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Asymptotic decay under nonlinear
and noncoercive dissipative effects
for electrical conduction in biological tissues
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Abstract. We consider a nonlinear model for electrical conduction in bio-
logical tissues. The nonlinearity appears in the interface condition pre-
scribed on the cell membrane. The purpose of this paper is proving asymp-
totic convergence for large times to a periodic solution when time-periodic
boundary data are assigned. The novelty here is that we allow the non-
linearity to be noncoercive. We consider both the homogenized and the
non-homogenized version of the problem.

Mathematics Subject Classification. 35B40, 35B27, 45K05, 92C55.

Keywords. Asymptotic decay, Stability, Nonlinear homogenization,
Two-scale techniques, Electrical impedance tomography.

1. Introduction

We study here a problem arising in electrical conduction in biological tissues
with the purpose of obtaining some useful results for applications in electrical
tomography, see [4-14]. Our interest in this framework is motivated by the fact
that composite materials have widespread applications in science and technol-
ogy and, for this reason, they have been extensively studied especially using
homogenization techniques.

From a physical point of view our problem consists in the study of the
electrical currents crossing a living tissue when an electrical potential is applied
at the boundary (see [17,19,22,25,29]). Here the living tissue is regarded as
a composite periodic domain made of extracellular and intracellular materi-
als (both assumed to be conductive, possibly with different conductivities)
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separated by a lipidic membrane which experiments prove to exhibit both
conductive (due to ionic channels in the membrane) and capacitive behav-
ior. The periodic microstructure calls for the use of an homogenization tech-
nique. Among the wide literature on this topic, we recall for instance [1—
3,15,16,18,20,21,28,30-34]. As a result of the homogenization procedure we
obtain a system of partial differential equations satisfied by the macroscopic
electrical potential u, which is the limit of the electrical potential u. in the
tissue as ¢ (the characteristic length of the cell) tends to zero.

Different scalings may appear in this homogenization procedure and they
are studied in [9,13]. We study here further developments of the model pro-
posed in [4,5,7,9,11-13], where the magnetic field is neglected (as suggested
by experimental evidence) and the potential u. is assumed to satisfy an elliptic
equation both in the intracellular and in the extracellular domain (see, (2.1)
below) while, on the membranes it satisfies the equation

g%[ug] +f ([uj) =0°Vu, - Ve

where [u.] denotes the jump of the potential across the membranes and 0 Vu, -
V. is the current crossing the membranes. From a mathematical point of view
a big difference does exist between the case of linear f and the nonlinear case,
as already pointed out in [13,14].

At least in the linear case, the asymptotic behavior of the potentials u.
and u is crucial in order to validate the phenomenological model employed in
bioimpedance tomography devices, which currently relies on the use of complex
elliptic equations, (see [10-12]).

Motivated by the previous considerations, in [14] and in this paper we
investigate the behavior as ¢ — 400 of the nonlinear problem introduced in
[13].

In [14], we proved that, if periodic boundary data are assigned and f is
coercive in the following sense

fect(R), f'(s)>k>0, VscR, (1.1)

for a suitable k > 0, then the solution of the e-problem converges as t — +o0
to a periodic function solving a suitable system of equations. In that case such
a convergence was proved to be exponential. A similar asymptotic exponential
behavior was proved for the solution of the homogenized problem. Similar
results in different frameworks can be found in [23,24,26,27].

It is important to note that in [10-12], where f is linear, our approach
was based on eigenvalue estimates which made it possible to keep into account
(as far as the asymptotic rate of convergence is concerned) both the dissipative
properties of the intra/extra cellular phases and the dissipative properties of
the membranes. Namely, we looked at the eigenvalue problem associated to
the static version of our problem (3.1)—(3.5) where f(s) = ks. The relevant
eigenvalue is positive and bounded from below uniformly in € if 0% or k are
positive. This allows us to obtain a differential inequality for the L?-norm of
the solution u. in space, which implies its exponential asymptotic decay, again
uniformly in e.
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Instead, in the nonlinear but coercive case (i.e., in [14]), we proceed by
exploiting the coercivity of f, hence the electrical properties of the intra/extra
cellular phases do not appear in the rate of convergence. Indeed the eigenvalue
approach, which is peculiar to the linear case, cannot be applied here due to
the lack of good comparison results. Thus the differential inequality mentioned
above can rely only on the coercive dissipative effect of f (i.e., the exponential
decay rate vanishes as k — 0).

If f is not coercive we must drop the approach via differential inequalities
applied in [10-12] and in [14]. Instead we assume f to be monotone increasing
and we proceed via a Liapunov-style technique so that the rate of convergence
is not quantified.

The paper is organized as follows: in Sect. 2 we present the geometri-
cal setting and the nonlinear differential model governing our problem at the
microscale €. In Sect. 3 we prove the decay in time of the solution of the micro-
scopic problem. Finally, in Sect. 4 we prove the decay in time of the solution
of the macroscopic (or homogenized) problem, providing also the differential
system satisfied by such asymptotic limit.

2. Preliminaries

Let £2 be an open bounded subset of RY. In the sequel v or 5 will denote
constants which may vary from line to line and which depend on the charac-
teristic parameters of the problem, but which are independent of the quantities
tending to zero, such as €, 6 and so on, unless explicitly specified.

2.1. The geometrical setting

The typical geometry we have in mind is depicted in Fig. 1. In order to be
more specific, assume N > 2 and let us introduce a periodic open subset E of
RY, sothat E+z = E for all z € ZV. For all £ > 0 define 2¢ = 2 NeE,
25 = 2\eE. We assume that {2, E have regular boundary, say of class C™
for the sake of simplicity, and dist(I'¢,02) > ~e, where ' = 0£2]. We also
employ the notation Y = (0,1)Y, and By = ENY, B, = Y\E, ' = 0ENY. As
a simplifying assumption, we stipulate that F; is a connected smooth subset
of Y such that dist(I,0Y) > 0. We denote by v the normal unit vector to I’
pointing into Es, so that v.(z) = v(e~12).
For later use, we introduce also the conductivity

o1 ify € Fy,
o(y) = ! ) 4 b and oo = |E1|o1 + |Es|oa,
02 1fy € EQ,

where 01, 05 are positive constants, and we also set 0°(z) = o (e~ 'z). Moreover,
let us set

¢L(Y) == {u:Y\I' > R|wg, €C*(E1), ujp, €C*(E2), and uis Y—periodic},

for every 0 < k < +00, and



48 Page 4 of 24 M. Amar, D. Andreucci and R. Gianni NoDEA

FIGURE 1. On the left an example of admissible periodic unit
cell Y = EyUE,UI N in R?. Here F is the shaded region and I'
is its boundary. The remaining part of Y (the white region) is
E5. On the right the corresponding domain 2 = 2 UQ25UT*.
Here (27 is the shaded region and I'® is its boundary. The
remaining part of 2 (the white region) is §25.

Xp(Y):={ueL*Y)|up € H(E1), up, € H(E),
and u is Y — periodic}.
More generally, the subscript # in the definition of a function space will denote
periodicity with respect to the first domain, in such a way that the extended

function remains (locally) in the same space.
We set also

XN(2) ={uec L*(2) | ujp: € H'(2), wujos € H'(25)}.
We note that, if u € X:&(Y) then the traces of ujg, on I', for i = 1,2, belong
to HY2(I'), as well as v € X*(§2.) implies that the traces of u)ps on 1'%, for
i = 1,2, belong to H/?(I®).
2.2. Statement of the problem
We write down the model problem:

—div(c°Vu.) =0, in (27U 25) x (0,T); (2.1)
[0°Vue -v:] =0, onI*®x(0,T); (2.2)
%%[ug] +f (%A) =0°Vu. -ve, on I°x(0,T); (2.3)
[ue](z,0) = Sc(x), on I'%; (2.4)
ue(x) = ¥(x,t), on 92 x (0,T), (2.5)

where o€ is defined in the previous subsection and o > 0 is a constant. We note
that, by the definition already given in the previous section, v, is the normal
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unit vector to I’ pointing into {25. Since u. is not in general continuous across
I'® we set

ulV ;= trace of Uej s on I x(0,7T); ul? ;= trace of Ugjs on I x (0,T).

Indeed we refer conventionally to 2] as to the interior domain, and to (25 as
to the outer domain. We also denote

[ue] := u§2> — ugl).

Similar conventions are employed for other quantities, for example in (2.2). In
this framework we will assume that

(i) S.e HY*(I®), (i) / S%(z)do < e, (2.6)
e

where the second assumption in (2.6) is needed in order that the solution of
system (2.1)—(2.5) satisfies the classical energy inequality. (see (3.1) in [14]).
Moreover, f: R — R satisfies

feC(R),

© 00 =3

(2
f is a strictly monotone increasing function, (2.
f(0) =0, (2.
1'(s) > 0o, for a suitable 6y > 0 and V|s| sufficiently large. (2.10

)
)
)
)

The previous assumptions imply also
f(s)s > A1s® — \g|s|, for some constants A\; > 0 and Ay > 0. (2.11)

Notice that the results presented in this paper hold also in a more general
case, namely if we replace condition (2.10) with the assumption that f~! is
uniformly continuous in R, for example when f(s) = s+ sins.

Finally, U : 2x R — R is a function satisfying the following assumptions

(i) ¥ € Lj,.(R; H*(12));

loc
(il) U, € L7 (R; H' (2)); (2.12)
(ili) ¥(x,-) is 1-periodic for a.e. x € £2.
Existence and uniqueness for problem (2.1)-(2.5) has been proved in [8].
Moreover, by [14, Lemma 4.1 and Remark 4.2] it follows that the solution
ue € CO((0,T); X1 (£2.)) and [uc] € CO((0,T]; L*(I"?)), uniformly with respect
to e, and [uc] € C°([0,T]; L*(I"%)), but with non uniform estimates.

3. Asymptotic convergence to a periodic solution
of the e-problem
The purpose of this section is to prove the asymptotic convergence of the

solution of problem (2.1)-(2.5) to a periodic function u? when t — +occ. The
function u? is, in turn, a solution of the system

—div(e*Vu?) =0, in (025U 05) x R; (3.1)
[0°Vu# -1 =0, onI®xR;
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ad [u?]

il PO € — (FE\Ty . € .

- o [wZl+ f ( . > (°Vu? -ve), onl*x R; (3.3)
u (x,t) = U(x,t), ondR2 x R; (3.4)
u? (x,-) is 1-periodic, in £2. (3.5)

Indeed, this problem is derived from (2.1)—(2.5) replacing Eq. (2.4) with (3.5).
The rigorous definition of weak solution of (3.1)—(3.5) is standard (see
for instance [14, Definition 4.13]).
As a first step we will prove the following result.

Proposition 3.1. Under the assumptions (2.7)—(2.10) and (2.12), problem
(3.1)~(3.5) admits a solution u¥ € C%([0,1]; X' (12.)).

Proof. For § > 0, let us denote by fs(s) := f(s) + ds, for every s € R, and
consider the problem

—div(e*Vul;) =0, in (2§ U0Q5) x R; (3.6)
[0°Vuls-v] =0, onI®xR; (3.7)
#
0 U
%a[uﬁé] + fs <[E€6]> = UEVu&#’J -v., onl®xR; (3.8)
uﬁg(:r,t) =U(z,t), ondRx R; (3.9)
ufi;(:r, -) is l-periodic, in 2. (3.10)

For any positive € and ¢, the previous problem admits a unique time-periodic
solution because of the results already proved in [14].

On the other hand, multiplying Eq. (3.6) by uji; — U, integrating by
parts on {2 x [0,1], using the periodicity and taking into account equations
(3.7)—(3.9), we get

1 e 1 u#
/ / "—|vuf5|2dxdt+/ / gy [ es]
0o Jo 2 ’ Jo Jre €

Finally, using (2.11) we obtain

1 B 1 r1 £
o # 2 A1 # 12 g 2 £ 2| e
—|Vu? ddt—l—//f‘g ddtg//fV\IJddt—ﬁ-—)\F.
| [ Gwitiavas [ [ Sutasacs [ Siwurasa o
(3.12)
Multiplying now Eq. (3.6) by ujis’t — U, integrating by parts on (2 x [0,1],
using the periodicity and taking into account equations (3.7)—(3.9), we get

% ! +# 2 ! [u:ﬁé} #
s / / [ua@t} do dt + / / fs | —— [ua,(i,t} do dt
€ Jo Jre 0 e g

1 1 5 1 €
S//06Vuf5V\I/tdmdt§// J—|Vuf5|2dxdt+// TV, 2 dzdt
0J0 ’ 0Ja 2 ’ 0Ja 2

1 £
>[uﬁ5}dadt</ /%Wwdxdt.
0 2

(3.11)
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1 O_e 5 e 5 1 0_5 )
S// — VY| d:cdt+—/\2|F5|+// — |V, |" dz dt, (3.13)
0o 2 2\ 0oJo 2

where we used (3.12). Notice that the second integral on the left-hand side is
equal to zero by periodicity and trivial integration. Hence

// dadt<// 71w, ? dmdt+//—|V\If| dodt+ 5= NI,
FE

(3.14)
Inequalities (3.12) and (3.14), for ¢ > 0 fixed, yield the weak convergence
of uﬁé and Vuffé in L2(£2 x (0,1)), i = 1,2, and respectively the strong
convergence of [uf(;] in L2(I'® x (0,1)), for § — 0. Since all the functions uﬁé
are 1-periodic, denoting as usual with u? the limit of ujfé we have that the
same periodicity holds true for uf Moreover we can pass to the limit, as § — 0,
in the weak formulation of problem (3.6)(3.10), thus obtaining that u? is a
1-periodic solution of problem (3.1)—(3.5), under the assumptions (2.7)—(2.10)
and (2.12).

Differentiating formally With respect to ¢ (3.6)—(3.9), multiplying the first
equation thus obtained by ( cot U,) and finally integrating by parts, we

obtain
1 5 1 £
//"—|vuf5t|2dxdtg/ /U—|V\Dt|2dxdt.
0 Ja 2 . 0 Ja 2

Since the estimates above are uniform in &, we have that u# belongs to
the class claimed in the statement. O

Given ¢ > 0, it remains to prove the asymptotic convergence of the
solution u. of (2.1)—(2.5) to u, for t — +o0.

Theorem 3.2. Let € > 0 be fized and let u. be the solution of problem (2.1)—
(2.5). Then, fort — +00, uc — u? in the following sense:

 dim Hus(,t)fﬁ(-,t)llmm:0; (3.15)
t—1}+m HVUE(, ) Vu )||L2(Q —0 (3.16)
lim H[us](wt)*[uf](',t)llmrs):0- (3.17)

Proof. Setting r. := u# — u., we obtain that r. satisfies

—div(c°Vre) =0, in (£2{ U 25) x (0, +00);
[0°Vr. - v] =0, onI*® x(0,400);

ad [re]
ga[rs] + 9= (w,1) -
[re)(2,0) = [u? (z,0)] — Se(z) =: Sc(x), on I'%;
re(z) =0, on 92 x (0,400);

(3.18)
(3.19)
=0°Vre-ve, onl*® x(0,400); (3.20)
(3.21)
(3.22)
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where

(M if [ue] (2, 1) = [uf](x, 1),
ge(z,t) == (“@Nm)) .
Py ) £ ),
so that g.(x,t) > 0, and S ) still satisfies assumption 47) in (2.6) because
of (3.12) and (3.14). Multlplymg Eq. (3.18) by r. and integrating by parts we
have
t
/ 0% |Vr|? dz + % / [re.c)[re] do + / 95(:’ 2o =0 (3.23)
Q € €

Equation (3.23) implies that the function ¢ — < [, [ro(z,t)]*do is a pos-
itive, decreasing function of t; hence, it tends to a limit value 7. > 0 as
t — 4o00. We claim that the value 7. must be zero. Otherwise, for every
t>0,2 [ [re(z t)]Qda > 7. > 0. On the other hand, setting I’ ( ):={x €
Ie: [7"5(33 1)? < } we have that

— 2a|1—'E

9/ [re (2, 1)]2 do >
€ Jrare 1)

Indeed, by definition,

e [ reopd=2 [ jopdr [ o
e Jre e Jrevre ) e Jre )
« TE « T
<2 e P dor 2 Tz |< S [ oo+
e /rf\n;(t) ) e 20|07 T e Jpare ) 2
which implies (3.24). Moreover, we have that, on I'*\I'% (t), g-(=,t) > x > 0,

where x is a suitable positive constant depending only on (7, e, o, |I"¢]) (this
last result follows from assumption (2.8)—(2.10)). Hence, using (3.23), it follows

i(;/ﬁ[Ta(x,t)]Qda> _/I‘E\Fﬁa(t) @[%(%ﬂpd‘f

1 ) 7.
- “[re(e,t))?do < —2=x < 0.
X/rs\ps o ez, ) do < —o-x <

(3.25)

2o | o

. VE>0. (3.24)

IN

IN

IN

Inequality (3.25) clearly contradicts the asymptotic convergence in ¢ of the
function ¢ — < [ [rc(z,t)]? do, hence

lim & / Trefa )2 do = 0. (3.26)

t—+4o0 £

In particular, this gives (3.17). Integrating (3.23) in [f,00) and taking into
account (3.26), we get

“+o0o
/ / of |V 2 d dt < - / I (2, £)]2 do, (3.27)
i o 2e Jpe
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which implies

+oo
lim / of|Vr.*dzdt = 0. (3.28)
2

t——+oo

Condition (3.28) guarantees that for every positive 7 there exists a () > 0,

such that
/ / of|Vre|? dzdt <,
t(n)

which, in turn implies that, for every natural number n, there exists a ¢, €
(t(n) + n,t(n) + (n+ 1)), such that

/ o |Vre(z,t,)|? do < 7. (3.29)
Q

Now, we multiply (3.18) by ., and integrate in {2, so that

/ o°Vr.Vre (z, )dx—i—g/ [ra’t(x,t)]Qda
0 .

e(x, 1
+ / g (: e, )] [rea(, )] do = 0, (3.30)
which implies
gQ(x,t) 2
/asVTEVTE,tde/ =" [r.]" do. (3.31)
0 - 2ae

Moreover, integrating (3.31) in [t,,t*] with t* € [t,,t, + 2] and using (3.29),

we have
sup (/ —|Vre(z,t)? dm)
tE€[tn tn+2]

<
2
L2
+—  sup (a/ [re(z, 1)) ) Vn € N.
A% te[ty,+o00) \ €

Since t,,4+1 — t, < 2, the intervals of the form [t,,t, + 2], when n varies in N,
are overlapping; hence, we obtain

€ L2
sup (/ UVrs(z,t)de) < Ty sup <a/ [rs(m,t)]2d0>.
telit1,400) \J2 2 2 a? te[f,4o00) \E JIe

(3.32)
Because of (3.26) the integral in the right-hand side of (3.32) can be made

—1 .
smaller than 2 (L—z , provided t is chosen sufficiently large in dependence

of 1. This means that
O.E
sup (/ |Vr5(a:,t)|2dx) <, (3.33)
te[t41,+00) o 2
so that
lim o¢|Vre(z,t)|? do = 0. (3.34)

t——+oo 0
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In particular, this gives (3.16). Finally, Poincare’s inequality together with
(3.26) and (3.34) yield

lim / re(x,t)|* da = 0, (3.35)
2

t——+oo
which gives (3.15). O

Remark 3.3. More in general, the previous procedure allows us to prove that
solutions of (2.1)-(2.5) having different initial data satisfying (2.6) but the
same boundary condition tend asymptotically one to the other (such conver-
gence being exponential if f is coercive in the sense of (1.1)).

Remark 3.4. Observe that, thanks to previous remark, Theorem 3.2 implies
uniqueness of the periodic solution of problem (3.1)~(3.5) in CY ([0, 1]; X (£2.)).

4. Asymptotic decay of the solution of the homogenized
problem

The aim of this section is to prove asymptotic decay of the solution of the
homogenized problem. To this purpose, let (u, u') € L*(0,T); H*(£2)) x L*(£2x
(0,7); X} (Y)) be the two-scale limit of the solution u. of problem (2.1)~(2.5),
where the initial data S, satisfies the additional condition that S, /e two-scale
converges in L*(£2; L?(I')) to a function Sy such that Si(z,-) = S|r(z,-) for
some S € C(£2;CL(Y)), and

gﬂ%e/g (%)Q(x)da:/gfpsf(x,y)dadx. (4.1)

We recall that, under these assumptions, by [13, Theorem 2.1], the pair (u, u')
is the weak solution of the two-scale problem

—div (00Vu —l—/ UVyul dy) =0, in 2x(0,7); (4.2)
Y

—div,(cVu+oVyu') =0, in 2 x (E; U Ep) x (0,T); (4.3)

[0(Vu+V,u') - v] =0, on2xT x(0,T); (4.4)

a%[ul] +f(W']) =0(Vu+Vyu')-v, on 2xIx(0,T); (4.5)

[u'](x,y,0) = Si(x,y), on 2x I} (4.6)

u(z,t) = U(x,t), on 02 x(0,T); (4.7)

in the sense of the following definition.

Definition 4.1. A pair (u,u') € L*(0,T); H'(£2)) x L*(£2 x (0,T); X,(Y))) is
a weak solution of (4.2)—(4.7) if

/OT/Q/YU(V“JFVyul) (Vo + Vy®) dydxdt+/OT/Q/Ff([ul])[q)]dgdxdt
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—a/ // dad:vdt—a// ]S1dodx =0, (4.8)

for any function ¢ € C°(0,7; H}(£2)) and any function ® € C°([0,T]; L*(£2;
X;&(Y))) with [®,] € C°([0, T]; L?(£2 x I')) which vanishes at t =T
Moreover, u satisfies the boundary condition on 92 x [0,T] in the trace
sense (i.e. u(w,t) = ¥(z,t) a.e. on 2 x (0,T)) and u' is periodic in Y and
has zero mean value in Y for a.e. (z,t) € 2 x (0,T) (see [14, Definition 5.1]).

For later use, let us define

(R, ), KGO = [|Rllcoo,13:m (2)) + 1B leoo,11:22(2xv))
+[[Vyhtlleo o, L2(2xvy) + 1B lleoo,1;2(2x 1))
(4.9)

where (h,h') € C°([0,T]; H*(£2)) x C°([0, T; L*(£2; X4(Y))), and

G = Il ) + 1B 2w + 1955 ooy + 12y,
(4.10)
where (h,h') € H'(£2) x L*(£2; XL (Y)).
As in the previous section, first we prove that there exists a time-periodic
weak solution of the two-scale problem

—div (UOVu# +/ aVyul’# dy) =0, in 2 x R; (4.11)
%

—div, (oVu® + oV,ul#) =0, in 2 x (F,UEy) x R; (4.12)

[o(Vu# + V,u'#) . 1] =0, on 2x I x R; (4.13)

gt[ Y4 f ([uh#]) =o(Vu +Vyu'#) v, on 2xI'x R; (4.14)

[ub#](z,y,-) is 1-periodic, on £ x I’ (4.15)

u (2,t) = U(z,t), on dN x R; (4.16)

in the sense of the following definition.

Definition 4.2. A pair (v¥#,v1#) € C%([0, 1]; H' (£2))xC% ([0, 1]; L*(£2; X(Y)))
with [v;#] € L% (0,1; L*(£2xI')) is a time-periodic weak solution (with period
1) of (4.11)(4.16) if

/R/Q /Y o (Vv#(x,t) + Vyvl,#(gg,y,t)) (Vé(x,t) + V,®(z,y,t)) dydazdt

+///Jw#u@ﬂnu%mwmm

—a/// (z,y,t g[ (z,y,t)]dodzdt =0 (4.17)

for every (¢, ®) € C2(R; Hg (£2)) x CO(R; L*(2; X,(Y))), [®4] € L? (R; L*(12 x
I'))) and v*# has zero mean value in Y for a.e. (z,t) € 2x R and v¥ satisfies
(4.16) in the trace sense (see [14, Definition 5.7]).
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Remark 4.3. We note that by a standard approximation of periodic testing
functions with functions compactly supported in a period, the weak formula-
tion (4.17) can be equivalently rewritten as

/01 /Q /Y o (Vv#(x,t) + V,vh# (z, y,t)) (Vo(z,t) + V,®(z,y,t)) dydadt

+/01/Q/Ff([vl’#(x,y,t)])[@(x,y,t)] do dz dt
—a/ol /Q/F[Vl’#(x,y,t)]gt[(b(x,y,t)] do dadt = 0

for every (9, ®) € C ([0, 1J; HJ(2)) x CL(0, 1); L2 XL(V), [9] € L3 (0,1
L2(0 x F))) Hence, when it is more convenient, we replace compactly sup-
ported testing functions with 1-periodic testing functions.

Proposition 4.4. Under the assumptions (2.7)—(2.10) and (2.12), problem
(4.11)—(4.16) admits a 1-periodic in time solution.

Proof. For § > 0, let us denote by fs(s) := f(s) + ds, for every s € R, and
consider the problem

—div <O’0VU?+/ oV ué#dy> =0, in 2xR; (4.18)
Y

—div,(oVul +oV,uy®) =0, in 2x(E;UE) x R; (4.19)
[o(Vul + V,yuy#)w] =0, on 2x T xR; (4.20)
O‘aat[ #+ fs ([ 1#]) o(Vuf+V,u;#) v, on QxI'xR;  (4.21)
[uy#](x,y,-) is 1-periodic, on 2 x I'; (4.22)
uf (z,t) = U(z,t), ond2 x R; (4.23)

where utls’# has zero mean value on Y for a.e. (z,t) € 2 x R.
Since fs has a strictly positive derivative on R, by the results proved in

[14, Section 5], a unique periodic solution (7,%‘;&,115 ) of problem (4.18)—(4.23)

does exist, i.e. (ué#,u;- #)

/01 /Q /Y o (Vu(;#(I,t) + vyutls’#(gg,y,t)) (Vé(z,t) + V,®(z,y,t)) dydz dt

+/1/ / I3 (2, . ) [, y, )] do da dt
—a/ // (z,y,1) at[q)(%y,t)]dadxdtzo, (4.24)

for every (6, @) € C4 (0, 1]; HJ (2)) x €4 ([0, 1J; L2(42; XL (Y)), [@4] € L2 (0, 1
L*(2x I))) (recall Remark 4.3). Moreover ué’# has zero mean value in Y for

satisfies

a.e. (z,t) € £2x R and ué# satisfies (4.23) in the trace sense. By (4.24) we get
that (u ? ’#) satisfies an energy estimate, easily obtained replacing (¢, ®)
with (u ? v ug’#) which implies
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1
///g|w5+v%#| dydxdt+/ //f[; YD g™ do da dt
0 nJY
1
:/ /Q/%\V\I/dedxdt, (4.25)
0 Y

where we take into account
1 1
1 0
/O [ug s F]dt = 5 / o lus 1Pt =0, (4.26)

which is a consequence of the periodicity of u};’#
From (4.25), working as done in (3.11)—(3.12) of Sect. 3 and taking into
account (2.11) we get

/ //O’|VU6 +V u5#|2dydxdt—|—/ //)\1 *dodzdt <7,
0

(4.27)
where ~ is a constant depending on Ay, )\2, |I"| and the H'-norm of ¥.
Replacing (¢, ®) in (4.24) with (uét \I't,u“ ), by (4.27), (2.11) and
taking into account the fact that

1 1
1
/O (Vuf + Vyuy ™) (Vuf, + Vyuy ) dt = 2/, |Vu5 +Vyuy#2dt =0

and, denoting by Fj a primitive of fs,

1 F ’#
///f[;([u;# [uyf]do dzdt = ///‘9 5[457)) 45 gz at o,
0 Jr

because of the periodicity, we get

/ | [ Pasazar <o, (4.28)

where, again v depends on Aj, A, |I'| and the H'-norms of ¥ and ¥;. From
(4.27), we obtain

1
//|Vu?£|2da:dt§'y7 (4.29)
0o Je
1
///|Vyué’#|2dydxdt§7. (4.30)
0o JoJy
Indeed,

///\Vu (z,y, )|2dydxdt+/ /|Vu5#\ dx dt

§7—2/ //Vyué’#(x,y,t)Vué#(x,t)dydxdt
0o Joly

1
:7—2/ /Vu?& (/ Vyulls’#(%y,t)dy) dx dt
0o Ja
1
§’7+2//|Vu </| (z,y,1t) |do>dxdt
0o Ja
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1
<v+3 / / |Vu dxdt—|—8|F|/ //[“§7#($,y,t)]2dadxdt
o JolJr

<v+ f/ / \Vuf (z,t)|? dzdt + 7. (4.31)

2Jo Jo
In order to be able to pass to the limit § — 0 we need a formulation Wlth
vanishing boundary data. To this purpose we set vf = u6 U: clearly Ué

satisfies

—div (UOVUf +/ oVyug L# dy) =div(coV¥), in 2 x R; (4.32)
%

—divy (6VvF + oV, uy®) =0, in 2 x (E;UEy) x R; (4.33)
[o(VoF + Vyuy )] = —[oVU 1], on 2xT xR; (4.34)
ascuy ]+ fs ([uy*]) = oa(Vof

+V,uy®) v 409V -v, on 2 x T x R; (4.35)
[u};’#](a:,y, -) is l-periodic, on 2 x I'; (4.36)
v?&(:n,t) =0, ondf2x R, (4.37)

or, in the weak form,

1
/ / / o V’U?&(Lt) + Vyu(ls’#(x,y,t)) (Vo(z,t) + Vy®(x,y,t)) dydedt
0

/ /Q/fé (z,y,0)])[®(x,y,t)] do dz dt
—a/ // (z,y,1) gt[ (z,y,t)]do dxdt

~ /O /Q 0oV (2, ) V(. t) da dt

1
+/ //[UV\D(x,t)~V](I>(1)(x,y,t)dadacdt
o JoJr

+/01/Q/F02V\Il(x,t)'1/[<I>(ac7y,t)] do dz dt, (4.38)

for (¢, ®) as in Remark 4.3. At this point, (4.27)—(4.30) allow us to pass to the
limit with respect to ¢ in the weak formulation (4.38), thus proving that there
exists a periodic (in time) pair of functions (v, ul#) € Li (0,1; H} (£2)) x
L% (0, 1;L2(Q;X#(Y))) such that u# has zero mean value on Y, for a.e.
(z,t) € 2 x R, and (v¥*,ul#) satisfies the homogenized problem

1
/ / o(Vo# + V,u'#) . Vo dydz dt
0 2xY

1
+// o(Vo# + V,ut#) .V, & dy de dt
0 02xY
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/// dadxdt—a/// 1# @] do dx dt
—/ /UOV\IIV(bdxdt—i—/ //[av\lf.u}@“)dadxdt
0 2 0 Jr
1
+///02V\I/-V[<I>]dad:cdt (4.39)
0 Jr

for every test function (¢, ®) € C%([0,1]; Hy(§2)) x C%([0,1]; L*(£2; X4 (Y)))
with [®,] € L, (0,1; L?(£2 x I'))), where we have taken into account that (2.7)
and (4.27) imply fs([uy®)) = f([uy®])+0[uy®] — p,  weakly in L2((0,T) x
2 x 1”5)7 when § — 0. It remains to identify p. To this purpose, we follow the
Minty monotone operators method. Let us consider a sequence of 1-periodic in
time test functions vy (z,y,t) = ¢ (z,t) + ¥ (z,y,t) + Ago (7, y, 1), with ¢k €
C®(2xR), ¢f € C(2XR; €L (Y)), 2 € CL(£2x(0,1); €4 (Y)), with ¢ (-, 1)
vanishing on 942 for t € R, ¢k — v# strongly in L (R; Hy(£2)), ¢f — ub#
strongly in L2, (R L(2; XL (V)), [64] — [u#] and [6£,] — [u}*] strongly
in L2((0,1) x 2 x I'), i.e.

1
0 2
1
o R A T R T o R TY

1
+ / /Q 1165 (2 8)] — [l (-, )] 2y it — 0,

fork — 400, i=1,2.

Clearly, ¢§ can be constructed by means of standard convolutions with regular
kernels; instead, in order to construct ¢§ we proceed as follows. Taking into
account that, passing to the limit for § — 0 in (4.28), we have

[up#] € L*((0,1) x 2 x I'), (4.40)

by standard arguments we can approximate the jump [u'#] with a sequence of
I-periodic in time functions ¢% € C‘X’(QXFXR) such that ¢¥ — [u!#] strongly
in L2((0,1) x 2; HY*(I')) and ¢f , — [uy’ #] strongly in L?((0,1) x 2 x I').
Now, define ¢% as the (1-periodic in time) solution of the problem

—divy (o(Vf + Vyoh)) =0, in (B4 UE) x 2 x Ry (4.41)

[0(VoE +Vydh) - v] = —[oVV¥.-v], onT x 2x R; (4.42)

[¢¥] = ¢¥ on T x 2 x R; (4.43)
and ¢¥(x,-,t) is Y-periodic with zero mean value on Y for (z,t) € 2 x R.
By Lemma 7.3 in [7], it follows that ¢¥ € C> (Q x [0, 1];0:%0(}/)). Here, for

the sake of simplicity, we work as if ¥ has enough regularity, otherwise we
proceed with a standard regularization procedure also on . Moreover, by [8,
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Lemma 5] applied to ¢f —u># with P = div, (J(qulg — Vv#)) =0in EjUFE;,,
Q = [0(Veh — Vo#)], and S = ¢} — [u'#], we obtain
ot — Ul’#HL?((o,l)xQ;X;;(Y)) <AUI8F — [ p20,1) x 28172 (1)
+ V5 — VoF |l L2 0.1)x2))- (4.44)

Since the right-hand side of (4.44) tends to zero for k — 400 we obtain the
desired approximation.

Taking only into account the monotonicity assumption on f, the period-
icity in time of ¢f and ¢ and Remark 4.3, we calculate

/1/ o(VoF + Vyuy® — Vs — Vyoh — AV, ¢2) - (Vof — V) dy dwdt
02Xy
/ / (Vo + V,up® — Vg — V0t — AV, é0)
02Xy
(Vyuy™ — Vy¢h — AVy¢2) dy dz dt
vo [ 2 (i) tot + 20 (1h ] 10} 4 2a]) do e
0 2xI ot o ! 2 s ! ?
[ (D = gt + reaD) (%) = 165+ X)) do

/ / o| VoI + Vyup® — Vs — Vydh — AV, ¢0]? dy da dt
N2xY

+ / /ﬁ » (fs(ud™D) = fs(@h+262))) (1uy#] = (61 +262]) dodudt > 0,
(4.45)

where we have taken into account that the time-periodicity of u(lg’#, % and
¢o implies

/ /pr ot — [} + >\¢2]) ([ué#] — [¢f + /\¢2]> do dz dt
/ /pr ot — o} +)\¢2])2 do dz dt
- §/M (1u* (9.1 - 4 (@.9.1))) dorda

5[ (@0l - B ep.01) drds o

Taking the function (v5 o, uy # gk — \py) as a test function (p,®) in
(4.38), inequality (4.45) can be rewritten as

1
—/ / S(Vok + Vot + AV, o) - (Voff — Vok) dy de dt
2xXY

1 g
- / / (Vo + V0% + AV, 62) - (Vyul® — Vy ok — AV, 2) dy dar d
XY
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- /01 /pr %[(’{)If + A¢2] <[u(1;#] — [¢f + )\¢2]) do dz dt
,/01 /prfa (Wf +,\¢>2]> ([u;#] gk +/\¢2]) ot
= /1/ ooV - (Vo — Vey)dzdt
0o Jo
_ /-1 / / [UV‘I’ . V](u;’# _ ¢llc o )\¢2)(1) do de dt
o JeJr

7/01/0/F02v\y.,,([u(157#]7[¢’f+)\¢>g])dadxdt. (4.46)

Hence, passing to the limit as § — 0 and using (4.28), it follows

1
f/ / (Vs + Vot + AVyh2) - (Voo — V) dy da dt
0 02Xy
1
—// o (Voo+ Vydh + AVy2) - (Vyu'? — Vo — AV, ¢2) dy dz dt
0 02XY
1
—a/O /M%[abﬁwg] ([ul’#]—[¢'f+)\¢2]) do dzdt
1
[ ] a0t x6) (101 16t + Agal) dodzat
0 2xIr
1
2/0 /anV\I!«(Vu#qubg)dxdt
1
—/ / /[UV\II-V](UI’#—géIf—Aqu)(l) do dzdt
0 NJr

-/ 1 | [ 20w (@) = ok + A do daa (4.47)

Now, letting £ — 400, we obtain

1
/ / / o (Vo + Vyub# + AV, o) - AV, 2 dy da dt
0 02JY

1
a 17#
+a/0 /Q/Fa[u + Ap2| A[p2] do dx dt

" /01 /Q /F £ ([u"# + Ao]) Ag2] dor d dt

1 1
2/ //[av\p-y]A¢;1> dodxdt—i—/ //agv\y-u[x@] do dz dt.
0 QJr 0 Jr

(4.48)
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Taking into account (4.39) with ¢ =0 and ® = ¢o, (4.48) becomes

)\2/ //avy¢2 y¢2dydxdt+a)\2/ //at b2][h2] do dx dt
—)\/0 /U/Fu[qﬁg}dadxdt—&-)\/o /Q/Ff([ul’#+/\¢g])[¢g]dadxdt20.

(4.49)

Assuming firstly that A\ > 0 and then A < 0, dividing by A the previous
equation and then letting A — 0, we obtain

/ol/g/pﬂ[(bz]dadxdt:Al/(lﬁf([ul’#])[¢z]dadxdt,

which gives

p= 1 ([#]). (450)
By (4.39) and (4.50), setting v# = u# + ¥ and taking into account Remark
4.3, we obtain exactly the weak formulation of problem (4.11)—(4.16). O

Remark 4.5. Note that (4.28) is uniform with respect to 6. Moreover, we can
obtain also estimates for Vu?t and Vyu}_’f# uniformly in 4. Indeed, differenti-
ating formally with respect to ¢ problem (4.18)- (4 23) multiplying Eq. (4.18)
(differentiated with respect to t) by ((u I —U,), u o ) and finally integrating

by parts, we obtain, exploiting also the per1od1c1ty in time,

1
///U|Vu5t+Vu5#|2dydmdt<7 (4.51)
0 (7

where we used assumptions (2.7), (2.12) and inequality (4.28). Now, proceeding
as in the proof of (4.29) and (4.30), we obtain

/ / Vuf, | dedt <, (4.52)

///|V u6 #12dy dz dt < . (4.53)

Therefore, passing to the limit for § — 07, in (4.28), (4.52) and (4.53), we
obtain that the same estimates hold for (u?,u!#).

T};is implies that (u?,u#) belongs to C%([O, 1); HY(£2)) x C%([O, 1]; L2(£2;
Xy (Y)))-

It remains to prove that any solution (u,u') of the homogenized problem
converges to (u?,u#) as t — oo. This is the purpose of the next theorem.

Theorem 4.6. Let (u,u') € L*((0,7); H'(2)) x L?(£2 x (0,T); X,(Y)) be the
solution of problem (4.2)—(4.7). Then, for t — +oo, (u,ul) — (u#,ut#) in
the following sense:

lim u(,t) = u* (-, 8) 10 = 0 (4.54)

t——+4o00

Jim [l () = a# ()l ey
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+||vyu1('» 'at) - vyul,#(., '7t)||L2(.Q><Y)] =0; (455)
Jim (] 8) = ]G Ol e sy = 0. (4.56)

Proof. Firstly we recall that, by [14, Lemma 5.2] which holds even in the
present case, (u,u') € C°((0,T]; H'(£2)) xCO((0, T]; L*(2; X,(Y))) and [u'] €
CO(0,T); L2(2 x I)).

As usual, let (r,r1) := (u” —u, ub# —ul), so that the pair (r,r!) satisfies:

t
///a(vr+vyr1)(v¢+vycb) dy da dt
0o JNRJY

t f([ul,#]) _ f([ul]) .
+/o /Q/p [ul#] — [ul] [r'][®]dodzdt
vo [ [ [iti@dsara=o weon, s

where 7 = 0 on 99 x [0, T] in the trace sense, r! is periodic in Y and has zero
mean value in Y for almost every (x,t) € {2 x (0,T). Here ¢ is any regular
function depending on (z,t), with compact support in {2 and ® is any function
depending on (z,y,t) which jumps across I', is zero when ¢ = T and is regular
elsewhere. Differentiating (4.57) with respect to ¢, we get

// (Vr+Vyr') (Vé+V,0) dydx+//f “1# [“ D 0] do da

[l #] = [u']
+a /Q /F [(r1][®] do da = 0. (4.58)

Replacing (¢, ®) with (r,rl) in (4.58), we get

[ [ omrsvtaaes [ [ A gy,
+a/Q/F[r§][r1}dadm=o. (4.50)

As in Sect. 3, Eq. (4.59) implies that the function ¢ — o [, [ [r!(x,t)]* do dz
is a positive, decreasing function of ¢, hence it tends to a limit value 7% > 0
as t — +oo. The value 7! must be zero otherwise af, fp[r1]2 dodz >7' >0
for every t > 0. On the other hand, for ¢t > 0 and setting I (¢) := {(x,y) €
Qx T2 (z,y,t) < ﬁl\lﬂl}’ reasoning as in the proof of Theorem 3.2, it
follows that

// Yo, y,t)])? dodx Zr— vt > 0.
F\Fl(t) 2’

However, on I'\I71, g(z,y,t) := W > x > 0, where x is a suitable

positive constant depending only on 7%, o, | I'|, |2| (this last result follows from
the assumptions (2.8)—(2.10)). Hence, using (4.59), we get
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jt(g/ /[Tl(x,y,t)]Qdadx) < //F\Fl(t) z,y, )t (,y, 1)) do dz

/ / (z,y,t)]* dodr < ——X < 0. (4.60)
F\F 1 ( 2a
Inequality (4 60) clearly contradicts the asymptotic convergence for t — 400
of a [, [1[r']*(z,y,t) do dz to a positive number, hence
lim a/ /[rl(x,y,t)}Qdo dz =0, (4.61)
t——+00 nJr

which is exactly (4.56). Integrating (4.59) in [t,00) and taking into account
(4.61), we get

+oo
/ //O’|VT+V 2 dydedt < — // (z,y,t)]*dodz, (4.62)

which implies

+oo
lim / / o|Vr + Vyr' 2 dyda dt = 0. (4.63)
JY

t——+oo t

~

This last condition guarantees that for every positive 7 there exists a t(n) > 0,

such that
+o00o
/ / / o|Vr + Vyr' P dydzdt <,
t nJy

which in turn implies that, for every n € N, there exists a t,, € (t4n, t+(n+1)),
such that

/ / o|Vr(z,t,) + Vyrl(z,y,tn)\Z dydx <. (4.64)
nJY

Hence, replacing (¢, ®) with (r¢,r}) in (4.58), we get

/ / (Vr + Vyr!)(Vry + Vi) dydx+// (z,y,t)[r'][r}] do dz
+a/ /[rtl(x7y,t)]2 dodz =0, (4.65)

/ / o(Vr+ V) (Vry + Vyr} dydx<// g (@.y.t) (z,y,t)]? do dz.

(4.66)
Moreover, integrating (4.66) in [t,,t*], with t* € [t,,t, + 2], we have

up ( I ”wx,t)+vyr1<x,y,t>|2dydm>
tE[t",tn+2]

22
77+ sup ( // (x,y,t dadx) Vne N;
T2 207 tE[tn,+00)

(4.67)
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ie.,

sup (/ / g|V7”(av,t) + Vyrl(x7y,t)|2 dy dx)
te[i+1,400) \JR2JY 2

L2
77+— sup ( // x,y,t dodx). (4.68)
T2 Q7 et +00)

Because of (4.61) the integral in the right-hand side of (4.68) can be made

1 N
smaller than 2 (i—;) , provided t is chosen sufficiently large in dependence
of n. This means that
sup </ / 2 \Vr(z,t) + Vyr(a,y,t)2 dy dz) <. (4.69)
tefi+1,+00) \V2JY 2
Inequality (4.69) implies
lim / / o|Vr(z,t) + Vyrt(z,y,t)> dyde = 0. (4.70)
t—+o00 0Jy
Now, working as done in (4.31), we get
. 29 0. 2
tilgrnoo/ |Vr(z,t)]de =0; and tilgrnoo/ / |Vyrt(z,y,t)*dydz = 0.

Finally, the previous results together with (4.61) and Poincare’s inequalities
yield

lim /|T.’I}t|2dl‘—0 and  lim //|7° z,y,t)>dyde =0,
t—-+oo t—+o0
which give (4.54) and (4.55) and conclude the proof. O

Remark 4.7. More in general, the previous procedure allows us to prove that
solutions of (4.2)—(4.7) having different initial data satisfying the assumptions
stated at the beginning of this section but with the same boundary condition
tend asymptotically one to the other (such convergence being exponential if f
is coercive in the sense of (1.1)).

Remark 4.8. Observe that, thanks to previous remark, Theorem 3.2 implies
uniqueness of the periodic solution (u*,u#) of problem (4.11)-(4.16) in
€% (10, 1]; H'(£2)) x €% ([0, 1] L*(2; X} (Y))).
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