised subgraph is a subgraph of
a tree θ which does not contains any self-energy cluster. Denote by Θk,ν,j the
set of renormalised trees with order k, total momentum ν and e�θ

= j, and by
Rn,u,e the set of renormalised self-energy clusters on scale n such that u�T

= u
and e�′

T
= e.

For any θ ∈ Θk,ν,j and any subgraph S ⊆ θ we associate with each node
v ∈ N(S) a node factor

Fv(β0) :=
1

sv!
∂βu�v

(
∏

w∈N(S)
π(w)=v

∂βe�w

)
fνv

(β0). (2.3)

Introduce a partition of unity as follows. Given a decreasing sequence ρn,
n ∈ N ∪ {0}, of positive numbers with ρn+1 ≤ ρn/2, let χ : R → R be a C∞

function, non-increasing for x ≥ 0 and non-decreasing for x < 0, such that

χ(x) =
{

1, |x| ≤ 1/2,
0, |x| ≥ 1,

and set χn(x) = χ(x/ρn) for n ≥ 0 and χ−1(x) = 1. Set also Ψn(x) =
χn−1(x) − χn(x) for n ≥ −1; see Figure 1 in [11].

Next, we introduce the sequences {mn, pn}n≥0, with m0 = 0 and, for
all n ≥ 0, mn+1 = mn + pn + 1, where pn := max{q ∈ Z+ : αmn

(ω) <
2αmn+q(ω)}, with αm(ω) defined in (1.6). The subsequence {αmn

(ω)}n≥0 of
{αm(ω)}m≥0 is decreasing. A convenient partition of unity is then obtained
by choosing ρn = αmn

(ω)/8, which is the same choice as in [11].
For n ≥ 0, define formally

G[n]
e,u(x; ε, β0) := Ψn(x)

[(
x21 − M[n−1](x; ε, β0)

)−1
]

e,u

, (2.4a)

M[n−1](x; ε, β0) :=
n−1∑

q=−1

χq(x)M [q](x; ε, β0), (2.4b)
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M [q]
u,e(x; ε, β0) :=

∑

T∈Rq,u,e

εk(T ) V T (x; ε, β0), (2.4c)

V T (x; ε, β0) :=

(
∏

v∈N(T )

Fv(β0)

)(
∏

�∈L(T )

G[n�]
e�,u�

(ω · ν�; ε, β0)

)
, (2.4d)

where x = ω · ν�′
T

and V T (x; ε, β0) is called the renormalised value of T .
Here and henceforth, the sums and the products over empty sets have to be
considered as 0 and 1, respectively. Set M = {M[n](x; ε, β0)}n≥−1. We call
self-energies the r × r matrices M[n](x; ε, β0).

Then we associate with each line � ∈ L(θ) a propagator G� by setting

G� =

{
G[n�]

e�,u�(ω · ν�; ε, β0), n� ≥ 0,

δe�,u�
, n� = −1.

where δe,u is the Kronecker symbol. Recall that n� = −1 is possible only if �
is the root line.

Note that, in defining the renormalised value in (2.4a) as V T (ω·ν�′
T
; ε, β0),

we have used that, by construction, the propagators of the lines � ∈ PT depend
on ω · ν�′

T
, while for the propagators of the lines � ∈ L(T )\PT one has ν� = ν0

� ,
with the notation (2.2).

2.5. Resummed series

For any subgraph S of any θ ∈ Θk,ν,j define the renormalised value of S as

V (S; ε, β0) :=

(
∏

v∈N(S)

Fv(β0)

)(
∏

�∈L(S)

G�

)
.

Set

b
[k]
νj (ε, β0) :=

∑

θ∈Θk,ν,j

V (θ; ε, β0), ν �= 0, (2.5a)

G
[k]
j (ε, β0) :=

∑

θ∈Θk+1,0,j

V (θ; ε, β0), (2.5b)

and define formally the functions b(α; ε, β0) and G(ε, β0) with components

bj(α; ε, β0) :=
∑

k≥1

εk
∑

ν∈Zd∗

eiν·αb
[k]
νj (ε, β0), (2.6a)

Gj(ε, β0) :=
∑

k≥0

εk+1G
[k]
j (ε, β0). (2.6b)

We call (2.6) the resummed series. Note that formally G(ε, β0) = [ε∂βf(·, β0 +
b(·; ε, β0))]0 and b = b(α; ε, β0) is the formal solution referred to in Sect. 1.2.

2.6. Siegel–Bryuno bounds

For θ ∈ Θk,ν,j , let Nn(θ) be the number of lines on scale ≥ n in θ, and set

K(θ) :=
∑

v∈N(θ)

|νv|.
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More generally, for any renormalised subgraph T of any tree θ call Nn(T ) the
number of lines on scale ≥ n in T , and set

K(T ) :=
∑

v∈N(T )

|νv|.

The forthcoming two results are identical to Lemmas 4.1 and 4.2 in [11],
respectively, since they do not depend on r.

Lemma 2.1. For any θ ∈ Θk,ν,j such that V (θ; ε, β0) �= 0 one has Nn(θ) ≤
2−(mn−2)K(θ) for all n ≥ 0.

The proof is as in [11], Appendix A.

Lemma 2.2. For any T ∈ Rn,u,e such that V T (x; ε, β0) �= 0, one has K(T ) ≥
2mn−1 and Np(T )≤2−(mp−2)K(T ) for all 0 ≤ p ≤ n.

The proof is as in [11], Appendix B.

3. Convergence of the resummed series

We first show that, under the assumption that the propagators satisfy suitable
bounds (that we call property 1), the convergence of the resummed series
would follow by standard arguments of multiscale analysis. As we shall see,
two fundamental ingredients of the proof will be a cancellation mechanism,
which strongly relies on the symmetry in Hypothesis 2 (Lemma 3.5), and some
remarkable identities which relate the self-energies to the averaged Lagrangian
(Lemma 3.9).

Next, to remove the undesired assumption, we proceed as follows. We
modify the propagators by replacing the self-energies M with new matrices
Mξ

, which still satisfy the symmetry of Lemma 3.5: by construction, this will
imply automatically that Mξ

satisfies property 1. Then we check that on a
suitable curve β0 = β0(ε) one has Mξ

= M and hence the range equation is
satisfied. Finally, by further exploiting the identites of Lemma 3.9, we show
that, on such a curve, also the bifurcation equation is solved.

3.1. Formal analysis

We first assume that the propagators G� are bounded proportionally to (ω ·
ν�)−2 and show that, under such an assumption, the convergence of the series
is easily checked. Then, we shall prove that the assumption makes sense for
a suitable choice of β0. Let us denote by ‖ · ‖ the r-dimensional L2 operator
norm.

Definition 3.1. We shall say that M satisfies property 1 − p if for −1 ≤ n < p
one has

Ψn+1(x)
∥∥∥x21 − M[n](x; ε, β0)

∥∥∥ ≥ Ψn+1(x)x2/2.
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Denote by Θ≤p
k,ν,j the set of renormalised trees whose lines are on scale

≤ p and set

b≤p
j (α; ε, β0) :=

∑

k≥1

εk
∑

ν∈Zd∗

eiν·α ∑

θ∈Θ
≤p
k,ν,j

V (θ; ε, β0). (3.1)

Call b≤p(α; ε, β0) the function with components (3.1).

Lemma 3.2. Assume M to satisfy property 1 − p. There are two positive con-
stants B0 and B1 such that for all (k, ν, j) ∈ N × Zd × {1, . . . , r} and for any
tree θ ∈ Θ≤p

k,ν,j one has |V (θ; ε, β0))| ≤ B0B
k
1 e−ξ1|ν|, with B0, B1 and ξ1 < ξ,

independent of p.

The proof is standard; see for instance [11], Appendix C. Note that the
constants B0 and B1 increase with r.

Lemma 3.2 implies immediately the following result.

Lemma 3.3. Assume M to satisfy property 1−p. Then the series (3.1) converge
for ε small enough. Moreover b≤p(α; ε, β0) is analytic in α ∈ Td

ξ2
, with ξ2 < ξ1,

uniformly in p.

Lemma 3.4. Assume M to satisfy property 1 − p. Then for any 0 ≤ n ≤ p the
self-energies are well defined and one has

∣∣∣∂j
xM [n]

e,u(x; ε, β0)
∣∣∣ ≤ |ε|2C0e−C12

mn
, j = 0, 1, 2,

for suitable constants C0 and C1, independent of p.

The proof is as in [11], Appendix E.
By writing

M[n](x; ε, β0) = M[n](0; ε, β0) + x ∂xM[n](0; ε, β0)

+x2

∫ 1

0

dτ (1 − τ) ∂2
xM[n](τx; ε, β0),

one checks easily that, if M satisfies property 1 − p, ∂j
xM

[n]
e,u(τx; ε, β0) admits

the same bounds as in Lemma 3.4, for 0 ≤ n ≤ p, j = 0, 1, 2 and τ ∈ [0, 1].
This implies that

∥∥∥M[n](x; ε, β0) − M[n](0; ε, β0) − x ∂xM[n](0; ε, β0)
∥∥∥ ≤ C2|ε|2x2

for some positive constant C2 independent of p.

Lemma 3.5. Assume M to satisfy property 1−p. Then one has ∂xM[n](0; ε, β0)
= 0 for all −1 ≤ n ≤ p.

Proof. One proves that M[n](x; ε, β0) = (M[n](−x; ε, β0))T = (M[n](x; ε, β0))†

by induction as in [9], §4; see also [14]. The key remark is that, if we replace
the momentum ν of the line �′

T with −ν and then reverse the orientation
of the lines in PT ∪ {�T , �′

T }, then the momenta of the lines � ∈ L(T )\PT

do not change, whereas the momenta of the lines � ∈ PT change sign. In
particular one has M[n](−x; ε, β0) = (M[n](x; ε, β0))∗. Moreover Hypothesis 2
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yields that the node factors (2.3) are real and this implies inductively that also
the propagators are real, so that (M[n](x; ε, β0))∗ = M[n](x; ε, β0). Therefore
M[n](−x; ε, β0) = M[n](x; ε, β0). �

Remark 3.6. Lemma 3.5, which is crucial in order to obtain the final re-
sult, is the only point where the reversibility condition in Hypothesis 2 is
used. For r = 1 we do not need such an assumption, because in that case
M[n](x; ε, β0) is number-valued (instead of matrix-valued) and hence the iden-
tity M[n](x; ε, β0) = (M[n](−x; ε, β0))T is enough to get the analogous re-
sult. Of course the symmetry M[n](−x; ε, β0) = M[n](x; ε, β0), for which the
parity assumption seems necessary, is much stronger than the desired result
∂xM[n](0; ε, β0) = 0.

Remark 3.7. If one considers a formal expansion in ε of ∂xM[n](0; ε, β0) one
sees that the first non-trivial contribution appears at order ε3 and it is given
by the sum of three contributions, namely

2
∗∑

ν1,ν2,ν3∈Zd∗

(
1

(ω·ν3)3(ω·ν1)2
− 1

(ω·ν3)2(ω·ν1)3

)
∂2

βfν1∂
2
βfν2∂

2
βfν3

−2
∗∑

ν1,ν2,ν3∈Zd∗

1
(ω·ν3)3(ω·ν2)2

∂3
βfν1∂βfν2∂

2
βfν3

+2
∗∑

ν1,ν2,ν3∈Zd∗

1
(ω·ν3)3(ω·ν2)2

∂2
βfν3∂

3
βfν1∂βfν2 ,

where
∑∗ means that we restrict the sum to νi on scale ≤ n such that ν1+ν2+

ν3 = 0. The parity condition of Hypothesis 2 implies ∂βfν = ∂βf−ν and hence
exchanging νi � −νi and summing the contributions, due to the change of sign
in one denominator in each term we get zero. Note that ∂2

βfν and ∂3
βfν∂βfν′

are r × r matrices, and the cancellation of the ε3-order of ∂xM[n](0; ε, β0)
apparently is to be related to the cancellations

[∂3
βfν1∂βfν2 , ∂2

βfν3 ] = 0, ∂2
βfν1∂

2
βfν2∂

2
βfν3 = ∂2

βfν3∂
2
βfν2∂

2
βfν1 .

Of course one needs a “true cancellation” (i.e. not only up to the ε3-order)
but the ε3-order gives a good insight: in particular when r = 1 the parity con-
dition is not needed because numbers obviously commute while this may not
be true in the general case. In the non-degenerate case none of this matters
because M[n](0; ε, β0) dominates ∂xM[n](0; ε, β0)x; see [18], formula (3.26).
Thus it is possible that in some degenerate cases ∂xM[n](0; ε, β0) simply does
not vanishes and in turn the propagators cannot be controlled for all diophan-
tine frequences ω. An issue of the same kind appears if one tries different
approaches, such as KAM or Nash–Moser.

Lemma 3.8. Assume M to satisfy property 1 − p. Then, for all β0 ∈ Tr,
b≤p(α; ε, β0) solves the range equation (1.7a) up to corrections bounded by
C3e−ξ′2mp+1 , for some positive constants C3 and ξ′ independent of p.

Proof. We want to show that, by shortening b≤p = b≤p(α; ε, β0),

(ω · ν)−2
[
ε∂βf(α, β0 + b≤p)

]
ν

= [b≤p]ν + O(e−ξ′2mp+1 )
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for some ξ′ > 0. For any n ≤ p, denote by Θ≤p
k,ν,j(n) the set of trees θ ∈ Θ≤p

k,ν,j

such that the root line is on scale n and set

bn
ν :=

∑

k≥1

εk
∑

θ∈Θ
≤p
k,ν,j(n)

V (θ; ε, β0).

We can write

[ε∂βf(α, β0 + b≤p)]ν =
∞∑

n=0

Ψn(ω · ν)[ε∂βf(α, β0 + b≤p)]ν

=
p∑

n=0

Ψn(ω · ν)[ε∂βf(α, β0 + b≤p)]ν +
∞∑

n=p+1

Ψn(ω · ν)[ε∂βf(α, β0 + b≤p)]ν ,

(3.2)

with the last sum not vanishing only if Ψn(ω · ν) �= 0 for some n ≥ p + 1. In
turn this requires |ν| ≥ 2mp+1 , so that, by relying on Lemma 3.2, for such ν
we can bound

cν := (ω · ν)−2

∣∣∣∣∣

∞∑

n=p+1

Ψn(ω · ν)[ε∂βf(α, β0 + b≤p)]ν

∣∣∣∣∣ ≤ C e−ξ′|ν|e−ξ′2mp+1
.

(3.3)
for some positive constants C and ξ′. The first sum in the second line of (3.2)
becomes

p∑

n=0

(
(ω · ν)2 − M[n−1](ω · ν; ε, β0)

) ∑

k≥1

εk
∑

θ∈Θ
≤p
k,ν,j(n)

V (θ; ε, β0), (3.4)

where Θ
≤p

k,ν,j(n) differs from Θ≤p
k,ν,j(n) as it contains also trees θ which have

one self-energy cluster with exiting line �θ. If we separate the trees containing
such self-energy cluster from the others, (3.4) gives

p∑

n=0

(
(ω · ν)2 − M[m−1](ω · ν; ε, β0)

)
bn
ν +

p∑

m=0

m−1∑

q=−1

M [q](ω · ν; ε, β0)

p∑

n=q+1

Ψn(ω · ν) bm
ν

=

p∑

n=0

(
(ω · ν)2 − M[n−1](ω · ν; ε, β0)

)
bn
ν +

p∑

n=0

M[n−1](ω · ν; ε, β0) bn
ν ,

so that

(ω · ν)−2
[
ε∂βf(α, β0 + b≤p)

]
ν

= cν +
p∑

n=0

bn
ν = cν + [b≤p]ν

where cν vanishes for |ν| < 2mp+1 and satisfies (3.3) for |ν| ≥ 2mp+1 . �

Let us denote

G≤p(ε, β0) := [ε∂βf(α, β0 + b≤p(α; ε, β0))]0 (3.5)

and

L≤p(ε, β0) :=
[
−1

2
(ω · ∂αb≤p(α; ε, β0))2 + εf(α, β0 + b≤p(α; ε, β0))

]

0
, (3.6)
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which are the averages of the vector field and of the Lagrangian respectively,
both computed along the approximate solution β0 + b≤p(α; ε, β0).

The variational structure of the Hamilton equations implies that, if we
could solve the range equation, then the left hand side of the bifurcation equa-
tion (1.7b) would be the derivative with respect of β0 of the average of the
Lagrangian computed along the solution. A variational identity of this kind
holds, up to some correction, for the approximate solution; indeed we have the
following result.

Lemma 3.9. Assume M to satisfy property 1 − p. Then (3.5) and (3.6) are
well defined and C∞ in both ε and β0. Moreover one has for all −1 ≤ n ≤ p

M[n](0; ε, β0) = ∂β0G
≤n(ε, β0) + cn(ε, β0),

G≤n(ε, β0) = ∂β0L
≤n(ε, β0) + c′

n(ε, β0),

for suitable cn(ε, β0), c′
n(ε, β0) = O(e−ξ′2mn+1 ), with ξ′ as in Lemma 3.8.

Proof. The first identity can be proved as Lemma 4.8 in [12]. The second
one is easier: integrating by parts and using Lemma 3.8 and the fact that
[b≤p(·; ε, β0)]0 = 0, we obtain, shortening again b≤p = b≤p(α; ε, β0),

∂β0L≤n =
1

(2π)d

∫

Td

dα
(
ε∂βf(α, β0 + b≤n)(1 + ∂β0b≤n) − (ω · ∂αb≤n)(ω · ∂α∂β0b≤n)

)

=
1

(2π)d

∫

Td

dα
(
ε∂βf(α, β0 + b≤n)(1 + ∂β0b≤n) + ((ω · ∂α)2b≤n) ∂β0b≤n

)

=
1

(2π)d

∫

Td

dα
(
εf(α, β0 + b≤n)

)
+ c′′

n(ε, β0),

with a suitable c′′
n(ε, β0) = O(e−ξ′2mn+1 ). �

Definition 3.10. We shall say that M satisfies property 1 if for all n ≥ −1 one
has

Ψn+1(x)
∥∥∥x21 − M[n](x; ε, β0)

∥∥∥ ≥ Ψn+1(x)x2/2.

Remark 3.11. Assuming property 1 means assuming the bounds of property
1 − p for all p ≥ 0. The reason why we have introduced first property 1 − p,
and not directly property 1, is that property 1 − p is what is needed to prove
by induction that property 1 holds. Indeed, in Sect. 3.2 we shall introduce
new matrices Mξ

and we shall prove that they satisfy property 1. This will be
achieved by induction, by assuming that they satisfy property 1−p and hence
showing that property 1− (p+1) follows as well: to this aim we shall need the
lemmas above which require property 1 − p to be satisfied.

If property 1 holds, the approximate solution b≤p(α; ε, β0) is a “scale p
truncation” of the solution to the range equation. Indeed we have the following
result.
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Lemma 3.12. Assume M to satisfy property 1. Then for ε small enough the
function b(α; ε, β0) in (2.6a), with the coefficients given in (2.5), is analytic in
α ∈ Td

ξ2
, with ξ2 as in Lemma 3.3, and solves the Eq. (1.7a).

The proof follows from Lemmas 3.3 and 3.8, by taking the limit p → ∞.
Define formally

M[∞](x; ε, β0) := lim
n→∞ M[n](x; ε, β0), L[∞](ε, β0) := lim

n→∞ L≤n(ε, β0).

(3.7)

Lemma 3.4 yields that, under the assumption that M satisfy property 1, the
functions (3.7) are well defined and smooth. Indeed the following result holds.

Lemma 3.13. Assume M to satisfy property 1. Then the function G(ε, β0) and
the self-energies M, as well as the limits (3.7), are C∞ in both ε and β0.

Lemma 3.14. Assume M to satisfy property 1. Then the implicit function
equation G(ε, β0) = 0 admits a solution β0 = β0(ε) such that one has
∂β0G(ε, β0(ε)) ≤ 0.

Proof. Property 1 ensures that we can apply Lemma 3.9 with n → ∞, so as
to obtain ∂β0G(ε, β0) = ∂2

β0
L[∞](ε, β0). Since L[∞](ε, β0) is a smooth function

on the torus Tr, it admits at least one maximum. �

Lemmas 3.12 and 3.14 give the following result.

Lemma 3.15. Assume M to satisfy property 1 and let β(ε) be as in Lemma
3.14. Then the function β(t) = β0(ε) + b(α; ε, β0(ε)) solves (1.5).

3.2. Rigorous analysis: phase locking

We introduce an auxiliary function b(α; ε, β0) obtained from the tree expansion
by replacing the propagators (2.4) in such a way that the new propagators G�

are bounded proportionally to (ω · ν�)−2.
For all n ≥ 0, define the C∞ non-increasing functions ξn such that

ξn(x1, . . . , xr) =

⎧
⎨

⎩
0, ∃i ∈ {1, . . . , r} s.t. xi ≥ α2

mn+1
(ω)

211 ,

1, xi ≤ α2
mn+1

(ω)

212 ∀i = 1, . . . , r,

and set ξ−1(x1, . . . , xr) = 1.

Define, for n ≥ 0, the modified propagators as G� = G[n�]

e�,u�
(ω · ν�; ε, β0),

with

G[n]
(x; ε, β0) = Ψn(x)

(
x21 − M[n−1]

(x; ε, β0) ξn−1(λ
[n−1]

(ε, β0))
)−1

,

where M[−1]
(x; ε, β0) = ∂2

β0
L

[−1]
(ε, β0), with L

[−1]
(ε, β0) = εf0(β0), while for

n ≥ 0 one proceeds recursively as follows:
1. set

b
[n]

j (α; ε, β0) :=
∑

k≥1

εk
∑

ν∈Zd∗

eiν·α ∑

θ∈Θ
≤n
k,ν,j

V (θ; ε, β0), (3.8)
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where

V (θ; ε, β0) :=

(
∏

v∈N(θ)

Fv(β0)

)(
∏

�∈L(θ)

G�

)
,

and call b
[n]

(α; ε, β0) the function with components (3.8);
2. define

L
[n]

(ε, β0) :=
[
−1

2
(ω · ∂αb

[n]
(α; ε, β0))2 + εf(α, β0 + b

[n]
(α; ε, β0))

]

0
;

3. consider any matrices cn(ε, β0) and R
[n]

(x; ε, β0), satisfying the con-
straints

‖cn(ε, β0)‖ ≤ K|ε|2e−ξ′2mn+1
, (3.9a)∥∥∥R[n]

(x; ε, β0) − R
[n−1]

(x; ε, β0)
∥∥∥ ≤ K|ε|2x2e−ξ′2mn

, (3.9b)

for some positive constant K, with R
[−1]

(x; ε, β0) = 0 and with ξ′ as in
Lemma 3.8;

4. call λ
[n]

(ε, β0) = (λ
[n]

1 (ε, β0), . . . , λ
[n]

r (ε, β0)) the eigenvalues of ∂2
β0

L
[n]

(ε, β0);
5. define

M[n]
(x; ε, β0) = ∂2

β0
L

[n]
(ε, β0) + cn(ε, β0) + R

[n]
(x; ε, β0). (3.10)

We write Mξ
= {M[n]

(x; ε, β0)ξn(λ
[n]

(ε, β0))}n≥−1. The following result
can be proved by reasoning as in the proof of Lemma 3.4.

Lemma 3.16. Assume Mξ
to satisfy property 1 − p. Then for any 0 ≤ n ≤ p

one has

max
i1+...+ir≤3

∣∣∣∂i1
β01

. . . ∂ir

β0r

(
L

[n]
(ε, β0) − L

[n−1]
(ε, β0)

)∣∣∣ ≤ |ε|2K0 e−K12
mn

,

for suitable p-independent constants K0 and K1.

Lemma 3.16 implies that, under the same assumptions, one has
∥∥∥M[n]

(x; ε, β0) − M[n−1]
(x; ε, β0)

∥∥∥ ≤ |ε|2K2e−K12
mn

,

for a suitable p-independent constant K2.

Lemma 3.17. Mξ
satisfies property 1.

Proof. We shall prove that Mξ
satisfies property 1 − p for all p ≥ 0, by

induction on p. Property 1-0 is trivially satisfied for ε small enough. Assume
Mξ

to satisfies property 1 − p. Then (3.9) implies that, for all n ≤ p and x
such that Ψn(x) �= 0, one has∥∥∥x21 − ∂2

β0
L

[n−1]
(ε, β0) ξn−1(λ

[n−1]
(ε, β0)) − cn−1(ε, β0) ξn−1(λ

[n−1]
(ε, β0))

−R[n−1](x, ε, β0)ξn−1(λ
[n−1]

(ε, β0))
∥∥∥
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≥
∥∥∥x21 − ∂2

β0
L

[n−1]
(ε, β0)ξn−1(λ

[n−1]
(ε, β0))

∥∥∥− ‖cn−1(ε, β0)‖ −
∥∥∥R[n−1]

(x, ε, β0)
∥∥∥

≥ x2 − max
1≤i≤r

λ
[n−1]
i (ε, β0)ξn−1(λ

[n−1]
(ε, β0)) + O(e−ξ′2mn+1

) + O(ε2x2) ≥ x2

2

and hence Mξ
satisfies property 1-(p + 1). �

Define

b(α; ε, β0) := lim
n→∞ b

[n]
(α; ε, β0), (3.11a)

L
[∞]

(ε, β0) := lim
n→∞ L

[n]
(ε, β0). (3.11b)

By Lemma 3.17, the limits in (3.11) are well defined functions, which are C∞

in both ε and β0 and 2π-periodic in each component of β0. Moreover b(α; ε, β0)
is analytic in α ∈ Td

ξ′′ for some ξ′′ < ξ′.

Set G(ε, β0) := ∂β0L
[∞]

(ε, β0). The following result is the analogous of
Lemma 3.14

Lemma 3.18. For ε small enough there is at least one value β0(ε) ∈ Tr such
that G(ε, β0(ε)) = 0 and ∂2

β0
L

[∞]
(ε, β0(ε)) ≤ 0.

Lemma 3.19. Let β0(ε) be as in Lemma 3.18. Then for ε small enough and all
n ≥ 0 one has ξn(λ[n](ε, β0)) ≡ 1 for all β0 such that |β0 −β0(ε)| ≤ α2

mn+1
(ω).

Proof. Fix β0 = β0(ε) so that ∂2
β0

L
[∞]

(ε, β0(ε)) ≤ 0 by Lemma 3.18. One has

∂2
β0

L
[n]

(ε, β0) =
(
∂2

β0
L

[n]
(ε, β0) − ∂2

β0
L

[∞]
(ε, β0)

)
+ ∂2

β0
L

[∞]
(ε, β0),

where, by Lemma 3.16,
∥∥∥∂2

β0
L

[n]
(ε, β0) − ∂2

β0
L

[∞]
(ε, β0)

∥∥∥ ≤ K3|ε|e−K1 2mn+1 ≤ α2
mn+1

(ω)
214

,

for a suitable positive constant K3. Moreover
∥∥∥L

[n]
(ε, β0) − L

[n]
(ε, β0(ε))

∥∥∥ ≤ K4|ε|2
∣∣β0 − β0(ε)

∣∣ ,

for a suitable positive constant K4. Therefore, for |β0 − β0(ε)| ≤ α2
mn+1

(ω),
one has

λ
[n]

j (ε, β0) ≤ λ
[∞]

j (ε, β0(ε)) +
α2

mn+1
(ω)

213
≤ α2

mn+1
(ω)

213
, j = 1, . . . , r,

so that the assertion follows. �

Lemma 3.20. One can choose the matrices cn(ε, β0) and R
[n]

(x; ε, β0) in (3.10)
so that the function β(t) = β0(ε) + b(α; ε, β0(ε)) solves (1.5).

Proof. We want to prove by induction that we can choose the matrices cn(ε, β0)
and R

[n]
(x; ε, β0), for n ≥ 0, so as to have

M[n]
(x; ε, β0(ε)) = M[n](x; ε, β0(ε)) (3.12)
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for all n ≥ −1. This will imply that, when setting β0 = β0(ε), M satisfies
property 1 as well as M. Hence we obtain b(α; ε, β0(ε)) = b(α; ε, β0(ε)) and we
can apply Lemma 3.15 with β0(ε) = β0(ε) to deduce that β0(ε)+b(α; ε, β0(ε))
solves the range equation (1.7a).

For n = −1 the identity (3.12) trivially holds. Assume that (3.12) is satis-
fied up to n < p for a suitable choice of the matrices cn(ε, β0) and R

[n]
(x; ε, β0),

with 0 ≤ n < p. Then, for |β0 − β0(ε)| ≤ α2
mn+1

(ω), M satisfies property
1 − p and hence M[p](x; ε, β0) is well defined. Moreover for such β0 one has
L

[p]
(ε, β0) = L≤p(ε, β0) and hence

∂2
β0

L
[p]

(ε, β0) = M[p](0; ε, β0) − dp(ε, β0),

with the matrix dp(ε, β0) = ∂β0c
′
p(ε, β0) + cp(ε, β0) such that ‖dp(ε, β0)‖ ≤

K5|ε|2e−ξ′2mp+1 , for a suitable positive constant K5. Then (3.10) gives

M[p]
(x; ε, β0) = M[p](0; ε, β0) − dp(ε, β0) + cp(ε, β0) + R

[p]
(x; ε, β0),

and one can take the matrices cp(ε, β0) and R
[p]

(x; ε, β0) so that

cp(ε, β0) = dp(ε, β0), R
[p]

(x; ε, β0) = M[p](x; ε, β0) − M[p](0; ε, β0),

for |β0 − β0(ε)| ≤ α2
mn+1

(ω). Thanks to Lemma 3.5, this yields that both
inequalities (3.9) are satisfied. Therefore (3.12) follows for n = p.

On the other hand one has

G(ε, β0(ε)) = lim
n→∞ ∂β0L

≤n(ε, β0(ε)) = ∂β0L
[∞]

(ε, β0(ε)) = G(ε, β0(ε)) = 0

and hence the bifurcation equation (1.7b) is solved as well. �
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[24] Treshchëv, D.V.: A mechanism for the destruction of resonance tori in Hamil-
tonian systems. Mat. Sb. 180(10), 1325–1346, 1439 (1989); English translation
in Math. USSR-Sb. 68 (1991), no. 1, 181–203

[25] You, J.: A KAM theorem for hyperbolic-type degenerate lower dimensional tori
in Hamiltonian systems. Commun. Math. Phys. 192(1), 145–168 (1998)

Livia Corsi
School of Mathematics
Georgia Institute of Technology
686 Cherry St. NW
Atlanta GA 30332
USA
e-mail: lcorsi6@math.gatech.edu

Guido Gentile
Dipartimento di Matematica e Fisica
Università Roma Tre
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