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Abstract. This paper is concerned with the ergodic problem for superqua-
dratic viscous Hamilton–Jacobi equations with exponent m > 2. We prove
that the generalized principal eigenvalue of the equation converges to a
constant as m → ∞, and that the limit coincides with the generalized
principal eigenvalue of an ergodic problem with gradient constraint. We
also investigate some qualitative properties of the generalized principal
eigenvalue with respect to a perturbation of the potential function. It
turns out that different situations take place according to m = 2, 2 <
m < ∞, and the limiting case m = ∞.
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1. Introduction

In this paper we study the ergodic problem for the following superquadratic
viscous Hamilton–Jacobi equation with exponent m > 2:

λ − Δu +
1
m

|Du|m − f = 0 in RN , (1.1)

where Du and Δu denote the gradient and the Laplacian of u : RN → R,
respectively, and f : RN → R is assumed to be continuous on RN and to
vanish as |x| → ∞. The unknown of (1.1) is the pair of a real constant λ and
a function u. We denote by λm the generalized principal eigenvalue of (1.1)
which is defined by

λm := sup{λ ∈ R | (1.1) has a continuous viscosity subsolutionu}. (1.2)
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Here and in what follows, unless otherwise specified, every solution (subso-
lution, supersolution) u is understood in the viscosity sense. We refer, for
instance, to [5,13] for the definition and fundamental properties of viscosity
solutions.

The objective of this paper consists of two parts, which we present as A
and B below.
A. Convergence as m → ∞. We study the convergence of λm as m → ∞.
More precisely, let us consider the following ergodic problem with gradient
constraint:

max
{
λ − Δu − f, |Du| − 1

}
= 0 in RN . (1.3)

Let λ∞ denote the generalized principal eigenvalue of (1.3) defined, similarly
as (1.2), by the supremum of λ ∈ R such that (1.3) has a continuous viscosity
subsolution u. Then we prove that λm converges to λ∞ as m → ∞. In this
sense, ergodic problem (1.3) can be regarded as the extreme case of (1.1)
where m = ∞. Note that (1.3) has been studied by [7,8] for functions f that
are smooth, convex, and of superlinear growth as |x| → ∞. In these papers,
λ∞ is derived from the limit of δvδ(0) as δ → 0, where vδ is the solution to
the following equation:

max
{
δvδ − Δvδ − f, |Dvδ| − 1

}
= 0 in RN .

The present paper provides another characterization of λ∞ in terms of λm un-
der a different type of assumptions on f . We mention that gradient constraint
problems also arise from other types of limiting procedures, e.g., the limit of
p-Laplace equations as p → ∞. See, for instance, [12] and references therein
for this topic.
B. Qualitative properties. We introduce a real parameter β and consider
(1.1) and (1.3) with βf in place of f . We are interested in qualitative prop-
erties of the generalized principal eigenvalue λm = λm,β with respect to β. In
order to illustrate our main results briefly, we assume, for a moment, that f
is nonnegative in RN with compact support (this can be relaxed, see Sect. 4).
Then it turns out that there exists a critical value βc ≤ 0 such that λm,β = 0
for all β ≥ βc, while λm,β < 0 for all β < βc. Notice here that the value of βc,
especially, its negativity depends sensitively on m and N . More specifically,
the following three situations occur according to the choice of m:
(a) if m = 2, then βc = 0 for N = 1, 2 and βc < 0 for all N ≥ 3;
(b) if 2 < m < ∞, then βc = 0 for N = 1 and βc < 0 for all N ≥ 2;
(c) if m = ∞, then βc < 0 for all N ≥ 1.

The quadratic case (a) has been proved in [10, Theorem 2.5], and the second
claim in (b) (i.e., the case where 2 < m < ∞ and N ≥ 2) is also suggested by
[11, Theorem 2.4] in a slightly different context. The essential novelty of this
paper, compared with [10,11], lies in the simultaneous derivation of (b) and (c)
in combination with the convergence result obtained in part A. In particular,
claim (c) for N ≥ 2 can be derived by passing to the limit in (b) as m → ∞.
To the best of our knowledge, such a qualitative analysis of λm,β , especially for
m = ∞, seems to be new. We remark that we consider not only nonnegative
functions f but also sign-changing ones, which lead to a more complex picture
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where two critical parameters β− ≤ β+ will play the role of the above βc. For
instance, if N ≥ 2 and 2 < m ≤ ∞, then there exist β− < 0 < β+ such that
λm,β = 0 for any β ∈ [β−, β+], while λm,β < 0 outside this interval. See Sect.
4 for details.

Our study of critical value βc is strongly motivated by the stochastic
control interpretation of λm,β . Loosely speaking, if 2 ≤ m < ∞, then the
principal eigenvalue λm,β coincides with the optimal value of the following
ergodic stochastic control problem:

Minimize lim sup
T→∞

1
T

E

[∫ T

0

{ 1
m∗ |ξt|m∗

+ βf(Xξ
t )

}
dt

]

,

subject to Xξ
t =

√
2Wt +

∫ t

0

ξsds, t ≥ 0, (1.4)

where m∗ := m/(m − 1), and W = (Wt) and ξ = (ξt) denote, respectively,
an N -dimensional standard Brownian motion and an (Ft)-adapted control
process defined on some filtered probability space (Ω,F , P ; (Ft)). If f ≥ 0 in
RN and β ≥ 0, then this is nothing but a minimization problem of the total
cost (1/m∗)|ξt|m∗

+ βf(Xξ
t ). The situation becomes delicate as far as β < 0.

Intuitively, the controller of the optimization problem (1.4) falls into a trade-off
situation between minimizing the cost (1/m∗)|ξt|m∗

and maximizing the re-
ward |β|f(Xξ

t ). The dominant term depends on the magnitude of |β|, and the
critical value βc is determined as the threshold at which the controller changes
his/her optimal choice: either “minimize cost” or “maximize reward”. In par-
ticular, the negativity of βc implies the existence of such “phase transition”,
which we intend to characterize in the present paper.

As to the limiting case where m = ∞, the value λ∞,β is related to the
following singular ergodic stochastic control problem:

Minimize lim sup
T→∞

1
T

E

[

|η|T +
∫ T

0

βf(Xη
t ) dt

]

,

subject to Xη
t =

√
2Wt + ηt, t ≥ 0,

where η = (ηt) stands for an (Ft)-adapted control process of bounded varia-
tions, and |η|T denotes its bounded variation norm. We refer, for instance, to
[17] and references therein for more information on singular ergodic stochastic
control and associated PDEs with gradient constraint. See also [9–11] for the
stochastic control interpretation of λm,β for 2 ≤ m < ∞. In this paper, we
focus only on the PDE aspect and do not discuss its probabilistic counterpart.

Before closing this introductory section, we mention that (1.2) can be
regarded as a nonlinear extension of the generalized principal eigenvalue in
the sense of [3,19], where such notion is defined for linear elliptic operators
(see also [2,18]). More specifically, Let Ω be a domain in RN and let L :=∑

i,j aij(x)Dij +
∑

i bi(x)Di + c(x) be an elliptic operator in Ω. Then, under
suitable assumptions on the coefficients, the generalized principal eigenvalue
is defined by
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λ∗ := sup{λ ∈ R | ∃φ > 0 such that Lφ + λφ ≤ 0 in Ω},

where the meaning of the solution depends on the context (classical solution,
strong solution, viscosity solution, etc). Note that λ2 (i.e. λm for m = 2)
coincides with λ∗ when Ω = RN and L = 2Δ − f . Indeed, if m = 2 in (1.1),
then u is a subsolution of (1.1) if and only if the positive function φ := e−u/2 is a
supersolution of (2Δ−f)φ+λφ ≤ 0 in RN . In this sense, λm is a generalization
of the above λ∗, and it plays, in our context, the role of the generalized principal
eigenvalue for nonlinear additive eigenvalue problem (1.1).

The organization of the paper is as follows. In the next section, we discuss
the solvability of (1.1). Specifically, we prove that, for any λ ≤ λm, there exists
a viscosity solution u of (1.1). In Sect. 3, we prove the convergence of λm as
m → ∞. Section 4 is devoted to qualitative properties of λm,β with respect to
β.

2. Solvability of (1.1)

We collect some notation used throughout the paper. For any R > 0, BR

stands for the open ball of radius R, centered at the origin. For an integer
k ≥ 0 and p ∈ [1,∞], we denote by W k,p(RN ) the standard Sobolev space.
For a given open set Ω ⊂ RN and any integer k ≥ 0 and γ ∈ (0, 1), we use the
notation Ck,γ(Ω) to denote the Hölder space (or Lipschitz space if k = 0 and
γ = 1) which consists of all f ∈ Ck(Ω) such that

|f |k,γ;Ω :=
∑

|α|≤k

max
x∈Ω

|Dαf(x)| +
∑

|α|=k

sup
x,y∈Ω, x �=y

|Dαf(x) − Dαf(y)|
|x − y|γ < ∞,

where α is the multi-index of D = (∂/∂x1, . . . , ∂/∂xN ). Furthermore, we de-
note by Ck,γ(RN ) the set of functions f ∈ Ck(RN ) such that |f |k,γ;Ω < ∞
for any compact set Ω. Notice here that functions in Ck,γ(RN ) may not be
bounded on RN , in general. We also denote by C∞

c (RN ) the set of smooth
functions with compact support. Finally, let C0(RN ) stand for the totality of
continuous functions f ∈ C(RN ) vanishing at infinity, namely, sup|x|≥r |f(x)|
→ 0 as r → ∞ (we express this property simply as f(x) → 0 as |x| → ∞).

Let m > 2 and consider the ergodic problem

λ − Δu +
1
m

|Du|m = f in RN , u(0) = 0, (2.1)

where the constraint u(0) = 0 is imposed to avoid the ambiguity of addi-
tive constants with respect to u. Throughout this paper, we assume without
mentioning that f satisfies the following:
(A1) f ∈ C0(RN ).

To begin with, we recall some regularity estimates that will be needed
repeatedly.

Theorem 2.1. Let α := (m − 2)/(m − 1).
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(i) For any R > 0, there exists a constant MR > 0 such that

|u(x) − u(y)| ≤ MR|x − y|α, x, y ∈ BR,

for any locally bounded upper semicontinuous viscosity subsolution u of
(2.1), where MR depends on maxBR

|f − λ|, but is independent of any
large m > 2.

(ii) Suppose that f ∈ C0,1(RN ). Then, for any R > 0, there exists a constant
KR > 0 such that

|u(x) − u(y)| ≤ KR|x − y|, x, y ∈ BR,

for any continuous viscosity solution u of (2.1), where KR may depend
on the sup-norm and the Lipschitz norm of f − λ over a larger ball, say
BR+1, but is independent of any large m > 2.

Proof. This theorem is a direct consequence of [4, Theorems 1.1 and 3.1].
Notice here that the gradient term of the equation in [4] is not (1/m)|Du|m
but |Du|p with p > 2. However, by a careful reading of their proofs, one can
see that MR and KR can be taken uniformly with respect to any large m > 2.

�

It is obvious from Theorem 2.1 that any locally bounded upper semicon-
tinuous viscosity subsolution of (2.1) belongs to C0,α(RN ) with α = (m −
2)/(m − 1). Taking this fact into account, one can redefine the generalized
principal eigenvalue of (2.1) by

λm := sup{λ ∈ R | (2.1) has a viscosity subsolution u ∈ C0,α(RN )}. (2.2)

Note here that λm 
= −∞. Indeed, (λ, u) = (infRN f, 0) is a viscosity subsolu-
tion of (2.1), so that λm ≥ infRN f > −∞. It is also easy to see that (2.1) has
a viscosity subsolution in C0,α(RN ) for any λ ∈ (−∞, λm).

We first observe a few properties of λm that can be verified by its very
definition. In what follows, we often use the notation λm(f) to emphasize the
dependence of λm on the function f .

Proposition 2.2. Let f, g ∈ C0(RN ). We denote by λm(f), λm(g) the associ-
ated generalized principal eigenvalues of (2.1), respectively. Then the following
(i)–(iii) hold.

(i) f ≤ g in RN implies λm(f) ≤ λm(g).
(ii) (1 − δ)λm(f) + δλm(g) ≤ λm((1 − δ)f + δg) for any δ ∈ (0, 1).
(iii) λm(f + c) = λm(f) + c for any c ∈ R.

Proof. We first show (i). Let u ∈ C0,α(RN ) be a viscosity subsolution of (2.1)
with f . Then it is also a viscosity subsolution of (2.1) with g in place of f .
Hence, λm(f) ≤ λm(g) by definition. We next prove (ii). Fix any ε > 0. Let
u0 ∈ C0,α(RN ) be a viscosity subsolution of (2.1) with λ = λm(f) − ε, and
let u1 ∈ C0,α(RN ) be a viscosity subsolution of (2.1) with g in place of f and
λ = λm(g) − ε. Note that such solutions exist by the very definition of λm.
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Then, in view of the convexity of |p|m with respect to p, one can easily see
that, for any δ ∈ (0, 1), the function uδ := (1 − δ)u0 + δu1 satisfies

(1 − δ)(λm(f) − ε) + δ(λm(g) − ε) − Δuδ +
1
m

|Duδ|m ≤ (1 − δ)f + δg

in RN in the viscosity sense. This implies that (1 − δ)λm(f) + δλm(g) − ε ≤
λm((1 − δ)f + δg). Since ε is arbitrary, we obtain (ii). The validity of (iii) is
obvious from the definition of λm. Hence, we have completed the proof. �

The following result implies that, if f ∈ C0,1(RN ), then “viscosity sub-
solution” in the definition of λm can be replaced by “classical subsolution”.

Proposition 2.3. Suppose that f ∈ C0,1(RN ). Then, for any λ < λm, there
exists a classical subsolution u ∈ C∞(RN ) of (2.1).

Proof. Fix any λ < λm and construct a smooth subsolution u of (2.1). To this
end, we follow the ingenious idea due to [1,14]. Set fε(x) := min|e|<ε f(x + e)
for ε > 0. Then, fε ∈ C0,1(RN ) ∩ C0(RN ), fε ≤ f in RN , and {fε} converges
to f uniformly in RN as ε → 0. Let λ

(ε)
m be the generalized principal eigenvalue

of (2.1) with fε in place of f . Then, in view of Proposition 2.2 and by choosing
ε > 0 sufficiently small, we may assume that λ < λ

(ε)
m ≤ λm. In particular, for

the above λ, there exists a viscosity subsolution u(ε) ∈ C0,α(RN ) of (2.1) with
fε in place of f . Since fε( · − e) ≤ f in RN for any |e| < ε, one can also see
that u(ε)( · − e) is a viscosity subsolution of (2.1) for any |e| < ε.

Now, let {ρδ}δ>0 ⊂ C∞
c (RN ) be a family of mollifier functions, i.e.,

ρδ ≥ 0 in RN ,
∫
RN ρδ(x) dx = 1, and supp ρδ ⊂ Bδ for all δ > 0. Set u

(ε)
δ (x) :=

(u(ε) ∗ ρδ)(x) for δ < ε, where ∗ stands for the usual convolution. Then, by
noting the convexity of p → (1/m)|p|m, one can see, similarly as in the proof of
[1, Lemma 2.7], that u := u

(ε)
δ is a smooth viscosity subsolution of (2.1). Since

a smooth viscosity subsolution is a classical subsolution, we have completed
the proof. �

We next verify that λm is nonpositive.

Proposition 2.4. One has λm ≤ 0. In particular, λm is finite.

Proof. It suffices to consider the case where f ∈ C0,1(RN ). Indeed, for any
f ∈ C0(RN ), one can always find a function g ∈ C0(RN )∩C0,1(RN ) such that
f ≤ g in RN . In particular, in view of Proposition 2.2 (i), we have λm(f) ≤ 0
provided λm(g) ≤ 0. So, hereafter, we assume that f ∈ C0(RN ) ∩ C0,1(RN ).

Fix any λ < λm, and let u ∈ C∞(RN ) be a classical subsolution of (2.1).
Existence of such u is guaranteed by virtue of Proposition 2.3. Then, for any
nonnegative test function η ∈ C∞

c (RN ) such that
∫
RN η(x)m∗

dx = 1, where
m∗ := m/(m − 1), we have

λ

∫

RN

ηm∗
dx +

∫

RN

Du · D(ηm∗
) dx +

1
m

∫

RN

|Du|mηm∗
dx ≤

∫

RN

fηm∗
dx.

Noting D(ηm∗
) = m∗ηm∗/mDη and

Du · D(ηm∗
) = (ηm∗/mDu) · (m∗Dη) ≤ 1

m
|Du|mηm∗

+ (m∗)m∗−1|Dη|m∗
,
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we see that

λ = λ

∫

RN

ηm∗
dx ≤

∫

RN

fηm∗
dx + (m∗)m∗−1

∫

RN

|Dη|m∗
dx.

Fix any ε > 0, and observe that f = ε + f − ε ≤ ε + (f − ε)+ in RN , where
r± := max{±r, 0} for r ∈ R. Then

λ ≤ ε +
∫

RN

(f − ε)+ηm∗
dx + (m∗)m∗−1

∫

RN

|Dη|m∗
dx.

Since f(x) → 0 as |x| → ∞, there exists a radius R = Rε > 0 such that
the support of (f − ε)+ is contained in the ball BR. In particular, setting
M := supRN (f − ε)+, we obtain

λ ≤ ε + M

∫

|x|≤R

ηm∗
dx + (m∗)m∗−1

∫

RN

|Dη|m∗
dx.

We now set ηδ(x) := δN/m∗
η(δx) for δ > 0. Note that

∫
RN ηδ(x)m∗

dx = 1
for any δ > 0. Then, plugging ηδ into the above η and using the change of
variables y = δx, one can easily see that

λ ≤ ε + M

∫

|y|≤δR

η(y)m∗
dy + δm∗

(m∗)m∗−1

∫

RN

|Dη(y)|m∗
dy. (2.3)

Sending δ → 0 and then ε → 0, we obtain λ ≤ 0. Since λ < λm is arbitrary,
we conclude that λm ≤ 0. Hence, we have completed the proof. �

The following proposition states a stability of λm(f) with respect to f .

Proposition 2.5. Let f, g ∈ C0(RN ). Then |λm(f) − λm(g)| ≤ maxRN |f − g|.
In particular, if {fn} ⊂ C0(RN ) converges as n → ∞ to some f ∈ C0(RN )
uniformly in RN , then λm(fn) converges to λm(f) as n → ∞. Moreover, if
{un} is a family of viscosity solutions of (2.1) with f = fn and λ = λm(fn),
then, along a suitable subsequence, {un} converges as n → ∞ to a viscosity
solution u of (2.1) with λ = λm(f) locally uniformly in RN .

Proof. Since f ≤ g + maxRN (f − g)+ in RN , we see, in view of Proposition
2.2 (i) and (iii), that λm(f) − λm(g) ≤ maxRN (f − g)+. Changing the role of
f and g, we obtain the first claim. The second claim is obvious from the first
one. In order to verify the last claim, we observe from Theorem 2.1, together
with the normalization assumption un(0) = 0, that {un} is pre-compact in
C(RN ). Applying the Ascoli-Arzela theorem, we see that {un} converges, along
a suitable subsequence, to a function u ∈ C0,α(RN ) locally uniformly in RN .
By the stability property of viscosity solutions, we conclude that u is a viscosity
solution of (2.1) with λ = λm(f). Hence, we have completed the proof. �

We now state the main result of this section.

Theorem 2.6. For any λ ≤ λm, there exists a viscosity solution u ∈ C0,α(RN )
of (2.1). Moreover, if f ∈ C0,1(RN ), then for any λ ≤ λm, there exists a
classical solution u ∈ C2(RN ) of (2.1).
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Proof. We first prove the latter claim. Let f ∈ C0,1(RN ) and fix any λ < λm.
Then, by virtue of Proposition 2.3, there exists a classical subsolution u− ∈
C∞(RN ) of (2.1). Fix any R > 0 and consider the Dirichlet problem

λ − Δu +
1
m

|Du|m − f = 0 in BR, u = u− on ∂BR, (2.4)

where ∂BR := {x ∈ RN | |x| = R}. Then it is known (e.g. [16, Théorème I.1])
that there exists a unique classical solution uR ∈ C2,γ(BR) of (2.4) for some
γ ∈ (0, 1). We claim here that {uR − uR(0)}R>0 is pre-compact in C2(RN ).
To justify this claim, it suffices to prove that, for any fixed R0 > 0, there
exist some δ ∈ (0, 1) and M > 0 such that |uR − uR(0)|2,δ;BR0

≤ M for
all R > R0 + 1, where uR denotes the solution of (2.4). In order to obtain
such estimate, we first observe, in view of the so-called Bernstein method for
elliptic equations with superlinear gradients, that |DuR| is bounded on BR0

by a constant M1 > 0 which may depend on |f |0,1;BR0+1 , but is independent
of uR for any R > R0 + 1 (see, for instance, [10, Theorem A.1] for its proof).
From the above estimate, one can also see that |uR−uR(0)| is bounded on BR0

for some M2 > 0 depending only on R0 and M1. These uniform bounds lead
to the Hölder estimate |DuR|0,δ;BR0

≤ M3 for some δ ∈ (0, 1) and M3 > 0 not
depending on uR with R > R0 + 1 (e.g, [15, Theorem 4.6.1]). Then, applying
the standard interior estimate (e.g., [6, Theorem 4.6]) to the linear equation
−ΔuR = f̃ , where f̃ := f −λ−(1/m)|DuR|m is regarded as a given function in
C0,δ(BR0), we obtain |uR −uR(0)|2,δ;BR0

≤ M for some M > 0 not depending
on uR with R > R0 + 1. Hence, in view of the Ascoli-Arzela theorem, we
conclude that {uR − uR(0)}R>0 is pre-compact in C2(RN ).

We now let R → ∞. Then, along a suitable subsequence {Rj}, we see
that {uRj

} and their first and second derivatives converge as j → ∞ to a
function u ∈ C2(RN ) and its corresponding derivatives, respectively, locally
uniformly in RN . In particular, u is a classical solution of (2.1). In order to
verify that (2.1) with λ = λm has a classical solution, we choose any sequence
{λ(n)} such that λ(n) → λm as n → ∞, and let u(n) denote the associated
classical solution to (2.1) with λ = λ(n). Then one can see, similarly as above,
that {u(n)−u(n)(0)} is pre-compact in C2(RN ). Passing to the limit as n → ∞
along a suitable subsequence if necessary, we conclude that (2.1) with λ = λm

has a classical solution.
We next prove the former claim. Fix any f ∈ C0(RN ) and choose a

sequence {fn} ⊂ C∞(RN )∩C0(RN ) which converges as n → ∞ to f uniformly
in RN . Let λ(n) be the generalized principal eigenvalue of (2.1) with fn in place
of f . Then, in view of Proposition 2.5, we observe that λ(n) → λm as n → ∞.
Now, fix any λ < λm. We may assume without loss of generality that λ < λ(n)

for any n ≥ 1. For each n ≥ 1, let u(n) ∈ C2(RN ) denote a classical solution of
(2.1) with fn in place of f . Then, by Theorem 2.1 and the stability of viscosity
solutions, we conclude that, along a suitable subsequence, {u(n)} converges as
n → ∞ to a viscosity solution u ∈ C0,α(RN ) of (2.1) locally uniformly in RN .
We can also construct a viscosity solution of (2.1) with λ = λm similarly as in
the previous case. Hence, we have completed the proof. �
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Theorem 2.6 implies that the following representation formula for λm

holds:

λm = max{λ ∈ R | (2.1) has a viscosity solution u ∈ C0,α(RN )}.

Furthermore, if f ∈ C0,1(RN ), then

λm = max{λ ∈ R | (2.1) has a classical solution u ∈ C2(RN )}.

3. Convergence as m → ∞
This section is devoted to the convergence of λm as m → ∞. To be precise,
we recall the limiting equation

max
{
λ − Δu − f, |Du| − 1

}
= 0 in RN , u(0) = 0, (3.1)

and redefine the generalized principal eigenvalue of (3.1) by

λ∞ := sup{λ ∈ R | (3.1) has a viscosity subsolution u ∈ C0,1(RN )}. (3.2)

The following result is crucial to our convergence result.

Proposition 3.1. Let {mk} ⊂ R be an increasing sequence such that mk →
∞ as k → ∞. Let (λmk

, uk) be a solution of (2.1) with m = mk for each
k. Suppose that λk converges to some λ ∈ R as k → ∞. Then, up to a
subsequence, {uk} converges as k → ∞ to a function u ∈ C0,1(RN ) locally
uniformly in RN . Moreover, (λ, u) is a solution of (3.1).

Proof. In view of Theorem 2.1 (i), we see that there exist a subsequence of
{uk}, which we denote by {uk} again, and a function u ∈ C(RN ) with u(0) = 0
such that uk → u as k → ∞ locally uniformly in RN . Since the constant MR in
Theorem 2.1 (i) does not depend on any large m > 2, by sending k → ∞ in the
inequality |uk(x) − uk(y)| ≤ MR|x − y|(mk−2)/(mk−1) (x, y ∈ BR) and noting
that (mk − 2)/(mk − 1) → 1 as k → ∞, we see that |u(x) − u(y)| ≤ MR|x − y|
for any x, y ∈ BR. In particular, u ∈ C0,1(RN ).

We now verify that u is a viscosity solution of (3.1). We first prove the
subsolution property. Fix any x0 ∈ RN and let φ ∈ C2(RN ) be any function
such that maxRN (u − φ) = (u − φ)(x0). As is standard, one can assume that
the maximum is strict, so that there exists a sequence {xk} ⊂ RN such that
uk − φ attains its local maximum at xk and xk → x0 as k → ∞. Then, by the
subsolution property of uk, we see that

λmk
− Δφ(xk) +

1
mk

|Dφ(xk)|mk − f(xk) ≤ 0. (3.3)

We now suppose that |Dφ(x0)| > 1. Then there exists an η > 0 such that
|Dφ(xk)| ≥ 1 + η for all sufficiently large k. In particular, we have

1
mk

(1 + η)mk ≤ −λmk
+ Δφ(xk) + f(xk).

Sending k → ∞, we get a contradiction since the right-hand side remains
bounded, whereas the left-hand side goes to infinity as k → ∞. Hence, we
have |Dφ(x0)| ≤ 1. Furthermore, letting k → ∞ in (3.3), we conclude that



66 Page 10 of 17 E. Chasseigne and N. Ichihara NoDEA

λ − Δφ(x0) − f(x0) ≤ 0, which implies that u is a viscosity subsolution of
(3.1).

We next prove the supersolution property. Fix any x0 ∈ RN and let
ψ ∈ C2(RN ) be such that minRN (u − ψ) = (u − ψ)(x0). If |Dψ(x0)| ≥ 1,
then there is nothing to prove, so we assume that |Dψ(x0)| < 1. In particular,
there exists some η > 0 such that |Dψ(xk)| ≤ 1 − η for all sufficiently large
k. Furthermore, there exists a sequence {xk} ⊂ RN such that uk − ψ attains
its local minimum at xk and xk → x0 as k → ∞. Then, by the supersolution
property of uk, we have

λmk
− Δψ(xk) +

1
mk

|Dψ(xk)|mk − f(xk) ≥ 0.

Letting k → ∞ in the above inequality, we obtain λ − Δψ(x0) − f(x0) ≥ 0.
Hence, we conclude that u is a viscosity supersolution of (3.1). �

We are now in position to state the main result of this section.

Theorem 3.2. Let λm and λ∞ be the generalized principal eigenvalues of (2.1)
and (3.1), respectively. Then, λm converges to λ∞ as m → ∞. Moreover, Eq.
(3.1) with λ = λ∞ has a viscosity solution u ∈ C0,1(RN ).

Proof. Set λ := lim supm→∞ λm. Note that λ ≤ 0 in view of Proposition 2.4.
Let (λmk

, umk
) be a sequence of solutions to (2.1) with m = mk such that

λmk
→ λ as k → ∞. Then, by taking a subsequence if necessary, we see from

Proposition 3.1 that {umk
} converges to a viscosity solution u ∈ C0,1(RN ) of

(3.1) locally uniformly in RN . In particular, by the definition of λ∞, we have
λ ≤ λ∞.

To prove the reverse inequality, we set λ := lim infm→∞ λm. Fix any ε > 0
and let u ∈ C0,1(RN ) be a viscosity subsolution of (3.1) with λ = λ∞ − ε.
Then, noting that |Du| ≤ 1 in RN in the viscosity sense, we see that, for any
m > 2, u is a viscosity subsolution of

λ∞ − ε − 1
m

− Δu +
1
m

|Du|m − f ≤ 0 in RN .

This implies λ∞ − ε − 1/m ≤ λm for any m > 2, so that λ∞ − ε ≤ λ. Since
ε > 0 is arbitrary, we obtain λ∞ ≤ λ ≤ λ ≤ λ∞. Hence, we have completed
the proof. �

The next result states that Proposition 2.3 remains valid for m = ∞.

Proposition 3.3. Suppose that f ∈ C0,1(RN ). Then, for any λ < λ∞, there
exists a classical subsolution u ∈ C∞(RN ) of (3.1). In particular,

λ∞ = sup{λ ∈ R | (3.1) has a classical subsolutionu ∈ C∞(RN )}.

Proof. Fix any λ0 < λ∞, and let {ρδ}δ>0 ⊂ C∞
c (RN ) be such that ρδ ≥ 0

in RN ,
∫
RN ρδ(x)dx = 1, and supp ρδ ⊂ Bδ for all δ > 0. Let {λmk

} be a
sequence of generalized principal eigenvalues of (2.1) with m = mk such that
λmk

→ λ∞ as k → ∞. Such a sequence exists by virtue of Theorem 3.2. In
what follows, we assume that λ0 < λmk

for all k ≥ 1. Let u(k) ∈ C2(RN )
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(k ≥ 1) be a classical solution of (2.1) with m = mk and λ = λ0. Such a
solution exists by virtue of Theorem 2.6. Taking a subsequence if necessary,
one may also assume that {u(k)} converges as k → ∞ to a viscosity solution
u ∈ C0,1(RN ) of (3.1) locally uniformly in RN .

Now we set u
(k)
δ := u(k) ∗ρδ, uδ := u∗ρδ, and fδ := f ∗ρδ, where ∗ stands

for the usual convolution. We choose δ > 0 so small that supRN |fδ − f | <
λmk

− λ0 for all k ≥ 1. Then, since u(k) is a classical solution of (2.1) with
m = mk and λ = λ0, we see that u

(k)
δ enjoys the inequality

λ0 − Δu
(k)
δ +

1
mk

|Du
(k)
δ |mk − f ≤ 0 in RN

for all k ≥ 1 and for any sufficiently small δ > 0. This implies that u
(k)
δ is also

a classical subsolution of

λ0 − Δu
(k)
δ − f ≤ 0 in RN .

Letting k → ∞ and noting the stability of viscosity solutions, we conclude that
uδ is a smooth viscosity subsolution, and therefore, a classical subsolution of
the same equation. On the other hand, since |Du| ≤ 1 a.e. in RN , which can be
verified as in the proof of Proposition 3.1, we see that |Duδ| ≤ 1 in RN . Hence,
uδ enjoys (3.1) with λ = λ0 at every point x ∈ RN , and we have completed
the proof. �

Remark 3.4. The first claim of Theorem 2.6 remains true for m = ∞. Namely,
for any λ ≤ λ∞, there exists a viscosity solution u ∈ C0,1(RN ) of (3.1). To see
this, fix any λ0 < λ∞ and choose an m0 so large that λm > λ0 for any m > m0.
For m > m0, let um be a viscosity solution of (2.1) with λ = λ0. Then, by
Proposition 3.1, we conclude that, along a subsequence, {um} converges to a
viscosity solution u ∈ C0,1(RN ) of (3.1) with λ = λ0. Since λ0 is arbitrary,
we conclude that (3.1) has a viscosity solution u ∈ C0,1(RN ) for any λ < λ∞.
The existence of a viscosity solution u to (3.1) with λ = λ∞ has been proved
in Theorem 3.2. Hence, the first claim of Theorem 2.6 is also valid for m = ∞.
We do not know if the second claim remains true for m = ∞.

4. Qualitative properties

In this section, we introduce real parameter β and consider the ergodic problem
for m > 2:

λ − Δu +
1
m

|Du|m − βf = 0 in RN , u(0) = 0, (4.1)

and its limiting equation as m → ∞:

max{λ − Δu − βf, |Du| − 1} = 0 in RN , u(0) = 0. (4.2)

In the rest of this paper, we impose the following assumption on f in addition
to (A1):
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(A2) f 
≡ 0 and |f(x)| ≤ C0〈x〉−m∗
in RN for some C0 > 0, where 〈x〉 :=

(1+ |x|2)1/2 and m∗ := m/(m− 1) with the convention that m∗ := 1 for
m = ∞.

Let λm,β and λ∞,β be the generalized principal eigenvalues of (4.1) and (4.2),
respectively. In view of Proposition 2.4 and Theorem 3.2, we observe that
λm,β ≤ 0 for any β ∈ R and 2 < m ≤ ∞. It is also easy to see that λm,0 = 0
for any 2 < m ≤ ∞. Furthermore, we have the following.

Proposition 4.1. Let 2 < m ≤ ∞. If f− := max{−f, 0} 
≡ 0, then λm,β → −∞
as β → ∞, and if f− ≡ 0, then λm,β = 0 for any β > 0. Symmetrically, if
f+ := max{f, 0} 
≡ 0, then λm,β → −∞ as β → −∞, and if f+ ≡ 0, then
λm,β = 0 for any β < 0.

Proof. We first consider the case where 2 < m < ∞. In view of Proposition
2.5, we may assume that f ∈ C0,1(RN ). Suppose that f− 
≡ 0, and choose
any η ∈ C∞

c (RN ) such that η ≥ 0 in RN ,
∫
RN η(x)m∗

dx = 1, and supp η ⊂
supp f−. Then, taking a classical solution u ∈ C2(RN ) of (4.1) with λ = λm,β ,
multiplying both sides of (4.1) by η, and applying integration by parts, we see
as in the proof of Proposition 2.4 that

λm,β ≤ −β

∫

RN

f−(x)η(x)m∗
dx +

1
m∗

∫

RN

|Dη(x)|m∗
dx. (4.3)

Since the integral of f−ηm∗
over RN is strictly positive, we conclude that

λm,β → −∞ as β → ∞. We now take the limit as m → ∞ in (4.3). Then,
since m∗ → 1 as m → ∞, we see from Theorem 3.2 that the claim is also valid
for m = ∞.

We now suppose that f− ≡ 0. Then, for any β > 0, the pair (λ, u) = (0, 0)
is a subsolution of (4.1) and (4.2). This implies that λm,β = 0 for any 2 < m ≤
∞ and β > 0. By choosing −f and −β in place of f and β, respectively, we see
that the latter claim of this proposition is also valid. Hence, we have completed
the proof. �

From Propositions 2.2 (ii), 2.4, and 4.1, for each 2 < m ≤ ∞, one can
define β−, β+ by

β+ := sup{β ∈ R |λm,β = 0}, β− := inf{β ∈ R |λm,β = 0}.

Obviously, −∞ ≤ β− ≤ 0 ≤ β+ ≤ ∞, and β+ (resp. β−) is finite if and only
if f− 
≡ 0 (resp. f+ 
≡ 0). Moreover, since f 
≡ 0, either β+ or β− is finite. As
is mentioned in the introduction, we wish to know whether 0 < |β±| (< ∞).
The main result of this section can be stated as follows.

Theorem 4.2. Let β+ be defined as above, and let f− 
≡ 0.
(i) Suppose that N ≥ 2 and 2 < m ≤ ∞. Then β+ > 0.
(ii) Suppose that N = 1 and 2 < m < ∞. Then β+ = 0.
(iii) Suppose that N = 1 and m = ∞. Then β+ > 0 provided f− ∈ L1(R).

Changing (β, f) into (−β,−f), one has the following symmetrical result
as a corollary of Theorem 4.2.



NoDEA Qualitative properties of generalized principal eigenvalues. . . Page 13 of 17 66

Corollary 4.3. Let β− be defined as above, and let f+ 
≡ 0.
(i) Suppose that N ≥ 2 and 2 < m ≤ ∞. Then β− < 0.
(ii) Suppose that N = 1 and 2 < m < ∞. Then β− = 0.
(iii) Suppose that N = 1 and m = ∞. Then β− < 0 provided f+ ∈ L1(R).

Remark 4.4. If N ≥ 2 and f is sign-changing, then β− < 0 < β+ for any
2 < m ≤ ∞. From the ergodic stochastic control point of view, this implies
that there exist two different critical points β+ and β− at which the controller
changes his/her optimal strategy. We remark that, if f is nonnegative or non-
positive in RN , then there is only one such critical point.

In the rest of this section, we prove (i)–(iii) of Theorem 4.2 one by one.
The key to the proof of claim (i) is the following estimate.

Proposition 4.5. Let N ≥ 2 and 2 < m < ∞. Set

β0 :=
(N − m∗)m∗

m∗C0
> 0,

where m∗ := m/(m − 1) and C0 > 0 is the constant in (A2). Then, for any
|β| ≤ β0, there exists a subsolution u ∈ C∞(RN ) of (4.1) with λ = 0.

Proof. We define u : RN → R by u(x) := (K/α)〈x〉α, where α = (m −
2)/(m − 1) and K > 0 is some constant that will be specified later. Then, by
direct computations, we see that Du = K〈x〉−m∗

x and Δu = KN〈x〉−m∗ −
Km∗〈x〉−m∗−2|x|2. Thus,

−Δu +
1
m

|Du|m = 〈x〉−m∗{
− KN + Km∗|x|2〈x〉−2

}
+

Km

m
|x|m〈x〉−mm∗

= 〈x〉−m∗{
− KN + Km∗|x|2〈x〉−2 +

Km

m
|x|m〈x〉−m

}

≤ 〈x〉−m∗{
− (N − m∗)K +

Km

m

}
.

Since the function K → f(K) := (Km/m) − (N − m∗)K attains its minimum
−(1/m∗)(N − m∗)m∗

at K = (N − m∗)1/(m−1) =: Km, we choose K = Km in
the definition of u to obtain

−Δu +
1
m

|Du|m + βf ≤ 〈x〉−m∗{
|β|C0 − 1

m∗ (N − m∗)m∗}
in RN .

This implies that u is a subsolution of (2.1) with λ = 0 provided |β| ≤ β0.
Hence, we have completed the proof. �

As a corollary of this proposition, one can prove claim (i) of Theorem
4.2.

Proof of Theorem 4.2 (i). Let β0 be the constant taken from Proposition 4.5.
Then, it is obvious that β+ ≥ β0 > 0 for any 2 < m < ∞. Moreover, since
m∗ → 1 as m → ∞, we see that β+ ≥ β0 ≥ (N − 1)/(2C0) > 0 for any large
m. Hence, letting m → ∞ and noting that λm,β converges to λ∞,β as m → ∞
for any β ∈ R, we conclude that λ∞,β = 0 for any β ≤ (N − 1)/(2C0). This
yields that β+ > 0 for N ≥ 2 and m = ∞. Hence, we have completed the
proof. �
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Remark 4.6. In the case where N ≥ 2 and 2 < m < ∞, the positivity β+ > 0
has been observed in [11, Proposition 2.4] when f ∈ C0,1(RN ). The new
ingredient here is that we have an explicit lower bound of β+, uniform in m,
which leads to the positivity of β+ not only for 2 < m < ∞ but also for
m = ∞. Recall that β+ = 0 for N = m = 2 (see [10]). This exhibits a striking
contrast between quadratic and superquadratic cases.

In what follows, we concentrate on the case where N = 1, in which case
the ergodic problem (4.1) takes the form

λ − u′′ +
1
m

|u′|m − βf = 0 in R, u(0) = 0. (4.4)

We first prove claim (ii) of Theorem 4.2.

Proof of Theorem 4.2 (ii). We may assume without loss of generality that f ∈
C0,1(RN ). We prove that λm,β < 0 for any β > 0. We argue by contradiction
assuming that λm,β = 0 for some β > 0. Let C > 0 be such that Cm =
maxRN (βf)−, and let u ∈ C2(R) be a classical solution of (4.4) with λ = 0.
Then, we see that

−u′′ +
1
m

|u′|m = βf ≥ −Cm in R.

By changing the variable such as s = u′(y)/C and using the inequality above,
we have

∫ u′(x)/C

u′(0)/C

m

|s|m + m
ds =

∫ x

0

m

|u′(y)/C|m + m

(u′(y)
C

)′
dy

≤ 1
C

∫ x

0

|u′(y)|m + mCm

|u′(y)/C|m + m
dy = Cm−1

∫ x

0

dy = Cm−1x

for all x ∈ R. In particular, we obtain

Cm−1x ≥
∫ u′(x)/C

u′(0)/C

m

|s|m + m
ds ≥ −

∫

R

m

|s|m + m
ds > −∞

for all x ∈ R. Sending x → −∞, we get a contradiction. Hence, λm,β < 0 for
all β > 0. �

We finally prove claim (iii) of Theorem 4.2. Let N = 1 and m = ∞. In
this case, (4.2) can be written as

max{λ − u′′ − βf, |u′| − 1} = 0 in R, u(0) = 0. (4.5)

Proposition 4.7. Let N = 1 and m = ∞. Suppose that f− 
≡ 0, and set

L :=
∫

R

f−(u)du, K := sup
{ ∫ y

x

−f(u)du
∣
∣
∣x, y ∈ R, x < y

}
.

Then 2/L ≤ β+ ≤ 2/K, where 2/L := 0 for L = ∞ and 2/K := 0 for K = ∞.

Proof. We first show that 2/L ≤ β+. We may assume L < ∞, otherwise the
inequality is obvious. Notice here that L > 0 by assumption. We set β0 := 2/L
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and construct a classical subsolution u ∈ C2(R) of (4.5) with λ = 0 and
β = β0. Let us consider the linear equation

− u′′ + β0f− = 0 in R, u(0) = 0. (4.6)

Then, for any C ∈ R, the function u ∈ C2(R) defined by

u(x) = β0

∫ x

0

F (y)dy + Cx, F (y) :=
∫ y

0

f−(u)du, (4.7)

is a classical solution to (4.6). We now choose

C :=
1
L

(∫ 0

−∞
f−(u)du −

∫ ∞

0

f−(u)du

)
.

Then, noting that x → F (x) is nondecreasing in RN and u′(x) = β0F (x) + C
for all x ∈ R, we have

u′(x) ≤ 2
L

∫ ∞

0

f−(u)du + C = 1, u′(x) ≥ − 2
L

∫ 0

−∞
f−(u)du + C = −1

for all x ∈ R. Hence, u with the above C is a subsolution of (4.5) with λ = 0
and β = β0, which implies that β+ ≥ 2/L.

We next show that β+ ≤ 2/K. Recall that K > 0 by assumption. We
argue by contradiction assuming that β+ > 2/K. Fix any β such that 2/K <
β < β+. Then, λ∞,β = 0 by the definition of β+. Fix an arbitrary δ > 0. Then,
in view of Proposition 3.3, there exists a classical subsolution u ∈ C∞(R) of
(4.5) with λ = −δ. In particular, we have

−δ − u′′ − βf ≤ 0, |u′| ≤ 1 in R.

This yields that, for any x, y ∈ R with x < y,

β

∫ y

x

−f(s)ds ≤
∫ y

x

(u′′(s) + δ)ds = u′(y) − u′(x) + δ(y − x) ≤ 2 + δ(y − x).

Letting δ → 0 and taking the supremum over all x, y ∈ R such that x < y, we
obtain βK ≤ 2, which is a contradiction. Hence, we have completed the proof.

�

Claim (iii) of Theorem 4.2 is a direct consequence of the above proposi-
tion.

Remark 4.8. Suppose that f+ ≡ 0, that is, f ≤ 0 in R. Then L = K =∫
R

|f(u)|du, so that β+ = 2/
∫
R

|f(u)|du. This implies that β+ > 0 if and only
if f ∈ L1(R).

Remark 4.9. As far as the uniqueness for u, up to an additive constant, is
concerned, equation (1.3) with λ = λ∞ may have multiple solutions in general.
Indeed, let N = 1 and f(x) := −(1−|x|)+ in (1.3). Then, in view of Remark 4.8,
it is not difficult to observe that λ∞ = 0. Furthermore, we define u : R → R
by

u(x) :=
∫ x

0

F (y)dy + Cx, F (y) :=
∫ y

0

(1 − |u|)+du,
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where C ∈ R is a constant. Then, similarly as in the proof of Proposition
4.7, we see that u is a classical solution of (1.3) for any C ∈ [−1/2, 1/2]. In
particular, uniqueness for u does not hold without any growth condition as
|x| → ∞. We remark here that, if N = 1 and f is convex and superlinear
with respect to x, then, up to an additive constant, there exists only one
viscosity solution u of (1.3) which satisfies u(x)/|x| → 1 as |x| → ∞ (see [8,
Proposition 5.1]). At this stage, we do not know any uniqueness result for (1.3)
under our assumptions (A1)–(A2).
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