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The generalized Korteweg-de Vries equation
with time oscillating nonlinearity in scale
critical Sobolev space

Jun-ichi Segata and Keishu Watanabe

Abstract. We consider the generalized Korteweg-de Vries (gKdV) equa-
tion with the time oscillating nonlinearity:

Opu+ Ou + g(wt) 0, (JulP""u) =0, (t,z) € R x R.
Under the suitable assumption on g, we show that if the nonlinear term
is mass critical or supercritical i.e., p > 5 and u(0) € H®?, where s, =
1/2 —2/(p — 1) is a scale critical exponent, then there exists a unique
global solution to (gKdV) provided that |w| is sufficiently large. We also
obtain the behavior of the solution to (gKdV) as |w| — oo.
Mathematics Subject Classification. Primary 35Q53; Secondary 35Q35,
35B40.
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1. Introduction

We consider the generalized Korteweg-de Vries (gKdV) equation with the time
oscillating nonlinearity:

Ou+ I3u+ gwt)d(JulP~lu) =0, (t,z) € R xR, 11
u(0,x) = o(x), r € R, (1.1)

where u : R Xx R — R is an unknown function, ¢ : R — R is a given function
and p > 1. The function g € C*(R;R) is a given periodic function with period
L>0.

The class of equations (1.1) arises in several fields of physics. Equation
(1.1) is a generalization of the notable Korteweg-de Vries equation which mod-
els long waves propagating in a channel [16] and the transitional KdV equation

which describes the solitary waves propagating on the thermocline in a lake
[14].
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For the case where ¢ is constant, the local well-posedness of the initial
value problem (1.1) in a scale subcritical Sobolev space H*(R), s > s, has
been studied by many authors [2,9-13,20,24], where s, = 1/2 —2/(p — 1) is
a scale critical exponent. A fundamental work on the local well-posedness is
due to Kenig-Ponce-Vega [12]. They proved that (1.1) is locally well-posed
in H*(R) with s > 3/4 (p =2), s > 1/4 (p = 3), s > 1/12 (p = 4) and
5> s, (p > 5). Concerning the well-posedness of (1.1) in the scale critical H*
space, Kenig—Ponce-Vega [12] proved the local and (small data) global well-
posedness when p > 5. Notice that Farah—Pastor [9] simplified Kenig—Ponce—
Vega’s proof. Later on, the above results were extended to a homogeneous
Besov space B;”OO by Strunk [24] (p > 5).

Since the proof in [12] also works for the case where g is not constant,
the local well-posedness for (1.1) with a non constant g follows from [12]. On
the other hand, Nunes [22] showed the global existence for (1.1) with p = 2
in H'(R) under the assumption that g € C(R;R) and ¢’ € L}, .(R). Notice
that Nunes’s proof is based on the almost conservation quantities for (1.1) and
applicable for the arbitrary large data in H' for the defocusing case, i.e, g is
strictly negative and for the focusing case, i.e, g is strictly positive with the
mass sub-critical exponent 1 < p < 5. Furthermore, in Martel-Merle [18], a
family of solutions to (1.1) which blow up in finite time was constructed for
the case where g is positive constant (focusing) and p =5 (mass critical).

In this paper, we study the global existence and the behavior of solution
U, to (1.1) as |w| — oco. We first review the known results on the nonlinear
Schrodinger equation with the time oscillating nonlinearity:

i0u+ Au+ g(wt)(|ulP~tu) =0, (t,z) € R x R", 19
u0.2) = (e, o 12

where p > 1, u : R® x R — C is an unknown function, ¢ : R — C is a
given function, and g € C'(R;R) is a given periodic function with a period
L > 0. Abdullaev—Caputo—Kraeukel-Malomed [1] and Konotop—Pacciani [15]
investigated the effect of the time oscillation term g(wt) in the global behavior
of solution to (1.2) via the numerical methods. Cazenave-Scialom [4] proved
that if ¢ € HY(R") and 1 +4/n < p < p* with p* = o0 if n = 1,2 and
p* =1+4+4/(n—2)if n > 3, then, the solution u, converges to the solution
U to

{i@tU+AU+m(g)|Up_1U:0, (t,z) € R x R™, (1.3)
U(0,z) = ¢(z), x € R" ’

as |w| — oo, where m(g) is given by

mi) = 7 [ ats)as (1.4)

Furthermore, Fang-Han [8] showed the similar result for the case where ¢ €
H'(R") and p is energy critical, i.e., p = 1+ 4/(n — 2) (n > 3). Damergi-
Goubet [6] showed that the oscillations do not prevent the blow up for any
w € R for the case where n = 2, p > 3 and g(wt) = cos?(wt).
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Concerning the generalized KdV equation (1.1), Carvajal-Panthee—
Scialom [3] have shown that if ¢ € H'(R) and p is mass critical, i.e., p = 5,
then the solution u, to (1.1) converges to the solution U to

{@Uwimm(g)awamp-lv) —0, (ta)eRxE,

U0, ) = é(x), z€R (1.5)

as |w| — oo, where m(g) is given by (1.4). Moreover, Panthee-Scialom [23]
proved the similar result for the case where ¢ € H(R) and p is mass super-
critical, i.e., p > 5.

In the present paper, we shall show that if ¢ € H*®» (R),sp, =1/2 -2/
(p—1), and p is mass critical or supercritical, i.e., p > 5, then the solution w,,
to (1.1) exists globally and converges to the solution U to (1.5) as |w| — oo.
Since H' C H*», our result is an improvement of [3,23] for the case p > 5.

Before we state our main theorem, we introduce several notations.
Throughout this paper, we denote s, := 1/2 —2/(p — 1). For T' € (0, 0],
the norm || - ||x,. is defined by

£z = W lpge iror + M0 Fllg e + A1 300 5000, (1.6)
@ T

where || fl[zz. = [|fllzz, .. - The norm defined by (1.6) is used in Farah-Pastor

(0,T)

[9]. Let {S(t)}¢er be a unitary group generated by —92:
1 . g3 A
(5000)(w) = —= [ = o(eyae,

Definition 1.1. (Solution) Let T € (0,00]. We say that u is a (mild) solution
to (1.1) on [0,T) in H® if u € C([0,T); H*»(R)) N Xr and satisfies

t
u(t) = S(0) ~ [ St~ )g(t)0ulluP ) (et
0
The solution to (1.5) is defined in a similar way.

For the solution u to (1.1), we define
Tinaz = sup{T € (0,00] | Solution u to (1.1) can be extended to [0,T)}.

We say that u is a maximal solution to (1.1) if u is a solution to (1.1) on
[0, Thqz ). Similarly, for the solution U to (1.5), we define

Smaz = sup{T € (0,00] | Solution U to (1.5) can be extended to [0,T)}.

We say that U is a maximal solution to (1.5) if U is a solution to (1.5) on
[07 Smax)-
The main result of this paper is as follows.

Theorem 1.2. Assume p > 5 and ¢ € H**(R). Let u, be a mazimal solu-
tion to (1.1) and let U be a solution to (1.5) on mazimal interval [0, Smaz)-
Furthermore, we assume Sp,q. = 00 and

, < 00. (1.7)

||U||L§(”’1)L§(p’1
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Then there exists wy > 0 such that if w satisfies |w| > wq, then u, is global
solution to (1.1). Moreover, we have

luy —Ullx., — 0 as |w| — oc. (1.8)

The proof of Theorem 1.2 is essentially based on the arguments due
to Cazenave-Scialom [4] for the nonlinear Schrédinger equation (1.2) and
Carvajal-Panthee-Scialom [3] and Panthee-Scialom [23] for the generalized
KdV equation (1.1). Their proofs are based on the combination of the
Strichartz estimate and the Gronwall type lemma. It is not likely that the
Gronwall type lemma used in [4] works for the scaling critical space. Instead
of the Gronwall type lemma, we divide the time interval into subintervals to
obtain various estimates need to prove Theorem 1.2. Although this kind of
technique is used for the energy critical nonlinear Schréodinger equation (see
[8] for example), we meet some technical difficulties due to the presence of
LPLI type norms. We overcome this difficulty by modifying the argument
used in Killip-Kwon-Shao—Visan [17, Theorem 3.1].

We give two examples of g and ¢ satisfying the assumptions of
Theorem 1.2.

Ezample. Let p > 5 and m(g) = 0. In this case, Eq. (1.5) is “linear” (i.e.,
Airy equation). By the space-time estimates for the solution to the Airy equa-
tion (see Proposition 2.5 below), we see that for any ¢ € H*»(R), the solu-
tion U to (1.5) exists globally in time and satisfies the assumption (1.7) in
Theorem 1.2.

Ezample. Let p = 5 and m(g) < 0. In this case, Dodson [7] showed that for
any ¢ € L?(R)(= H*(R)) there uniquely exists a global solution U to (1.5)
satisfying the assumption (1.7) in Theorem 1.2.

Combing Theorem 1.2 and the above examples, we obtain the following:

Corollary 1.3. Let p > 5. Suppose that g satisfies m(g) = 0. Then there exists
wo > 0 such that if w satisfies |w| > wo, then for any ¢ € H» (R), there exists
a unique global solution u, € C([0,00); H*»(R)) N X0 to (1.1).

Corollary 1.4. Let p = 5. Suppose that g satisfies m(g) < 0. Then there exists
wo > 0 such that if w satisfies |w| > wo, then for any ¢ € L*(R), there exists
a unique global solution u, € C([0,00); L?(R)) N X to (1.1).

The plan of this paper is as follows. In Sect. 2, we prove the linear es-
timates for the Airy equation and the nonlinear estimates for the generalized
KdV equation, which are needed to prove Theorem 1.2. Section 3 is devoted
to proving the global existence for (1.1). In Sect. 4, we prove Theorem 1.2.
Finally, in Sect. 5, we consider the subdivision of the time interval used in the
proof of Theorem 1.2.

Throughout this paper we use the following notations and function spaces.
For 1 < p < oo, we denote the Holder conjugate exponent of p by p’. Let
10.]° = (—02)*/? be a Riesz potential of order —s: |3,|° = F~'|¢|°F. For
1<p,qg<ooandT € (0,00], we define the space-time norms:
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I fllze e = f@E ) ze@llLeo,r)
I fllzece, = ILFC2) 2ol m)-

We denote || f[|q 2 and || f|[zzpe by Hf||LgL§ and ”fHL?;Lfa respectively.

2. Preliminaries

In this section, we prove the space-time estimates for a solution to the Airy
equation and the nonlinear estimates for the generalized KdV equation.

2.1. Linear estimates

We first give the definition of admissible triple for the Airy equation.

Definition 2.1. (Admissible triple) Let 1 < p,q < 0o and a € R. We say that
(p,q, «) is an admissible triple if (p, ¢, ) satisfies

2 1 1
- +-=- and a=-——+-. 2.1
poq 2 P g ®1)
Lemma 2.2. Let (p1,q1,a1) and (p2, g2, a2) be admissible triples. Then for any

T € (0,00], there exist positive constants Cy and Co such that the inequalities

1S @llLgerz + (|02 Sl Lo s < Crl|@]l L2 (2.2)
and
t t
|[se-oreon| il [se-oeoa| s
0 L L2 0 Lt L3t
< Call 027 1 35 .

hold for any ¢ € L? and f satisfying |0.|~2f € LiéLqTé, where Cy depends
only on p1, q1 and T, and Cy depends only on p1, p2, q1, q2 and T.

Proof. The homogeneous estimate (2.2) follows from the combination of the
Stein analytic interpolation, the Kato’s smoothing effect [12, Theorem 3.5
(i)] and the Kenig—Ruiz estimate [12, Theorem 3.7 (i)]. The inhomogeneous
estimates (2.3) is obtained by combining the homogeneous estimates (2.2) and
the Christ—Kiselev’s lemma [21, Lemma 2]. Since the proof is now standard,
we omit the detail. 0

Lemma 2.3. (Embedding) Let p > 5 and let o, Bp, D, G be given by

1 2 3 6

=0 5o P10 5p-1)

1 2 . 1 1 3 4

p S(p—-1) 100 ¢ 10 5(p-1)
Then for any T € (0,00], there exists a positive constant C such that the
inequality

g0, g < CHIOI7 10U ull 5. (2.4
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holds for any u satisfying |05|*|0;|Pru € szLgp, where the constant C depends
only onp and T.

Proof. See [12, Lemma 3.15]. O

Lemma 2.4. Assume p > 5. Let «p,0p,D,q be given in Lemma 2.3 and let
(p2, g2, 2) be admissible triple. Then for any T € (0,00], there exist positive
constants C1 and Cy such that the inequalities

110:1°710¢1%7 S ()9l 2 13, < Cull ] o (255)
and
t
0.1 [ (e = O () yag, < Callo* ™yt (260
0 a” b
hold for any for any ¢ € H**(R) and g satisfying |0,|>» > f € LQIZL%, where
Cy depends only on p and T, and Cy depends only on p, pa, g2 and T.
Proof. See [12, Lemma 3.14]. O
Combining Lemmas 2.2 and 2.4, we obtain the following:

Proposition 2.5. Let T € (0, 00] and let X1 be given by (1.6). Then there exists
a positive constants Cy and Csy such that the inequalities
< Coll 0z fllL1 2,

1Sl xz < Cilldl frow m)s
‘ Xr

t
/ S(t—t)o,f(t)dt
0
hold for any ¢ € H*»(R) and f satisfying |0,|*» f € LLL2, where C1 and Co
depend only on p and T.

2.2. Nonlinear estimates

Lemma 2.6. Let o € (0,1), 1,0 € [0,0] satisfy a = a1 + s and let p1,pa,

q1,q2 € (1,00) satisfy 1/p1 + 1/p2 = 1 and 1/q1 + 1/q2 = 1/2. Then for all

T € (0,00], there exists a positive constant C' such that the inequality
11021%(f9) = f1021"9 — 910=|* Fll L1z < Clll0x]* fll o2 a2 (11021 gll pp2 22

holds for any f and g satisfying |0;|** f € LE* L% and |0,|**g € LP2LE | where

C depends only on a1, as,p1,p2,q1,q2 and T.

Proof. See [12, Theorem A.13]. O

Lemma 2.7. Assume a € (0,1). Let p,q,p1,p2,q92 € (1,00) and ¢1 € (1,00
satisfy 1/p = 1/p1+1/p2 and 1/q = 1/q1+1/q2. We also assume F € C1(R; R).
Then for any T € (0,00], there exists a positive constant C such that the
inequality

10:1*F(f)llczrs, < CIF ()l o par 110a]* fll Lr2 po2 (2.7)

holds for any f satisfying F'(f) € LE*LE and |0,|*f € LP2L%, where C
depends only on o, p1,p2,q1,q2 and T.
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Proof. See [5, Proposition 3.1] and [12, Theorem A.6]. Notice that the alter-
native proof of the inequality (2.7) can be found in [19, Lemma 3.7]. O

Proposition 2.8. Let « € [0,1) and p > 2. Then for any T € (0, 00], there exist
positive constants C1 and Cy such that the inequalities

102 (ful”~ )| 1 22 <01HUIIP 1102wl L3 10 (2.8)

O(p 1)L4(p 1)

and

1021 (Jul" = [0~ )| 1 22, (2.9)

< O { (75 o #1107 = 05

Jr(”u”p% 3= Jr”””pf’(p v, 50 1>>
T T

Lz

% (1921 ull s go + 119Vl g 239 ) Nu =l 350 >}
& & L3 L2
hold, where the constants C1 and Co depend on o, p and T.

Proof. The proof follows from an argument similar to that in [19, Lemma 3.4].
Hence we omit the detail. O

3. Proof of global existence

In this section, we prove propositions concerning the global existence and the
convergence of solution to (1.1).
We consider
O+ O2u+ h(t)0,(lulP~tu) =0, (t,z) € R x R,
u(O,x) = ¢($), r €R,

where h : R — R is a given function.

Lemma 3.1. (Local existence) Let p > 5. Then for any ¢ € H**(R), there
exist T = T(¢,h) > 0 and a unique solution u € C([0,T); H*»(R)) to (3.1)
satisfying

[ullxr < Cllll e gy (3-2)
where X is given by (1.6). Furthermore, let u be a mazimal solution to (3.1)
on [0, Trnaz). Then it holds one of the following:

(1) Trmaz = o0,
(i) Trnax < 00 and |ull i 3e-n = = 0.
Tmaz
Proof. See Kenig—Ponce—Vega [12, Theorem 2.17]. O

Proposition 3.2. (Small data global existence I) Assume p > 5 and ¢ €
H#»(R). Then for any A > 0 satisfying ||h||L~ < A there exists ¢ = £(A)
such that
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(i) There exists B > 0 such that if ¢ satisfies HS(t)¢||L5<p_1>/4L5(p_1>/2 <e,
x t

then there exists a unique global solution u to (3.1) such that
||UHL%(p—1)L%<p—1> = 2||S(t)¢||L%<p—1>L%<p—1>a
T t T t
[ullxee < B9l o gy

where Xoo is given by (1.6).
(ii) If u is a global solution to (3.1) and satisfies ||u|\L;(p71)/4L5<p71)/2 < 2,
then '

1S®)el = 7<p 1) 2<p 1) 72||u|| 5<p ”L,%“‘””' (3.3)

Proof. We first prove (i). By Lemma 3.1, there exists a unique solution u €
C([0,T(¢,h)); H**(R)) to (3.1). Let u € C([0, Thnaz); H**(R)) be a maximal
solution to (3.1). Then u satisfies

u(t) = S(t)p — / St — ¢Yh()D (|ulP~ ) ()t
S(t)¢ +w(t)
By Propositions 2.5 and 2.8, we obtain

ol 56 anu)1>_.CUﬂhAW 110z ul| L5 30

5<p 1) §<p 1)

for any 0 < T < Tinax. Since by Lemma 3.1 we have (|0, [*ul|ps 10 < 0o, we
see

||'LUH *(P 1) *(P 1) —CA”’U’H;DO(D 1) g(p 1)° (34)
T
Combining (3.4) and [|S(t)@|| sw-1)/4 ;50-1)/2 < €, we have
T t

HﬂAwling<5+Cmmw

2(p—1) §<p 1°

We now choose € = £(A) so that CA(2¢)P~2 < 1/2 and ¢ < 1/2. Then by the
continuity of the norm, we have

lull 201 -0 < 2¢.

Lé( L2(P 1)

Tmaxz

Therefore

] °<p 1) 5(;7 1)

L4(P D31 < [IS@®)¢| —(p ) +CAH“||p

< ||S(t)¢HLZ(p 1)L—<p 1 +OA(25)p Jull s P N (R

Tmax Tmazx

Since CA(2¢)P~2 < 1/2, we obtain

2(]_7 1) SQHS( )¢|| Z(P 1)L2(p 1) (35)

Tmax Tmazx

el g6,
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Propositions 2.5 and 2.8 imply

Jllxe < Clllen oy + CAIS. g, s
< 16l s ) + CA@E e
< gl ren sy + gl
Letting T" — Thax, we obtain
el < 2C10] e ey (36)

In particular, we have
I|u||1;§“"”];;g,(’"” < 20H¢||HSP(R)-
Hence by the blow up criterion (Lemma 3.1), we see Tjq, = 00. Combining
this with (3.5) and (3.6), we obtain (i).
Next we prove (ii). Inequality (3.4) implies

||S(t)¢||L§(p71)Lt%(pfl) < ||“||L§<p71>Ltg<p71> + Hw”Lﬁ(’””Ltg(”’”

-1
< ”u”Lé(pil)L,%(pil) + CAHUHZ;%(P*UL%(P*I)

<l gm0, oo (1 CAQEP )

Since CA(2¢)P2 < 1, we see

||S(t)¢HL§(p—1)Ltg<p—1> < 2||“||L§<p—1>

5(p_1)-
Lt2<p )

Hence we have (ii). This completes the proof of Proposition 3.2. O

Proposition 3.3. (Small data global existence II) Assume p > 5 and ¢ €
H»(R). Let h € L®(R) satisfy ||h||p~ < A. Let u be a solution to (3.1)
on mazimal interval [0, Tpazr). Suppose further that for ¢ = €(A) > 0 and
B > 0 given in Lemma 3.2, there exists T € (0, Tynaz) such that if u satisfies
HS(t)u(T)HLi(pfl)/4Lf(p71)/2 <e. Then T4 = 00 and u satisfies

30-1 =26,
(1,00

lullx sy < Bllw(T)l g7o0 gy
Proof. Let T be given in the statement of the proposition and let v be a
solution to
{(%v + 03 + h(t+ T)0y(lvP~'v) =0,  (t,z) ER xR,
v(0,2) = u(T, ), z eR.

Hu”L%(p*l)L

Then v can be rewritten as the integral equation
t
v(t) = St)u(T) — / S(t —t")Vh(t' 4+ T)0y(Jv[P~ o) (t)dt’ . (3.7)
0

Since

||S(t)v(0)||Lg(p71)Lg(p,1> = ||S(t)u(T)||L%<p,1>Lg(p,1) <é (3.8)



51 Page 10 of 21 J. Segata and K. Watanabe NoDEA

Proposition 3.2 yields that v exists globally and satisfies

o] < 2SO 2e, (3.9)

<
Lﬁ"““L?(’”” Lm%(p—l)Lt%(p—l) =

lollx.. < BIu(@)l| er - (3.10)

Define u by

Ju(t) (0<t<T),
®) {v(t—T) (T <t<o0).

Then we see that @ satisfies the initial value problem (3.1) on [0, 00). By the
uniqueness of (3.1) (Lemma 3.1), we see that 4 = u and T4, = oo. The
inequalities (3.9) and (3.10) imply

||U||L§<p—1>L(%T<:)1) = ||”||L§<p—1>Lt%<p—1> < 2,
[ullx g,y = 0l < Bllu(T)l 7o gy
This completes the proof of Proposition 3.3. 0

Lemma 3.4. Let p > 5 and T € (0,00]. Then for any f satisfying |0|°* f €
LLLZ, we have

/Otg(wt/)S(tt')axf(t/)dt'ém(g)/o St—t)o. f(t)dt'" in Xrp, (3.11)

as |w| — co.

Proof. Since the proof is now standard, we omit the detail (see [3, Lemma 3.1]
for instance). O

Proposition 3.5. Suppose p > 5 and ¢ € Hs» (R). Let u,, be a mazimal solution
to (1.1) and let U be a solution to (1.5) on mazimal interval [0, Spas). Assume
that for any T satisfying 0 < T < Spaz, U exists on [0,T) for |w| large and

limsup (|ax|5vuw||L;LlTo T ||u||) <00 (3.12)

|w|—o0
holds. Then we have

|uw —Ullxy, — 0 as |w| — oo. (3.13)
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Proof. We first choose A < oo satisfying ||g||p~ < A. Since u,, and U satisfy
(1.1) and (1.5),

(uy, — U)(t)
_ _/ (W) St — ) (o |P~ )t

+ m(g /St—t L([UPr0)at

—/ g(wtS(t — )y (Juy [P uy, — |UPLU)at’

0
t
- [ (gt = mig) st - yanqUp Uy
0
We show ||I3||x, — 0. By Proposition 2.8 and Lemma 3.1,

10s 15 (1T~ 0) | £y 3. < CIUIPS, 1021 Ullzg £y < 00 (3.15)

5<p Ly 5<p 1>||
Hence by Lemma 3.4,

I2)|xr =:Cy, — 0 as |w| — co. (3.16)
Next, we evaluate I;. Propositions 2.5 and 2.8 imply

111 xr
< CA||0: | (Juw P~ u — (U0 |21 22

< CA{ (I175h g+ W03 g ) 10t = D)l

+ <||u“||p5<p b 3o- +”U”p5<p np3e- 1>)

X (|H8m|s”uw||LgL1To + |||aw|3pU||LiL1T°> [uw = Ul 561y g<p1>}-
Ll L2
Set

Mr = [102]*uw || £z L1o + 102 Ull L5 1o + ||Uw||L§<p 2

+||U||L§(P*1)Lgﬂ(p,1)/2' (3.17)

Then we have

11l x7 < CAME™ |uy — Ul|xy- (3.18)
We split the time interval [0, T] into subintervals [t;,t; 1], ¢ =0,...,J —1 and
to = 0,ty = T so that for each intervals [t;, t;11],

CAMP~! <1 (3.19)

[t’La L+1] =2
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hold, where C' is the constant in (3.18), and

[110(° pou||L°L10 T 1102]*7 Ul 5 10

M[tivti+1] [ti.t; [tirtiy1]
Hluwll s Lie-n 3e-n +1U| s Lien de-n - (3.20)
[tirtiy1] [tistiy1]

In Appendix, we show the existence of a subdivision satisfying (3.19). From
(1.1) and (1.5),

(wn — U)(1) (3.21)
= S(t —t:)(uo(t;) — U(ts))

t
- / (@)t — ), (P~ ue, — [UP~10)dt"
t;

- / (g(wt’) — m(g)) S(t — )2, (UP~2U)dt’

i

= S(t - tz)(uw(tz) - U(tz)) + Ii71 + Ii72.

For the first term on the right hand side of (3.21), we apply Proposition 2.5
to obtain

15t = ti)(uw (t:) = Ut xy, 0,y < Clluw(ti) = Ut gon gy (3:22)

=W flleee o T MO fllrgrge AU 500 500 -

where || fl|x;,, ., ) v frivtign)
itit1

Propositions 2.5 and 2.8 1mply

) P p—
HIZJ”X[%"tH—l] < CA{(”“’”LS@ 1>L5(p—1> + ”U” 5<p 1>L5<p 1) )

x [ti tit1] x [titit1]

X|[10a17 (uw = U) g 110

[ty ti 1]

p p—
(anf(p o s0mn FIUPT )

[titiya] * [t t1+1]

(e ulszs, L+ 0 Ul )
L4(p 1>L2(p 1) }
[t L+1]
1
< CAMETL llus —Ullx,,,

X|Juw = U]l 5

it1]

1
< Sl = Ullx oy (3.23)

Combining (3.16), (3.21), (3.22) and (3.23), we have

Huw - UHXt t

[titiy1] irtit1]

1
< Clluw (i) = Ut grow () + 5111w = Ullxge, 0y + Clos
which implies

luw = Ullxy,, oy < 2Cuw (i) = Uil grop gy +2C0- (3.24)
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Noting u,(0) — U(0) = 0, we see from (3.24) with ¢ = 0,

|t — UHX[O,“] <2C,.
In particular,

Juw (t1) = U] gron ) < 2C0- (3.25)
By (3.24) with ¢ = 1 and (3.25), we find
[t = Ullxy,, 4y < 200 +4CC,.
In particular, we obtain
|l (t2) — U(tg)HHsp(R) <2C, +4CC,,.

Repeating this argument, we have

J—1

(2C)7 -1
[uw = Ullx, < ; 1w = Ullxge, 0,0 < 2755 =1 Co
By Appendix A, we see that J < (4CA)5/2M75«(’771)/2. Hence we have (3.13).

O

Proposition 3.6. Assume p > 5 and ¢ € H* (R). Let u,, be a mazimal solution
to (1.1) and let U be a solution to (1.5) on mazimal interval [0, Spmaz). Then
for any T € (0, Spaz), uw exists on [0,T) for |w| large. Furthermore,

luw —Ullx, — 0 as |w| — . (3.26)
Proof. Let A = ||g||r~ and fix T € (0, Spaz). We split the time interval [0, T

into subintervals [t;,t;41], ¢ = 0,...,J — 1 and to = 0, t; = T, where t; are
fixed later. For the interval [¢;, tH_ﬂ we define M, . by
M, by = M0 uollgrge , )+l 50- R L (3.27)
i+1

By the Duhamel formula,

uy(t) = S(t — t;)uy(t;) — /t g(wt")S(t — )0y (Juw|P ) (t)dt'  (3.28)

for t € [t;, t;+1]. Propositions 2.5 and 2.8 yield

M 4 S IS = 1) [02] P ue(t )HL5L[1t ) (3.29)
+11S(t = ti)uw(t; HL (-1 ;wtwli] + CAM 4, )"
<1156 — )10 (uot) = Ut e,
IS = )0 U ) nangy
HISE =) (uo(ts) = U@ 301, 500
@ (titigal
+|[S(t — ti)U(ti)‘|L4(p 1>Lﬁ<ptl;i] + CA( [t“tlﬂ])p'
We now choose t; so that for each 4, the inequalities
Mg .0y = 10: |s”UHLoL[1t0 tre1) +U|l s Lie-n 3o <n (3.30)

[tirtital
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hold, where 1 > 0 is fixed later. The same argument as that in Appendix A
yields that J < Cnp=5®=D/2(Mge )5w=1/2 where Mg® := ||[0,|** U 15 110 +
HU||L2<P‘1)/4L5T<P‘”/2'

By an argument similar to the proof of (3.29),

”S(t - ti)|a$|spU(ti)HLiL[ltoi,tiJrl] + H‘S’(t - ti)U(ti)HL%(pfﬂL%(p—l)
* [tistital
= M[(zjvti+1] + CA(MOO )p < n+ C’Anp

[ti,tiga]

(3.31)

We choose € > 0 so that CAnP~! < 1. Then we see that the right hand side of
(3.31) is bounded by 2n. Further, choosing 1 so small that C A(61)P~! < 1/2.
Then we obtain

p—1
s 1
cA {2<||S(tti>az| U lgap , | HISE=DUEN 360 gomn +n)} <5

[tistigal
(3.32)
Noting u,(to) — U(tg) = 0, we find
M[u017t1] < |||8w‘5p5(t)¢”LiL[lat1] + HS(t)(z)||L§(p—l)L%(p—]l) + CA(M[Q(;,tl])p'
it
(3.33)

By (3.32),

p—1
1
ca{2 (o rsOolisny,, + 15O 00,50 0) ) <3 @3

[0,t1] (0,611

By (3.33), (3.34) and the continuity of the norm, we have

Mg, <2 (|||aw8p5(t)¢|LgL10 + S(t)¢||L§<p1>Lg(p1)> < Cllél gron my-

[0,t1] 0,611
(3.35)

We show T}, > t1 by contradiction argument. We assume that T}, < t.
Then by (3.35),

||uw”L§(”_l’L§“’_l) < M[uo),tl] < C||¢HHSP(R)~
Hence by the blow up criterion for (1.1) (Lemma 3.1), we see Tyq, = 00 which
contradicts Tyq: < t1. Hence Th,q. > t1. Furthermore, by Proposition 3.5, we
obtain

[uw = Ullxi,,, — 0 as |w| — occ. (3.36)

Next we consider the case ¢ = 1. By Proposition 2.5,

15 (t = £2)102 |7 (e (t1) = U(t2)) | s o

[t1,t2]

HIS(E =) (uw () = UG 5600, 301

[t1,t2]
< lluw (t1) = Ut gren ()

< luw = Ullx, (3.37)

to.t1]”
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By (3.29) with ¢ = 1, (3.36) and (3.37), for |w| sufficiently large,

M oy IS0 = 0)10e U (12 g,

t2]
HISE = t)UE 36010 50010 + CAME, 1) + o

[t1,t2]

where C,, satisfies C,, — 0 as |w| — oo. On the other hand by (3.32) with
i=1,

p—1
1
CA {2 <||S(t - t1)|8x|SpU(tl)“L2L[1t01,t2] +|S(t — tl)U(tl)HLg(p_l)L%(p_l) +Cw>} <§

[t1,t2]
Hence by an argument similar to that in the case ¢ = 0, we see that u,, exists

on [tg, ta] for |w| large, and

luw — U||X[t1,t2] —0 as |w| — 0.

Since J is finite, we can repeat this argument J times. Hence we have that
for |w| sufficiently large, u,, exists on [0, T] and satisfies (3.26). This completes
the proof of Proposition 3.6. O

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Let ey = €(A) be given in Proposition

3.2 and let € € (0,&¢). By the assumption ||U||L5(p_1>/4 s(p—1)72 < 00, for € > 0,
T t

we can choose T > 0 sufficiently large so that

L

01, g0, 500 < 3 (4.1)
holds. Let U(t) := U(t + T). By (4.1),
101 500, 360 = 10160 300 < 7
L L? L} L& e 4
Hence by Proposition 3.2 (ii),
||S(t)U(T)||L§<p—1)L§(p—1) = ”S(t)[j(o)”L?V“Ltg“’*l) (4.2)
< 2”UHL§(“_”L§“’_” = 2HU||L§<;)—1>L(%T(:>1) < g
Applying Proposition 3.3, we see
1lx ey < BIU) v - (4.3)
Proposition 3.6 yields
Sp [t = U op ey — 0 a5 Jo] = oo. (4.4)

0<t<T
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By Proposition 2.5, (4.2) and (4.4), we find that if |w| is sufficiently large, then
||S(t)uw(T)||L§(p_1>L§(p_1)
< 15@uw(T) = SOUD 301, 30-0 + ISOUD)]
k3 T

3

2

Lw%(p—l)Lj—g(p—l)
< Cllun(T) — U(T)HHSP(R) +
<e.

Hence by Proposition 3.3, we see that if |w| is sufficiently large, then u,, exists
globally and

HUwHL;(pfl)L(%T(Z;) < 2, (4.5)
el Xz oy < Blluw (D)l grep (g)- (4.6)

Next we show (1.8). Set Mo = sup [|U(t)| s+p(r)- By (4.4) and (4.6), we
0<t<T

have for wy > 0 sufficiently large,

up sup ()]0 s (@7)
|w|>wo t>0
< sup sup (Bl gomy + S D (®) = U(E) o)
lw|>wo t>T |w|>wo 0<t<T
+ sup U gen
0<t<T
<B s|up ||uw(T)||H5p(R) + 1+ My =: M.
|w[>wo

By the Duhamel formula,
uy(T'+1) =U(T +1t) = S(t)(uo(T) = U(T))

_/()ts(t_T_t/)g(w(T+t/))aw(|uw [P~ g ) (T+t")dt!

t
+m(g)/ S(t =T — )0, ([UP~"U)(T +')dt’
0
=11+ 1+ Is. (48)

We evaluate the X, norm for I;, ¢+ = 1,2, 3. For the term Iy, we apply Propo-
sition 2.5 and (4.4) to conclude

[11llxe < Cllun(T) = UD)llgepy — 0 as || — oc. (4.9)
By Propositions 2.5 and 2.8, and the inequality (4.6),
-1
||IQ||Xoo S CAHUW(T + ')Hpé(p_l) §(p_1) ||UW(T + >||Xoo
L2 L2
= CAlluo |, [0 PP
B R L (4.10)

< CAQ2e)P ™ Bluw(T)ll gon (m)
< CA(2¢)P"'BM;.
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In a similar way, by Propositions 2.5 and 2.8 and the inequalities (4.1), (4.3)
and (4.6),

—1
||I3||Xoo S CAHU(T + ')Hi%(p_l)L%(p_l) ||U(T + )||Xoc
—1
= CAIUI sy 5 IV xer
z (T,00)
(4.11)

A
<CA(Z) BIUDlgo @

<CA (Z)’H BM,.

Let § > 0 be an arbitrary number. Then by (4.9), for |w| sufficiently large, we
have

1)
H1llx < 5- (4.12)

Furthermore, we choose € > 0 so that CABeP~(My + M;) < §/2. Then by
(4.8), (4.10), (4.11) and (4.12),

[t = Ullxp oy = Nlue(T + ) = U(T + )l x.

4.13
<Ml + IElxe + 100, <5 1

On the other hand, by Proposition 3.6,
luw —Ullx, — 0 as |w| — oc. (4.14)

Collecting (4.13) and (4.14), we obtain (1.8). This completes the proof of The-
orem 1.2.

5. Subdivision of time interval

In this section, we show that for any T' € (0, c0), there exists a positive integer
J satisfying J < (4(3'14)5/2M;(p_1)/2 and a sequence 0 =tg <t; <--- <ty =
T such that [0,T] = Uj;ol I;, I = [t;,t;41] and

1

p—1 -

< CAM[ti,ti+1] < 5

where C' is the constant in (3.19) and My, ;.. ) is defined by (3.20). We may
assume CAM, [%TTl] > 1/2 unless there is nothing to prove.

We first choose t; € [0,T] so that typ < t; and C’AM[I;;;] = 1/2. Simi-

larly, if CAMEZ;%] > 1/2, then we choose t;11 € [0,T] so that ¢; < ¢;41 and

C’AM[’;;;H] = 1/2. We now show that J < (4CA)*2M2P /2 by the con-

tradiction argument. Suppose (4014)5/2M;(p*1)/2 < J < oo. We choose an

integer J' so that J' = J if J < oo and J' = (4CA)>2MP V2 4 1if J = .
For 0 < i < J', define

fE @) = 10w (s @) 1oges ria)s £77(2) = 102U @) [ Lgoge, )

95 (@) = lluw (5 25000y 95 (@) = UG 500
£ £

forany 0<i<J-—1,

P

s .
[ti,tita] [tirtita]
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Since

2
3-1) ey
1) = . 2y
Huw“Lz%(p—l)Li(p 1) = H(Iuw( 71.)||L2(p1)((0,tjx))>

B
H(Z 192 (@) 10~ ”)

L%(p—l)

5(p_1)’
Lé(P )
we have

TzH(‘fw(x)PO)% H(Zm |)
(Zgz E% )>w_1)

5(172—1)
(z o=@

(5.1)

L3

L%(p—l)

'B

By the Holder inequality, we obtain

1 i1 J'—1 1
<4a4> TS M <

4 Sp, W g
5 Z |||a | Pu ||L5L10 t“t1+1]
i=0

1

— 5
4 E s 5
5< 1. pU||L"Ltm[ti¢i+1]
=0
4
5(p—1
55 “"H4<p_1) i (p—1)
4(p—1)L%(1J—1)[t tisi]
i istitl

4
5(p—1
5p—9 HAL(;D 1) ) (p—1)
(»-1) . S(»-1) :
L} P L? - [titita)

J’ 5(p—1)
The right hand side of the above inequality can be rewritten as

(Z'f“ )

—|— 5(17 1)

4 é
5 5

L3

(5 or)

<Z|g e 1))"’“"”

L3

L?(z’fl)
_5p—9

+ 0(12 1)

5G-D
(zmz i)

-’
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The Holder inequality and (5.1) yield
1 J —1 1
1 p—1 9 i0
e <
(40)" 7 =0 (Zmn )

1=0
—|— 5(p 1)

(Z =) ’

5
LIE

_ 5(172*1)
Z \g S(p—1)
2
(Z 197 () <P‘1>)5(p_1)

< (J')5=D M.

Hence we obtain J' < (4CA)5/2M;(p71)/2. This contradicts the definition of
J’, which proves the claim.

5
L:L'

5(p-1
L;}(p )

+ O(P 1)

5 (p—1
Lé(P )
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