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Abstract. We study an optimal control problem for a variational inequal-
ity with the so-called anisotropic p-Laplacian in the principle part of
this inequality. The coefficients of the anisotropic p-Laplacian, the matrix
A(x), we take as a control. The optimal control problem is to minimize
the discrepancy between a given distribution yd ∈ L2(Ω) and the solu-

tions y ∈ K ⊂ W 1,p
0 (Ω) of the corresponding variational inequality. We

show that the original problem is well-posed and derive existence of opti-
mal pairs. Since the anisotropic p-Laplacian inherits the degeneracy with

respect to unboundedness of the term |(A(x)∇y,∇y)RN | p−2
2 , we intro-

duce a two-parameter model for the relaxation of the original problem.
Further we discuss the asymptotic behavior of relaxed solutions and show
that some optimal pairs to the original problem can be attained by the
solutions of two-parametric approximated optimal control problems.
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1. Introduction

In this paper we deal with the following optimal control problem (OCP) in
coefficients for variational inequality

⎧
⎪⎪⎨

⎪⎪⎩

Minimize I(A, y) = ‖y − yd‖2
L2(Ω) subject to the constraints

〈−Δp(A, y), v − y〉W −1,q(Ω);W 1,p
0 (Ω) ≥

∫

Ω

f(v − y)dx for all v ∈ K,

A ∈ Aad,

(1.1)
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where

− Δp(A, y) = −div
(|(A∇y,∇y)| p−2

2 A∇y
)

(1.2)

is the anisotropic p-Laplacian, p satisfies 2 ≤ p < +∞, K is a nonempty
convex closed subset of the space W 1,p

0 (Ω), the symmetric matrix of anisotropy
A ∈ L∞(Ω;RN×N ) is taken as a control, yd ∈ L2(Ω) and f ∈ L2(Ω) are given
distributions, and Aad denotes the class of admissible controls which will be
specified later on (see (2.2), (2.3)).

The interest to variational inequalities whose principle part is an aniso-
tropic p-Laplace-like operator arises from various applied contexts related to
composite materials such as nonlinear dielectric composites, whose nonlinear
behavior is modeled by the so-called power low (see, for instance, [3,15] and
references therein). It is sufficient to say that anisotropic p-Laplacian Δp(A, y)
has profound background both in the theory of anisotropic and nonhomoge-
neous media and in Finsler or Minkowski geometry [19]. As a rule, the effect
of anisotropy appears naturally in a wide class of geometry—Finsler geometry.
A typical and important example of Finsler geometry is Minkowski geometry.
In this case, anisotropic Laplacian is closely related to a convex hypersurface
in R

N , which is called the Wulff shape [18]. Since the topology of the Wulff
shape essentially depends on the matrix of anisotropy A(x), it is reasonable to
take such matrix as a control. From mathematical point of view, the interest
of anisotropic p-Laplacian lies on its nonlinearity and an effect of degeneracy,
which turns out to be the major difference from the standard Laplacian on
R

N .
Using the direct method in the Calculus of Variations, we show in

Sect. 3 that the optimal control problem (1.1) has a nonempty set of solutions
provided the admissible controls A(x) are uniformly bounded in BV -norm,
in spite of the fact that the corresponding quasilinear differential operator
−div

(|(A∇y,∇y)| p−2
2 A∇y

)
, in principle, has degeneracies as |A 1

2 ∇y| tends
to zero [2]. Moreover, when the term |(A∇y,∇y)| p−2

2 is regarded as the coef-
ficient of the Laplace operator, we have the case of unbounded coefficients
(see [9,10]). In order to avoid degeneracy with respect to the control A(x),
we assume that matrix A(x) has a uniformly bounded spectrum away from
zero. As for the optimal control problems in coefficients for degenerate elliptic
equations and variational inequalities, we can refer to [4,7,8,12–14].

A number of regularizations have been suggested in the literature. See
[17] for a discussion for what has come to be known as (ε, p)-Laplace problem,
such as −div((ε + |∇y|2) p−2

2 ∇y). While the (ε, p)-Laplacian regularizes the
degeneracy as the gradients tend to zero, the term |∇y|p−2, viewed again as a
coefficient, may grow large [5]. Therefore, following ideas of [6], we introduce
yet another regularization that leads to a sequence of monotone and bounded
approximations Fk(|A 1

2 ∇y|2) of |A 1
2 ∇y|2. As a result, for fixed parameter

p ∈ [2,∞) and control A(x), we arrive at a two-parameter variational prob-
lem governed by operator −div((ε + Fk(|A 1

2 ∇y|2)) p−2
2 A∇y). Finally, we deal

with a two-parameter family of optimal control problems in the coefficients
for monotone nonlinear variational inequalities. We consequently provide the
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well-posedness analysis for the perturbed elliptic variational inequalities as well
as for the optimal control problem in Sects. 4 and 5. In particular, we show
in Sect. 5 that the solutions of two-parametric family of perturbed optimal
control problems can be considered as appropriate approximations to optimal
pairs for the original problem (1.1) (see Theorem 5.2). To the end, we note
that the approximation and regularization are not only considered to be useful
for the mathematical analysis, but also for the purpose of numerical simula-
tions. The numerical analysis as well as the case of degenerating controls are
subjects to future publications.

2. Setting of the optimal control problem

Let Ω be a bounded open subset of RN (N ≥ 1) with a Lipschitz boundary. Let
p be a real number such that 2 ≤ p < ∞, and let q = p/(p−1) be the conjugate
of p. Let S

N := R
N(N+1)

2 be the set of all symmetric matrices A = [aij ]Ni,j=1,
(aij = aji ∈ R). We suppose that S

N is endowed with the Euclidian scalar
product A · B = tr(AB) = aijbij and with the corresponding Euclidian norm
‖A‖SN = (A · A)1/2. We also make use of the so-called spectral norm ‖A‖2 :=
sup

{|Aξ| : ξ ∈ R
N with |ξ| = 1

}
of matrices A ∈ S

N , which is different from
the Euclidean norm ‖A‖SN . However, the relation ‖A‖2 ≤ ‖A‖SN ≤ √

N‖A‖2

holds true for all A ∈ S
N .

Let L1(Ω)
N(N+1)

2 = L1
(
Ω;SN

)
be the space of integrable functions whose

values are symmetric matrices. By BV (Ω;SN ) we denote the space of all matri-
ces in L1(Ω;SN ) for which the norm

‖C‖BV (Ω;SN ) = ‖C‖L1(Ω;SN ) +
∫

Ω

|DC| = ‖C‖L1(Ω;SN )

+
∑

1≤i≤j≤N

sup
{∫

Ω

cij div ϕdx : ϕ ∈ C1
0 (Ω;RN ), |ϕ(x)| ≤ 1 for x ∈ Ω

}

(2.1)

is finite.
Let ξ1, ξ2 be given elements of L∞(Ω) ∩ BV (Ω) satisfying the conditions

0 < α ≤ ξ1(x) ≤ ξ2(x) a.e. in Ω, (2.2)

where α is a given positive value. Let yd ∈ L2(Ω) and f ∈ L2(Ω) be given
distributions. We define the class of admissible controls Aad as follows

Aad =
{

A ∈ L1(Ω;SN )
∣
∣
∣
∣
ξ2
1‖η‖2 ≤ (η,Aη) ≤ ξ2

2‖η‖2 a.e. in Ω∀ η ∈ R
N

A
1
2 ∈ BV (Ω;SN ),

∫

Ω
|DA

1
2 | ≤ γ

}

,

(2.3)

where γ > 0 is a given constant. In view of estimates

‖A
1
2 (x)‖SN ≤

√
N ‖A

1
2 (x)‖2 ≤

√
N ξ2(x) a.e. in Ω,

∫

Ω

‖A‖
p
2
SN dx ≤

∫

Ω

‖A
1
2 ‖p

SN dx ≤
∫

Ω

‖A
1
2 ‖p−1

SN ‖A
1
2 ‖SN dx
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≤ N
p−1
2 ‖ξ2‖p−1

L∞(Ω)

∫

Ω

‖A
1
2 ‖SN dx,

it is clear that Aad is a nonempty convex subset of L
p
2 (Ω;SN ) with empty

topological interior.
Let K be a nonempty convex closed subset of the space W 1,p

0 (Ω) such that
0 ∈ K. The optimal control problem we consider in this paper is to minimize
the discrepancy between the distribution yd ∈ L2(Ω) and the solutions y ∈ K
of the following variational inequality

〈−Δp(A, y), v − y〉W −1,q(Ω);W 1,p
0 (Ω) ≥

∫

Ω

f(v − y)dx for all v ∈ K, (2.4)

by choosing an appropriate matrix-valued function A ∈ Aad as control. Here,
Δp(A, ·) : W 1,p

0 (Ω) → W−1,q(Ω) is the so-called anisotropic p-Laplacian which
usually can be defined by the rule (see [2] and references therein)

Δp(A, y) = div
(|(A∇y,∇y)| p−2

2 A∇y
)
,

and f ∈ L2(Ω) is a given distribution.
Let us denote by Ξ the set of admissible solutions to problem (1.1), i.e.

Ξ =
{

(A, y)
∣
∣
∣ A ∈ Aad, y ∈ K ⊂ W 1,p

0 (Ω), (A, y) are related by (2.13)
}

(2.5)

Definition 2.1. We say that a pair (A0, y0) ∈ BV (Ω;SN ) × W 1,p
0 (Ω) is an

optimal solution to problem (1.1) if

(A0, y0) ∈ Ξ and I(A0, y0) = inf
(A,y)∈Ξ

I(A, y).

The existence of a unique solution to the variational inequality (2.4)
follows from an abstract well-known theorem on monotone operators (see [16,
Theorems 8.2, 8.3, 8.4]).

Theorem 2.2. Let V be a reflexive separable Banach space and K ⊂ V be a
nonempty convex closed subset. Let V ∗ be the dual space, and let A : K → V ∗

be a bounded, semicontinuous, strictly monotone operator and coercive in the
following sense

there exists v0 ∈ K such that lim
‖y‖V →∞

〈Ay, y − v0〉V ∗;V

‖y‖V
= +∞. (2.6)

Then the variational inequality

find y ∈ K s.t. 〈Ay, v − y〉V ∗;V ≥ 〈f, v − y〉V ∗;V , ∀v ∈ K, (2.7)

has a unique solution for each f ∈ V ∗. Moreover, the variational inequality
(2.7) is equivalent to the following one

find y ∈ K s.t. 〈Av, v − y〉V ∗;V ≥ 〈f, v − y〉V ∗;V for all v ∈ K. (2.8)

We recall that operator A is called
– monotone if

〈Ay − Av, y − v〉V ∗;V ≥ 0, ∀ y, v ∈ V ; (2.9)
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– strictly monotone if (2.9) holds and

〈Ay − Av, y − v〉V ∗;V = 0 =⇒ y = v; (2.10)

– semicontinuous, if

the function R � t �→ 〈A(y + tv), w〉V ∗;V is continuous for all y, v, w ∈ V.

(2.11)

Having defined operator A as a mapping W 1,p
0 (Ω) → W−1,q(Ω) by the rule

〈Aϕ, v〉W −1,q(Ω);W 1,p
0 (Ω) :=

∫

Ω

|(A∇ϕ,∇ϕ)| p−2
2 (A∇ϕ,∇v) dx

=
∫

Ω

|A 1
2 ∇ϕ|p−2 (A∇ϕ,∇v) dx, (2.12)

it is easy to see that in this case we have A = −Δp(A, ·). Let us show that
operator A satisfies all assumptions of Theorem 2.2 for each A ∈ Aad. Indeed,
the right-hand side of (2.12) is continuous in v ∈ W 1,p

0 (Ω) and, therefore,
represents an element of W−1,q(Ω) because

∫

Ω

|A 1
2 ∇ϕ|p−2 (A∇ϕ,∇v) dx ≤

(∫

Ω

|A 1
2 ∇ϕ|pdx

) p−1
p

(∫

Ω

|A 1
2 ∇v|pdx

) 1
p

≤ ‖ξ2‖p
L∞(Ω)‖∇ϕ‖p−1

Lp(Ω)N ‖∇v‖Lp(Ω)N = ‖ξ2‖p
L∞(Ω)‖ϕ‖p−1

W 1,p
0 (Ω)

‖v‖W 1,p
0 (Ω)

(we apply here Hölder’s inequality and the estimate |A 1
2 ∇ϕ|p ≤ ξp

2 |∇ϕ|p com-
ing from the condition A ∈ Aad). Hence, operator A : W 1,p

0 (Ω) → W−1,q(Ω)
is bounded. In order to prove the coercivity of A, we set v0 = 0 ∈ K in (2.6)
and get the desired property immediately, since

〈Ay, y〉W −1,q(Ω);W 1,p
0 (Ω) ≥ αp‖y‖p

W 1,p
0 (Ω)

.

As for the proof of strict monotonicity and semicontinuity of operator A,
we refer for the details to [16,17]).

Thus, according to Theorem 2.2, variational inequality (2.4) is equivalent
to the following one

∫

Ω

|(A∇v,∇v)| p−2
2 (A∇v,∇v − ∇y) dx ≥

∫

Ω

f(v − y)dx, ∀ v ∈ K

(2.13)

and it admits a unique solution y ∈ K for every admissible control A ∈ Aad.
Taking this fact into account, we state that the set of admissible pairs Ξ

to problem (1.1) is nonempty.

Remark 2.3. It is easy to see that the set of solutions {y = y(A) ∈ K : A ∈
Aad} to problem (2.4) or (2.13) is bounded in W 1,p

0 (Ω). Indeed, since the set
K ⊂ W 1,p

0 (Ω) contains zero, we have

αp‖y‖p

W 1,p
0 (Ω)

≤
∫

Ω

|A 1
2 ∇y|pdx = 〈Ay, y〉

by (2.4)

≤ 〈f, y〉

=
∫

Ω

fydx ≤ ‖f‖Lq(Ω)‖y‖W 1,p
0 (Ω) ≤ |Ω| p−2

2p ‖f‖L2(Ω)‖y‖W 1,p
0 (Ω).
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Hence, the following estimate for the solutions of (2.4) takes place

‖y‖W 1,p
0 (Ω) ≤ α−q|Ω| p−2

2p(p−1) ‖f‖
q
p

L2(Ω), ∀A ∈ Aad. (2.14)

Remark 2.4. Let us set K∗ = K ∩ BR, where by BR ⊂ W 1,p
0 (Ω) we denote

a fixed closed ball centered at zero with a radius R > α−q|Ω| p−2
2p(p−1) ‖f‖

q
p

L2(Ω)

(see (2.14)). It is easy to see that K∗ ⊆ K is a bounded convex closed subset
of W 1,p

0 (Ω) and y ∈ K is a solution to variational inequality (2.4) (or (2.13))
if and only if y ∈ K∗ and

∫

Ω

|(A∇v,∇v)| p−2
2 (A∇v,∇v − ∇y) dx ≥

∫

Ω

f(v − y)dx, ∀ v ∈ K∗.

(2.15)

Indeed, if y ∈ K is a solution to (2.13), then, due to estimate (2.14), we
have y ∈ BR and (2.15) obviously holds. To prove the inverse assertion let
us suppose by contraposition that y ∈ K∗, (2.15) holds true, and there exists
an element z ∈ K such that z �= y and z is a solution to (2.4). Then z is a
solution to variational inequality (2.15) as well, and in view of its uniqueness,
we obviously get y = z.

3. Existence of optimal solutions

In this section we focus on the solvability of optimal control problem (1.1).
Hereinafter, we suppose that the space BV (Ω;SN )×W 1,p

0 (Ω) is endowed with
the norm ‖(A, y)‖BV (Ω;SN )×W 1,p

0 (Ω) := ‖A‖BV (Ω;SN ) + ‖y‖W 1,p
0 (Ω).

Remark 3.1. We recall that a sequence {fk}∞
k=1 converges weakly∗ to f in

BV (Ω) if and only if two following conditions hold (see [1]): fk → f strongly
in L1(Ω) and Dfk

∗
⇀ Df weakly∗ in the space of Radon measures M(Ω;RN ).

Moreover, if {fk}∞
k=1 ⊂ BV (Ω) converges strongly to some f in L1(Ω) and

satisfies supk∈N

∫

Ω
|Dfk| < +∞, then (see, for instance, [1])

(i) f ∈ BV (Ω) and
∫

Ω
|Df | ≤ lim infk→∞

∫

Ω
|Dfk|;

(ii) fk
∗
⇀ f in BV (Ω).

(3.1)

We begin with the following property.

Lemma 3.2. Let {(Ak, yk) ∈ Ξ}k∈N
be a sequence such that A

1
2
k

∗
⇀ A

1
2 in

BV (Ω;SN ) and yk ⇀ y in W 1,p
0 (Ω). Then

lim
k→∞

∫

Ω

| (∇ϕ,Ak∇ϕ) | p−2
2 (∇yk, Ak∇ϕ) dx

=
∫

Ω

| (∇ϕ,A∇ϕ) | p−2
2 (∇y,A∇ϕ) dx, ∀ϕ ∈ C∞

0 (Ω). (3.2)

Proof. Since A
1
2
k → A

1
2 in L1(Ω;SN ) and {A

1
2
k }k∈N is bounded in L∞(Ω;SN ),

by Lebesgue’s Theorem we get that A
1
2
k → A

1
2 strongly in Lr(Ω;SN ) for every
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1 ≤ r < +∞. Hence, A
1
2
k ∇ϕ → A

1
2 ∇ϕ strongly in Lp(Ω)N for every ϕ ∈

C∞
0 (Ω). Therefore,

|A 1
2
k ∇ϕ|p−2A

1
2
k ∇ϕ → |A 1

2 ∇ϕ|p−2A
1
2 ∇ϕ in Lq(Ω)N , ∀ϕ ∈ C∞

0 (Ω).
(3.3)

Moreover, since A
1
2
k ∇ψ → A

1
2 ∇ψ strongly in Lq(Ω)N for every ψ ∈

C∞
0 (Ω) and ∇yk ⇀ ∇y in Lp(Ω)N , it follows that

∫

Ω

(
A

1
2
k ∇yk,∇ψ

)
dx =

∫

Ω

(
∇yk, A

1
2
k ∇ψ

)
dx →

∫

Ω

(
∇y,A

1
2 ∇ψ

)
dx

=
∫

Ω

(
A

1
2 ∇y,∇ψ

)
dx, ∀ψ ∈ C∞

0 (Ω), (3.4)

as a product of weakly and strongly convergent sequences in Lp(Ω)N and
Lq(Ω)N , respectively. Using the fact that

sup
k∈N

‖A
1
2
k ∇yk‖Lp(Ω)N ≤ ‖ξ2‖L∞(Ω) sup

k∈N

‖∇yk‖Lp(Ω)N < +∞,

we finally get from (3.4)

A
1
2
k ∇yk ⇀ A

1
2 ∇y in Lp(Ω)N . (3.5)

Thus, to complete the proof it remains to note that
∫

Ω

| (∇ϕ,Ak∇ϕ) | p−2
2 (∇yk, Ak∇ϕ) dx =

∫

Ω

(
|A 1

2
k ∇ϕ|p−2A

1
2
k ∇ϕ,A

1
2
k ∇yk

)
dx

and apply properties (3.3) and (3.5). �

As an obvious consequence of this result, we have the following property.

Corollary 3.3. Let {(Ak, yk) ∈ Ξ}k∈N
and

{
ζk ∈ W 1,q

0 (Ω)
}

k∈N

be sequences

such that A
1
2
k

∗
⇀ A

1
2 in BV (Ω;SN ), yk ⇀ y in W 1,p

0 (Ω), and ζk → ζ in
W 1,q

0 (Ω). Then

lim
k→∞

∫

Ω

| (∇ζk, Ak∇ζk) | p−2
2 (∇yk, Ak∇ζk) dx

=
∫

Ω

| (∇ζ,A∇ζ) | p−2
2 (∇y,A∇ζ) dx.

Our next step concerns the study of topological properties of the set of
admissible solutions Ξ to problem (1.1).

The following result is crucial for our further analysis.

Theorem 3.4. Let {(Ak, yk)}k∈N ⊂ Ξ be an arbitrary sequence. Then there is

a pair (A, y) ∈ Ξ such that, up to a subsequence, A
1
2
k

∗
⇀ A

1
2 in BV (Ω;SN ) and

yk ⇀ y in W 1,p
0 (Ω).
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Proof. As follows from definition of the set Ξ (see (2.3)) and a priori estimate

(2.14) the sequence {(A
1
2
k , yk)}k∈N is bounded in BV (Ω;SN ) × W 1,p

0 (Ω).
By Remark 3.1 and the compactness properties of BV (Ω;SN )×W 1,p

0 (Ω),
there exists a subsequence of {(Ak, yk) ∈ Ξ}k∈N, still denoted by the same
indices, and a symmetric matrix A and a distribution y ∈ W 1,p

0 (Ω) such that

A
1
2
k → A

1
2 in L1(Ω;SN ), yk ⇀ y in W 1,p

0 (Ω), (3.6)

A
1
2 ∈ BV (Ω;SN ), A

1
2
k → A

1
2 almost everywhere in Ω, (3.7)

∫

Ω

|DA
1
2 | ≤ lim inf

k→∞

∫

Ω

|DA
1
2
k | ≤ γ. (3.8)

Since yk ∈ K for all k ∈ N and the set K is a closed convex subset of W 1,p
0 (Ω),

by Mazur’s lemma this set is closed with respect to the weak topology of
W 1,p

0 (Ω). Hence, y ∈ K. Moreover, as follows from (3.7) and definition of the
set Aad, the inequality

ξ2
1‖η‖2 ≤ (η,Aη) ≤ ξ2

2‖η‖2 a.e. in Ω ∀ η ∈ R
N , (3.9)

is valid. Thus, A ∈ Aad. To complete the proof it is enough to show that the
limit pair (A, y) is related by variational inequality (2.13). With that in mind
we write down this inequality for (Ak, yk):

∫

Ω

|(Ak∇v,∇v)| p−2
2 (Ak∇v,∇v − ∇yk) dx ≥

∫

Ω

f(v − yk)dx, ∀ v ∈ K,

(3.10)

and pass to the limit in it as k → ∞.
In view of properties (3.6)–(3.9) and boundedness of {Ak}k∈N in

L∞(Ω;SN ), by Lebesgue’s Theorem we get that A
1
2
k ∇ϕ → A

1
2 ∇ϕ strongly

in Lp(Ω)N for every ϕ ∈ C∞
0 (Ω). Therefore,

lim
k→∞

∫

Ω

|(Ak∇v,∇v)| p−2
2 (Ak∇v,∇v) dx

= lim
k→∞

∫

Ω

|A 1
2
k ∇v|p−2

(
A

1
2
k ∇v,A

1
2
k ∇v

)
dx = lim

k→∞

∫

Ω

|A 1
2
k ∇v|pdx

=
∫

Ω

|A 1
2 ∇v|p−2 (∇v,A∇v) dx =

∫

Ω

|(A∇v,∇v)| p−2
2 (A∇v,∇v) dx

and

lim
k→∞

∫

Ω

|(Ak∇v,∇v)| p−2
2 (Ak∇v,∇yk) dx

by Lemma 3.2
=

∫

Ω

|(A∇v,∇v)| p−2
2 (A∇v,∇y) dx.

We, thus, can pass to the limit in relation (3.10) as k → ∞ and arrive at the
inequality (2.13), which means that y ∈ K is a solution to variational problem
(2.4). This fact together with A ∈ Aad leads us to the conclusion: (A, y) ∈ Ξ,
i.e. the limit pair (A, y) is admissible to optimal control problem (1.1). The
proof is complete. �
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In conclusion of this section, we give the existence result for optimal
control problem (1.1) which is an immediate consequence of the compactness
properties of BV (Ω;SN ), a priory estimate (2.14), Theorem 2.2, and compact-
ness of embedding W 1,p

0 (Ω) ↪→ L2(Ω).

Theorem 3.5. Let yd ∈ L2(Ω) and f ∈ L2(Ω) be given distributions. Then
optimal control problem (1.1) admits at least one solution (Aopt, yopt) ∈ Ξ.

4. Regularization of OCP (1.1)

As was pointed out in [17], the anisotropic p-Laplacian Δp(A, y) provides an
example of a quasi-linear operator in divergence form with a so-called degen-
erate nonlinearity for p > 2. In this context we have non-differentiability of
the state y with respect to the matrix-valued control A. As follows from Theo-
rem 3.5, this fact is not an obstacle to prove existence of optimal controls in the
coefficients, but it causes certain difficulties when deriving the optimality con-
ditions for the considered problem. To overcome this difficulty, we introduce
the following family of approximating control problems (see, for comparison,
the approach of Casas and Fernandez [5] for quasi-linear elliptic variational
inequalities with a distributed control in the right hand side)

Minimize Iε,k(A, y) =
∫

Ω

|y(x) − yd(x)|2dx (4.1)

subject to the constraints

〈−Δε,k,p(A, y), v − y〉H−1(Ω);H1
0 (Ω) ≥ 〈f, v − y〉H−1(Ω);H1

0 (Ω), ∀ v ∈ K∗,

(4.2)
y ∈ K∗, (4.3)
A ∈ Aad. (4.4)

Here,

Aad =
{

A ∈ L1(Ω;SN )
∣
∣
∣
∣
ξ2
1‖η‖2 ≤ (η,Aη) ≤ ξ2

2‖η‖2 a.e. in Ω ∀ η ∈ R
N ,

A
1
2 ∈ BV (Ω;SN ),

∫

Ω
|DA

1
2 | ≤ γ

}

,

k ∈ N, ε is a small parameter, which varies within a strictly decreasing sequence
of positive numbers converging to 0, the set K∗ is defined in Remark 2.4, and

Δε,k,p(A, y) = div
([

ε + Fk

(|A 1
2 ∇y|2)

] p−2
2

A(x)∇y

)

, (4.5)

where Fk : R+ → R+ is a non-decreasing C1(R+)-function such that

Fk(t) = t, if t ∈ [
0, k2

]
, Fk(t) = k2 + 1, if t > k2 + 1, and

t ≤ Fk(t) ≤ t + δ, if k2 ≤ t < k2 + 1 for some δ ∈ (0, 1).

The main goal of this section is to show that, for each ε > 0 and k ∈ N,
the approximating optimal control problem (4.1)–(4.4) is well posed and its
solutions are uniformly bounded in appropriated Banach spaces with respect
to parameters ε > 0 and k ∈ N.



35 Page 10 of 18 O. P. Kupenko and R. Manzo NoDEA

Remark 4.1. Since K∗ is a closed convex and bounded subset of W 1,p
0 (Ω), and

W 1,p
0 (Ω) is continuously embedded to H1

0 (Ω), it follows that K∗ is the closed
convex subset of H1

0 (Ω).

Remark 4.2. We note that the main effect of the perturbations of anisotropic p-
Laplacian Δp(A, y) in the form Δε,k,p(A, y) is its regularization around critical
points and points where the function |A 1

2 ∇y| becomes unbounded. In particu-
lar, if y ∈ W 1,p

0 (Ω), A ∈ Aad, Ωk(A, y) := {x ∈ Ω : |A 1
2 ∇y| >

√
k2 + 1}, then

the following chain of inequalities

|Ωk(A, y)| :=
∫

Ωk(A,y)

1dx ≤ 1√
k2 + 1

∫

Ωk(A,y)

|A 1
2 ∇y|dx

≤ |Ωk(A, y)| 1
q√

k2 + 1

(∫

Ω

|A 1
2 ∇y|pdx

) 1
p

≤
‖ξ2‖L∞(Ω)‖y‖W 1,p

0 (Ω)√
k2 + 1

|Ωk(A, y)| p−1
p

shows that the Lebesgue measure of the set Ωk(A, y) satisfies the estimate

|Ωk(A, y)| ≤
(‖ξ2‖L∞(Ω)√

k2 + 1

)p

‖y‖p

W 1,p
0 (Ω)

≤
‖y‖p

W 1,p
0 (Ω)

‖ξ2‖p
L∞(Ω)

kp
, ∀ y ∈ W 1,p

0 (Ω), (4.6)

i.e. the approximation Fk(|A 1
2 ∇y|2) is essential on sets with small Lebesgue

measure. At the same time, if instead of element y ∈ W 1,p
0 (Ω) we consider an

element y∗ ∈ H1
0 (Ω), then its level set

Ωk(A, y∗) :=
{

x ∈ Ω : |A 1
2 ∇y∗| >

√
k2 + 1

}

may have other than (4.6) characteristics. Indeed,

|Ωk(A, y∗)| :=
∫

Ωk(A,y∗)

1dx ≤ 1√
k2 + 1

∫

Ωk(A,y∗)

|A 1
2 ∇y∗|dx

≤ |Ωk(A, y∗)| 1
2

k
×

(∫

Ωk(A,y∗)

|A 1
2 ∇y∗|2dx

) 1
2

≤ ‖ξ2‖L∞(Ω)

k
|Ωk(A, y∗)| 1

2 ‖y∗‖H1
0 (Ω).

Hence, the Lebesgue measure of the set Ωk(A, y∗) satisfies the estimate

|Ωk(A, y∗)| ≤
‖ξ2‖2

L∞(Ω)

k2
‖y∗‖2

H1
0 (Ω). (4.7)

We begin with a few auxiliary results concerning monotonicity and
growth conditions for the regularized anisotropic p-Laplacian Δε,k,p(A, ·).
Proposition 4.3. For every A ∈ Aad, k ∈ N, and ε > 0, the operator Aε,k :=
−Δε,k,p(A, ·) : H1

0 (Ω) → H−1(Ω) is bounded.
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Proof. From the assumptions on Fk and boundedness of A, we get

‖Aε,k‖ = sup
‖y‖

H1
0(Ω)≤1

‖Aε,ky‖H−1(Ω) = sup
‖y‖

H1
0(Ω)≤1

sup
‖v‖

H1
0(Ω)≤1

| 〈Aε,ky, v〉 |

= sup
‖y‖

H1
0(Ω)≤1

sup
‖v‖

H1
0(Ω)≤1

∫

Ω

[
ε + Fk

(|A 1
2 ∇y|2)

] p−2
2 |(∇v,A∇y)|dx

≤
‖ξ2‖2

L∞(Ω)

(ε + k2 + 1)
2−p
2

sup
‖y‖

H1
0(Ω)≤1

sup
‖v‖

H1
0(Ω)≤1

‖y‖H1
0 (Ω)‖v‖H1

0 (Ω) = Cε,k,

which concludes the proof. �

Proposition 4.4. For every A ∈ Aad, k ∈ N, and ε > 0, the operator Aε,k is
strictly monotone.

Proof. To begin with, we make use of the following algebraic inequality:
(

(
ε + Fk(|a|2))

p−2
2 a − (

ε + Fk(|b|2))
p−2
2 b, a − b

)

≥ ε
p−2
2 |a − b|2, ∀ a, b ∈ R

N . (4.8)

In order to prove it, we note that the left hand side of (4.8) can be rewritten
as follows

(
(
ε + Fk(|a|2))

p−2
2 a − (

ε + Fk(|b|2))
p−2
2 b, a − b

)

=
(∫ 1

0

d

ds

{
(
ε + Fk(|sa + (1 − s)b|2))

p−2
2 (sa + (1 − s)b)

}

ds, a − b

)

=
∫ 1

0

(
ε + Fk(|sa + (1 − s)b|2))

p−2
2 |a − b|2ds

+ (p − 2)
∫ 1

0

{
(
ε + Fk(|sa + (1 − s)b|2))

p−4
2 F ′

k(|sa + (1 − s)b|2)

× |(sa + (1 − s)b, a − b)|2
}

ds = I1 + I2.

Since p ≥ 2 and Fk : R+ → R+ is a non-decreasing C1(R+)-function, it
follows that I2 ≥ 0 for all a, b ∈ R

N . It remains to observe that
(
ε + Fk(|sa +

(1 − s)b|2)) ≥ ε, ∀ a, b ∈ R
N . Hence, I1 ≥ ε

p−2
2 |a − b|2 and we arrive at the

inequality (4.8). With this we obtain
〈− Δε,k,p(A, y) + Δε,k,p(A, v), y − v〉H−1(Ω);H1

0 (Ω)

=
∫

Ω

(
(ε + Fk(|A 1

2 ∇y|2)) p−2
2 ∇y,A(∇y − ∇v)

)

RN
dx

−
∫

Ω

(
(ε + Fk(|A 1

2 ∇v|2)) p−2
2 ∇v,A(∇y − ∇v)

)

RN
dx

having put
{

a := A
1
2 ∇y, b := A

1
2 ∇v

}
,we get
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=
∫

Ω

(
(
ε + Fk(|a|2))

p−2
2 a − (

ε + Fk(|b|2))
p−2
2 b, a − b

)

dx

≥ ε
p−2
2

∫

Ω

|A 1
2 ∇y − A

1
2 ∇v|2dx = ε

p−2
2

∫

Ω

(∇y − ∇v,A(∇y − ∇v)) dx

≥ α2ε
p−2
2 ‖y − v‖2

H1
0 (Ω) ≥ 0.

Since the relation

〈−Δε,k,p(A, y) + Δε,k,p(A, v), y − v〉H−1(Ω);H1
0 (Ω) = 0

implies that ∇y = ∇v a. e. in Ω, it follows that the strict monotonicity property
(2.10) holds true for each A ∈ Aad, k ∈ N, and ε > 0. �

Proposition 4.5. For every A ∈ Aad, k ∈ N, and ε > 0, the operator Aε,k is
coercive (in the sense of relation (2.6)).

Proof. The coercivity property obviously follows from (2.6) under v0 = 0 ∈ K∗

and the estimate
〈 − Δε,k,p(A, y), y

〉

H−1(Ω);H1
0 (Ω)

≥ α2ε
p−2
2 ‖y‖2

H1
0 (Ω). (4.9)

�

Proposition 4.6. For every A ∈ Aad, k ∈ N, and ε > 0, the operator Aε,k is
semicontinuous.

Proof. Indeed, in order to get the equality

lim
t→0

〈−Δε,k,p(A, y + tw), v〉H−1(Ω);H1
0 (Ω) = 〈−Δε,k,p(A, y), v〉H−1(Ω);H1

0 (Ω),

it is enough to observe that

(ε + Fk(|A 1
2 (∇y + t∇w)|2)) p−2

2 A (∇y + t∇w) → (ε + Fk(|A 1
2 ∇y|2)) p−2

2 A∇y

as t → 0 almost everywhere in Ω, and make use of Lebesgue’s dominated
convergence theorem. �

Taking into account the fact that the set K∗, defined in Remark 2.4, is a
nonempty convex closed subset of H1

0 (Ω), we can apply the abstract theorem
on monotone operators (see Theorem 2.2) to the variational inequality

Find y ∈ K∗ s.t. 〈Aε,ky, v − y〉H−1(Ω);H1
0 (Ω)

≥ 〈f, v − y〉H−1(Ω);H1
0 (Ω), ∀ v ∈ K∗. (4.10)

As a result, closely following the arguments of Sect. 2, we arrive at the following
assertion.

Theorem 4.7. For each ε > 0, k ∈ N, A ∈ Aad, and f ∈ L2(Ω), the variational
inequality (4.2)–(4.3) admits a unique solution yε,k ∈ K∗ ⊂ H1

0 (Ω) such that
∫

Ω

(ε + Fk(|A 1
2 ∇v|2)) p−2

2 (A∇v,∇v − ∇yε,k) dx

≥
∫

Ω

f(v − yε,k)dx, ∀ v ∈ K∗. (4.11)
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Remark 4.8. It is easy to show, that the set
{

yε,k ∈ K∗
∣
∣
∣ A ∈ Aad, (A, yε,k) are related by inequality (4.11)

}
⊂ H1

0 (Ω)

is bounded in H1
0 (Ω)-norm for every k ∈ N and ε > 0. Indeed, since by the

initial assumptions the set K∗ contains zero element of H1
0 (Ω), it follows that

ε
p−2
2 α2‖yε,k‖2

H1
0 (Ω)

by (4.9)

≤ 〈Aε,kyε,k, yε,k〉H−1(Ω);H1
0 (Ω)

by (4.10)

≤ 〈f, yε,k〉H−1(Ω);H1
0 (Ω) ≤ ‖f‖L2(Ω)‖yε,k‖H1

0 (Ω).

Hence, supA∈Aad
‖yε,k‖H1

0 (Ω) ≤ ε
2−p
2 α−2‖f‖L2(Ω).

Thus, as follows from Theorem 4.7, for every ε > 0 and k ∈ N, the set of
admissible pairs to the approximating optimal control problem (4.1)–(4.4)

Ξε,k =
{
(A, y)

∣
∣A ∈ Aad, y ∈ K∗ ⊂ H1

0 (Ω), (A, y) are related by (4.11)
}

(4.12)

is nonempty. Moreover, for every sequence {(An, yn) ∈ Ξε,k}n∈N
, in view of

Remark 4.8, we have

sup
n∈N

[
‖A

1
2
n‖BV (Ω;SN ) + ‖yn‖H1

0 (Ω)

]
≤

√
N‖ξ2‖L1(Ω) + γ + ε

2−p
2 α−2‖f‖L2(Ω).

Hence (see Remark 3.1), there exists a subsequence {(Ani
, yni

)}i∈N
and a pair

(A, y) ∈ BV (Ω) × H1
0 (Ω) such that

yni
⇀ y in H1

0 (Ω), yni
→ y in L2(Ω),

A
1
2
ni → A

1
2 in L1(Ω), A

1
2
ni → A

1
2 almost everywhere in Ω, (4.13)

γ ≥ lim inf
i→∞

∫

Ω

|DA
1
2
ni | ≥

∫

Ω

|DA
1
2 |.

By analogy with Theorem 3.4, it is easy to show that the set Ξε,k is sequentially
closed with respect to the convergence (4.13) in BV (Ω) × H1

0 (Ω). Therefore,
(A, y) ∈ Ξε,k. Moreover, since {yni

}i∈N ⊂ K∗ and K∗ is a closed convex
subset of H1

0 (Ω), then the weak convergence yni
⇀ y in H1

0 (Ω) implies both
the inclusion y ∈ K∗ and the strong convergence yi → y in L2(Ω) by Rellich–
Kondrachov compactness theorem. As a result, we have

lim inf
i→∞

Iε,k(Ani
, yni

) = Iε,k(A, y)

whenever {(Ani
, yni

)}i∈N
⊂ Ξε,kconverges to(A, y)in the sense of (4.13).

Thus, since the cost functional (4.1) is bounded below on Ξε,k and Iε,k(A, y) <
+∞ for all (A, y) ∈ Ξε,k, the direct method of Calculus of Variations immedi-
ately leads us to the following conclusion.

Theorem 4.9. For every positive value ε > 0 and integer k ∈ N, the opti-
mal control problem (4.1)–(4.4) is solvable, i.e. there exists at least one pair
(Aopt

ε,k , yopt
ε,k ) ∈ Ξε,k such that

Iε,k(Aopt
ε,k , yopt

ε,k ) = inf
(A,y)∈Ξε,k

Iε,k(A, y).
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5. Asymptotic analysis of the approximating OCP (4.1)–(4.4)

Our main intention in this section is to show that some optimal solutions to
original OCP (1.1) can be attained (in some sense) by optimal solutions to
approximating problems (4.1)–(4.4). With that in mind, we make use of the
concept of variational convergence of constrained minimization problems (see
[11]). In order to study the asymptotic behaviour of a family of OCPs (4.1)–
(4.4), the passage to the limit in relations (4.1)–(4.4) as ε → 0 and k → ∞ has
to be realized. The expression “passing to the limit” means that we have to
find a kind of “limit cost functional” I and “limit set of constraints” Ξ with a
clearly defined structure such that the limit object

〈
inf(u,y)∈Ξ I(u, y)

〉
to the

family (4.1)–(4.4) could be interpreted as some OCP.
We are now in a position to show that optimal pairs to approximating

OCP (4.1)–(4.4) lead in the limit to some optimal solution to original OCP
(1.1). To begin with, we state the following result.

Theorem 5.1. Let yd ∈ L2(Ω), f ∈ L2(Ω), and ξ1, ξ2 ∈ L∞(Ω) ∩ BV (Ω)
be arbitrary distributions with property (2.2). Then, for a given p ≥ 2, the
sequence of sets {Ξε,k} ε>0

k∈N

⊂ BV (Ω) × H1
0 (Ω) converges to the set Ξ as ε → 0

and k → ∞ in Kuratowski sense as follows:
(d) If sequences {εn}n∈N

, {kn}n∈N
, and {(An, yn)}n∈N

are such that εn → 0

and kn → ∞ as n → ∞, (An, yn) ∈ Ξεn,kn
, ∀n ∈ N, A

1
2
n

∗
⇀ A

1
2 in

BV (Ω;SN ), and yn ⇀ y in H1
0 (Ω), then

(A, y) ∈ Ξ; (5.1)

(dd) For every (A, y) ∈ Ξ, there exists a sequence {(Aε,k, yε,k)} ε>0
k∈N

such that

(Aε,k, yε,k) ∈ Ξε,k, ∀ ε > 0, ∀ k ∈ N, (5.2)

yε,k ⇀ y in H1
0 (Ω), A

1
2
ε,k

∗
⇀ A

1
2 in BV (Ω;SN ). (5.3)

Proof. We begin with property (d). Let {εn}n∈N
, {kn}n∈N

, and {(An, yn)}n∈N

be sequences satisfying all assumptions of item (d). It is easy to see that y ∈
K∗ ⊂ K ⊂ W 1,p

0 (Ω) due to closedness of K∗ with respect to weak convergence
in H1

0 (Ω), and A is an admissible control (A ∈ Aad). It remains to show that the
limit pair (A, y) is related by inequality (2.13). In fact, according to Remark
2.4 it is enough to show, that the limit pair (A, y) is related by inequality
(2.15). To this end, let us fix an arbitrary distribution v ∈ K∗ and pass to the
limit in the relation (see Theorem 4.7)

∫

Ω

(εn + Fkn
(|A 1

2
n∇v|2)) p−2

2 (An∇v,∇v − ∇yn) dx ≥
∫

Ω

f(v − yn)dx (5.4)

as n → ∞. Taking into account Lebesgue Theorem and the facts that

Fkn
(t) → t everywhere in R

1
+, A,An ∈ L∞(Ω;SN ),

A
1
2
n → A

1
2 almost everywhere in Ω,

(εn + Fkn
(|∇v|2)) p−2

2 ∇v → |∇v|p−2∇v strongly in Lq(Ω)N ,



NoDEA Approximation of an OCP in coefficient Page 15 of 18 35

and making use of Lemma 3.2 and its Corollary 3.3, we get

lim
n→∞

∫

Ω

(εn + Fkn
(|A 1

2
n∇v|2)) p−2

2 (An∇v,∇v)dx

=
∫

Ω

|A 1
2 ∇v|p−2 (A∇v,∇v) dx,

lim
n→∞

∫

Ω

(εn + Fkn
(|A 1

2
n∇v|2)) p−2

2 (An∇v,∇yn)dx

=
∫

Ω

|A 1
2 ∇v|p−2 (A∇v,∇y) dx,

lim
n→∞

∫

Ω

f(v − yn)dx =
∫

Ω

f(v − y)dx.

Thus, upon passing to the limit in (5.4) as n → ∞, we arrive at the following
variational inequality

∫

Ω

|(A∇v,∇v)| p−2
2 (A∇v,∇v − ∇y) dx ≥

∫

Ω

f(v − y)dx, ∀ v ∈ K∗.

(5.5)

Since y ∈ K∗, it follows that y = y(A) is a solution to variational problem
(2.14), and, due to Remark 2.4, it is a solution to (2.13). Thus, (A, y) ∈ Ξ.

The next step is to prove property (dd). Let (A, y) ∈ Ξ be an
arbitrary admissible pair to original OCP (1.1). We construct a sequence
{(Aε,k, yε,k)} ε>0

k∈N

as follows: Aε,k ≡ A for all ε > 0 and k ∈ N, and yε,k is the
corresponding solution to regularized variational inequality (4.2)–(4.3) under
Aε,k = A. Then, (Aε,k, yε,k) ∈ Ξε,k for all ε > 0 and k ∈ N, and, as follows from
Remark 4.8, the sequence {yε,k} ε>0

k∈N

is uniformly bounded in H1
0 (Ω) and, there-

fore, it is relatively compact with respect to the weak convergence in H1
0 (Ω).

Hence, all cluster pairs (A, y∗) of the sequence {(Aε,k, yε,k)} ε>0
k∈N

with respect

to convergence (5.3) in BV (Ω;SN )×H1
0 (Ω) are such that y∗ ∈ K∗ ⊂ W 1,p

0 (Ω).
Moreover, reiterating the arguments of the previous step, it can be shown that
each of the cluster pairs (A, y∗) are related by inequality (2.13). Since varia-
tional problem (2.4) has a unique solution for each A ∈ Aad, it means that
pair (A, y) ∈ Ξ is the limit to the whole sequence {(Aε,k, yε,k)} ε>0

k∈N

. �

The following result is central in this paper and it clarifies the approxi-
mating properties of perturbed optimal control problems (4.1)–(4.4).

Theorem 5.2. Let {(A0
ε,k, y0

ε,k) ∈ Ξε,k} ε>0
k∈R

be an arbitrary sequence of optimal
pairs to approximating problems (4.1)–(4.4). Then this sequence is relatively
compact with respect to the convergence

y0
ε,k ⇀ y0 in H1

0 (Ω),
(
A0

ε,k

) 1
2 ∗

⇀
(
A0

) 1
2 in BV (Ω;SN ),

A0
ε,k → A0 in L1(Ω;SN ) (5.6)
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and each its cluster pair (A0, y0) is such that (A0, y0) ∈ Ξ and

inf
(A,y)∈ Ξ

I(A, y) = I
(
A0, y0

)
= lim

ε→0
k→∞

Iε,k(A0
ε,k, y0

ε,k)

= lim
ε→0

k→∞
inf

(A,y)∈ Ξε,k

Iε,k(A, y). (5.7)

Proof. As definition of the class of admissible controls Aad and Remark 4.8
indicate, the sequence {(A0

ε,k, y0
ε,k) ∈ Ξε,k} ε>0

k∈R

of optimal pairs is relatively
compact with respect to convergence (5.6). To prove variational equality (5.7),
it remains to apply the Rellich–Kondrachov compactness theorem and the
following relation coming from properties (d)–(dd) of Theorem 5.1

lim
i→∞

inf
(A,y)∈ Ξεi,ki

Iεi,ki
(A, y) = lim

i→∞
Iεi,ki

(A0
εi,ki

, y0
εi,ki

)
by (d)

= I(Â, ŷ)

≥ inf
(A, y)∈ Ξ

I(A, y) = I(A0, y0)
by (dd)

= lim
ε→0

k→∞
Iε,k(A0, yε,k)

≥ lim sup
ε→0

k→∞

inf
(A,y) ∈Ξε,k

Iε,k(A, y) ≥ lim sup
i→∞

inf
(A,y) ∈ Ξεi,ki

Iεi,ki
(A, y)

= lim
i→∞

Iεi,ki
(A0

εi,ki
, y0

εi,ki
).

�

Remark 5.3. As follows from Theorems 5.2 and 5.1, whatever sequence of
optimal solutions {(A0

ε,k, y0
ε,k)} ε>0

k∈N

to approximating problems (4.1)–(4.4) has
been chosen, it always gives in the limit as ε → 0 and k → ∞ some optimal pair
to original OCP (1.1). However, it is unknown whether any solution (A0, y0)
to OCP (1.1) can be attained, in the sense of convergence (5.6), by a sequence
of optimal pairs {(A0

ε,k, y0
ε,k)} ε>0

k∈R

to problems (4.1)–(4.4).

Acknowledgements

The research is partially supported by the State Fund for Fundamental
Researches, Grant No. F66/14921 and National Academy of Science of
Ukraine, Grant No. 2284/16.

References

[1] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free
Discontinuity Problems. Oxford University Press, New York (2000)

[2] Alessandrini, G., Sigalotti, M.: Geometric properties of solutions to the
anisotropic p-Laplace equation in dimension two. Ann. Acad. Sci. Fen.
Mat. 21, 249–266 (2001)

[3] Bergman, D.J., Stroud, D.: Physical properties of macroscopically inhomo-
geneous media. In: Ehrenreich, H., Turnbull, D. (eds.) Solid State Physics:



NoDEA Approximation of an OCP in coefficient Page 17 of 18 35

Advances in Research and Applications, vol. 42, pp. 147–269. Academic Press,
New York (1992)

[4] Buttazzo, G., Kogut, P.I.: Weak optimal controls in coefficients for linear elliptic
problems. Revista Matematica Complutense 24, 83–94 (2011)

[5] Casas, E., Fernandez, L.A.: Optimal control of quasilinear elliptic equations with
non differentiable coefficients at the origin. Rev. Mat. Univ. Compl. Madr. 4(2–
3), 227–250 (1991)

[6] Casas, E., Kogut, P.I., Leugering, G.: Approximation of optimal control prob-
lems in the coefficient for the p-Laplace equation. I. Convergence result. SIAM
J. Control Optim. (accepted)

[7] D’Apice, C., De Maio, U., Kogut, O.P.: On shape stability of Dirichlet opti-
mal control problems in coefficients for nonlinear elliptic equations. Adv. Differ.
Equ. 15(7–8), 689–720 (2010)

[8] D’Apice, C., De Maio, U., Kogut, O.P.: Optimal control problems in coefficients
for degenerate equations of monotone type: Shape stability and attainability
problems. SIAM J. Control Optim. 50(3), 1174–1199 (2012)

[9] Horsin, T., Kogut, P.I.: Optimal L2-control problem in coefficients for a linear
elliptic equation. Math. Control Relat. Fields 5(1), 73–96 (2015)

[10] Kogut, P.I.: On approximation of an optimal boundary control problem for linear
elliptic equation with unbounded coefficients. Discrete Contin. Dyn. Syst. Ser.
A 34(5), 2105–2133 (2014)

[11] Kogut, P.I., Leugering, G.: Optimal control problems for partial differential
equations on reticulated domains. In: Approximation and Asymptotic Analy-
sis. Series: Systems and Control. Birkhäuser, Boston (2011)
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