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Nonlinear elliptic systems and mean-field
games
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Abstract. We consider a class of quasilinear elliptic systems of PDEs con-
sisting of N Hamilton–Jacobi–Bellman equations coupled with N diver-
gence form equations, generalising to N > 1 populations the PDEs for
stationary Mean-Field Games first proposed by Lasry and Lions. We pro-
vide a wide range of sufficient conditions for the existence of solutions to
these systems: either the Hamiltonians are required to behave at most
linearly for large gradients, as it occurs when the controls of the agents
are bounded, or they must grow faster than linearly and not oscillate too
much in the space variables, in a suitable sense. We show the connection
of these systems with the classical strongly coupled systems of Hamilton–
Jacobi–Bellman equations of the theory of N -person stochastic differen-
tial games studied by Bensoussan and Frehse. We also prove the existence
of Nash equilibria in feedback form for some N -person games.
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1. Introduction

This paper deals with systems of partial differential equations of the following
type

⎧
⎨

⎩

Livi + Hi(x,Dvi) + λi = V i[m] in Q := T
d,

Li∗mi − div
(
gi(x,Dvi)mi

)
= 0 in Q,∫

Q
mi(x)dx = 1, mi > 0,

∫

Q
vi(x)dx = 0, i = 1, . . . , N,

(1)
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where the unknowns are the constants λ = (λ1, . . . , λN ), the functions v =
(v1, . . . , vN ) and the densities of probability measures m = (m1, . . . ,mN ), at
least continuous on the d-dimensional torus Q := T

d. The operators

Li := −tr(ai(x)D2), i = 1, . . . , N,

are second-order uniformly elliptic with Z
d-periodic and Lipschitz coefficients

ai(·), i.e., for some ν, C > 0,

ai(x) ≥ νId, ai(x) = ai(x + k) ∀k ∈ Z
d, |ai(x) − ai(x + y)| ≤ C|y| ∀x, y ∈ R

d,

(2)

where Id is the identity d × d matrix, and

Li∗v := −
∑

h,k

D2
hk(ai

hk(x)v)

are their formal adjoints.
The Hamiltonians Hi : Rd × R

d → R are Z
d-periodic in x and satisfy

either one of the following alternative sets of conditions.
C1. For all i = 1, . . . , N, Hi = Hi(x, p) is locally Lipschitz, superlinear in p

uniformly in x, i.e.,

inf
x∈Q

|Hi(x, p)|/|p| → +∞ as |p| → ∞, (3)

and ∃θi ∈ (0, 1), C > 0, such that

tr(ai)DxHi · p + θi(Hi)2 ≥ −C|p|2 for |p| large, and for a.e. x ∈ Q. (4)

C2. For all i = 1, . . . , N , for some α ∈ (0, 1), Hi is locally α-Hölder continuous
and grows at most linearly in p, i.e., for some C1, C2 > 0,

|Hi(x, p)| ≤ C1|p| + C2 ∀x ∈ Q, p ∈ R
d. (5)

The operators V i :
(
W 1,p(Q) ∩ P (Q)

)N → C0,α(Q) with p > d are con-
tinuous with respect to the uniform convergence and either uniformly bounded
in C0,1 norm, if condition C1 holds, or uniformly bounded in the sup norm if
condition C2 holds (see Sect. 2 for the notations and a more precise statement
of these assumptions).

Finally, we assume that

gi : Q × R
d → R

d are measurable, locally bounded,
and continuous in p. (6)

Under the above conditions we show the existence of a solution λi ∈
R, vi ∈ C2,α(Q),mi ∈ W 1,p(Q), for all 1 ≤ p < ∞, i = 1, . . . , N , to the
system (1), where α is the Hölder exponent appearing in condition C2 on Hi

if such condition holds, and it is any number in (0, 1) if condition C1 is assumed
instead.

There are two main motivations for studying systems of the form (1).
The first is the theory of stationary Mean-Field Games (briefly, MFG) as for-
mulated by Lasry and Lions [44,46]. In fact, for N = 1, Li = −Δ, Hi = H
smooth and gi = DpH, (1) reduces to the stationary MFG PDEs introduced
and studied in [44,46]. This is a model of the equilibrium distribution of a
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large population of identical agents whose dynamics is subject to white noise
and seeking to minimise a given individual cost functional. The additive eigen-
value problem (1) arises when such functional is the long-time-average of some
running cost, sometimes called ergodic cost. For N > 1 the system (1) with
gi = DpH

i can be associated to Mean-Field Games with N different popula-
tions of players, see Sect. 3.6 and [2,25] for further motivations. Mean-Field
Games were also introduced independently by Huang, Caines, and Malhamé
and studied by different methods [41,42], see Sect. 3.6.

In case of Condition C1 our assumptions allow for several populations and
a more general controlled dynamics for the generic agent of each population
than in [44,46], but they are in the same spirit. Namely, the drift velocity of
each player can point in any direction of the state space and can be arbitrarily
large with a large cost, similarly to problems of Calculus of Variations. This is
reflected by the strong coercivity condition (3) on the Hamiltonians Hi. Con-
dition C2, instead, is natural in Control Theory, where the set of controls is
bounded and therefore so are drift velocities and costs; moreover no controlla-
bility of the underlying system is assumed because Hi is not required to have
any coercivity property. See Sect. 3 and in particular Sects. 3.4 and 3.5 for
several examples. Therefore the main novelties of this paper are in the results
under condition C2, whose proofs are also quite different from those of [44,46].

The second motivation is the synthesis of Nash equilibria in feedback
form for N -person stochastic differential games with cost functionals of er-
godic type. This is usually based on the solution of a strongly coupled sys-
tem of N Hamilton-Jacobi-Bellman (briefly, HJB) equations, the system (55)
in Sect. 3.1, following a classical observation of Friedman [32]. A systematic
study of such nonlinear elliptic systems was pursued by Bensoussan and Frehse
starting with [14], see [15] for problems with ergodic cost and their book [16]
for more references. In [44,46] Lasry and Lions propose instead a system of N
HJB and N Kolmogorov–Fokker–Planck equations of the form (1) for games
where the players are coupled only via the cost functionals. An advantage of
this system is the weaker coupling among the HJB equations. They give an ex-
istence result in the case Li = −νiΔ, νi > 0, Hi smooth, satisfying (3) and (4)
with C = 0, and gi = DpH

i, and show how to synthesize a feedback Nash equi-
librium for the N -person game from the solution of such system. In Sect. 3.1
we show a more precise connection among the classical systems of [14,15] and
systems of the form (1), which is related to the adjoint methods for Hamilton-
Jacobi equation explored by Evans [30]. In Sect. 3 we also generalise the result
in [44,46] on the synthesis of the equilibrium and give several examples of
classes of differential games to which our abstract results apply. Also for these
applications the main novelties of our results are in the case of Condition C2,
since the elliptic system for N -person games with ergodic costs had been stud-
ied so far only for Hamiltonians quadratic in p [15,16] (see, however, [4] for two-
person, zero-sum games, and [17] for N -person with different cost functionals).

We recall that the pioneering papers [44,46] prove also the convergence,
in a suitable sense, of N -person games to a Mean-Field Game with a single
population as the number of players tends to infinity. Some estimates of the
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present paper were used by Feleqi [31] to prove the same result in the case of
several interacting populations and under more general conditions.

The proof of the existence of solutions to (1) under condition C1 follows
the suggestion in [44,46] about getting a priori estimates for Dvi by the Bern-
stein method (see also [1,47,48]). On the other hand, rather than relying on
estimates for Bellman equations, we mostly use more classical local a priori
estimates for linear equations. We also included some of their proofs for the
reader’s convenience when we were not able to find an explicit reference in
the literature, in the attempt to make the paper reasonably self-contained and
readable by a wide audience. The proof in this case allows some variants to
conditions C1 and C2 and can be adapted, for instance, to Hamiltonian be-
having like |p1|+ |p2|γ , γ > 1, as p = (p1, p2) ∈ R

d1 ×R
d2 tends to infinity, see

Remark 2.4 and Example 3.11.
Under condition C2 the proof is different. We first study an elliptic system

where the additive eigenvalue λi in (1) is replaced by a zero-th order term ρivi

with ρi > 0. The existence of solutions for such system is achieved under the
more general natural growth condition

|Hi(x, p)| ≤ C1|p|2 + C2 ∀x ∈ Q, p ∈ R
d,

using some deep estimates by Ladyzhenskaya and Uraltseva [43] and other
tools of the elliptic theory [34]. This result is of independent interest because
the system is associated to feedback Nash equilibria for some N -person sto-
chastic differential games with discounted infinite-horizon cost functionals (see
Sect. 3.3). Next we find solutions of (1) by letting ρi → 0, which corresponds
to the small-discount approximation of the ergodic control problem [4,6]. We
remark that the results under condition C2, Theorems 2.5 and 2.6, hold with-
out any regularizing property of the operators V i, which can be local functions
of m(x), provided they are bounded.

Note also that we do not assume any monotonicity property of the oper-
ators V i, so our results can be applied, for instance, to models of segregation
[2] or aggregation [28]. On the other hand we do not address the uniqueness of
the solution, which is known to hold if N = 1 under a monotonicity condition
on V i introduced by Lasry and Lions [44,46]. If N > 1 one does not expect
uniqueness, and explicit examples of non-uniqueness can be found in [2]. For
some very special cases of uniqueness with two populations see Cirant [25,26]
(where Neumann boundary conditions are also treated).

We conclude with some bibliographical remarks. The existence of Nash
equilibria for some stochastic N -person differential games was also proved
by probabilistic methods, see, e.g., [21,33] and the references therein. The
difficulties arising from constraints on the controls in such games were treated
by Mannucci [49] working on parabolic systems. For a general presentations
of Mean-Field Games and their applications we refer to the lecture notes by
Guéant, Lasry, and Lions [40] and Cardaliaguet [22], the survey paper [39]
and the very recent books [35,37] by Gomes and collaborators. For the case
of local coupling terms V [m] we refer to Gomes and his coworkers [36,38,50]
(single population), and to Cirant [26–29] (several populations and Neumann
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boundary conditions). Evolutive MFG were first studied in [45,46] and [41,42].
The justification of stationary MFG via long-time asymptotics is in [23] and
numerical methods in [3], see also the references therein. For other recent
contributions on MFG see also the courses of P.-L. Lions at Collège de France,
the monograph [18], the two special issues of Dynamic Games and Applications
[10,11], and the very recent important paper [24] on the master equation and
its application to the convergence of games with a large population to a MFG.

The paper is organized as follows. Section 2 contains the statements and
proofs of the existence results for (1) and for related systems with zero-th order
terms arising from discounted infinite horizon problems. In Sect. 3 we describe
the connections of the system (1) with N-person and Mean-Field games. We
also apply the results of Sect. 2 to show the existence of Nash equilibria for such
games in the cases of long-time-average costs and discounted infinite horizon
costs. Finally, the Appendix contains the proofs of some technical lemmas.

2. Existence of solutions to elliptic systems

We denote by C(Q) the set of Z
d-periodic continuous functions on R

d, by
Ck,α(Q), k ∈ N, 0 < α ≤ 1, the set of Zd-periodic functions having k-th order
derivatives which are α-Hölder continuous, by Lp(Q), 1 ≤ p ≤ ∞, the set
of p-summable Lebesgue measurable Z

d-periodic on Q, by W k,p(Q), k ∈ N,
1 ≤ p ≤ ∞, the Sobolev space of Zd-periodic functions having weak derivatives
up to order k which are p-summable on Q, and by P (Q) the set of probability
measures on Q.

We will use the notations tr b for the trace of a square matrix b, and
a · b = tr abt, |b| := (b · b)1/2. The adjoint operator Li∗ will be interpreted in
the sense of distributions:

〈Li∗v, φ〉 =
∫

Q

vLφdx ∀φ ∈ C∞(Q).

In all existence results we assume V i are continuous in the following sense

∀mn, m ∈ (
W 1,p(Q) ∩ P (Q)

)N
, ‖mn − m‖∞ → 0 =⇒ ‖V i[mn] − V i[m]‖∞ → 0.

(7)

2.1. The additive eigenvalue problem

For the first result, under condition C1, we assume V i :
(
W 1,p(Q) ∩ P (Q)

)N →
C0,1(Q), p > d, are uniformly Lipschitz continuous, i.e.,

sup
m∈(W 1,p(Q)∩P (Q))N

‖V i[m]‖C0,1(Q) < ∞. (8)

Theorem 2.1. Assume (2) and (6), Hi satisfy condition C1, and V i verify (7)
and (8). Then there exist λ1, . . . , λN ∈ R, v1, . . . , vN ∈ C2,α(Q), m1, . . . ,mN ∈
W 1,p(Q), for all 0 < α < 1, 1 ≤ p < ∞, which solve the system (1).

We need the following two lemmas for linear equations. We believe they
are well-known, but for lack of a precise reference we give their proofs in the
Appendix.
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Lemma 2.2. Let

L = −ahk(x)Dhk + bh(x)Dh

be a second-order uniformly elliptic linear differential operator in Q = T
d with

coefficients ahk, bh, ∈ Cα(Q), h, k = 1, . . . , d, 0 < α < 1. Then, for any
f ∈ Cα(Q), the problem

{Lv + λ = f∫

Q
v(x)dx = 0 (9)

has a unique solution (v, λ) ∈ C2,α(Q) × R. Moreover,

|λ| ≤ ‖f‖∞, (10)
‖v‖C1,α(Q) ≤ C‖f‖∞, (11)
‖v‖C2,α(Q) ≤ C‖f‖Cα(Q) (12)

for some constant C > 0 which depends only on (the coefficients of) L.

Lemma 2.3. Let

L = −ahk(x)Dhk, g : Q → R
d

be a (symmetric) second-order uniformly elliptic linear differential operator
in Q = T

d with coefficients ahk ∈ C0,1(Q), h, k = 1, . . . , d, and a bounded
measurable vector field, respectively. Then the problem

{L∗m − div(g(x)m) = 0∫

Q
m(x)dx = 1 (13)

has a unique solution m ∈ W 1,p(Q) for all 1 ≤ p < ∞. Moreover, m is positive
and

‖m‖W 1,p(Q) ≤ C(‖g‖∞), (14)

for some constant C(‖g‖∞) which depends (continuously) on g only through
‖g‖∞ (and also on p and the coefficients ahk).

Proof of Theorem 2.1. The proof is based on Schauder’s fixed point theorem
(see for instance [52, Theorem 4.1.1, p. 25] or [34, Corollary 11.2, p. 280]) and
on a priori estimates for the gradients of vi that are obtained by Bernstein’s
method, as suggested in [44,46].

We first assume, instead of (3) and (4), that the Hamiltonians are boun-
ded, that is,

∃M > 0 such that |Hi(x, p)| ≤ M ∀i, x, p.

Let

B =
{

u = (u1, . . . , uN ) ∈ (C1,α(Q))N :
∫

Q

udx = 0
}

,

which is a Banach space as a closed subspace of C1,α(Q)N . We define an
operator

T : B → B,
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according to the scheme

u 
→ m 
→ (v, λ) 
→ v,

as follows. Given u = (u1, . . . , uN ) ∈ B, we plug it in place of v in the second N
scalar linear equations of the system (1) and solve those equations for the un-
knowns m = (m1, . . . ,mN ), requiring that these unknowns satisfy conditions
in the third line of (1). That these {mi}N

i=1 exist, are uniquely defined and
have the required properties, is a consequence of Lemma 2.3. Then, with these
{mi}, we solve the N scalar linear equations obtained from the first equations
in (1) after plugging ui into Hi in place of vi, i.e., by solving the N uncoupled
linear equations

Livi + Hi(x,Dui) + λi = V i[m]

for the unknowns v = (v1, . . . , vN ), λ = (λ1, . . . , λN ) ∈ R
N . Since we require

in addition that the vi have zero mean, then v = (v1, . . . , vN ) ∈ C2,α(Q) and
λ = (λ1, . . . , λN ) ∈ R

N are uniquely defined, as a consequence of Lemma 2.2.
We set Tu = v. By (10), (12), (14), and a standard embedding theorem, T is
continuous and compact. Moreover, the C1,α-estimate (11) and the bounded-
ness of Hi and V i gives

‖v‖C1,α(Q) ≤ C

for some C > 0 independent of v; thus T (B) is bounded. Therefore, by
Schauder’s fixed point theorem, T has a fixed point (in the convex hull of
the closure of T (B)).

Now we turn to consider Hamiltonians Hi that satisfy the assumptions of
the theorem. We introduce the truncated Hamiltonians Hi

R defined as follows

Hi
R(x, p) =

{
Hi(x, p), if|p| ≤ R,

Hi
(
x,R p

|p|
)

, if |p| > R,
x ∈ Q, p ∈ R

d, (15)

where the parameter R > 0 is to be fixed in the sequel sufficiently large. Let
R1 > 0 be such that (4) is verified for all x ∈ Q, |p| ≥ R1. Then

inf
x∈Q

(
(tr ai)DxHi

R · p + θi(Hi
R)2

) ≥ −C|p|2 for all R ≥ |p| ≥ R1, (16)

with the same θi (i = 1, . . . , N) and C as in (4). Clearly the Hi
R are bounded

and Lipschitz continuous. So let λR
1 , . . . , λR

N ∈ R, vR
1 , . . . , vR

N ∈ C2,α(Q),
mR

1 , . . . ,mR
N ∈ W 1,p(Q) (0 < α < 1, 1 ≤ p < ∞) be a solution of (1) with Hi

R

in the place of Hi.
The crucial step of the proof is an a priori estimate for ‖DvR

i ‖∞ uniform
in R, obtained by Bernstein’s method. We drop the indices i and R in the
following estimates. Let w = Dv and ψ = (1/2)|w|2. We have these identities

Dψ = wD2v (17)

D2ψ =
∑

h

whD2wh + (D2v)2 (18)

Lψ = −a · D2ψ = −
∑

h

wh(a · D2wh) − a · (D2v)2. (19)
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Let us assume temporarily that u is of class C3 and ahk, H, F are of class C1

(clearly the truncation of H above could have been done smoothly). We apply
to the first equations in (1) the operator w · D and use (19), (17) to obtain

Lψ + a · (D2v)2 − δa · D2v + DxH · w + DpH · Dψ = G · w, (20)

where

δa := (δahk)h,k=1,...,d with δahk :=
∑

l

Dlahkwl (21)

and G is a function whose L∞-norm does not exceed a universal constant
which does not depend on v (recall the assumptions on operators V i). We use
the following inequalities which are simple consequences of Cauchy–Schwarz
inequality: for any a, b symmetric matrices with a ≥ 0 and c, e ∈ Md×mi

(a · b)2 ≤ (a · b2)tr a and (tr cetb)2 ≤ |e|2cct · b2. (22)

Assume that

a =
1
2
σσt, (23)

where the matrix σ(x) is Lipschitz; such a decomposition is always possible
for a(x) is Lipschitz and its smallest eigenvalue (which is positive) is bounded
away from zero uniformly for x ∈ Q. By (23) and (21) we have

δa = (δσ)σt.

Using this identity, the second of inequalities (22) and (23), we obtain

δa · D2v ≤ |δσ| (σσt · (D2v)2
)1/2

=
√

2|δσ| (a · (D2v)2
)1/2

≤ εa · (D2v)2 +
1
2ε

|δσ|2, (24)

for any 0 < ε < 1. On the other hand, using the first of inequalities (22) and
the first equations in (1), we have

(a · (D2v)2)tr a ≥ (a · D2v)2 = (Lv)2

≥ (λ + H − V [m])2

≥ ωH2 − cω (25)

for any 0 < ω < 1 and a constant cω independent of R, The last inequality is
obtained by the boundedness of operators V and constants λ. In fact, looking
at the minima and maxima of v in the first equations of (1) we obtain

|λ| ≤ sup
x∈Q

(|H(x, 0)| + |V [m](x)|).

Multiplying (20) by tr a, and using (24), (25), we get

(tr a)(Lψ + DpHDψ + DxH · w) + (1 − ε)ωH2 ≤ (tr a)

(

G · w +
1

2ε
|δσ|2

)

+ cω.
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If we choose ε and ω such that (1−ε)ω > θ, where θ is the constant appearing
in (16), using (16) we get

(tr a)(Lψ + DpHDψ) + ((1 − ε)ω − θ)H2 (26)

≤ (tr a)
(

G · w +
1
2ε

|δσ|2
)

+ C|w|2 + cω (27)

for R ≥ |w| > R1. At a maximum point of ψR
i , (now we reintroduce i and R in

order to avoid any possible confusion), say xi
R, taking into account that |δσi|

is at most linear in wR
i , we have

((1 − εi)ωi − θi)(Hi
R)2(xi

R, wR
i (xi

R)) ≤ C(|wR
i (xi

R)|2 + 1) (28)

for some C > 0 (independent of R) and R ≥ |wR
i (xi

R)| ≥ R1. But by (3),
the left-hand side above is superlinear in |wR

i (xi
R)| and thus |wR

i (xi
R)| must be

bounded by some constant independent of R.
Thus, we have shown that

‖DuR
i ‖∞ ≤ R2 (29)

for some R2 > 0 independent of R > R1. So if take any R > max{R1, R2}
in (15), we discover that λR

1 , . . . , λR
N ∈R, vR

1 , . . . , vR
N ∈ C2,α(Q), mR

1 , . . . ,mR
N ∈

W 1,p(Q) (0 < α < 1, 1 ≤ p < ∞) is also a solution of the original system of
PDEs (1).

To complete the proof under our general assumptions we observe that
Eq. (20) still holds a.e. in R

d. In fact u ∈ W 3,p, p > n (by classical ellip-
tic regularity theory for linear equations), hence u is three times differen-
tiable in the usual sense a.e. and also the coefficients, being Lipschitz con-
tinuous, are differentiable a.e. A sort of chain rule usable for our purposes
holds by a result in [5], and the maximum principle to be used is that of
[20]. Alternatively, and more simply, one can proceed by regularizing the
data {(ai

hk)1≤h,k≤d : i = 1, . . . , N}, V i[m], for m ∈ P (Q)N , and Hi, for
i = 1, . . . , N , via smooth approximations to the identity {ρε}ε>0, {ρ̂ε}ε>0 given
by ρε(x) = ε−dρ1(x/ε) and ρ̂ε(x, p) = ρε(x)ρε(p) for all x ∈ R

d, p ∈ R
d, ε > 0,

where ρ1 is some mollification kernel in R
d (that is, a nonnegative function of

class C∞ with support in the unit ball B of Rd and
∫

B
ρ1(z) dz = 1). Noting

that ‖ρε � ai
hk‖C1(Q) → ‖ai

hk‖C0,1(Q), ‖ρε � V i[m]‖C1(Q) → ‖V i[m]‖C0,1(Q) and
inf Dx(ρ̂ε � Hi) → ess inf DxHi as ε → 0 for all h, k, i, m ∈ P (Q)N , one de-
duces estimates of type (29) with R2 independent of ε for ε small enough. �

Remark 2.4. (i) In dimension d = 1 condition (4) is not needed. Note that
d2vi

dx2 is bounded from below if Hi is bounded from below; since it has zero
mean in (0, 1), it is bounded in L1 norm. Therefore dvi

dx is bounded.
(ii) Theorem 2.1 still holds if (3) is weakened to

∃νi > 0 such that lim inf
|p|→∞

infx∈Q |Hi(x, p)|
|p| = νi > 0, (30)
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provided that we substitute (4) with the stronger condition: ∃θi, ηi ∈
(0, 1) such that

lim inf
|p|→∞

1

|p|2 inf
x∈Q

(

θi(tr a)DxHi · p + (1 − θi)θiηi(Hi)2 − |p|2 (tr ai)|Dσi|2
2

)

≥ 0,

(31)

where ai = (1/2)σσt, Dσi = (Dσi
hk) is a matrix (whose entries are

vectors) and |Dσi|2 =
∑

h,k |Dσi
hk|2. To see this take εi = θi in (24),

multiply (26) by θi and choose ωi in (25) so that ωi > ηi. Let s > 0,
Rs > 0 be such that the quantity under the lim inf sign in the left-hand
side of (31) is > −s for all |p| ≥ Rs. Noting that |δσi| ≤ |Dσi||wR

i |, we
deduce

(ωi−ηi)(1 − θi)θi(Hi
R)2(xi

R, wR
i (xi

R))−s|wR
i (xi

R)|2 ≤ C(|wR
i (xi

R)|+1)

for some C > 0 (independent of R and s) and for R ≥ |wR
i (xi

R)| ≥ Rs.
Now if we choose s > 0 so small that s < νi(ωi − ηi)(1 − θi)θi, by (30)
we find that |wR

i (xi
R)| is bounded uniformly in R.

(iii) The arguments of the proof of Theorem 2.1, with some obvious modifi-
cations, prove also the solvability of the problem

Lv + λ + H(x,Dv) = 0

for the unknowns v ∈ C2(Q), λ ∈ R, where L satisfies (2) and the Hamil-
tonian H is locally Lipschitz continuous and satisfies (3) and (4) or, al-
ternatively, any condition mentioned in the remarks above. This result is
known for Dirichlet and Neumann boundary value problems with H sat-
isfying similar conditions, see [47]. If L is degenerate elliptic the existence
of a viscosity solution v ∈ C0,1(Q) can be found in [48].

These existence results for (1), under condition C1, may be interpreted
as follows. The Hamiltonians Hi can grow arbitrarily provided that they “do
not oscillate too much in x”, which rigorously means that they should satisfy
the technical condition (4); moreover, the operators V i must be regularizing,
therefore necessarily non-local.

On the other hand, if instead the Hamiltonians have at most linear growth
as in condition C2 of the Introduction, we do not need any additional assump-
tion of the aforementioned type, but the uniform boundedness of V i. More
precisely, in the next result we assume V i :

(
W 1,p(Q) ∩ P (Q)

)N → C0,α(Q)
(α being the same as in Condition C2) and

sup
m∈(W 1,p(Q)∩P (Q))N

‖V [m]‖∞ < ∞. (32)

Theorem 2.5. Assume (2) and (6), Hi satisfy condition C2, and that V i

verifies (7), (32). Then there exist λ1, . . . , λN ∈ R, v1, . . . , vN ∈ C2,α(Q),
m1, . . . ,mN ∈ W 1,p(Q), for all 1 ≤ p < ∞, which solve the system (1).

The proof is obtained as a limit in a system of equations with zero-th
order terms, based on Theorem 2.6, and it is therefore postponed to the next
section.
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2.2. Equations with zero-th order terms

The next result holds under a condition much larger than C2, where we replace
the linear growth in p of the Hamiltonians with a quadratic growth, the so-
called natural growth condition.
C2*. For all i = 1, . . . , N , for some α ∈ (0, 1), Hi is locally α-Hölder continu-

ous and for some C1, C2 > 0,

|Hi(x, p)| ≤ C1|p|2 + C2 ∀x ∈ Q, p ∈ R
d, (33)

Theorem 2.6. Assume (2) and (6), Hi satisfy condition C2*, and that V i veri-
fies (7), (32). Let ρ1, . . . , ρN be positive constants. Then there exist v1, . . . , vN ∈
C2,α(Q), m1, . . . ,mN ∈ W 1,p(Q), for all 1 ≤ p < ∞, i = 1, . . . , N, which solve

⎧
⎨

⎩

Livi + Hi(x,Dvi) + ρivi = V i[m] in Q,

Li∗mi − div
(
gi(x,Dvi)mi

)
= 0 in Q,∫

Q
mi(x)dx = 1, mi > 0, i = 1, . . . , N,

(34)

For the proof we need the following lemma which is proved in the Ap-
pendix.

Lemma 2.7. Let

L = −ahk(x)Dhk + bh(x)Dh + c(x)

be a second-order uniformly elliptic linear differential operator in Q = T
d with

coefficients ahk, bh, c ∈ Cα(Q), h, k = 1, . . . , d, 0 < α < 1. Assume also that
c > 0. Then, for any f ∈ Cα(Q), the equation

Lv = f (35)

has one and only one solution v ∈ C2,α(Q). Moreover, for some constant C > 0
which depends only on (the coefficients of) L,

‖v‖C2,α(Q) ≤ C‖f‖Cα(Q). (36)

Proof of Theorem 2.6. We define an operator

T : C1,α(Q)N → C1,α(Q)N ,

u 
→ m 
→ v,

in the following way. Given u = (u1, . . . , uN ), we solve the second N equations
in (34) with ui plugged into gi in place of vi and with the corresponding
normalisation conditions, and find m = (m1, . . . ,mN ), see Lemma 2.3. With
these mi and the ui plugged into the Hamiltonians Hi, i = 1, . . . , N, in place
of vi we solve, by Lemma 2.7, the first N linear equations of (34), that is,

Livi + ρivi + Hi(x,Dui) = V i[m], i = 1, . . . , N (37)

and find v = (v1, . . . , vN ) ∈ C2(Q); (actually we can say that vi ∈ C2,α2
(Q)N

but this is not important; notice that vi is solution to a linear equation
Livi = f i with f i(x) = V i[m](x) − Hi(x,Dui) − ρivi(x) which is α2-Hölder
continuous for x 
→ Hi(x,Dui(x)) is a composition of two α-Hölder continu-
ous functions, while the coefficients of the uniformly elliptic operator Li are
Lipschitz continuous).
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We set Tu = v.
It is standard to verify that T : C1,α(Q) → C1,α(Q), u → Tu is contin-

uous and compact. By Schaefer’s version of Leray–Schauder theorem (see [52,
Theorem 4.3.2, p 29] or [34, Theorem 11.3, p. 280]), we need only look at the
set of the fixed points of the operators sT , 0 ≤ s ≤ 1, that is,

{u ∈ C1,α(Q)N : sTu = u for some 0 ≤ s ≤ 1}, (38)

and prove that it is bounded in C1,α(Q)N .
To prove such an estimate first note that if u = sTu for some 0 ≤ s ≤ 1,

then, by assumption (32),

‖ui‖∞ =
s

ρi
max
x∈Q

(|Hi(x, 0)| + |V i[m](x)|) ≤ C

for some 0 < C < ∞ independent of u and s, as can be seen by looking at the
extrema of ui which satisfies Eq. (37) with ui = vi and Hi, V i[m] multiplied
by s.

Next we combine the L∞ bound with a classical a priori interior esti-
mate for the gradients of solutions of quasilinear elliptic equations [43, Theo-
rem 3.1, p. 266].

To do this we rewrite the equations in divergence form, use the quadratic
growth condition (33), and assume temporarily that the coefficients ai of the
equations are of class C1. Then we get

‖ui‖C1(Q) ≤ C (39)

for some C > 0 independent of u and s. Indeed, one has only to check carefully
that all the assumptions of [43, Theorem 3.1] are satisfied. The additional
regularity of the coefficients can now be removed by approximation because
the estimates depend only on the L∞-norm of the derivatives of the coefficients
and not on their moduli of continuity.

Finally, we can apply [34, Theorem 8.32, p. 210] to the linear uniformly
elliptic equations Liui = f i with f i(x) = V i[m](x) − Hi(x,Dui(x)) − ρiui(x),
since the f i are bounded and the coefficients of Li are Lipschitz, in order to
deduce, taking into account (39),

‖ui‖C1,α(Q) ≤ C

for some C > 0 again independent of u and s. Thus T has at least one fixed
point.

By classical Schauder regularity results for linear uniformly elliptic equa-
tions (see, e.g., Lemma 2.7) applied to the same equations Liui = f i as
above, we deduce that actually u ∈ C2,α(Q); we need only to notice that
x 
→ f i(x) = V i[m](x) − Hi(x,Dui(x)) − ρui(x) are α-Hölder continuous and
the coefficients of Li are Lipschitz continuous. �

Remark 2.8. An alternative existence result for the system (34) can be stated
under condition C1 instead of C2* if (8) holds. This requires only a slight
modification of the proof of Theorem 2.1.
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Now we prove Theorem 2.5 on the existence of solutions for the system
of ergodic PDEs (1) under condition C2 by approximation with solutions of
(34) with vanishing zero-th order coefficients ρi.

Proof of Theorem 2.5. Let vρ
1 , . . . , vρ

N ∈ C2,α(Q), mρ
1, . . . ,m

ρ
N ∈ W 1,p(Q)

(1 ≤ p < ∞, i = 1, . . . , N) be a solution of (34) with ρi = ρ > 0. Such
a solution exists by Theorem 2.6. By the comparison principle for the i-th
equation we first get, for all i and ρ ∈]0, 1],

‖ρvρ
i ‖∞ ≤ C2 + ‖V i‖∞. (40)

Let 〈vρ
i 〉 =

∫

Q
vρ

i dx be the mean of vρ
i . The crucial estimate is

‖vρ
i − 〈vρ

i 〉‖∞ ≤ C (41)

for some C > 0 independent of ρ, which we prove borrowing an idea from
[4,6]. Assume by contradiction that there is a sequence ρn → 0 such that the
sequence εn := ‖vρn

i − 〈vρn

i 〉‖−1
∞ converges to 0. The function ψn := εn(vρn

i −
〈vρn

i 〉) satisfies

Liψn + εnHi

(

x,
Dψn

εn

)

+ ρnψn = εn(V i[m] − ρn〈vρn

i 〉).

Then, by the linear growth condition (5) on Hi and (40), there is a constant
K such that

Liψn − C1|Dψn| + ρnψn ≤ Kεn. (42)

Liψn + C1|Dψn| + ρnψn ≥ −Kεn. (43)

Since Li is uniformly elliptic and ‖ψn‖∞ = 1 we can apply the estimates of
Krylov–Safonov type as stated in Thm. 5.1 of [53]. By (42) ψn satisfies a local
maximum principle with constants depending only on d, ν, ‖ai‖∞, C1, C2, and
‖V i‖∞, whereas by (43) ψn satisfies a weak Harnack inequality with constants
depending only on the same quantities. The combination of these two estimates
with the classical Moser iteration technique (see, e.g., [53]) implies that the
family {ψn} is equi-Hölder continuous.

Extracting a subsequence, we get that ψn converges uniformly to a func-
tion ψ. Note that ‖ψ‖∞ = 1 and that, by choosing xn ∈ Q such that ψn(xn) =
0 and extracting a further subsequence, we get ψ(x) = 0 for some x ∈ Q.
Moreover ψ is a viscosity solution of

Liψ − C1|Dψ| ≤ 0.

Since Li is uniformly elliptic and ψ is periodic, we deduce from the strong
maximum principle (see, e.g., [9]) that ψ must be a constant, which is a con-
tradiction.

We complete the proof by showing that there exists a sequence ρn → 0
such that, for wρ

i = vρ
i − 〈vρ

i 〉,
(wρn

i , ρn < vρn

i >, mρn

i ) → (vi, λi, mi) in C2(Q) × R × C(Q), (44)

where (vi, λi, mi), i = 1, . . . , N, is a solution of (1).
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Indeed, we note that (wρ
i ,mρ

i ) solve the equations
⎧
⎨

⎩

Liwρ
i + Hi(x,Dwρ

i ) = V i[(mρ
1, . . . ,m

ρ
n)] − ρ〈vρ

i 〉 in Q,

Li∗mρ
i − div

(
gi(x,Dwρ

i )mρ
i

)
= 0 in Q := T

d,∫

Q
mρ

i (x)dx = 1, mρ
i > 0, ∀i = 1, . . . , N.

(45)

By known a priori estimates for quasilinear elliptic equations (more pre-
cisely, by [43, Theorem 3.1, Ch. 4, p. 266]), ‖Dwρ

i ‖∞ can be bounded in terms of
‖wρ

i ‖∞ and the data, in particular of the supremum norm of V i[(mρ
1, . . . ,m

ρ
n)]−

ρ〈vρ
i 〉, which is bounded uniformly in ρ by the assumptions on V i and (40).

Then, applying [34, Theorem 8.32, p. 210] we deduce

‖wρ
i ‖C1,α(Q) ≤ C

for some C ≥ 0 and 0 < α ≤ 1 independent of ρ. Next, by the classical
Schauder estimates and assumptions (8)

‖wρ
i ‖C2,α(Q) ≤ C (46)

for some C and α independent of ρ. On the other hand, by Lemma 2.3 and
assumptions (2), (6), for all 1 ≤ p < ∞,

‖mρ
i ‖W 1,p(Q) ≤ C (47)

for C ≥ 0 independent of small enough ρ. Since C2,α(Q)×W 1,p(Q) for p large
enough is compactly embedded into C2(Q) × C(Q), the previous estimates
(46), (47) and the fact that the set {ρ〈vρ

i 〉 : ρ > 0} is bounded by (40), we
can extract a sequence ρn → 0 such that (44) holds true. �

Remark 2.9. If we drop the requirement that Hi and V i[m] be Hölder contin-
uous from the hypotheses of Theorems 2.5, 2.6 and require instead that Hi be
just a Carathèodory function (measurable in the first variable, continuous in
the second) and V i : (W 1,p(Q)∩P (Q))N → L∞(Q) satisfies (32), then we can
still conclude the existence of a solution for system (34), but in this case we
can only say that vi ∈ W 2,p(Q) for every 1 ≤ p < ∞ (and hence vi ∈ C1,α(Q)
for every 0 < α < 1).

Example 2.10. Let d < p < ∞. An example of a coupling term V i that satisfies
conditions (7), (8) (for α = 1) is given by

V [m](x) = F (x, η ∗ m(x)) ∗ η(x),

where η is a smooth regularizing kernel (that is, η is a smooth function,∫

Q
|η|dx < ∞, and supx∈Q |Dη| < ∞) and F : Q × R

N
+ → R a continuous

function.
Another example is given by

V [m](x) = F

(

x,

∫

Q

k(x, z)dm(x)
)

,

where k : Q × Q → R is continuous and α1-Hölder continuous in the first
variable uniformly in the second, while F : Q × R

N → R is a α2-Hölder
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continuous function, for 0 < α1, α2 ≤ 1. Then conditions (7), (8) are satisfied
with α = α1α2.

Example 2.11. (Local and bounded V ) Theorems 2.5 and 2.6 cover also terms
V i without regularizing properties, such as local functions of the form

V [m](x) = F (x,m(x)) (48)

where d < p < ∞, and F : Q × R
N
+ → R is a bounded α0-Hölder continuous

function for some 0 < α0 ≤ 1. Then assumption (7) is satisfied with α =
(1 − d/p)α0 and assumption (32) follows from the boundedness of F .

3. Stochastic differential games

As an application of the previous results, in this section we show the existence
of Nash equilibria for a class of N -person stochastic differential games with
infinite horizon, such that the state of each player evolves independently from
the states of the other players and the only coupling comes through the costs.
Games of this type arise in many engineering and economic problems [41,42,
46].

Consider a control system driven by the stochastic differential equations

dXi
t = f i(Xi

t , α
i
t)dt + σi(Xi

t)dW i
t , Xi

0 = xi ∈ R
d, i = 1, . . . , N (49)

where {W i
t }N

i=1 are N independent Brownian motions in R
d, d ≥ 1, Ai ⊆ R

m

are closed,

f i : Rd × Ai → R
d σi : Rd → R

d×d

are continuous, Zd-periodic and Lipschitz continuous in x uniformly in α, the
matrix σi(x) is nonsingular for any value of x, αi

t is an admissible control of
the i-th player, that is, a stochastic process taking values in Ai and adapted to
W i

t . In view of the assumed periodicity in xi of all data we will often consider
functions as defined on Q = T

d.

3.1. N -person games with long-time-average cost

Consider a game where the i-th player seeks to minimize the long-time-average
or ergodic cost

J i(X,α1, . . . , αN ) := lim inf
T→+∞

1
T

E

[∫ T

0

Li(Xi
t , α

i
t) + F i(X1

t , . . . , XN
t )dt

]

,

(50)

where X = (x1, . . . , xN ) is the initial position of the system (49). On the cost
of the i-th player (50) we assume

Li : Q × Ai → R continuous, (51)

F i : QN → R α-Hölder continuous (52)
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for some α ∈ (0, 1). Define

Hi(xi, p, α) := −p · f i(xi, α) − Li(xi, α),

Hi(xi, p) := sup
α∈Ai

Hi(xi, p, α), p ∈ R
d, (53)

and suppose the sup is attained in the definition of Hi for all xi, p. Moreover,
set

ai := σi(σi)t/2, Li := −ai · D2. (54)

Following the classical theory initiated by Friedman [32] and continued by
Bensoussan and Frehse [14–16], we look at the Nash equilibria for the maxi-
mization of the pre-Hamiltonians with parameters xj , pj ∈ R

d, j = 1, . . . , N ,
namely,

P i(α1, . . . , αN ) := −
N∑

j=1

f j(xj , αj) · pj − Li(xi, αi).

Clearly (α1, . . . , αN ) is a Nash equilibrium for the static game with payoffs
P 1, . . . , PN if and only if αi ∈ argmaxαiHi(xi, pi, αi) and the value of P i at
the equilibrium is

P i(α1, . . . , αN ) = Hi(xi, pi) −
∑

j �=i

f j(xj , αj) · pj .

Therefore the system of Bellman equations of ergodic type [15,16] associated
to the game considered here is
{ ∑N

j=1 Ljvi + Hi(xi, Dxivi) + λi = F i(X) +
∑

j �=i fj(xj , αj) · Dxj vi in R
dN ,

αi ∈ argmaxαiHi(xi, Dxivi, αi), i = 1, . . . , N,

(55)

where the unknowns are the constants λi and the functions vi(X), i = 1, . . . , N .
Note that this system is strongly coupled via the terms f j(xj , αj) on the right
hand side of the equation for vi, because αj depends on Dxj vj .

Assume there exist functions αi : Rd × R
d → Ai such that

αi(x, p) is a maximum point for α → Hi(x, p, α) ∀x, p, (56)

αi is locally Lipschitz and Z
d-periodic in x, (57)

and define

gi(x, p) = −f i(x, αi(x, p)), i = 1, . . . N. (58)

Making this choice in (55) we get
N∑

j=1

Ljvi + Hi(xi,Dxivi) +
∑

j �=i

gj(xj ,Dxj vj) · Dxj vi + λi = F i(X) in R
dN ,

(59)

i = 1, . . . , N . By a classical verification argument [15], if (vi, λi) ∈ C2(TdN ) ×
R, i = 1, . . . , N , is a solution, then αi(·,Dxivi(·)), i = 1, . . . , N , is a Nash
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equilibrium feedback. More precisely, if one solves the stochastic differential
equation

dXi
t = f i(Xi

t , α
i(Xi

t , Dxivi(Xt)))dt + σi(Xi
t)dW i

t , Xi
0 = xi ∈ R

d, i = 1, . . . , N.

(60)

then αi
t := αi(Xi

t ,Dxivi(Xt)), i = 1, . . . , N , is a Nash equilibrium for the cost
functionals (50), and λi, i = 1, . . . , N , are the values of the game corresponding
to such equilibrium.

We want to derive from (59) a different system of elliptic equations of
the form (1) from which we can still synthesize a Nash equilibrium feedback.

We follow an idea introduced by Lasry and Lions in the seminal paper
[44]. Given a solution of (59) consider the equilibrium process defined by (60).
Let us assume that

Dxivi depends only on xi for all i. (61)

Then the equations in (60) are decoupled and each of them defines a non-
degenerate diffusion Xi

t on the torus T
d, which has a unique ergodic invari-

ant measure with density mi. It is known that each mi ∈ C2(Td) solves the
Kolmogorov-Fokker-Planck equation

Li∗mi − divxi

(
gi(xi,Dxivi)mi

)
= 0,

∫

Q

mi(x)dx = 1, i = 1, . . . , N,

(62)

where Li∗ is the formal adjoint of Li.
The next result exploits the adjoint structure of (59) and (62) to prove

that multiplying the i-th equation in (59) by
∏

j �=i mj(xj) and integrating over
QN−1 with respect to dxj , j �= i, we arrive at

Livi + Hi(x,Dvi) + λi = V i[m] in R
d, (63)

where

V i[m](x) =
∫

QN−1
F i(x1, . . . , xi−1, x, xi+1, . . . , xN )

∏

j �=i

mj(xj)dxj . (64)

Note that (52) implies (7) for such V i and that it is easy to see that also (32)
holds.

Proposition 3.1. Assume (vi, λi) ∈ C2(TdN ) × R, i = 1, . . . , N, is a so-
lution of (59) satisfying (61) and m1, . . . ,mN solve (62). Then, for all i,
x 
→ vi(x1, . . . , xi−1, x, xi+1, . . . , xN ) solves (63) for all x1, . . . , xN .

Proof. Multiply the i-th equation in (59) by
∏

j �=i mj(xj) and integrate over
QN−1 with respect to dxj , j �= i. Observe that, for k �= i, integrating by parts
with respect to xk we get

∫

QN−1

(Lkvi + gk(xk,Dxkvk) · Dxkvi

) ∏

j �=i

mj(xj)dxj

=
∫

QN−2

∫

Q

vi

(
Lk∗

mk − divxk

(
gk(xk,Dxkvk)mk

))
dxk

∏

j �=i,k

mj(xj)dxj .
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Then (62) gives
∫

QN−1

∑

j �=i

(Ljvi + gj(xj ,Dxj vj) · Dxj vi

) ∏

j �=i

mj(xj)dxj = 0.

On the other hand, using the assumption (61) and
∫

Q
mj(x)dx = 1, we also

have
∫

QN−1

(Livi + Hi(xi,Dvi) + λi

) ∏

j �=i

mj(xj)dxj = Livi + Hi(xi,Dvi) + λi.

Now considering again the i-th equation in (59) multiplied by
∏

j �=i mj(xj)
and integrated over QN−1 with respect to dxj , j �= i, and plugging into it the
last two identities, we get that vi restricted to the variable xi solves (63) with
V i given by (64). �
Remark 3.2. If the maximum point αi(x, p) of Hi(x, p, ·) is unique, then Hi is
differentiable with respect to p and DpH

i(x, p) = −f i(x, αi(x, p)) = gi(x, p).
Then the resulting system of HJB-KFP equations can be written in the same
form as in the Lasry–Lions papers [44,46], namely,

⎧
⎪⎨

⎪⎩

Livi + Hi(x,Dvi) + λi = V i[m] in Q,

Li∗mi − div
(
DpH

i(x,Dvi)mi

)
= 0 in Q,

∫

Q
mi(x)dx = 1, mi > 0,

∫

Q
vi(x)dx = 0, i = 1, . . . , N.

(65)

These notations also show that the KFP equations are the linearizations of
the HJB equations around their solution v1, . . . , vN .

From the theory of the previous section we get the following existence
result.

Corollary 3.3. In addition to (2) and the assumptions of this section suppose
either that Hi satisfies condition C1 or that Hi verifies C2 with the same α as
in (52). Then there exist λ1, . . . , λN ∈ R, v1, . . . , vN ∈ C2,α(Q), m1, . . . ,mN ∈
W 1,p(Q), 1 ≤ p < ∞, which solve (1) with V i and gi given by (64) and (58),
respectively.

3.2. Synthesis of Nash equilibria

Next we prove a verification result that produces Nash feedback equilibria for
the N -person differential game from any solution of the HJB-KFP system of
PDEs. We recall that a feedback for the i-th player is a Lipschitz map αi : Rd →
Ai that generates a process Xi

t solving dXi
t = f i(Xi

t , α
i(Xi

t))dt + σi(Xi
t)dW i

t ,
Xi

0 = xi, and an admissible control αi
t = αi(Xi

t). As usual, when we say
“we plug feedback controls x 
→ αj(x), j = 1, . . . , N , in the functional J i,
i = 1, . . . , N” we mean that we are plugging its associated admissible control
t 
→ αj(Xj

t ), where t 
→ (Xj
t )N

j=1 is the solution of the system of SDEs

dXj
t = f j(Xj

t , αj(Xj
t ))dt + σj(Xj

t )dW j
t , Xj

0 = xj j = 1, . . . , N.

A Nash equilibrium of the N -person game of Sect. 3.1 for the initial
position X = (x1, . . . , xN ) is a vector of admissible controls (α1, . . . , αN ) such
that
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J i(X,α1, . . . , αi−1, αi, αi+1, . . . , αN ) ≥ J i(X,α1, . . . , αN )

for all αi admissible control.

Theorem 3.4. Let λi, vi,mi, i = 1, . . . , N be a solution of the system (1) as in
the preceding Corollary 3.3. Then

αi(x) := αi(x,Dvi(x)), x ∈ R
d, i = 1, . . . , N, (66)

define a feedback which is a Nash equilibrium for all initial positions X ∈ QN

of the control system (49). In addition, for each X = (x1, . . . , xN ),

λi = J i(X,α1, . . . , αN )

= lim inf
T→+∞

1
T

E

[∫ T

0

Li(X
i

t, α
i(X

i

t)) + F i(X
1

t , . . . ,X
N

t )dt

]

, (67)

where X
i

t is the process associated to the feedback αi with X
i

0 = xi.

Proof. We follow the outline of proof in [44,46]. Let us first check (67). The
processes X

i

t are independent diffusions on the torus, so each of them has a
unique ergodic invariant measure, which must be mi, see Chapter 3, Section 3
of [19] or [4]. Then the joint process (X

1

t , . . . ,X
N

t ) is ergodic with invariant
measure

∏N
i=1 mi(xi), and therefore the right hand side of (67) is

J i(X,α1, . . . , αN ) =
∫

Q

Li(x, αi(x))dmi(x) +
∫

QN

F i(x1, . . . , xN )
N∏

j=1

dmj(xj).

On the other hand, the Ito–Dynkin formula gives

E
[
vi(X

i

T ) − vi(xi)
]

= E

[∫ T

0

(
−gi(X

i

t,Dvi(X
i

t)) · Dvi(X
i

t) − Livi(X
i

t)
)

dt

]

By (56) and (58)

gi(x, p) · p = Hi(x, p) + Li(x, α(x, p)),

so the HJB equation (63) implies

E
[
vi(X

i

T ) − vi(xi)
]

= λiT − E

[∫ T

0

Li(X
i

t, α
i(X

i

t))

+
∫

QN−1
F i(x1, . . . , xi−1,X

i

t, x
i+1, . . . , xN )

∏

j �=i

dmj(xj)dt

⎤

⎦ .

We divide by T and let T → ∞. The left-hand side vanishes, whereas the right
hand side tends to λi − J i(X,α1, . . . , αN ), which proves (67).

Next we check that the feedback law (66) defines a Nash equilibrium. We
change the control of the i-th player into an arbitrary admissible control αi

t

and get
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1
T

E
[
vi(Xi

T ) − vi(xi)
]

=
1
T

E

[∫ T

0

(
f i(Xi

t , α
i
t) · Dvi(Xi

t) − Livi(Xi
t)

)
dt

]

≥ λi − 1
T

E

[∫ T

0

Li(Xi
t , α

i
t)

+
∫

QN−1
F i(x1, . . . , xi−1,Xi

t , x
i+1, . . . , xN )

∏

j �=i

dmj(xj)dt

⎤

⎦ .

By the ergodicity of the joint process (X
1

t , . . . ,X
i−1

t ,Xi
t ,X

i+1

t , . . . ,X
N

t ) the
last term on the right-hand side tends to J i(X,α1, . . . , αi−1, αi, αi+1, . . . , αN )
as T → ∞, and then

J i(X,α1, . . . , αi−1, αi, αi+1, . . . , αN ) ≥ λi = J i(X,α1, . . . , αN )

for all X ∈ QN . �

3.3. A class of N -person games with discounted costs

Consider again the controlled stochastic dynamics (49) with the same assump-
tions on the regularity and periodicity of the drifts f i and diffusions σi, i =
1, . . . , N . For any set of controls (αi)N

i=1, the corresponding solution processes
Xi

t , i = 1, . . . , N , are ergodic with invariant measures mi(x) = mi(x;αi),
x ∈ Q, see, e.g., [19, Theorem 3.2., p. 373]. The same is true for the joint
process Xt = (Xi

t , . . . , X
N
t ) with invariant measure

∏N
i=1 mi(xi).

Each player i seeks to minimize the discounted cost functional

J i
ρi(X,α1, . . . , αN ) = E

[∫ ∞

0

e−ρit
(
Li(Xi

t , α
i
t) + V i[m](Xi

t)
)
dt

]

. (68)

Here Li, V i, i = 1, . . . , N , are the same as in (51), (64), respectively, and
ρi > 0 is the discount rate of the i-th player. Note that only the state of the i-
th player appears explicitly in the cost, whereas the states of the other players
influence it only through their invariant measure.

In order to find Nash points we are led to the system of PDEs (34) where
the discount rates ρi appear as coefficients of the zero-th order terms, and Li,
Hi are given by (54), (53), respectively. We assume (56), (57), and define as
before gi by (58). Under the assumptions of either Theorem 2.6 or Remark 2.8
there exists a solution v1, . . . , vN ∈ C2(Q), m1, . . . ,mN ∈ W 1,p(Q), 1 ≤ p < ∞
to (34). Then a verification theorem similar to Theorem 3.4 gives the existence
of feedback Nash equilibria for this game.

Theorem 3.5. Let ρ1, . . . , ρN > 0 be given discount rates. For any solution
vρ1

1 , . . . , vρN

N ∈ C2(Q), m1, . . . ,mN ∈ W 1,p(Q), 1 ≤ p < ∞, of the system
(34), the feedback law αi(x) := αi(x,Dvρi

i (x)), i = 1, . . . , N, provides a Nash
equilibrium for all initial positions X ∈ QN . Moreover, for each X = (xi)N

i=1 ∈
QN ,
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vρi

i (xi) = J i
ρi(X,α1, . . . , αN )

= E

[∫ ∞

0

e−ρit
(
Li(X

i

t, α
i(X

i

t)) + V i[m](X
i

t)
)

dt

]

, (69)

where X
i

t is the solution of (49) associated to the feedback αi.

This theorem applies to a larger class of systems and cost functionals
than Theorem 3.4, because here we are assuming only the quadratic growth
condition C2* on the Hamiltonians instead of the linear growth C2.

3.4. Examples with unconstrained controls

In this section we consider Ai = R
d for all i and the system affine in the

control, i.e.,

f i(x, α) = ϕi(x) +
d∑

k=1

αkf i
k(x) = ϕi(x) + Φi(x)α, (70)

where Φi is a square matrix whose columns are the vector fields f i
k, k =

1, . . . , d, and all vector fields ϕi, f i
k are Lipschitz in Q = T

d (the d-dimensional
torus). Then

Hi(x, p) := −p · ϕi(x) + sup
α∈Rd

{−p · Φi(x)α − Li(x, α)}.

Assume Li is Lipschitz in x, uniformly as α varies in any bounded subset, and

lim
α→∞ inf

x∈Q
Li(x, α)/|α| = +∞. (71)

Then the sup in the definition of Hi is attained and

Hi(x, p) = Li∗ (
x,−Φi(x)tp

) − p · ϕi(x), Li∗
(x, q) := max

α∈Rd
{q · α − Li(x, α)},

(72)

i.e., Li∗
(x, ·) is the convex conjugate of Li(x, ·). Moreover Hi is locally Lipschitz

in x and p. Now the other conditions of the existence Theorems 2.1 or 2.6 for
the elliptic systems, and of the verification Theorems 3.4 or 3.5 can be checked
on the last expression of Hi, as we show in the following examples. Recall that
(71) implies that Li∗

is superlinear in q, i.e.,

lim
q→∞ inf

x∈Q
Li∗

(x, q)/|q| = +∞, (73)

so Hi cannot satisfy the linear growth condition in C2 unless Φi(x) ≡ 0. Next
we give examples satisfying C1 or C2*.

Example 3.6. If for a γ > 0

Li(x, α) ≥ γ(|α|2 − 1),

then Li∗
(x, q) ≤ |q|2/γ + γ and

|Hi(x, p)| ≤ C(1 + |p|2), ∀x ∈ Q, p ∈ R
d.

Therefore Hi satisfy condition C2* and Theorem 2.6 can be used. If (56) and
(57) hold, then all the assumptions of Theorem 3.5 are verified.
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In order to have the coercivity condition (3) of C1 we will assume the
matrix Φi is uniformly nonsingular in the following sense:

∃ δ > 0 such that |Φi(x)p| ≥ δ|p|, ∀ p. (74)

Example 3.7. Assume (74) and Li Lipschitz in x uniformly in α. Then con-
dition C1 holds. In fact |Hi(x, p)|/|p| → +∞ as |p| → ∞, uniformly in x, by
the formula (72) for Hi combined with (73) and (74). Moreover it is known
that, at any point where Li∗

is differentiable (therefore for a.e. x ∈ Q), one
can compute

DxLi∗
(x, q) = −DxLi(x, α̃i(x, q)),

where α̃i(x, q) is any value of α at which the max in the definition of Li∗
(x, q)

is attained, see, e.g., [8, Lemma II.2.11, p. 43]. Then DxLi∗
is bounded and

therefore DxHi ·p = O(|p|2). On the other hand (Hi)2/|p|2 → +∞ as |p| → ∞,
so the condition (4) in C1 holds for any choice of θi > 0. In conclusion,
Theorem 2.1 and Remark 2.8 apply to this example.

In order to apply the verification Theorems 3.4 and 3.5 and find Nash
equilibrium feedbacks for the stochastic differential games we must also check
the conditions (56) and (57) on the existence of a Lipschitz argmax for the
Hamiltonians. A sufficient condition for them is that Li be differentiable with
respect to α and DαLi(x, ·) be invertible (a fact related to the strict convexity
of Li in α) and locally Lipschitz. Then the sup in the definition of Hi is
attained at a unique value

αi(x, p) = (DαLi)−1
(
x,−Φi(x)tp

)
,

which is a locally Lipschitz function of x and p.
Next we give two examples where we can check all the conditions for the

existence of a feedback Nash equilibrium and give a more explicit formula for
it. In both we assume that F i are Lipschitz, so V i defined by (64) verify (8).

Example 3.8. Consider

Li(x, α) = αtBi(x)α,

with positive definite matrices Bi(x) Lipschitz in Q = T
d (the d-dimensional

torus), and the affine system (70). Then

Li∗
(x, q) = qtBi(x)−1q/4,

so Hi grows at most quadratically in p and satisfies condition C2*. Moreover

αi(x, p) = −1
2
Bi(x)−1Φi(x)tp

verifies (56) and (57), so Theorem 3.5 on games with discounted costs applies
and the Nash equilibrium feedback is linear in p = Dvi.

Assume in addition that Φi is uniformly nonsingular (74) and Bi(·)−1 is
Lipschitz. Then condition C1 holds. In fact, for γ > 0 such that qtBi(x)−1q ≥
γ|q|2 for all x and q, we have

Hi(x, p) ≥ γδ2|p|2 − max |ϕi||p|
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so (3) is verified. Moreover |DxHi| ≤ C(|p|2 + 1), thus DxHi · p = O(|p|3)
and also (4) is satisfied for any choice of θi > 0. Therefore Remark 3.2, Corol-
lary 3.3, and Theorem 3.4 on games with ergodic costs apply and produce the
same linear Nash equilibrium feedback as above.

Example 3.9. Consider

Li(x, α) = ci(x)
|α|γ
γ

for some Lipschitz ci > 0 and γ > 1, and the affine system (70) with Φi

uniformly nonsingular (74). Then

Li∗
(x, q) = ci(x)1/(1−γ)|q|γ/(γ−1) γ − 1

γ
,

so we can compute DxHi by (72) and see that (4) is satisfied for any θi > 0.
Therefore Theorem 2.1 and Remark 2.8 apply to this case with gi given by
(58). Moreover

αi(x, p) = ci(x)1/(1−γ)|q|(2−γ)/(γ−1)q, q = −Φi(x)tp,

satisfies (56) and (57), so also Remark 3.2 and Theorem 3.4 on games with
ergodic costs apply, as well as Theorem 3.5 on games with discounted costs.

3.5. Examples with constrained controls

Assume first that the vector fields f i have the general form described at the
beginning of Sect. 3 with all control sets Ai bounded, and (51), (52) hold.
Then the Hamiltonians defined by (53) satisfy the linear growth condition (5)
because

|Hi(x, p)| ≤ sup
Q×Ai

|f i||p| + sup
Q×Ai

|Li|, ∀x ∈ Q, p ∈ R
d.

If Li is α-Hölder, for some 0 < α ≤ 1, in x, condition C2 is verified. Then,
assuming (56) and (57), all the assumptions of Corollary 3.3 and Theorems 2.6,
3.4, and 3.5 are verified.

The next is a simple example where the argmax of the Hamiltonians is a
singleton and verifies (57).

Example 3.10. Consider the system

f i(x, α) = ϕi(x) − α, Ai = {α ∈ R
d : |α| ≤ Ri}, ∀ i,

with ϕi Lipschitz, Ri > 0, and the costs

Li(x, α) = ci(x)
|α|2
2

,

for some Lipschitz ci > 0. Then

Hi(x, p) = max
|α|≤Ri

{

p · α − ci(x)
|α|2
2

}

− p · ϕi(x)

=

{
|p|2/(2ci(x)) − p · ϕi(x), if |p| ≤ Ric

i(x),
Ri|p| − ci(x)R2

i /2 − p · ϕi(x), if |p| > Ric
i(x).
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Moreover

αi(x, p) =

{
p/ci(x), if |p| ≤ Ric

i(x),
Rip/|p|, if |p| > Ric

i(x)

satisfies (56) and (57). Also Remark 3.2 applies and we have again an explicit
formula for the Nash equilibrium feedback. Note that Hi is unbounded from
below if ‖ϕi‖∞ > Ri, in particular it does not satisfy the coercivity condition
(30).

Note also that we can restrict further Ai to controls such that some com-
ponents are null, say αk = 0 for k = 1, . . . , d1, d1 ≤ d. Then the Hamiltonian
is linear with respect to pk, k = 1, . . . , d1, but it still satisfies the assumptions
of Corollary 3.3 and Theorems 2.6, 3.4, and 3.5.

In the last example some controls are bounded and the others are uncon-
strained; the Hamiltonians satisfy neither condition C1 nor C2, but a solution
of the system (1) exists by Remark 2.4(ii).

Example 3.11. Take d1, d2 ≥ 0 and such that d1 +d2 = d. Consider the system

f i(x, α) = ϕi(x) − α, Ai = {(α1, α2) ∈ R
d1 × R

d2 : |α1| ≤ Ri}, ∀ i,

with ϕi Lipschitz, Ri > 0, and the costs

Li(x, α) = ci |α1|2
2

+
|α2|γ

γ
,

for ci > 0 and γ > 1. We write p = (p1, p2) ∈ R
d1 × R

d2 and find that for
|p1| > Ric

i the Hamiltonian is

Hi(x, p) = Ri|p1| + (γ − 1)
|p2|γ/(γ−1)

γ
− p · ϕi(x) − ci R

2
i

2
,

so neither the superlinearity condition (3) nor the linear growth (5) are satis-
fied. Denote ϕi = (ϕi

1, ϕ
i
2) ∈ R

d1 × R
d2 and x = (x1, x2) ∈ R

d1 × R
d2 . Then

Hi verifies the coercivity condition (30) if ‖ϕi
1‖∞ < Ri. Moreover, Hi satisfies

also (31) if Ri is large enough with respect to ‖Dx1ϕ
i
1‖∞ and ‖Dσi‖∞, as it

is easy to check (for instance, (31) holds for any Ri > 0 if σi is constant and
Dx1ϕ

i
1 = 0). By the calculations in the Examples 3.9 and 3.10 also (56) and

(57) hold true. Therefore, by Remark 2.4(ii), the conclusions of Corollary 3.3
and Theorem 3.4 hold in this case as well.

3.6. Stationary mean-field games

For N = 1 the system of PDEs (1) is associated to a stationary Mean-Field
Game if the Hamiltonian has the form (53) related to the vector field g by (58).
For N > 1 it is related to Mean-Field Games involving N distinct homogeneous
populations of agents. Each population has a large number of identical players,
and each of the players has a controlled nonlinear dynamics affected by white
noise and seeks to minimise his individual cost functional (the withe noises of
different agents are independent). The function mi in system (1) describes the
density of the distribution of the i-th population.
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For MFG models V i typically has the form Gi(x,Ki
1 ∗m1, . . . ,K

i
N ∗mN )

with Ki
j Lipschitz kernels on Q and Gi : Q×R

N → R locally Lipschitz, so that
the general conditions of the Introduction are satisfied. If the Hamiltonians Hi

and the vector fields gi are, respectively, of the form (53) and (58) of Sect. 3.1,
we have existence of a solution λi, vi,mi, i = 1, . . . , N , to (1) under the same
assumptions of Corollary 3.3, but with V i verifying (7), (8) under condition
C1 and only (7), (32) under condition C2.

Such solution can be used for the following verification theorem. Given a
vector of probability densities m consider a generic agent of the i-th population
with dynamics (49) and cost functional

J̃ i(Xi
0, α

i,m) := lim inf
T→+∞

1
T

E

[∫ T

0

Li(Xi
t , α

i
t) + V i[m](Xi

t)dt

]

, (75)

with V i as above.

Proposition 3.12. Let λi, vi,mi, i = 1, . . . , N be a solution of the system (1)
with Hi, gi, V i as above. Then

αi(x) := αi(x,Dvi(x)), x ∈ R
d, i = 1, . . . , N, (76)

is an optimal feedback for any agent of the i-th population for all initial posi-
tions Xi

0 ∈ Q, i.e.,

J̃ i(Xi
0, α

i,m) ≤ J̃ i(Xi
0, α

i,m) for all admissible controls αi.

Moreover, the probability density of the position of the i-th agent using such
feedback is mi.

Proof. It is enough to use a standard verification theorem in ergodic control
(whose proof is very similar to that of Theorem 3.4). In fact, the i-th HJB
equation of the system (1) is the Bellman equation of such a control prob-
lem with cost functional J̃ i. The second statement follows from the i-th KFP
equation of the system (1) and the choice of gi (58). �

The meaning of the result is that a solution of (1) provides an equilibrium
for the MFG in the sense that for the generic agent of the i-th population
the optimal control αi produces a probability distribution of the agent that
coincides with the distribution mi of the whole i-th population.

Let us recall the connections between Mean-Field Games and games with
large populations of identical players.

• Suppose we have only one population made of Ñ identical players with dy-
namics f i(x, α) = α, σi(x) = ν > 0, Li = L for all i = 1, . . . , Ñ , coupled
only via the running costs F i(x1, . . . , xÑ ) = V [ 1

Ñ−1

∑
j �=i δxj

](xi) where
V is an operator on measures with the properties described in the Intro-
duction and δxj

are Dirac measures, so the argument of V is the empirical
distribution of the players different from i. Let λÑ

i , vÑ
i ,mÑ

i , i = 1, . . . , Ñ
be the solution of (1) given by Corollary 3.3. Then Lasry and Lions [44]
showed that this sequence of solutions has a convergent subsequence as
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Ñ → ∞ and that the limit of each convergent subsequence solves the
MFG PDEs with N = 1

⎧
⎨

⎩

−Δv + H(x,Dv) + λ = V [m] in Q,
−Δm − div (DpH(x,Dv)m) = 0 in Q,∫

Q
m(x)dx = 1, m > 0,

∫

Q
v(x)dx = 0.

For linear-quadratic models a stronger convergence was proved by com-
pletely different methods in [7,12].

• The same kind of limit result for general dynamics and N populations
of identical players, as the number of players of each population goes
to infinity, was proved by Feleqi [31] using the methods of [44] and the
estimates of Sect. 2 of the present paper.

• A basic result of the approach to MFG by Huang, Caines and Malhame
[41,42] states that the optimal feedback synthesised from the MFG PDEs
is an ε-Nash equilibrium for the Ñ -person game for Ñ large enough, see
also [22].

4. Appendix: Proofs of some technical results

Proof of Lemma 2.2. For any solution (v, λ) ∈ C2,α(Q) × R of (9), we imme-
diately deduce (10) by looking at the extrema of v.

Uniqueness. Thus f ≡ 0 implies λ = 0. On the other hand v ≡ 0 other-
wise the strong maximum principle (e.g., [34, Theorem 3.5, p. 35]) would be
contradicted.

Existence. Consider (9) with L0 = −Δ instead of L. It is clearly solvable
for any f ∈ C∞ with λ =

∫

Q
fdx and v that can be determined by Fourier

series. Moreover, by Bessel’s identity one deduces ‖Dβv‖p ≤ ‖f‖p for all 2 ≤
p < ∞ and all multiindex β with length |β| ≤ 2. By letting p → ∞, this
estimate holds also for p = ∞. Thus (9) with L0 instead of L is solvable for
any f ∈ C(Q) and the solution v ∈ C2(Q). Actually, by Schauder interior
estimates (see [34, Theorem 4.8, p. 62]) f ∈ Cα(Q) implies v ∈ C2,α(Q).

In order to apply a continuity method, see [34, Theorem 5.2, p. 75], and
deduce the solvability of (9), we introduce the operators

Ti : C2,α(Q)/R × R → Cα(Q), i = 0, 1,

(u, λ) → Ti(u, λ) = Liu + λ L1,≡ L.

Note that

[v]2, α, Q = sup
x, y∈Q, |β|=2

|Dβv(x) − Dβv(y)|
|x − y|α

is a norm in C2,α(Q)/R equivalent to the natural one. Define also Ts = (1 −
s)T0+sT1, 0 ≤ s ≤ 1. These operators are clearly linear and bounded. T0 is also
an isomorphism of Banach spaces. We need only prove that they are bounded
from below in order to finish. This requires a careful look at Schauder interior
estimates, see [34, Theorem 6.2, p. 90]. Let Ω ⊃ Q be a ball of diameter D
containing Q and having same center as Q. We need some notation from [34].
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For any function g differentiable as many times as needed, if dx := dist (x, ∂Ω),
dx, y := min{dx, dy}, we set

[g]∗2, α, Ω = sup
x,y∈Ω, |β|=2

d2+α
x, y

|Dβg(x) − Dβg(y)|
|x − y|α ,

[g](j)l, α, Ω = sup
x,y∈Ω, |β|=2

dj+l+α
x, y

|Dβg(x) − Dβg(y)|
|x − y|α

[g](j)l, Ω = sup
x∈Ω, |β|=l

dl+j
x |Dβg(x)|, |g|(j)i, α, Ω =

i∑

l=1

[g](j)l, Ω + [g](j)i, α, Ω

for any nonnegative integers i, j, l. Let Ts(v, λ) = f . Then, by [34, Theorem 6.2,
p. 90],

[v]∗2, α, Ω ≤ C(‖v‖C(Ω) + |f − λ|(2)0, α, Ω), (77)

where C depends only on a constant of ellipticity of Ls = (1 − s)L0 + sL1

which clearly can be taken to be independent of s, and at most linearly on

max
h, k

{|1 − s + sahk|(0)0, α, Ω, |sbh|(1)0, α, Ω} ≤ D1+α max
h, k

{‖ahk‖∞, ‖bh‖Cα(Q)} ,

where D is the diameter of Ω. Therefore, taking also into account (10), by (77)
we obtain

[v]2, α, Q ≤ C
D1+α

(D − √
d)2+α

(‖v‖∞ + D2+α‖f‖Cα(Q)

)

for some C independent of D. Now it is sufficient to take an Ω with a suitably
large diameter D in order to obtain (12). Finally, the C1,α-estimate (11) follows
from [34, Theorem 8.32, p. 210]. This concludes the proof of this lemma. �

Remark 4.1. An alternative proof of the existence relies on the approximation
by equations with zero-th order terms Lv + ρv = f with ρ > 0. A solution vρ

exists by Lemma 2.7, and we can let ρ → 0 following the proof of Theorem 2.5.

Proof of Lemma 2.3. That m ∈ W 1,2(Q) exists, is unique and positive is
proved, e.g., in [19, Theorem 3.4, 378] or [13, Theorem 4.2, p. 133, Theo-
rem 4.3, p. 136]. (In [13] only the case L = −Δ is treated but the techniques
adapt easily to our operator.) The fact that m ∈ W 1,p(Q) is also known, but
for lack of a reference we sketch a proof here based on ideas of [51]. Split the
operator L = L0 + R into a (formally) selfadjoint part L0 = −Dk(ahk(x)Dh)
and a reminder R = DkaakDh. We use the deep fact that

L0 : W 2,p(Q)/R → Lp(Q)/R, 1 < p < ∞
is an isomorphism of Banach spaces. Then, by duality and interpolation,

L0 : W 1,p(Q)/R → W−1,p(Q)/R, 1 < p < ∞
is also an isomorphism of Banach spaces. So we need only show that L0m ∈
W−1,p(Q) in order to conclude.
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Note that, by Sobolev’s embedding lemma, m ∈ Lp(Q), where p > 2 is
given by 1/p = 1/2 − 1/d if d ≥ 3, or, otherwise, for any 1 ≤ p < ∞. By the
Eq. (13), we have L0m = −R∗m + div(gm). Hence, for any ϕ ∈ C∞(Q),

|〈L0m,ϕ〉| =
∣
∣
∣
∣

∫

Q

mDkahkDhϕdx −
∫

Q

mg · Dϕdx

∣
∣
∣
∣

≤ (‖g‖∞ + C)‖m‖p‖Dϕ‖p′

for some C > 0 (independent of g), p′ = p/(p−1). Therefore, L0m ∈ W−1,p(Q)
and m ∈ W 1,p(Q). We are done if d ≤ 2. Otherwise, again Sobolev’s lemma
implies that m ∈ Lp(Q), where p now is given by 1/p = 1/2 − 2/d if d ≥ 5,
or, otherwise, for any 1 ≤ p < ∞. In the same manner we conclude that
m ∈ W 1,p(Q). Thus, by a bootstrap argument, we deduce that m ∈ W 1,p(Q)
for all 1 ≤ p < ∞.

Moreover, by the estimates above and the fact that L0 : W 1,p(Q)/R →
W−1,p(Q)/R is an isomorphism, we deduce that

‖m‖W 1,p(Q) ≤ C1(‖g‖∞ + C2)‖m‖p.

for some C1, C2 > 0 independent of g. Taking also into account [13, Theo-
rem 4.3, p. 136] which states that δ1 < m < δ2 for some constants δ1, δ2 > 0
that depend only on ‖g‖∞ (and in our case also on the coefficients ahk, in a
way which we do not specify because we will not need it in the sequel) we
obtain (14). �

Proof of Lemma 2.7. Uniqueness is standard. For the existence, we use a con-
tinuity method, e.g., [34, Theorem 5.2, p. 75], and Schauder a priori estimates
to reduce to the equation corresponding to a simpler operator, say

L0 = −Δ + 1.

That L0v = f has a solution v ∈ C∞(Q) for each f ∈ C∞(Q) can be shown,
e.g., by Fourier series. Moreover, L0v = f implies ‖v‖∞ ≤ ‖f‖∞. Then, by
a Schauder estimate, see [34, Theorem 4.8, p. 62], ‖v‖C2,α(Q) ≤ C‖f‖Cα(Q).
Now for an arbitrary f ∈ Cα(Q) consider a sequence {fn} ⊂ C∞(Q) such that
fn → f in Cα(Q). The sequence of the corresponding solutions {vn} is Cauchy
in C2,α(Q) and its limit v verifies L0v = f .

Next, introduce the family of operators

Ls : C2,α(Q) → Cα(Q), 0 ≤ s ≤ 1,

u → Lsu = (1 − s)L0u + sLu.

For all u ∈ C2,α(Q), by looking at its extrema, we have

‖u‖∞ ≤ max{1, ‖1/c‖∞}‖Lsu‖∞.

Combining this with the interior Schauder estimates, see [34, Theorem 6.2,
p. 90], we obtain

‖u‖C2,α(Q) ≤ C‖Lsu‖Cα(Q)

for all u ∈ C2,α(Q), 0 ≤ s ≤ 1 and some C > 0 independent of u and s. Since
L0 is onto, by the method of continuity [34, Theorem 5.2, p. 75], L1 is also
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onto, which is what we wanted to prove. With these considerations we also
proved (36). �
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[42] Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG
problems with nonuniform agents: individual-mass behavior and decentralized
ε-Nash equilibria. IEEE Trans. Autom. Control 52, 1560–1571 (2007)

[43] Ladyzhenskaya, O.A., Ural tseva, N.N.: Linear and Quasilinear Elliptic Equa-
tions. Academic Press, New York (1968)
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Mech. Anal. 74(4), 335–353 (1980)

[48] Lions, P.-L., Souganidis, P.E.: Homogenization of degenerate second-order PDE
in periodic and almost periodic environments and applications. Ann. Inst. H.
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