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The generalized Korteweg-de Vries equation
with time oscillating nonlinearity in scale
critical Sobolev space
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Abstract. We consider the generalized Korteweg-de Vries (gKdV) equa-
tion with the time oscillating nonlinearity:

∂tu + ∂3
xu + g(ωt)∂x(|u|p−1u) = 0, (t, x) ∈ R × R.

Under the suitable assumption on g, we show that if the nonlinear term
is mass critical or supercritical i.e., p ≥ 5 and u(0) ∈ Ḣsp , where sp =
1/2 − 2/(p − 1) is a scale critical exponent, then there exists a unique
global solution to (gKdV) provided that |ω| is sufficiently large. We also
obtain the behavior of the solution to (gKdV) as |ω| → ∞.
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35B40.
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1. Introduction

We consider the generalized Korteweg-de Vries (gKdV) equation with the time
oscillating nonlinearity:{

∂tu + ∂3
xu + g(ωt)∂x(|u|p−1u) = 0, (t, x) ∈ R × R,

u(0, x) = φ(x), x ∈ R,
(1.1)

where u : R × R → R is an unknown function, φ : R → R is a given function
and p > 1. The function g ∈ C1(R;R) is a given periodic function with period
L > 0.

The class of equations (1.1) arises in several fields of physics. Equation
(1.1) is a generalization of the notable Korteweg-de Vries equation which mod-
els long waves propagating in a channel [16] and the transitional KdV equation
which describes the solitary waves propagating on the thermocline in a lake
[14].
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For the case where g is constant, the local well-posedness of the initial
value problem (1.1) in a scale subcritical Sobolev space Hs(R), s > sp has
been studied by many authors [2,9–13,20,24], where sp = 1/2 − 2/(p − 1) is
a scale critical exponent. A fundamental work on the local well-posedness is
due to Kenig–Ponce–Vega [12]. They proved that (1.1) is locally well-posed
in Hs(R) with s > 3/4 (p = 2), s ≥ 1/4 (p = 3), s ≥ 1/12 (p = 4) and
s ≥ sp (p ≥ 5). Concerning the well-posedness of (1.1) in the scale critical Ḣsp

space, Kenig–Ponce–Vega [12] proved the local and (small data) global well-
posedness when p ≥ 5. Notice that Farah–Pastor [9] simplified Kenig–Ponce–
Vega’s proof. Later on, the above results were extended to a homogeneous
Besov space Ḃ

sp

2,∞ by Strunk [24] (p ≥ 5).
Since the proof in [12] also works for the case where g is not constant,

the local well-posedness for (1.1) with a non constant g follows from [12]. On
the other hand, Nunes [22] showed the global existence for (1.1) with p = 2
in H1(R) under the assumption that g ∈ C(R;R) and g′ ∈ L1

loc(R). Notice
that Nunes’s proof is based on the almost conservation quantities for (1.1) and
applicable for the arbitrary large data in H1 for the defocusing case, i.e, g is
strictly negative and for the focusing case, i.e, g is strictly positive with the
mass sub-critical exponent 1 < p < 5. Furthermore, in Martel–Merle [18], a
family of solutions to (1.1) which blow up in finite time was constructed for
the case where g is positive constant (focusing) and p = 5 (mass critical).

In this paper, we study the global existence and the behavior of solution
uω to (1.1) as |ω| → ∞. We first review the known results on the nonlinear
Schrödinger equation with the time oscillating nonlinearity:{

i∂tu + Δu + g(ωt)(|u|p−1u) = 0, (t, x) ∈ R × R
n,

u(0, x) = φ(x), x ∈ R
n,

(1.2)

where p > 1, u : R
n × R → C is an unknown function, φ : R

n → C is a
given function, and g ∈ C1(R;R) is a given periodic function with a period
L > 0. Abdullaev–Caputo–Kraeukel–Malomed [1] and Konotop–Pacciani [15]
investigated the effect of the time oscillation term g(ωt) in the global behavior
of solution to (1.2) via the numerical methods. Cazenave–Scialom [4] proved
that if φ ∈ H1(Rn) and 1 + 4/n ≤ p < p∗ with p∗ = ∞ if n = 1, 2 and
p∗ = 1 + 4/(n − 2) if n ≥ 3, then, the solution uω converges to the solution
U to {

i∂tU + ΔU + m(g)|U |p−1U = 0, (t, x) ∈ R × R
n,

U(0, x) = φ(x), x ∈ R
n (1.3)

as |ω| → ∞, where m(g) is given by

m(g) =
1
L

∫ L

0

g(s)ds. (1.4)

Furthermore, Fang–Han [8] showed the similar result for the case where φ ∈
H1(Rn) and p is energy critical, i.e., p = 1 + 4/(n − 2) (n ≥ 3). Damergi–
Goubet [6] showed that the oscillations do not prevent the blow up for any
ω ∈ R for the case where n = 2, p ≥ 3 and g(ωt) = cos2(ωt).
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Concerning the generalized KdV equation (1.1), Carvajal–Panthee–
Scialom [3] have shown that if φ ∈ H1(R) and p is mass critical, i.e., p = 5,
then the solution uω to (1.1) converges to the solution U to{

∂tU + ∂3
xU + m(g)∂x(|U |p−1U) = 0, (t, x) ∈ R × R,

U(0, x) = φ(x), x ∈ R
(1.5)

as |ω| → ∞, where m(g) is given by (1.4). Moreover, Panthee–Scialom [23]
proved the similar result for the case where φ ∈ H1(R) and p is mass super-
critical, i.e., p > 5.

In the present paper, we shall show that if φ ∈ Ḣsp(R), sp = 1/2 − 2/
(p − 1), and p is mass critical or supercritical, i.e., p ≥ 5, then the solution uω

to (1.1) exists globally and converges to the solution U to (1.5) as |ω| → ∞.
Since H1 ⊂ Ḣsp , our result is an improvement of [3,23] for the case p ≥ 5.

Before we state our main theorem, we introduce several notations.
Throughout this paper, we denote sp := 1/2 − 2/(p − 1). For T ∈ (0,∞],
the norm ‖ · ‖XT

is defined by

‖f‖XT
:= ‖f‖L∞

T Ḣsp + ‖|∂x|spf‖L5
xL10

T
+ ‖f‖

L
5
4 (p−1)
x L

5
2 (p−1)
T

, (1.6)

where ‖f‖Lp
T

= ‖f‖Lp
(0,T )

. The norm defined by (1.6) is used in Farah–Pastor
[9]. Let {S(t)}t∈R be a unitary group generated by −∂3

x:

(S(t)φ)(x) =
1√
2π

∫ ∞

−∞
eixξ+itξ3

φ̂(ξ)dξ.

Definition 1.1. (Solution) Let T ∈ (0,∞]. We say that u is a (mild) solution
to (1.1) on [0, T ) in Ḣsp if u ∈ C([0, T ); Ḣsp(R)) ∩ XT and satisfies

u(t) = S(t)φ −
∫ t

0

S(t − t′)g(ωt′)∂x(|u|p−1u)(t′)dt′.

The solution to (1.5) is defined in a similar way.

For the solution u to (1.1), we define

Tmax := sup{T ∈ (0,∞] | Solution u to (1.1) can be extended to [0, T )}.

We say that u is a maximal solution to (1.1) if u is a solution to (1.1) on
[0, Tmax). Similarly, for the solution U to (1.5), we define

Smax := sup{T ∈ (0,∞] | Solution U to (1.5) can be extended to [0, T )}.

We say that U is a maximal solution to (1.5) if U is a solution to (1.5) on
[0, Smax).

The main result of this paper is as follows.

Theorem 1.2. Assume p ≥ 5 and φ ∈ Ḣsp(R). Let uω be a maximal solu-
tion to (1.1) and let U be a solution to (1.5) on maximal interval [0, Smax).
Furthermore, we assume Smax = ∞ and

‖U‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

< ∞. (1.7)
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Then there exists ω0 > 0 such that if ω satisfies |ω| > ω0, then uω is global
solution to (1.1). Moreover, we have

‖uω − U‖X∞ −→ 0 as |ω| → ∞. (1.8)

The proof of Theorem 1.2 is essentially based on the arguments due
to Cazenave–Scialom [4] for the nonlinear Schrödinger equation (1.2) and
Carvajal–Panthee–Scialom [3] and Panthee–Scialom [23] for the generalized
KdV equation (1.1). Their proofs are based on the combination of the
Strichartz estimate and the Gronwall type lemma. It is not likely that the
Gronwall type lemma used in [4] works for the scaling critical space. Instead
of the Gronwall type lemma, we divide the time interval into subintervals to
obtain various estimates need to prove Theorem 1.2. Although this kind of
technique is used for the energy critical nonlinear Schrödinger equation (see
[8] for example), we meet some technical difficulties due to the presence of
Lp

xLq
T type norms. We overcome this difficulty by modifying the argument

used in Killip–Kwon–Shao–Visan [17, Theorem 3.1].
We give two examples of g and φ satisfying the assumptions of

Theorem 1.2.

Example. Let p ≥ 5 and m(g) = 0. In this case, Eq. (1.5) is “linear” (i.e.,
Airy equation). By the space-time estimates for the solution to the Airy equa-
tion (see Proposition 2.5 below), we see that for any φ ∈ Ḣsp(R), the solu-
tion U to (1.5) exists globally in time and satisfies the assumption (1.7) in
Theorem 1.2.

Example. Let p = 5 and m(g) < 0. In this case, Dodson [7] showed that for
any φ ∈ L2(R)(= Hs5(R)) there uniquely exists a global solution U to (1.5)
satisfying the assumption (1.7) in Theorem 1.2.

Combing Theorem 1.2 and the above examples, we obtain the following:

Corollary 1.3. Let p ≥ 5. Suppose that g satisfies m(g) = 0. Then there exists
ω0 > 0 such that if ω satisfies |ω| > ω0, then for any φ ∈ Ḣsp(R), there exists
a unique global solution uω ∈ C([0,∞); Ḣsp(R)) ∩ X∞ to (1.1).

Corollary 1.4. Let p = 5. Suppose that g satisfies m(g) < 0. Then there exists
ω0 > 0 such that if ω satisfies |ω| > ω0, then for any φ ∈ L2(R), there exists
a unique global solution uω ∈ C([0,∞);L2(R)) ∩ X∞ to (1.1).

The plan of this paper is as follows. In Sect. 2, we prove the linear es-
timates for the Airy equation and the nonlinear estimates for the generalized
KdV equation, which are needed to prove Theorem 1.2. Section 3 is devoted
to proving the global existence for (1.1). In Sect. 4, we prove Theorem 1.2.
Finally, in Sect. 5, we consider the subdivision of the time interval used in the
proof of Theorem 1.2.

Throughout this paper we use the following notations and function spaces.
For 1 ≤ p ≤ ∞, we denote the Hölder conjugate exponent of p by p′. Let
|∂x|s = (−∂2

x)s/2 be a Riesz potential of order −s: |∂x|s = F−1|ξ|sF . For
1 ≤ p, q ≤ ∞ and T ∈ (0,∞], we define the space-time norms:
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‖f‖Lq
T Lp

x
= ‖‖f(t, ·)‖Lp

x(R)‖Lq
t (0,T ),

‖f‖Lp
xLq

T
= ‖‖f(·, x)‖Lq

t (0,T )‖Lp
x(R).

We denote ‖f‖Lq∞Lp
x

and ‖f‖Lp
xLq∞ by ‖f‖Lq

tLp
x

and ‖f‖Lp
xLq

t
, respectively.

2. Preliminaries

In this section, we prove the space-time estimates for a solution to the Airy
equation and the nonlinear estimates for the generalized KdV equation.

2.1. Linear estimates

We first give the definition of admissible triple for the Airy equation.

Definition 2.1. (Admissible triple) Let 1 ≤ p, q ≤ ∞ and α ∈ R. We say that
(p, q, α) is an admissible triple if (p, q, α) satisfies

2
p

+
1
q

=
1
2

and α = −1
p

+
2
q
. (2.1)

Lemma 2.2. Let (p1, q1, α1) and (p2, q2, α2) be admissible triples. Then for any
T ∈ (0,∞], there exist positive constants C1 and C2 such that the inequalities

‖S(t)φ‖L∞
T L2

x
+ ‖|∂x|α1S(t)φ‖L

p1
x L

q1
T

≤ C1‖φ‖L2
x

(2.2)

and ∥∥∥∥
∫ t

0

S(t − t′)f(·, t)dt′
∥∥∥∥

L∞
T L2

x

+
∥∥∥∥|∂x|α1

∫ t

0

S(t − t′)f(·, t)dt′
∥∥∥∥

L
p1
x L

q1
T

(2.3)

≤ C2‖|∂x|−α2f‖
L

p′
2

x L
q′
2

T

hold for any φ ∈ L2 and f satisfying |∂x|−α2f ∈ L
p′
2

x L
q′
2

T , where C1 depends
only on p1, q1 and T , and C2 depends only on p1, p2, q1, q2 and T .

Proof. The homogeneous estimate (2.2) follows from the combination of the
Stein analytic interpolation, the Kato’s smoothing effect [12, Theorem 3.5
(i)] and the Kenig–Ruiz estimate [12, Theorem 3.7 (i)]. The inhomogeneous
estimates (2.3) is obtained by combining the homogeneous estimates (2.2) and
the Christ–Kiselev’s lemma [21, Lemma 2]. Since the proof is now standard,
we omit the detail. �

Lemma 2.3. (Embedding) Let p ≥ 5 and let αp, βp, p̃, q̃ be given by

αp =
1
10

− 2
5(p − 1)

, βp =
3
10

− 6
5(p − 1)

,

1
p̃

=
2

5(p − 1)
+

1
10

,
1
q̃

=
3
10

− 4
5(p − 1)

.

Then for any T ∈ (0,∞], there exists a positive constant C such that the
inequality

‖u‖
L

5
4 (p−1)
x L

5
2 (p−1)
T

≤ C‖|∂x|αp |∂t|βpu‖Lp̃
xLq̃

T
. (2.4)
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holds for any u satisfying |∂x|αp |∂t|βpu ∈ Lp̃
xLq̃

T , where the constant C depends
only on p and T .

Proof. See [12, Lemma 3.15]. �

Lemma 2.4. Assume p ≥ 5. Let αp, βp, p̃, q̃ be given in Lemma 2.3 and let
(p2, q2, α2) be admissible triple. Then for any T ∈ (0,∞], there exist positive
constants C1 and C2 such that the inequalities

‖|∂x|αp |∂t|βpS(t)φ‖Lp̃
xLq̃

T
≤ C1‖φ‖Ḣsp (2.5)

and

‖|∂x|αp |∂t|βp

∫ t

0

S(t − t′)f(t′)dt′‖Lp̃
xLq̃

T
≤ C2‖|∂x|sp−α2f‖

L
p′
2

x L
q′
2

T

(2.6)

hold for any for any φ ∈ Ḣsp(R) and g satisfying |∂x|sp−α2f ∈ L
p′
2

x L
q′
2

T , where
C1 depends only on p and T , and C2 depends only on p, p2, q2 and T .

Proof. See [12, Lemma 3.14]. �

Combining Lemmas 2.2 and 2.4, we obtain the following:

Proposition 2.5. Let T ∈ (0,∞] and let XT be given by (1.6). Then there exists
a positive constants C1 and C2 such that the inequalities

‖S(t)φ‖XT
≤ C1‖φ‖Ḣsp (R),∥∥∥∥

∫ t

0

S(t − t′)∂xf(t′)dt′
∥∥∥∥

XT

≤ C2‖|∂x|spf‖L1
xL2

T

hold for any φ ∈ Ḣsp(R) and f satisfying |∂x|spf ∈ L1
xL2

T , where C1 and C2

depend only on p and T .

2.2. Nonlinear estimates

Lemma 2.6. Let α ∈ (0, 1), α1, α2 ∈ [0, α] satisfy α = α1 + α2 and let p1, p2,
q1, q2 ∈ (1,∞) satisfy 1/p1 + 1/p2 = 1 and 1/q1 + 1/q2 = 1/2. Then for all
T ∈ (0,∞], there exists a positive constant C such that the inequality

‖|∂x|α(fg) − f |∂x|αg − g|∂x|αf‖L1
xL2

T
≤ C‖|∂x|α1f‖L

p1
x L

q1
T

‖|∂x|α2g‖L
p2
x L

q2
T

holds for any f and g satisfying |∂x|α1f ∈ Lp1
x Lq1

T and |∂x|α2g ∈ Lp2
x Lq2

T , where
C depends only on α1, α2, p1, p2, q1, q2 and T .

Proof. See [12, Theorem A.13]. �

Lemma 2.7. Assume α ∈ (0, 1). Let p, q, p1, p2, q2 ∈ (1,∞) and q1 ∈ (1,∞]
satisfy 1/p = 1/p1+1/p2 and 1/q = 1/q1+1/q2. We also assume F ∈ C1(R;R).
Then for any T ∈ (0,∞], there exists a positive constant C such that the
inequality

‖|∂x|αF (f)‖Lp
xLq

T
≤ C‖F ′(f)‖L

p1
x L

q1
T

‖|∂x|αf‖L
p2
x L

q2
T

(2.7)

holds for any f satisfying F ′(f) ∈ Lp1
x Lq1

T and |∂x|αf ∈ Lp2
x Lq2

T , where C
depends only on α, p1, p2, q1, q2 and T .
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Proof. See [5, Proposition 3.1] and [12, Theorem A.6]. Notice that the alter-
native proof of the inequality (2.7) can be found in [19, Lemma 3.7]. �

Proposition 2.8. Let α ∈ [0, 1) and p > 2. Then for any T ∈ (0,∞], there exist
positive constants C1 and C2 such that the inequalities

‖|∂x|α(|u|p−1u)‖L1
xL2

T
≤ C1‖u‖p−1

L
5
4 (p−1)
x L

5
4 (p−1)
T

‖|∂x|αu‖L5
xL10

T
(2.8)

and

‖|∂x|α(|u|p−1u − |v|p−1v)‖L1
xL2

T
(2.9)

≤ C2

{(
‖u‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
T

+ ‖v‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
T

)
‖|∂x|α(u − v)‖L5

xL10
T

+
(

‖u‖p−2

L
5
4 (p−1)
x L

5
2 (p−1)
T

+ ‖v‖p−2

L
5
4 (p−1)
x L

5
2 (p−1)
T

)

×
(
‖|∂x|αu‖L5

xL10
T

+ ‖|∂x|αv‖L5
xL10

T

)
‖u − v‖

L
5
4 (p−1)
x L

5
2 (p−1)
T

}

hold, where the constants C1 and C2 depend on α, p and T .

Proof. The proof follows from an argument similar to that in [19, Lemma 3.4].
Hence we omit the detail. �

3. Proof of global existence

In this section, we prove propositions concerning the global existence and the
convergence of solution to (1.1).

We consider{
∂tu + ∂3

xu + h(t)∂x(|u|p−1u) = 0, (t, x) ∈ R × R,
u(0, x) = φ(x), x ∈ R,

(3.1)

where h : R → R is a given function.

Lemma 3.1. (Local existence) Let p ≥ 5. Then for any φ ∈ Ḣsp(R), there
exist T = T (φ, h) > 0 and a unique solution u ∈ C([0, T ); Ḣsp(R)) to (3.1)
satisfying

‖u‖XT
≤ C‖φ‖Ḣsp (R), (3.2)

where XT is given by (1.6). Furthermore, let u be a maximal solution to (3.1)
on [0, Tmax). Then it holds one of the following:

(i) Tmax = ∞,
(ii) Tmax < ∞ and ‖u‖

L
5
4 (p−1)
x L

5
2 (p−1)
Tmax

= ∞.

Proof. See Kenig–Ponce–Vega [12, Theorem 2.17]. �

Proposition 3.2. (Small data global existence I) Assume p ≥ 5 and φ ∈
Ḣsp(R). Then for any A > 0 satisfying ‖h‖L∞ ≤ A there exists ε = ε(A)
such that
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(i) There exists B > 0 such that if φ satisfies ‖S(t)φ‖
L

5(p−1)/4
x L

5(p−1)/2
t

≤ ε,
then there exists a unique global solution u to (3.1) such that

‖u‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

≤ 2‖S(t)φ‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

,

‖u‖X∞ ≤ B‖φ‖Ḣsp (R),

where X∞ is given by (1.6).
(ii) If u is a global solution to (3.1) and satisfies ‖u‖

L
5(p−1)/4
x L

5(p−1)/2
t

≤ 2ε,
then

‖S(t)φ‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

≤ 2‖u‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

. (3.3)

Proof. We first prove (i). By Lemma 3.1, there exists a unique solution u ∈
C([0, T (φ, h)); Ḣsk(R)) to (3.1). Let u ∈ C([0, Tmax); Ḣsk(R)) be a maximal
solution to (3.1). Then u satisfies

u(t) = S(t)φ −
∫ t

0

S(t − t′)h(t′)∂x(|u|p−1u)(t′)dt′

=: S(t)φ + w(t).

By Propositions 2.5 and 2.8, we obtain

‖w‖
L

5
4 (p−1)
x L

5
2 (p−1)
T

≤ CA‖u‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
T

‖|∂x|spu‖L5
xL10

T

for any 0 < T < Tmax. Since by Lemma 3.1 we have ‖|∂x|spu‖L5
xL10

T
< ∞, we

see
‖w‖

L
5
4 (p−1)
x L

5
2 (p−1)
T

≤ CA‖u‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
T

. (3.4)

Combining (3.4) and ‖S(t)φ‖
L

5(p−1)/4
x L

5(p−1)/2
t

≤ ε, we have

‖u‖
L

5
4 (p−1)
x L

5
2 (p−1)
T

≤ ε + CA‖u‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
T

.

We now choose ε = ε(A) so that CA(2ε)p−2 < 1/2 and ε < 1/2. Then by the
continuity of the norm, we have

‖u‖
L

5
4 (p−1)
x L

5
2 (p−1)
Tmax

≤ 2ε.

Therefore

‖u‖
L

5
4 (p−1)
x L

5
2 (p−1)
Tmax

≤ ‖S(t)φ‖
L

5
4 (p−1)
x L

5
2 (p−1)
Tmax

+ CA‖u‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
Tmax≤ ‖S(t)φ‖

L
5
4 (p−1)
x L

5
2 (p−1)
Tmax

+ CA(2ε)p−2‖u‖
L

5
4 (p−1)
x L

5
4 (p−1)
Tmax

.

Since CA(2ε)p−2 < 1/2, we obtain

‖u‖
L

5
4 (p−1)
x L

5
2 (p−1)
Tmax

≤ 2‖S(t)φ‖
L

5
4 (p−1)
x L

5
2 (p−1)
Tmax

. (3.5)
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Propositions 2.5 and 2.8 imply

‖u‖XT
≤ C‖φ‖Ḣsp (R) + CA‖u‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
T

‖u‖XT

≤ C‖φ‖Ḣsp (R) + CA(2ε)p−1‖u‖XT

≤ C‖φ‖Ḣsp (R) +
1
2
‖u‖XT

.

Letting T → Tmax, we obtain

‖u‖XTmax
≤ 2C‖φ‖Ḣsp (R). (3.6)

In particular, we have

‖u‖
L

5
4 (p−1)
x L

5
2 (p−1)
Tmax

≤ 2C‖φ‖Ḣsp (R).

Hence by the blow up criterion (Lemma 3.1), we see Tmax = ∞. Combining
this with (3.5) and (3.6), we obtain (i).

Next we prove (ii). Inequality (3.4) implies

‖S(t)φ‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

≤ ‖u‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

+ ‖w‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

≤ ‖u‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

+ CA‖u‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
t≤ ‖u‖

L
5
4 (p−1)
x L

5
2 (p−1)
t

(1 + CA(2ε)p−2).

Since CA(2ε)p−2 < 1, we see

‖S(t)φ‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

≤ 2‖u‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

.

Hence we have (ii). This completes the proof of Proposition 3.2. �

Proposition 3.3. (Small data global existence II) Assume p ≥ 5 and φ ∈
Ḣsp(R). Let h ∈ L∞(R) satisfy ‖h‖L∞ ≤ A. Let u be a solution to (3.1)
on maximal interval [0, Tmax). Suppose further that for ε = ε(A) > 0 and
B > 0 given in Lemma 3.2, there exists T ∈ (0, Tmax) such that if u satisfies
‖S(t)u(T )‖

L
5(p−1)/4
x L

5(p−1)/2
t

≤ ε. Then Tmax = ∞ and u satisfies

‖u‖
L

5
4 (p−1)
x L

5
2 (p−1)
(T,∞)

≤ 2ε,

‖u‖X(T,∞) ≤ B‖u(T )‖Ḣsp (R).

Proof. Let T be given in the statement of the proposition and let v be a
solution to{

∂tv + ∂3
xv + h(t + T )∂x(|v|p−1v) = 0, (t, x) ∈ R × R,

v(0, x) = u(T, x), x ∈ R.

Then v can be rewritten as the integral equation

v(t) = S(t)u(T ) −
∫ t

0

S(t − t′)h(t′ + T )∂x(|v|p−1v)(t′)dt′. (3.7)

Since
‖S(t)v(0)‖

L
5
4 (p−1)
x L

5
2 (p−1)
t

= ‖S(t)u(T )‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

≤ ε, (3.8)
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Proposition 3.2 yields that v exists globally and satisfies

‖v‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

≤ 2‖S(t)u(T )‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

≤ 2ε, (3.9)

‖v‖X∞ ≤ B‖u(T )‖Ḣsp (R). (3.10)

Define ũ by

ũ(t) :=

{
u(t) (0 ≤ t < T ),
v(t − T ) (T ≤ t < ∞).

Then we see that ũ satisfies the initial value problem (3.1) on [0,∞). By the
uniqueness of (3.1) (Lemma 3.1), we see that ũ = u and Tmax = ∞. The
inequalities (3.9) and (3.10) imply

‖u‖
L

5
4 (p−1)
x L

5
2 (p−1)
(T,∞)

= ‖v‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

≤ 2ε,

‖u‖X(T,∞) = ‖v‖Xt
≤ B‖u(T )‖Ḣsp (R).

This completes the proof of Proposition 3.3. �

Lemma 3.4. Let p ≥ 5 and T ∈ (0,∞]. Then for any f satisfying |∂x|spf ∈
L1

xL2
T , we have

∫ t

0

g(ωt′)S(t−t′)∂xf(t′)dt′ −→ m(g)
∫ t

0

S(t−t′)∂xf(t′)dt′ in XT , (3.11)

as |ω| → ∞.

Proof. Since the proof is now standard, we omit the detail (see [3, Lemma 3.1]
for instance). �

Proposition 3.5. Suppose p ≥ 5 and φ ∈ Ḣsp(R). Let uω be a maximal solution
to (1.1) and let U be a solution to (1.5) on maximal interval [0, Smax). Assume
that for any T satisfying 0 < T < Smax, uω exists on [0, T ) for |ω| large and

lim sup
|ω|→∞

(
‖|∂x|spuω‖L5

xL10
T

+ ‖uω‖
L

5
4 (p−1)
x L

5
2 (p−1)
T

)
< ∞ (3.12)

holds. Then we have

‖uω − U‖XT
−→ 0 as |ω| → ∞. (3.13)
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Proof. We first choose A < ∞ satisfying ‖g‖L∞ ≤ A. Since uω and U satisfy
(1.1) and (1.5),

(uω − U)(t)

= −
∫ t

0

g(ωt′)S(t − t′)∂x(|uω|p−1uω)dt′

+ m(g)
∫ t

0

S(t − t′)∂x(|U |p−1U)dt′

= −
∫ t

0

g(ωt′)S(t − t′)∂x(|uω|p−1uω − |U |p−1U)dt′

−
∫ t

0

(g(ωt′) − m(g)) S(t − t′)∂x(|U |p−1U)dt′

=: I1 + I2. (3.14)

We show ‖I2‖XT
→ 0. By Proposition 2.8 and Lemma 3.1,

‖|∂x|sp(|U |p−1U)‖L1
xL2

T
≤ C‖U‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
T

‖|∂x|spU‖L5
xL10

T
< ∞. (3.15)

Hence by Lemma 3.4,

‖I2‖XT
=: Cω −→ 0 as |ω| → ∞. (3.16)

Next, we evaluate I1. Propositions 2.5 and 2.8 imply

‖I1‖XT

≤ CA‖|∂x|sp(|uω|p−1uω − |U |p−1U)‖L1
xL2

T

≤ CA

{(
‖uω‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
T

+ ‖U‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
T

)
‖|∂x|sp(uω − U)‖L5

xL10
T

+
(

‖uω‖p−2

L
5
4 (p−1)
x L

5
2 (p−1)
T

+ ‖U‖p−2

L
5
4 (p−1)
x L

5
2 (p−1)
T

)

×
(
‖|∂x|spuω‖L5

xL10
T

+ ‖|∂x|spU‖L5
xL10

T

)
‖uω − U‖

L
5
4 (p−1)
x L

5
2 (p−1)
T

}
.

Set

MT = ‖|∂x|spuω‖L5
xL10

T
+ ‖|∂x|spU‖L5

xL10
T

+ ‖uω‖
L

5
4 (p−1)
x L

5
2 (p−1)
T

+‖U‖
L

5
4 (p−1)
x L

5(p−1)/2
T

. (3.17)

Then we have

‖I1‖XT
≤ CAMp−1

T ‖uω − U‖XT
. (3.18)

We split the time interval [0, T ] into subintervals [ti, ti+1], i = 0, . . . , J −1 and
t0 = 0, tJ = T so that for each intervals [ti, ti+1],

CAMp−1
[ti,ti+1]

≤ 1
2 (3.19)
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hold, where C is the constant in (3.18), and

M[ti,ti+1] = ‖|∂x|spuω‖L5
xL10

[ti,ti+1]
+ ‖|∂x|spU‖L5

xL10
[ti,ti+1]

+‖uω‖
L

5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

+ ‖U‖
L

5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

. (3.20)

In Appendix, we show the existence of a subdivision satisfying (3.19). From
(1.1) and (1.5),

(uω − U)(t) (3.21)
= S(t − ti)(uω(ti) − U(ti))

−
∫ t

ti

g(ωt′)S(t − t′)∂x(|uω|p−1uω − |U |p−1U)dt′

−
∫ t

ti

(g(ωt′) − m(g)) S(t − t′)∂x(|U |p−1U)dt′

=: S(t − ti)(uω(ti) − U(ti)) + Ii,1 + Ii,2.

For the first term on the right hand side of (3.21), we apply Proposition 2.5
to obtain

‖S(t − ti)(uω(ti) − U(ti))‖X[ti,ti+1] ≤ C‖uω(ti) − U(ti)‖Ḣsp (R), (3.22)

where ‖f‖X[ti,ti+1] = ‖f‖L∞
[ti,ti+1]Ḣ

sp +‖|∂x|spf‖L5
xL10

[ti,ti+1]
+‖f‖

L
5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

.

Propositions 2.5 and 2.8 imply

‖Ii,1‖X[ti,ti+1] ≤ CA

{(
‖uω‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

+ ‖U‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

)

×‖|∂x|sp(uω − U)‖L5
xL10

[ti,ti+1]

+

(
‖uω‖p−2

L
5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

+ ‖U‖p−2

L
5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

)

×
(
‖|∂x|spuω‖L5

xL10
[ti,ti+1]

+ ‖|∂x|spU‖L5
xL10

[ti,ti+1]

)

×‖uω − U‖
L

5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

}
.

≤ CAMp−1
[ti,ti+1]

‖uω − U‖X[ti,ti+1]

≤ 1
2
‖uω − U‖X[ti,ti+1] . (3.23)

Combining (3.16), (3.21), (3.22) and (3.23), we have

‖uω − U‖X[ti,ti+1] ≤ C‖uω(ti) − U(ti)‖Ḣsp (R) +
1
2
‖uω − U‖X[ti,ti+1] + Cω,

which implies

‖uω − U‖X[ti,ti+1] ≤ 2C‖uω(ti) − U(ti)‖Ḣsp (R) + 2Cω. (3.24)
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Noting uω(0) − U(0) = 0, we see from (3.24) with i = 0,

‖uω − U‖X[0,t1] ≤ 2Cω.

In particular,
‖uω(t1) − U(t1)‖Ḣsp (R) ≤ 2Cω. (3.25)

By (3.24) with i = 1 and (3.25), we find

‖uω − U‖X[t1,t2] ≤ 2Cω + 4CCω.

In particular, we obtain

‖uω(t2) − U(t2)‖Ḣsp (R) ≤ 2Cω + 4CCω.

Repeating this argument, we have

‖uω − U‖XT
≤

J−1∑
i=0

‖uω − U‖X[ti,ti+1] ≤ 2
(2C)J − 1

2C − 1
Cω.

By Appendix A, we see that J ≤ (4CA)5/2M
5(p−1)/2
T . Hence we have (3.13).

�
Proposition 3.6. Assume p ≥ 5 and φ ∈ Ḣsp(R). Let uω be a maximal solution
to (1.1) and let U be a solution to (1.5) on maximal interval [0, Smax). Then
for any T ∈ (0, Smax), uω exists on [0, T ) for |ω| large. Furthermore,

‖uω − U‖XT
−→ 0 as |ω| → ∞. (3.26)

Proof. Let A = ‖g‖L∞ and fix T ∈ (0, Smax). We split the time interval [0, T ]
into subintervals [ti, ti+1], i = 0, . . . , J − 1 and t0 = 0, tJ = T , where ti are
fixed later. For the interval [ti, ti+1], we define Mω

[ti,ti+1]
by

Mω
[ti,ti+1]

= ‖|∂x|spuω‖L5
xL10

[ti,ti+1]
+ ‖uω‖

L
5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

. (3.27)

By the Duhamel formula,

uω(t) = S(t − ti)uω(ti) −
∫ t

ti

g(ωt′)S(t − t′)∂x(|uω|p−1uω)(t′)dt′ (3.28)

for t ∈ [ti, ti+1]. Propositions 2.5 and 2.8 yield

Mω
[ti,ti+1]

≤ ‖S(t − ti)|∂x|spuω(ti)‖L5
xL10

[ti,ti+1]
(3.29)

+ ‖S(t − ti)uω(ti)‖
L

5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

+ CA(Mω
[ti,ti+1]

)p

≤ ‖S(t − ti)|∂x|sp(uω(ti) − U(ti))‖L5
xL10

[ti,ti+1]

+‖S(t − ti)|∂x|spU(ti)‖L5
xL10

[ti,ti+1]

+‖S(t − ti)(uω(ti) − U(ti))‖
L

5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

+‖S(t − ti)U(ti)‖
L

5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

+ CA(Mω
[ti,ti+1]

)p.

We now choose ti so that for each i, the inequalities
M∞

[ti,ti+1]
:= ‖|∂x|spU‖L5

xL10
[ti,ti+1]

+ ‖U‖
L

5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

< η (3.30)
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hold, where η > 0 is fixed later. The same argument as that in Appendix A
yields that J ≤ Cη−5(p−1)/2(M∞

Smax
)5(p−1)/2, where M∞

T := ‖|∂x|spU‖L5
xL10

T
+

‖U‖
L

5(p−1)/4
x L

5(p−1)/2
T

.
By an argument similar to the proof of (3.29),

‖S(t − ti)|∂x|spU(ti)‖L5
xL10

[ti,ti+1]
+ ‖S(t − ti)U(ti)‖

L
5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

≤ M∞
[ti,ti+1]

+ CA(M∞
[ti,ti+1]

)p ≤ η + CAηp.

(3.31)

We choose ε > 0 so that CAηp−1 < 1. Then we see that the right hand side of
(3.31) is bounded by 2η. Further, choosing η so small that CA(6η)p−1 < 1/2.
Then we obtain

CA

⎧⎨
⎩2

⎛
⎝‖S(t − ti)|∂x|spU(ti)‖L5

xL10
[ti,ti+1]

+ ‖S(t − ti)U(ti)‖
L

5
4 (p−1)
x L

5
2 (p−1)
[ti,ti+1]

+ η

⎞
⎠
⎫⎬
⎭

p−1

<
1

2
.

(3.32)

Noting uω(t0) − U(t0) = 0, we find

Mω
[0,t1]

≤ ‖|∂x|spS(t)φ‖L5
xL10

[0,t1]
+ ‖S(t)φ‖

L
5
4 (p−1)
x L

5
2 (p−1)
[0,t1]

+ CA(Mω
[0,t1]

)p.

(3.33)

By (3.32),

CA

{
2
(

‖|∂x|spS(t)φ‖L5
xL10

[0,t1]
+ ‖S(t)φ‖

L
5
4 (p−1)
x L

5
2 (p−1)
[0,t1]

)}p−1

<
1
2
. (3.34)

By (3.33), (3.34) and the continuity of the norm, we have

Mω
[0,t1]

≤ 2
(

‖|∂x|spS(t)φ‖L5
xL10

[0,t1]
+ ‖S(t)φ‖

L
5
4 (p−1)
x L

5
2 (p−1)
[0,t1]

)
≤ C‖φ‖Ḣsp (R).

(3.35)

We show Tmax > t1 by contradiction argument. We assume that Tmax ≤ t1.
Then by (3.35),

‖uω‖
L

5
4 (p−1)
x L

5
2 (p−1)
Tmax

≤ Mω
[0,t1]

≤ C‖φ‖Ḣsp (R).

Hence by the blow up criterion for (1.1) (Lemma 3.1), we see Tmax = ∞ which
contradicts Tmax ≤ t1. Hence Tmax > t1. Furthermore, by Proposition 3.5, we
obtain

‖uω − U‖X[0,t1] −→ 0 as |ω| → ∞. (3.36)
Next we consider the case i = 1. By Proposition 2.5,

‖S(t − t1)|∂x|sp(uω(t1) − U(t1))‖L5
xL10

[t1,t2]

+‖S(t − t1)(uω(t1) − U(t1))‖
L

5
4 (p−1)
x L

5
2 (p−1)
[t1,t2]

≤ ‖uω(t1) − U(t1)‖Ḣsp (R)

≤ ‖uω − U‖X[t0,t1] . (3.37)
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By (3.29) with i = 1, (3.36) and (3.37), for |ω| sufficiently large,

Mω
[t1,t2]

≤ ‖S(t − t1)|∂x|spU(t1)‖L5
xL10

[t1,t2]

+‖S(t − t1)U(t1)‖
L

5
4 (p−1)
x L

5
2 (p−1)
[t1,t2]

+ CA(Mω
[t1,t2]

)p + Cω,

where Cω satisfies Cω → 0 as |ω| → ∞. On the other hand by (3.32) with
i = 1,

CA

{
2

(
‖S(t − t1)|∂x|spU(t1)‖L5

xL10
[t1,t2]

+ ‖S(t − t1)U(t1)‖
L

5
4 (p−1)
x L

5
2 (p−1)
[t1,t2]

+ Cω

)}p−1

<
1

2

Hence by an argument similar to that in the case i = 0, we see that uω exists
on [t0, t2] for |ω| large, and

‖uω − U‖X[t1,t2] −→ 0 as |ω| → ∞.

Since J is finite, we can repeat this argument J times. Hence we have that
for |ω| sufficiently large, uω exists on [0, T ] and satisfies (3.26). This completes
the proof of Proposition 3.6. �

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Let ε0 = ε(A) be given in Proposition
3.2 and let ε ∈ (0, ε0). By the assumption ‖U‖

L
5(p−1)/4
x L

5(p−1)/2
t

< ∞, for ε > 0,
we can choose T > 0 sufficiently large so that

‖U‖
L

5
4 (p−1)
x L

5
2 (p−1)
(T,∞)

≤ ε

4 (4.1)

holds. Let Ũ(t) := U(t + T ). By (4.1),

‖Ũ‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

= ‖U‖
L

5
4 (p−1)
x L

5
2 (p−1)
(T,∞)

≤ ε

4
.

Hence by Proposition 3.2 (ii),

‖S(t)U(T )‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

= ‖S(t)Ũ(0)‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

(4.2)

≤ 2‖Ũ‖
L

5
4 (p−1)
x L

5
2 (p−1)
t

= 2‖U‖
L

5
4 (p−1)
x L

5
2 (p−1)
(T,∞)

≤ ε

2
.

Applying Proposition 3.3, we see

‖U‖X(T,∞) ≤ B‖U(T )‖Ḣsp (R). (4.3)

Proposition 3.6 yields

sup
0<t≤T

‖uω(t) − U(t)‖Ḣsp (R) −→ 0 as |ω| → ∞. (4.4)
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By Proposition 2.5, (4.2) and (4.4), we find that if |ω| is sufficiently large, then

‖S(t)uω(T )‖
L

5
4 (p−1)
x L

5
2 (p−1)
T

≤ ‖S(t)uω(T ) − S(t)U(T )‖
L

5
4 (p−1)
x L

5
2 (p−1)
T

+ ‖S(t)U(T )‖
L

5
4 (p−1)
x L

5
2 (p−1)
T

≤ C‖uω(T ) − U(T )‖Ḣsp (R) +
ε

2
.

≤ ε.

Hence by Proposition 3.3, we see that if |ω| is sufficiently large, then uω exists
globally and

‖uω‖
L

5
4 (p−1)
x L

5
2 (p−1)
(T,∞)

≤ 2ε, (4.5)

‖uω‖X(T,∞) ≤ B‖uω(T )‖Ḣsp (R). (4.6)

Next we show (1.8). Set M0 := sup
0≤t≤T

‖U(t)‖Ḣsp (R). By (4.4) and (4.6), we

have for ω0 > 0 sufficiently large,

sup
|ω|≥ω0

sup
t≥0

‖uω(t)‖Ḣsp (R) (4.7)

≤ sup
|ω|≥ω0

sup
t≥T

‖uω(t)‖Ḣsp (R) + sup
|ω|≥ω0

sup
0≤t≤T

‖uω(t) − U(t)‖Ḣsp (R)

+ sup
0≤t≤T

‖U(t)‖Ḣsp (R)

≤ B sup
|ω|≥ω0

‖uω(T )‖Ḣsp (R) + 1 + M0 =: M1.

By the Duhamel formula,

uω(T + t) − U(T + t) = S(t)(uω(T ) − U(T ))

−
∫ t

0

S(t−T−t′)g(ω(T+t′))∂x(|uω|p−1uω)(T+t′)dt′

+m(g)
∫ t

0

S(t − T − t′)∂x(|U |p−1U)(T + t′)dt′

=: I1 + I2 + I3. (4.8)

We evaluate the X∞ norm for Ii, i = 1, 2, 3. For the term I1, we apply Propo-
sition 2.5 and (4.4) to conclude

‖I1‖X∞ ≤ C‖uω(T ) − U(T )‖Ḣsp (R) −→ 0 as |ω| → ∞. (4.9)

By Propositions 2.5 and 2.8, and the inequality (4.6),

‖I2‖X∞ ≤ CA‖uω(T + ·)‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
t

‖uω(T + ·)‖X∞

= CA‖uω‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
(T,∞)

‖uω‖X(T,∞)

≤ CA(2ε)p−1B‖uω(T )‖Ḣsp (R)

≤ CA(2ε)p−1BM1.

(4.10)
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In a similar way, by Propositions 2.5 and 2.8 and the inequalities (4.1), (4.3)
and (4.6),

‖I3‖X∞ ≤ CA‖U(T + ·)‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
t

‖U(T + ·)‖X∞

= CA‖U‖p−1

L
5
4 (p−1)
x L

5
2 (p−1)
(T,∞)

‖U‖X(T,∞)

≤ CA
(ε

4

)p−1

B‖U(T )‖Ḣsp (R)

≤ CA
(ε

4

)p−1

BM0.

(4.11)

Let δ > 0 be an arbitrary number. Then by (4.9), for |ω| sufficiently large, we
have

‖I1‖X∞ <
δ

2
. (4.12)

Furthermore, we choose ε > 0 so that CABεp−1(M0 + M1) < δ/2. Then by
(4.8), (4.10), (4.11) and (4.12),

‖uω − U‖X(T,∞) = ‖uω(T + ·) − U(T + ·)‖X∞

≤ ‖I1‖X∞ + ‖I2‖X∞ + ‖I3‖X∞ < δ.
(4.13)

On the other hand, by Proposition 3.6,

‖uω − U‖XT
−→ 0 as |ω| → ∞. (4.14)

Collecting (4.13) and (4.14), we obtain (1.8). This completes the proof of The-
orem 1.2.

5. Subdivision of time interval

In this section, we show that for any T ∈ (0,∞), there exists a positive integer
J satisfying J ≤ (4CA)5/2M

5(p−1)/2
T and a sequence 0 = t0 < t1 < · · · < tJ =

T such that [0, T ] =
⋃J−1

i=0 Ij , Ij = [ti, ti+1] and

1
4

≤ CAMp−1
[ti,ti+1]

≤ 1
2

for any 0 ≤ i ≤ J − 1,

where C is the constant in (3.19) and M[ti,ti+1] is defined by (3.20). We may
assume CAMp−1

[0,T ] > 1/2 unless there is nothing to prove.

We first choose t1 ∈ [0, T ] so that t0 < t1 and CAMp−1
[t0,t1]

= 1/2. Simi-

larly, if CAMp−1
[ti,T ] > 1/2, then we choose ti+1 ∈ [0, T ] so that ti < ti+1 and

CAMp−1
[ti,ti+1]

= 1/2. We now show that J ≤ (4CA)5/2M
5(p−1)/2
T by the con-

tradiction argument. Suppose (4CA)5/2M
5(p−1)/2
T < J ≤ ∞. We choose an

integer J ′ so that J ′ = J if J < ∞ and J ′ = (4CA)5/2M
5(p−1)/2
T +1 if J = ∞.

For 0 ≤ i ≤ J ′, define

fω
i (x) := ‖|∂x|spuω(·, x)‖L10

t [ti,ti+1], f∞
i (x) := ‖|∂x|spU(·, x)‖L10

t [ti,ti+1],

gω
j (x) := ‖uω(·, x)‖

L
5
2 (p−1)
t [ti,ti+1]

, g∞
j (x) := ‖U(·, x)‖

L
5
2 (p−1)
t [ti,ti+1]

.
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Since

‖uω‖
L

5
4 (p−1)
x L

5
2 (p−1)
T

≥
∥∥∥∥
(

‖uω(·, x)‖ 5
2 (p−1)

L
5
2 (p−1)
t ((0,tJ′ ))

) 2
5(p−1)

∥∥∥∥
L

5
4 (p−1)
x

=
∥∥∥∥
(J ′−1∑

i=0

|gω
i (x)| 5

2 (p−1)

) 2
5(p−1)

∥∥∥∥
L

5
4 (p−1)
x

,

we have

MT ≥
∥∥∥∥
(J ′−1∑

i=0

|fω
i (x)|10

) 1
10

∥∥∥∥
L5

x

+
∥∥∥∥
(J ′−1∑

i=0

|g∞
i (x)|10

) 1
10

∥∥∥∥
L5

x

(5.1)

+
∥∥∥∥
(J ′−1∑

i=0

|gω
i (x)| 5

2 (p−1)

) 2
5(p−1)

∥∥∥∥
L

5
4 (p−1)
x

+
∥∥∥∥
(J ′−1∑

i=0

|g∞
i (x)| 5

2 (p−1)

) 2
5(p−1)

∥∥∥∥
L

5
4 (p−1)
x

.

By the Hölder inequality, we obtain

(
1

4CA

) 1
p−1

J ′ ≤
J ′−1∑
i=0

M[ti,ti+1] ≤ (J ′)
4
5

(J ′−1∑
i=0

‖|∂x|spuω‖5L5
xL10

t [ti,ti+1]

) 1
5

+ (J ′)
4
5

(J ′−1∑
i=0

‖|∂x|spU‖5L5
xL10

t [ti,ti+1]

) 1
5

+ (J ′)
5p−9

5(p−1)

(J ′−1∑
i=0

‖uω‖ 5
4 (p−1)

L
5
4 (p−1)
x L

5
2 (p−1)
t [ti,ti+1]

) 4
5(p−1)

+ (J ′)
5p−9

5(p−1)

(J ′−1∑
i=0

‖U‖ 5
4 (p−1)

L
5
4 (p−1)
x L

5
2 (p−1)
t [ti,ti+1]

) 4
5(p−1)

.

The right hand side of the above inequality can be rewritten as

(J ′)
4
5

∥∥∥∥
(J ′−1∑

i=0

|fω
i (x)|5

) 1
5
∥∥∥∥

L5
x

+(J ′)
4
5

∥∥∥∥
(J ′−1∑

i=0

|f∞
i (x)|5

) 1
5
∥∥∥∥

L5
x

+ (J ′)
5p−9

5(p−1)

∥∥∥∥
(J ′−1∑

i=0

|gω
i (x)| 5

4 (p−1)

) 4
5(p−1)

∥∥∥∥
L

5
4 (p−1)
x

+ (J ′)
5p−9

5(p−1)

∥∥∥∥
(J ′−1∑

i=0

|g∞
i (x)| 5

4 (p−1)

) 4
5(p−1)

∥∥∥∥
L

5
4 (p−1)
x

.
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The Hölder inequality and (5.1) yield
(

1

4CA

) 1
p−1

J ′ ≤ (J ′)
9
10

∥∥∥∥
(J′−1∑

i=0

|fω
i (x)|10

) 1
10

∥∥∥∥
L5

x

+(J ′)
9
10

∥∥∥∥
(J′−1∑

i=0

|f∞
i (x)|10

) 1
10

∥∥∥∥
L5

x

+ (J ′)
5p−7

5(p−1)

∥∥∥∥
(J′−1∑

i=0

|gω
i (x)| 52 (p−1)

) 2
5(p−1)

∥∥∥∥
L

5
4 (p−1)
x

+ (J ′)
5p−7

5(p−1)

∥∥∥∥
(J′−1∑

i=0

|g∞
i (x)| 52 (p−1)

) 2
5(p−1)

∥∥∥∥
L

5
4 (p−1)
x

≤ (J ′)
5p−7

5(p−1) MT .

Hence we obtain J ′ ≤ (4CA)5/2M
5(p−1)/2
T . This contradicts the definition of

J ′, which proves the claim.
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