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Hölder estimates for viscosity solutions
of equations of fractional p-Laplace type
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Abstract. We prove Hölder estimates for viscosity solutions of a class of
possibly degenerate and singular equations modelled by the fractional
p-Laplace equation

PV

∫
Rn

|u(x) − u(x + y)|p−2(u(x) − u(x + y))

|y|n+sp
dy = 0,

where s ∈ (0, 1) and p > 2 or 1/(1 − s) < p < 2. Our results also apply
for inhomogeneous equations with more general kernels, when p and s
are allowed to vary with x, without any regularity assumption on p and
s. This complements and extends some of the recently obtained Hölder
estimates for weak solutions.

Mathematics Subject Classification. 35J60, 35J70, 35R09, 35B65, 35D40.

1. Introduction

We study the local Hölder regularity for viscosity solutions of possibly degen-
erate and singular non-local equations of the form

PV
∫
Rn

|u(x) − u(x + y)|p−2(u(x) − u(x + y))K(x, y) dy = f(x), (1.1)

where f is bounded and K(x, y) essentially behaves like |y|−n−sp. Here PV
stands for the principal value. We also allow p and s to depend on x.

This type of equations is one possible non-local counterpart of equations
of p-Laplace type and arises for instance as the Euler-Lagrange equation of
functionals in fractional Sobolev spaces. Solutions can also be constructed
directly via Perron’s method, which has been done (for p and s constant) in
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[27] and [30], and in a slightly different setting in [22]. For the general case of
variable exponents s and p, the full details of the existence theory are yet to
be written down.

In the case K(y) = |y|−n−sp, when properly rescaled, solutions converge
to solutions of the p-Laplace equation

Δpu = div(|∇u|p−2∇u) = 0

as the parameter s tends to 1, see [22].
The main difference of the paper compared to earlier results (such as [33])

is the nonlinearity and the possible degeneracy or singularity of the operator.
The difficulties mainly appear when estimating the operator acting on u + kβ
from above in the proof of Proposition 2. Here β is a certain help function, see
Section 3.

Throughout the paper, we denote by Br, the ball of radius r centered at
the origin. We also assume that the operator L is given by

Lu (x) := PV
∫
Rn

|u(x) − u(x + y)|p(x)−2(u(x) − u(x + y))K(x, y) dy (1.2)

where K(x, y) = K(x,−y) and

λ

|y|n+s(x)p(x)
≤ K(x, y) ≤ Λ

|y|n+s(x)p(x)
, for all y ∈ B2, x ∈ B2,

0 ≤ K(x, y) ≤ M

|y|n+γ
, for all y ∈ R

n \ B 1
4
, x ∈ B2, (1.3)

where 0 < s0 < s(x) < s1 < 1 and 1 < p0 < p(x) < p1 < ∞. In the case
p(x) < 2 we require additionally that there is τ > 0 such that

p(x)(1 − s(x)) − 1 > τ.

Our main result is that bounded viscosity solutions (see Section 2) of the
equation

Lu = f,

with f bounded, are locally Hölder continuous, see the theorem below.

Theorem 1. Assume K satisfies (1.3) and that L is as in (1.2). Let f ∈
C(B2) ∩ L∞(B2) and let u ∈ L∞(Rn) be a viscosity solution of

Lu = f in B2.

Then u is Hölder continuous in B1 and in particular there exist α and C
depending on λ,Λ,M, p0, p1, s0, s1, γ and τ such that

‖u‖Cα(B1) ≤ C

(
‖u‖L∞(Rn) + max

(
‖f‖

1
p0−1

L∞(B2)
, ‖f‖

1
p1−1

L∞(B2)

))
.

In particular, Theorem 1 applies for the fractional p-Laplace equation

PV
∫
Rn

|u(x) − u(x + y)|p−2(u(x) − u(x + y))
|y|n+sp

dy = 0.
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Remark 1. The result above applies to bounded solutions. It might be possible
to treat unbounded solutions by truncation and treating the resulting error
term as a right hand side. In the setting of [10], the local boundedness is
proved, given that a certain non-local “tail” can be controlled.

Remark 2. It might seem odd that the two conditions above on K are supposed
to be satisfied in overlapping regions, B2 and B 1

4
. This is only for notational

convenience. It would be sufficient to have the first condition satisfied in Bρ

for some ρ > 0 and the second one satisfied outside BR for some large R as
long as we ask K to be bounded in BR \ Bρ.

1.1. Known results

Equations similar to (1.1) were, to the author’s knowledge, introduced in [22].
There existence and uniqueness is established in the case of constant p and s,
even though in a slightly different setting. It is also shown that the solutions
converge to solutions of the p-Laplace equation, as s → 1. In [27] and [26],
Perron’s method is successfully applied to more general equations of this type.
In [30] the equivalence of different notions of solutions is studied. Similar equa-
tions were also studied in [7], where the focus lies in the asymptotic behavior
as p → ∞. Related equations have also been suggested to be used in image
processing and machine learning, see [15] and [16].

Recently, in [9,10,28], Hölder estimates, a Harnack inequality and regu-
larity for the case with measure data were obtained for weak solutions of a very
general class of equations of this type (with s and p constant). The difference
between these results and the ones in the present paper can be seen as the dif-
ference between equations in divergence form and those in non-divergence form
in the non-local setting. In other words, their results are more in the flavour of
Di Giorgi–Nash–Moser (cf. [14,31,32]) while the results in this paper are more
in the flavour of Krylov–Safonov (cf. [29]). Very recently, the sharp regularity
up to the boundary was obtained in [20] and [21].

In the case p = 2, when (1.1) reduces to

PV
∫
Rn

u(x) − u(x + y)
|y|n+2s

dy = f(x), (1.4)

a similar development has already taken place. In [33], a surprisingly simple
proof of Hölder estimates for viscosity solutions were given for a very general
class of equations corresponding to equations of non-divergence form, where
s is allowed to depend on x. In [25], Hölder estimates were obtained for weak
solutions for a class of equations corresponding to equations of divergence form,
including equations of the form (1.4).

Related is also [1] and [2], where a different type of degenerate (or singu-
lar) non-local equation is studied. Hölder estimates and some higher regularity
theory are established. It is also proved that these equations approach the p-
Laplace equation in the local limit.
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Very recently, a new type of quasilinear nonlocal equations was intro-
duced in [6], with some similarities to the approach in [2] and [1]. These equa-
tions do also approximate an associated local equation of p-Laplace type and
they relate to an associated Lévy process.

1.2. Comments on the equation

Let us very briefly point out the difference between the class of equations
considered in [10] and [9], and the class of equations considered here when p
and s are constant (see also [33] for a similar discussion). There, weak solutions
are considered, in the sense that∫

Rn

∫
Rn

|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))G(x, y) dxdy = 0 (1.5)

for any φ ∈ C∞
0 (B2), where G(x, y) behaves like |x − y|−n−sp. These solutions

arise for instance as minimizers of functionals of the form∫
Rn

∫
Rn

|u(x) − u(y)|pG(x, y) dxdy.

In the most favorable of situations, we are allowed to change the order of
integration and write (1.5) as∫

Rn

∫
Rn

|u(x) − u(y)|p−2(u(x) − u(y))(G(x, y) + G(y, x))φ(x) dxdy = 0,

and conclude

PV
∫
Rn

|u(x) − u(y)|p−2(u(x) − u(y))(G(x, y) + G(y, x)) dy = 0.

The change of variables y = z + x yields

PV

∫
Rn

|u(x) − u(z + x)|p−2(u(x) − u(z + x))(G(x, z + x) + G(z + x, x)) dz = 0,

or

PV
∫
Rn

|u(x) − u(z + x)|p−2(u(x) − u(z + x))K(x, z) dz = 0,

where K(x, z) = G(x, z + x) + G(z + x, x). Then necessarily K(x, z − x) =
K(z, x − z). Moreover, we are not always allowed to perform the transforma-
tions above. Hence, the two types of equations overlap but neither is contained
in the other. In other words, the results in [9] and [10] do not always apply
to the equations considered in this paper, and vice versa, the results in this
paper do not always apply to the equations studied therein. See also [26], for
the equivalence of different notions of solutions.

Another important remark is that the estimates obtained in this paper
are, as in [33], not uniform as s approaches 1. However, it seems very unlikely
that a result like Theorem 1 should be true, without the upper bound on s,
since this would imply a very general Hölder regularity result for equations
being a “discontinuous mix” of degenerate non-local equations and degenerate
local equations with discontinuous exponents. To the best of my knowledge,
such a result is not even known in the case of p = 2. The case of p-Laplacian
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with different and discontinuous coefficients is related to Lavrentiev’s phenom-
enon, see [17,34,35].

For fully nonlinear equations of fractional Laplace type, uniform esti-
mates as s → 1 have been obtained (see for instance [3] and [8]), but they are
more involved, and they follow the same strategy as the estimates for fully
nonlinear (local) equations. The reader may also consult [18] for an overview
of the theory in the local setting.

In our case, when s and p > 2 are constant, if φ ∈ C2
0 and p > 2 then

(1 − s) PV
∫
Rn

|φ(x) − φ(x + y)|p−2(φ(x) − φ(x + y))
|y|n+sp

dy → −Cp,nΔpφ,

as s → 1. If we instead have a kernel of the form

G

(
y

|y|
)

1
|y|n+sp

,

then

(1 − s) PV
∫
Rn

|φ(x) − φ(x + y)|p−2(φ(x) − φ(x + y))G( y
|y| )

|y|n+sp
dy

→ −Cp,n|∇φ|p−2aij(∇φ)D2
ijφ,

as s → 1, where the matrix (aij)(∇φ) is positive definite and can be given
explicitly as integrals over the sphere in terms of G. This type of degenerate
(or singular) equations of non-divergence form, remained fairly unstudied until
quite recently. Starting with [4], these equations have attracted an increasing
amount of attention; See [5,11–13,19,23,24] for related results.

2. Viscosity solutions

In this section, we introduce the notion of viscosity solutions (as in [8]) and
prove that viscosity solutions can be treated almost as classical solutions.

Definition 1. Let D be an open set and let L be as in (1.2). A function u ∈
L∞(Rn) which is upper semicontinuous in D is a subsolution of

Lu ≤ C in D

if the following holds: whenever x0 ∈ D and φ ∈ C2(Br(x0)) for some r > 0
are such that

φ(x0) = u(x0), φ(x) ≥ u(x) for x ∈ Br(x0) ⊂ D

then we have

Lφr (x0) ≤ C,

where

φr =
{

φ in Br(x0),
u in R

n \ Br(x0).

A supersolution is defined similarly and a solution is a function which is both
a sub- and a supersolution.
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The following result verifies that whenever we can touch a subsolution
from above with a C2 function, we can treat the subsolution as classical sub-
solution. The proof is almost identical to the one of Lemma 3.3 in [8].

Proposition 1. Assume the hypotheses of Theorem 1. Suppose Lu ≤ C in B1

in the viscosity sense and that x0 ∈ B1 and φ ∈ C2(Br(x0)) is such that

φ(x0) = u(x0), φ(x) ≥ u(x) in Br(x0) ⊂ B1,

for some r > 0. Then Lu is defined pointwise at x0 and Lu (x0) ≤ C.

Proof. For 0 < r′ ≤ r, let

φr′ =
{

φ in Br′(x0),
u in R

n \ Br′(x0).

Since u is a viscosity subsolution, Lφr′ (x0) ≤ C. Now introduce the notation

δ(φr′ , x, y) =
1
2
|φr′(x) − φr′(x + y)|p(x)−2(φr′(x) − φr′(x + y))

+
1
2
|φr′(x) − φr′(x − y)|p(x)−2(φr′(x) − φr′(x − y)),

δ±(φr′ , x, y) = max(±δ(φr′ , x, y), 0).

By simply interchanging y → −y we have∫
Rn

δ(φr′ , x0, y)K(x0, y) dy ≤ C, (2.1)

since one can easily see that the integral is well defined since φr′ is C2 near
x0. Moreover,

δ(φs2 , x0, y) ≤ δ(φs1 , x0, y) ≤ δ(u, x0, y) for s1 < s2 < r,

so that

δ−(u, x0, y) ≤ |δ(φr, x0, y)|.
Since |δ(φr, x0, y)K(x0, y)| is integrable, so is δ−(u, x0, y)K(x0, y). In addition,
by (2.1)∫

Rn

δ+(φr′ , x0, y)K(x0, y) dy ≤
∫
Rn

δ−(φr′ , x0, y)K(x0, y) dy + C.

Thus, for s1 < s2∫
Rn

δ+(φs1 , x0, y)K(x0, y) dy ≤
∫
Rn

δ−(φs1 , x0, y)K(x0, y) dy + C

≤
∫
Rn

δ−(φs2 , x0, y)K(x0, y) dy + C < ∞.

(2.2)

Since δ+(φr′ , x0, y) ↗ δ+(u, x0, y) as r′ → 0, the monotone convergence theo-
rem implies∫

Rn

δ+(φr′ , x0, y)K(x0, y) dy →
∫
Rn

δ+(u, x0, y)K(x0, y) dy,
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as r′ → 0. By letting s1 → 0 in (2.2) we obtain∫
Rn

δ+(u, x0, y)K(x0, y) dy ≤
∫
Rn

δ−(φr′ , x0, y)K(x0, y) dy + C < ∞, (2.3)

for any 0 < r′ < r. We conclude that δ+(u, x0, y)K(x0, y) is integrable. By
(2.2) and the bounded convergence theorem, we can pass to the limit in the
right hand side of (2.3) and obtain∫

Rn

δ(u, x0, y)K(x0, y) dy = lim
r′→0

∫
Rn

δ(φr′ , x0, y)K(x0, y) dy ≤ C.

This implies that Lu (x0) exists in the pointwise sense and Lu (x0) ≤ C. �

3. Hölder regularity

In this section we give the proof of our main theorem. This is based on Lemma
1, sometimes referred to as the oscillation lemma.

By abuse of notation, we introduce the function

β(x) = β(|x|) =
(
(1 − |x|2)+)2

.

The exact form of β is not important, we could have chosen any radial function
which is C2 and zero outside B1 and non-increasing along rays from the origin.

Below we prove that a kernel K(x, y) satisfying (1.3) satisfies certain
inequalities that might look strange at a first glance, but they are exactly the
ones that will appear in the proof of our key lemma later.

Proposition 2. Assume K satisfies (1.3). Then for any δ > 0 there are 1/2 ≥
k > 0 and η > 0 such that for p(x) ∈ (2,∞)

2p(x)−2kp(x)−1 PV
∫

x+y∈B1

|β(x) − β(x + y)|p(x)−2(β(x) − β(y + x))K(x, y) dy

+ 2p(x)−2

∫
y∈Rn\B 1

4

|kβ(x) + 2((|8y|η − 1)|p(x)−1K(x, y) dy

+ 2p(x)

∫
y∈Rn\B 1

4

((|8y|η − 1)|p(x)−1K(x, y) dy

< 21−p(x) inf
A⊂B2,|A|>δ

∫
A

K(x, y) dy (3.1)

and for p(x) ∈ (1/(1 − s), 2)

(3p(x)−1 + 2p(x)−1)kp(x)−1

∫
Rn

|β(x) − β(x + y)|p(x)−1K(x, y) dy

+ 2p(x)

∫
Rn\B 1

4

(|8y|η − 1)p(x)−1K(x, y) dy < 21−p(x) inf
A⊂B2,|A|>δ

∫
A

K(x, y) dy,

(3.2)

for any x ∈ B3/4. Here k and η depend on λ,Λ,M, p0, p1, s0, s1, γ, τ and δ.
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Proof. In order to simplify the notation we write p = p(x) and s = s(x)
throughout the proof. The proof is split into two different cases.

Case 1: p ≥ 2
The first term in the left hand side of (3.1) reads

2p−2kp−1 PV
∫

x+y∈B1

|β(x) − β(x + y)|p−2(β(x) − β(y + x))K(x, y) dy

= 2p−2kp−1 PV
∫

x+y∈B1,y �∈B 1
4

|β(x) − β(x + y)|p−2(β(x)

− β(y + x))K(x, y) dy

+ 2p−2kp−1 PV
∫

y∈B 1
4

|β(x) − β(x + y)|p−2(β(x) − β(y + x))K(x, y) dy

= I1 + I2.

Since |β(x)−β(x+y)| ≤ 1, we can, using the upper bound on K outside B1/4,
obtain

|I1| ≤ |2k|p−1

∫
Rn\B 1

4

K(x, y) dy ≤ |2k|p−1M

∫
Rn\B 1

4

dy

|y|n+γ
, (3.3)

which is finite and converges to zero as k → 0.
For I2 we proceed as follows

I2 = 2p−2kp−1 PV
∫

y∈B 1
4

|β(x) − β(x + y)|p−2(β(x) − β(y + x))K(x, y) dy

= 2p−3kp−1 PV
∫

y∈B 1
4

|β(x) − β(x + y)|p−2(β(x) − β(y + x))K(x, y) dy

+ 2p−3kp−1 PV
∫

y∈B 1
4

|β(x) − β(−y + x)|p−2(β(x)

− β(−y + x))K(x, y) dy.

Introducing the notation

F = −(β(x) − β(x − y)), G = (β(x) − β(x − y)) + (β(x) − β(x + y)),

I2 can be written as

2p−3kp−1

∫
y∈B 1

4

(|F + G|p−2(F + G) − |F |p−2F
)
K(x, y) dy

≤ 2p−3kp−1(p − 1)
∫

y∈B 1
4

|G|(|F | + |G|)p−2K(x, y) dy,

by Lemma 2. Since β is uniformly C2, |F | + |G| ≤ C|y| and |G| ≤ C|y|2, for
some fixed constant C > 0. Invoking the upper bound on K in B2 yields the
estimate
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I2 ≤ Cp−12p−3kp−1(p − 1)Λ
∫

y∈B 1
4

|y|p−n−sp dy

≤ Cp−12p−3kp−1(p − 1)Λ
(
1
4

)p(1−s)

p(1 − s)
. (3.4)

Clearly the left hand side of (3.4) goes to zero as k → 0.
For the rest of the terms in the left hand side we observe first that if

η < γ/(p − 1) then from the upper bound on K outside B1/4∫
Rn\B 1

4

(|8y|η − 1)p−1
K(x, y) dy ≤ M

∫
Rn\B 1

4

(|8y|η − 1)p−1 dy

|y|n+γ
, (3.5)

which is uniformly bounded and tends to zero as η → 0, by the dominated
convergence theorem.

In addition, since |β| ≤ 1 we have
∫
Rn\B 1

4

|kβ(x)|p−1K(x, y) dy ≤ kp−1M

∫
Rn\B 1

4

dy

|y|n+γ
, (3.6)

which is finite and converges to zero as k → 0, where we again have used the
upper bound on K outside B1/4.

Thus, if we choose η and k small enough (depending on Λ, M , p0, p1, s0,
s1 and γ) we can make all the terms in the left hand side as small as desired.

Now we turn our attention to the right hand side. We have, due to the
lower bound on K in B2

21−p inf
A⊂B2,|A|>δ

∫
A

K(x, y) dy ≥ 21−pλδ

2n+sp
.

Then it is clear that we can choose η and k, depending only on λ, Λ, M , p0,
p1, s0, s1, γ and δ, so that the left hand side is larger than the right hand side.

Case 2: 1/(1 − s) < p < 2
The only difference from the case p > 2 is the first term in the left hand

side. We need to show that for k small enough, the term

(3p−1 + 2p−1)kp−1

∫
Rn

|β(x) − β(x + y)|p−1K(x, y) dy,

is small. We split the integral into two parts, one in B1 and one in R
n \ B1.

We have |β(x) − β(x + y)| ≤ C|y| for y ∈ B1. Hence,

(3p−1 + 2p−1)kp−1

∫
B1

|β(x) − β(x + y)|p−1K(x, y) dy

≤ ΛCp−1(3p−1 + 2p−1)kp−1

∫
B1

|y|p−1−n−sp dy

≤ ΛCp−1(3p−1 + 2p−1)kp−1 1
p(1 − s) − 1

, (3.7)
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where we have used the upper bound on K in B2. For the part outside B1 we
have

(3p−1 + 2p−1)kp−1

∫
Rn\B1

|β(x) − β(x + y)|p−1K(x, y) dy

≤ M(3p−1 + 2p−1)kp−1

∫
Rn\B1

dy

|y|n+γ

≤ M(3p−1 + 2p−1)kp−1γ−1, (3.8)

from the upper bound on K outside B1/4 and the fact that |β| ≤ 1. By choosing
k small (depending on Λ, M , p0, p1, s0, s1, γ and τ) we can make both of these
terms as small as desired. Hence, the result follows as in the case p ≥ 2. �

The lemma below is the core of this paper. The proof is an adaptation of
the proof of Lemma 4.1 in [33].

Lemma 1. Assume K satisfies (1.3) and that L is as in (1.2). Suppose

Lu ≤ ε in B1,

u ≤ 1 in B1,

u(x) ≤ 2|2x|η − 1 in R
n \ B1,

|B1 ∩ {u ≤ 0}| > δ,

where η is as in Proposition 2 and

ε = inf
x∈B 3

4

min(2, 2p(x)−1)
∫

y �∈B 1
4

(|8y|η − 1)p(x)−1K(x, y) dy.

Then u ≤ 1 − θ in B1/2, where θ = θ(λ,Λ,M, p0, p1, s0, s1, γ, τ, δ) > 0.

Proof. In order to simplify the notation we write p = p(x) and s = s(x)
throughout the proof. We argue by contradiction. Let

θ = k (β(1/2) − β(3/4)) =
95k

256
,

where k is as in Proposition 2. If there is x0 ∈ B1/2 such that u(x0) > 1 − θ,
then

u(x0) + kβ(1/2) > 1 + kβ(3/4).

Moreover, for any y ∈ B1 \ B3/4 there holds

u(x0) + kβ(x0) > u(x0) + kβ(1/2) > 1 + kβ(3/4) ≥ u(y) + kβ(y).

Hence, the maximum of u + kβ in B1 is attained inside B3/4 and it is strictly
larger than 1. Suppose that the maximum is attained at the point x.

The rest of the proof is devoted to estimating L(u + kβ) (x) from above
and from below in order to obtain a contradiction with Proposition 2. At this
point, we remark that −kβ + (u + kβ)(x) touches u from above at x. Hence,
by Proposition 1, Lu (x) ≤ ε in the pointwise sense.
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We first estimate L(u + kβ) (x) from below. We split the integrals into
two parts and write

L(u + kβ) (x) = PV
∫

x+y∈B1

+
∫

x+y �∈B1

= lim
r→0

∫
x+y∈B1,y �∈Br

+
∫

x+y �∈B1

= lim
r→0

Ir + I2,

where there is no need for the principal value in the second integral, since
x ∈ B3/4. Using that u(x) + kβ(x) > 1 is the maximum of u + kβ in B1 we
see that the integrand in Ir is non-negative and we have the estimate

Ir ≥
∫

A0∩Bc
r

(1 − kβ(x + y))p−1K(x, y) dy,

where

A0 = {x + y ∈ B1, u(x + y) ≤ 0}.

Since β ≤ 1 and k ≤ 1/2 we conclude

lim inf
r→0

Ir ≥ 1
2p−1

inf
A0⊂B2,|A0|>δ

∫
A0

K(x, y) dy.

Now we estimate I2 from below. Using that u(x) + kβ(x) > 1 and u(z) ≤
2|2z|η − 1 for z ∈ R

n \ B1 and β = 0 in R
n \ B1, we have

I2 ≥
∫

x+y �∈B1

2p−1
∣∣∣1 − |2(x + y)|η

∣∣∣p−2

(1 − |2(x + y)|η)K(x, y) dy

≥ 2p−1

∫
y �∈B 1

4

∣∣∣1 −
∣∣∣2

(
|y| +

3
4

) ∣∣∣η
∣∣∣p−2

(
1 −

∣∣∣2
(

|y| +
3
4

) ∣∣∣η
)

K(x, y) dy

≥ −2p−1

∫
y �∈B 1

4

(|8y|η − 1)p−1K(x, y) dy.

Adding the two estimates together we can summarize

L(u + kβ) (x)

≥ 1
2p−1

inf
A0⊂B2,|A0|>δ

∫
A0

K(x, y) dy − 2p−1

∫
y �∈B 1

4

(|8y|η − 1)p−1K(x, y) dy.

(3.9)

The next step is to estimate L(u + kβ) (x) from above. This part of the
proof is split into two cases: p ≥ 2 and p < 2.

Case 1: p ≥ 2
Again we split the integral defining L(u + kβ) (x) into two parts

L(u + kβ) (x) = PV
∫

x+y∈B1

+
∫

x+y �∈B1

:= I1 + I2,

where again, there is no need for the principal value in the second integral. We
first treat I1 by noting that when x + y ∈ B1, we know

u(x) + kβ(x) − u(x + y) − kβ(x + y) ≥ 0,
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recalling that u + kβ attains its maximum (in B1) at x.
From Lemma 4

|u(x) − u(x + y) + kβ(x) − kβ(x + y)|p−2(u(x) − u(x + y) + kβ(x)

− kβ(x + y)) ≤ 2p−2|u(x) − u(x + y)|p−2(u(x) − u(x + y))

+ 2p−2|kβ(x) − kβ(x + y)|p−2(kβ(x) − kβ(x + y)).

Hence,

I1 ≤ 2p−2 PV
∫

x+y∈B1

|u(x) − u(x + y)|p−2(u(x) − u(x + y))K(x, y) dy

+ 2p−2kp−1 PV
∫

x+y∈B1

|β(x) − β(x + y)|p−2(β(x) − β(x + y))K(x, y) dy.

Now we turn our attention to I2. We note that when x + y �∈ B1, we cannot
apply Lemma 4 directly, but we still have from the hypothesis

u(x) + kβ(x) > 1, u(x + y) + kβ(x + y) ≤ 2|2(x + y)|η − 1.

In other words,

u(x) − u(x + y) + kβ(x) − kβ(x + y) > 2(1 − |2(x + y)|η).

By adding the term 2(|2(x + y)|η − 1) > 0 to the expression, we increase the
integrand, and we also make the integrand non-negative so that we can, once
more, apply Lemma 4. It follows that

I2 ≤
∫

x+y �∈B1

|u(x) − u(x + y) + kβ(x) − kβ(x + y) + 2(|2(x + y)|η − 1)|p−2

× (u(x) − u(x + y) + kβ(x) − kβ(x + y) + 2(|2(x + y)|η − 1))K(x, y) dy

≤ 2p−2

∫
x+y �∈B1

|u(x) − u(x + y)|p−2(u(x) − u(x + y))K(x, y) dy

+ 2p−2

∫
x+y �∈B1

|kβ(x) − kβ(x + y) + 2(|2(x + y)|η − 1)|p−2

× (kβ(x) − kβ(x + y) + 2(|2(x + y)|η − 1))K(x, y) dy.

Adding the estimates for I1 and I2 together we arrive at

L(u + kβ) (x) ≤ 2p−2Lu (x)

+ 2p−2kp−1 PV
∫

x+y∈B1

|β(x) − β(x + y)|p−2(β(x) − β(x + y))K(x, y) dy

+ 2p−2

∫
x+y �∈B1

|kβ(x) − kβ(x + y) + 2(|2(x + y)|η − 1)|p−2

× (kβ(x) − kβ(x + y) + 2(|2(x + y)|η − 1))K(x, y) dy

≤ 2p−2kp−1 PV
∫

x+y∈B1

|β(x) − β(x + y)|p−2(β(x) − β(x + y))K(x, y) dy

+ 2p−2

∫
x+y �∈B1

|kβ(x) − kβ(x + y) + 2(|2(x + y)|η − 1)|p−1K(x, y) dy,
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+ 2p−1

∫
y �∈B 1

4

(|8y|η − 1)p−1K(x, y) dy (3.10)

since Lu (x) ≤ ε.

Case 2: 1
1−s < p < 2

From Lemma 3

|u(x) − u(x + y) + kβ(x) − kβ(x + y)|p−2(u(x) − u(x + y)

+ kβ(x) − kβ(x + y))

≤ |u(x) − u(x + y)|p−2(u(x) − u(x + y)) + (3p−1 + 2p−1)kp−1|β(x)

− β(x + y)|p−1

from which it follows that

L(u + kβ) (x) ≤ Lu (x) + kp−1(3p−1 + 2p−1)
∫
Rn

|β(x)

− β(x + y)|p−1K(x, y) dy

≤ kp−1(3p−1 + 2p−1)
∫
Rn

|β(x) − β(x + y)|p−1K(x, y) dy

+ 2p−1

∫
y �∈B 1

4

(|8y|η − 1)p−1K(x, y) dy, (3.11)

again since Lu (x) ≤ ε.
Finally, we arrive at a contradiction by observing that (3.9) combined

with either (3.10) or (3.11) results in a contradiction with (3.1) or (3.2) in
Proposition 2. �

Once the lemma above is established, the proof of the Hölder regularity
is standard. We follow the lines of the proof of Theorem 5.1 in [33].
Proof of Theorem 1 We first rescale u by the factor
(

2‖u‖L∞(Rn) + 2
p1−1
p0−1 max

{ (‖f‖L∞(B2)

ε

) 1
p0−1

,

(‖f‖L∞(B2)

ε

) 1
p1−1 })−1

,

where ε is chosen as in Lemma 1. Then one readily verifies that

Lu = f̃ in B2, ‖f̃‖L∞(B2) ≤ ε

2p1−1
, oscRn u ≤ 1.

We will now by induction find aj and bj such that

bj ≤ u ≤ aj in B2−j(x0), |aj − bj | ≤ 2−jα, (3.12)

where we require from α that

2 − θ

2
≤ 2−α, α ≤ η and α ≤ s0p0

p1 − 1
,

where θ and η are from Lemma 1 with δ = |B1|/2. Clearly, (3.12) is satisfied
for j ≤ 0 with the choice bj = infRn u and aj = bj + 1. Now, given that (3.12)
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holds for j ≤ k we construct ak+1 and bk+1. Define

v(x) = 2αk+1(u(2−kx + x0) − m), with m =
ak + bk

2
.

Then

PV
∫
Rn

|v(x) − v(x + y)|p(x)−2(v(x) − v(x + y))Kx0,2−k(x, y) dy

= 2(αk+1)(p(2−kx+x0)−1)−k(s(2−kx+x0)p(2
−kx+x0))f̃ in B1,

and

|v| ≤ 1 in B1.

Note that

Kx0,2−k(x, y) = 2−k(n+s(2−kx+x0)p(2
−kx+x0))K(2−kx + x0, 2−ky)

satisfies the same assumptions as K. From our choice of α it also follows that∣∣∣2(αk+1)(p(2−kx+x0)−1)−k(s(2−kx+x0)p(2
−kx+x0))f̃

∣∣∣ ≤ ε in B1.

We observe that for |y| > 1 such that 2� ≤ |y| ≤ 2�+1 we have

v(y) = 2αk+1(u(2−ky + x0) − m) ≤ 2αk+1(ak−�−1 − m)

≤ 2αk+1(ak−�−1 − bk−�−1 + bk − m)

≤ 2αk+1(2−α(k−�−1) − 1
2
2−kα)

≤ 21+α(�+1) − 1 ≤ 2|2y|α − 1

≤ 2|2y|η − 1,

where we have used that (3.12) holds for j ≤ k. Supposing now that

|{v ≤ 0} ∩ B1| ≥ |B1|/2

(if not we would apply the same procedure to −v), we see that v satisfies all
the assumptions of Lemma 1 with δ = |B1|/2. Lemma 1 implies

v(x) ≤ 1 − θ in B 1
2
.

Scaling back to u this yields

u(x) ≤ 2−1−αk(1 − θ) + m ≤ 2−1−kα(1 − θ) +
ak + bk

2
≤ bk + 2−1−αk(1 − θ) + 2−1−αk

≤ bk + 2−α(k+1)

by our choice of α. Thus the choice bk+1 = bk and ak+1 = bk +2−α(k+1) settles
(3.12) for the step j = k + 1. Hence, we arrive at the estimate

oscBr(x0) u ≤ 2αrα, r > 0.
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Recalling our rescaling factor in the beginning and rescaling back to our orig-
inal u yields

oscBr(x0) u

≤ 2α

(
2‖u‖L∞(Rn) + 2

p1−1
p0−1 max

{ (‖f‖L∞(B2)

ε

) 1
p0−1

,

(‖f‖L∞(B2)

ε

) 1
p1−1 })

rα

≤ C

(
‖u‖L∞(Rn) + max

(
‖f‖

1
p0−1

L∞(B2)
, ‖f‖

1
p1−1

L∞(B2)

))
rα,

which is the desired result.
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4. Appendix

Here we give the proof of a couple of auxiliary inequalities. In what follows,
a, b ∈ R.

Lemma 2. Let p ≥ 2. Then∣∣|a + b|p−2(a + b) − |a|p−2a
∣∣ ≤ (p − 1)|b|(|a| + |b|)p−2.

Proof. We have

∣∣|a + b|p−2(a + b) − |a|p−2a
∣∣ ≤

∫ |b|

0

∣∣∣ d

ds
(|a + s|p−2(a + s)

∣∣∣ ds

=
∫ |b|

0

(p − 1)|a + s|p−2 ds

≤ (p − 1)|b|(|a| + |b|)p−2.

�

Lemma 3. Let p ∈ (1, 2). Then∣∣|a + b|p−2(a + b) − |a|p−2a
∣∣ ≤ (3p−1 + 2p−1)|b|p−1.

Proof. We split the proof into two cases.

Case 1: |a| ≤ 2|b|. Then∣∣|a + b|p−2(a + b) − |a|p−2a
∣∣ ≤ |a + b|p−1 + |a|p−1 ≤ (3p−1 + 2p−1)|b|p−1.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Case 2: |a| > 2|b|. Then for |s| ≤ |b|

|a + s| ≥ |a| − |s| > 2|b| − |b| = |b|,
so that

∣∣|a + b|p−2(a + b) − |a|p−2a
∣∣ ≤

∫ |b|

0

(p − 1)|a + s|p−2 ds ≤ (p − 1)|b|p−1.

Since p − 1 ≤ 3p−1 + 2p−1, this concludes the proof. �
Lemma 4. Let p ≥ 2 and assume a + b ≥ 0. Then

|a + b|p−2(a + b) ≤ 2p−2(|a|p−2a + |b|p−2b).

Proof. The inequality is trivial for p = 2 so we assume p > 2. Since a + b ≥ 0,
|a|p−2a + |b|p−2b ≥ 0. Without loss of generality we can assume a > 0 and
define t = b/a. The statement of the lemma is then equivalent to

|1 + t|p−2(1 + t) ≤ 2p−2(1 + |t|p−2t), for t ≥ −1.

This is trivially true for t = −1. Hence we are lead to study the function

f(t) :=
|1 + t|p−2(1 + t)

1 + |t|p−2t
, for t > −1.

We find that f has critical points at t = 1 and t = 0. In addition,

f(1) = 2p−2, lim
t↘−1

f(t) = 0, f(0) = 1, lim
|t|→∞

f(t) = 1.

We conclude that f(t) ≤ 2p−2 for all t ≥ −1, and the result follows. �
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fractional p-Laplacian. Rev. Mat. Iberoamer 1–14 (2015) (to appear)

[21] Iannizzotto, A., Mosconi, S., Squassina, M.: A note on global regularity for
the weak solutions of fractional. p-Laplacian equations. Atti Accad. Naz. Lincei
Rend. Lincei Mat. Appl. 27(1), 15–24 (2016)

[22] Ishii, H., Nakamura, G.: A class of integral equations and approximation of
p-Laplace equations. Calc. Var. Partial Differ. Equ. 37(3–4), 485–522 (2010)



55 Page 18 of 18 E. Lindgren NoDEA

[23] Imbert, C., Silvestre, L.: C1,α regularity of solutions of some degenerate fully
non-linear elliptic equations. Adv. Math. 233, 196–206 (2013)

[24] Imbert, C., Silvestre, L.: Estimates on elliptic equations that hold only where
the gradient is large. JEMS (2013) (to appear)

[25] Kassmann, M.: A priori estimates for integro-differential operators with mea-
surable kernels. Calc. Var. Partial Differ. Equ. 34(1), 1–21 (2009)
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