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Existence and uniqueness of global strong
solutions to fully nonlinear second order
elliptic systems

Nikos Katzourakis

Abstract. We consider the problem of existence and uniqueness of strong
a.e. solutions u : Rn −→ R

N to the fully nonlinear PDE system

F (·, D2u) = f, a.e. on R
n, (1)

when f ∈ L2(Rn)N and F is a Carathéodory map. (1) has not been
considered before. The case of bounded domains has been studied by
several authors, firstly by Campanato and under Campanato’s ellipticity
condition on F . By introducing a new much weaker notion of ellipticity,
we prove solvability of (1) in a tailored Sobolev “energy” space and a
uniqueness estimate. The proof is based on the solvability of the linearised
problem by Fourier transform methods, together with a “perturbation
device” which allows to use Campanato’s near operators. We also discuss
our hypothesis via counterexamples and give a stability theorem of strong
global solutions for systems of the form (1).
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1. Introduction

Let n,N ≥ 2 and let also

F : R
n × (RN ⊗ S(n)

) −→ R
N

be a Carathéodory map, namely
{

x �→ F (x,X) is measurable, for every X ∈ R
N ⊗ S(n),

X �→ F (x,X) is continuous, for almost every x ∈ R
n.
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In this paper we consider the problem of existence and uniqueness of global
twice weakly differentiable strong a.e. solutions u : R

n −→ R
N to the following

fully nonlinear PDE system

F (·,D2u) = f, a.e. on R
n, (1.1)

when f ∈ L2(Rn)N . In the above, S(n) denotes the symmetric matrices of
R

n×n, Du(x) ∈ R
N×n is the gradient matrix and D2u(x) ∈ R

N ⊗ S(n) is
the hessian tensor of u at x. In the sequel we will employ the summation
convention in repeated indices when i, j, k, ... run in {1, ..., n} and α, β, γ, ...
run in {1, ..., N}. The standard bases of R

n, R
N , R

N×n and R
N⊗R

n×n will be
denoted by {ei}, {eα}, {eαi} and {eαij} respectively, “⊗” denotes the tensor
product and we abbreviate eαi ≡ eα ⊗ ei, eij ≡ ei ⊗ ej , eαij ≡ eα ⊗ ei ⊗ ej and
Di ≡ ∂/∂xi. Hence, we will write

x = xie
i, u = uαeα, Du = (Diuα)eαi, D2u = (D2

ijuα)eαij .

To the best of our knowledge, the problem (1.1) has not been considered
before. However, the Dirichlet problem on bounded domains for the system
F (·,D2u) = f has been considered before by several authors and with differ-
ent degrees of generality. The first one to address it was Campanato [11–
14] for bounded convex Ω and under a strong ellipticity condition which
we recall later. Subsequent contributions to this problem and problems rel-
evant to Campanato’s work on this problem can be found in Tarsia [55–
59], Fattorusso–Tarsia [23–26], Buica–Domokos [9], Domokos [21], Palagachev
[50,51], Palagachev–Recke–Softova [52], Softova [53] and Leonardi [47]. How-
ever, all vectorial contributions, even the most recent ones [23,24] (wherein
they consider PDE systems of the form F (·, u,Du,D2u) = f) are based on
Campanato’s original restrictive ellipticity notion, or a minor extension of it
due to Tarsia [59]. Moreover, in the very recent papers of the author [40,41]
we are considering the relevant cases of 1st order fully nonlinear elliptic sys-
tems F (·,Du) = f and also the 2nd order case F (·,D2u) = f but on bounded
domains.

The main consequence of Campanato’s ellipticity is that the nonlinear op-
erator F [u] := F (·,D2u) is “near” the Laplacian Δu. Nearness is a functional
analytic notion also introduced by Campanato in order to solve the problem,
which roughly says that operators near those with “good properties” like bi-
jectivity inherit these properties. In the case at hand, nearness implies unique
solvability of (1.1) in (H2 ∩ H1

0 )(Ω)N , by the unique solvability of the Poisson
equation Δu = f in (H2 ∩H1

0 )(Ω)N and a fixed point argument. Campanato’s
ellipticity relates to the Cordes condition (see Cordes [16,17] and also Landis
[46]).

Although Campanato’s condition is stringent, it should be emphasised
that in general it is not possible to obtain solvability in the class of strong
solutions with the mere assumption of uniform ellipticity. Well-known coun-
terexamples which are valid even in the linear scalar case of the second order
elliptic equation

Aij(x)D2
iju(x) = f(x)
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with Aij ∈ L∞(Ω) imply that the standard uniform ellipticity A ≥ νI does
not suffice to guarantee well posedness of the Dirichlet problem when n > 2
and more restrictive conditions are required (see e.g. Ladyzhenskaya–Uraltseva
[44]).

In this paper we introduce a new much weaker ellipticity notion for F
than the Campanato–Tarsia condition and for the first time we consider the
case of global solutions on Ω = R

n. We prove unique solvability of (1.1) by a
twice weakly differentiable map u in the appropriate Sobolev space, together
with a strong a priori estimate. Moreover, in the course of the proof we give
a vectorial non-monotone extension of the Miranda–Talenti inequality on the
whole space. A proof of the classical Miranda–Talenti inequality in H2 ∩ H1

0

(Miranda [49], Talenti [54]) can be found in Maugeri–Palagachev–Softova [48].
Our starting point for the system F (·,D2u) = f is based on the analysis

of the simpler case of F linear in X and independent of x, that is when

Fα(x,X) = AαβijXβij . (1.2)

Here A is a linear symmetric operator A : R
N×n −→ R

N×n:

A ∈ S(N×n), i.e. Aαβij = Aβαji.

For F as in (1.2), the system F (·,D2u) = f becomes

AαβijD
2
ijuβ = fα.

By introducing the contraction operation A : Z := (AαβijZαij)eα (which ex-
tends the trace inner product Z : Z = ZαijZαij of R

N ⊗ S(n)), we will write it
compactly as

A : D2u = f. (1.3)

The appropriate notion of ellipticity in this case is that the quadratic form
arising from the operator A

A : R
N×n × R

N×n −→ R,
A : P ⊗ Q := AαβijPαiQβj ,

(1.4)

is (strictly) rank-one convex on R
N×n, that is

A : η ⊗ a ⊗ η ⊗ a ≥ ν|η|2|a|2, (1.5)

for some ν > 0 and all η ∈ R
N , a ∈ R

n. For brevity, we will say “A is rank-
one positive” as a shorthand of the statement “the symmetric quadratic form
defined by A on R

N×n is rank-one strictly convex”. Our ellipticity assumption
for general F is given in the following definition. We state it for a general
domain Ω ⊆ R

n:

Definition 1. (Ellipticity) Let Ω ⊆ R
n be open and let F : Ω×(RN⊗S(n)

) −→
R

N be a Carathéodory map. We call F (or the system F (·,D2u) = f) elliptic
when there exist

A ∈ S(N×n), rank-one positive,
λ > κ > 0,

α ∈ L∞(Ω), α > 0 a.e. on Ω and 1/α ∈ L∞(Ω),
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such that

(A : Z)�
[
F (x,X + Z) − F (x,X)

]
≥ λ

α(x)
|A : Z|2 − κ

α(x)
ν(A)2|Z|2, (1.6)

for all X,Z ∈ R
N ⊗ S(n) and a.e. x ∈ Ω ⊆ R

n.

In the above definition ν(A) is the ellipticity constant of A:

ν(A) := min
|η|=|a|=1

{
A : η ⊗ a ⊗ η ⊗ a

}
. (1.7)

By taking as A the monotone tensor

Aαβij = δαβδij ,

we reduce to a condition equivalent to Tarsia’s notion, and by further taking
α(x) constant we reduce to Campanato’s notion:

(Z : I)�
[
F (x,X + Z) − F (x,X)

]
≥ c2|Z : I|2 − c1|Z|2, (1.8)

c2 > c1 > 0. In this paper, all the norms | · | will be the euclidean, e.g. on
R

N ⊗ S(n) we use |X|2 = X : X = XαijXαij etc, and in (1.8) we have used
the obvious contraction operation X : X := (XαijXij)eα. Our new ellipticity
notion (1.6) relaxes (1.8) substantially: a large class of nonlinear operators to
which our results apply are of the form

F (x,X) := g2(x)A : X + G(x,X)

where A rank-one positive, g, 1/g ∈ L∞(Ω) and G is any nonlinear map,
measurable with respect to the first argument and Lipschitz with respect to
the second argument, with Lipschitz constant of G(x, ·)/g2(x) smaller than
ν(A) (see Example 5). In particular, any F ∈ C1

(
R

N⊗S(n)
)N such that F ′(0)

is rank-one positive and the Lipschitz constant of X �→ F (X) − F ′(0) : X is
smaller than ν(F ′(0)), is elliptic in the sense of Definition 1. On the other
hand, even if F is linear, F (X) = A : X and in addition A defines a strictly
convex quadratic form on R

N×n, that is when

A : Q ⊗ Q ≥ c2|Q|2, Q ∈ R
N×n,

then F may not be elliptic in the Campanato–Tarsia sense (see Example 6).
The general program we deploy herein is the following: we first establish

existence and uniqueness to the system (1.1) in the linear case with constant
coefficients for F (X) = A : X. Then, we use the new ellipticity notion, a
“perturbation device” which is a consequence of this ellipticity and employ
Campanato’s theorem of bijectivity of near operators, in order to prove exis-
tence and uniqueness for (1.1) in the general case. More precisely, in Sect. 3 we
prove existence and uniqueness of global strong a.e. solutions to (1.1) in the
linear case of F (X) = A : X when A satisifes (1.5) and n ≥ 5. The appropriate
Sobolev space is

W 2,2
∗ (Rn)N :=

{
u ∈ L2∗∗

(Rn)N
∣
∣
∣ Du ∈ L2∗

(Rn)Nn, D2u ∈ L2(Rn)Nn2
}

.

(1.9)
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Here the exponent 2∗ is the conjugate exponent of 2 and 2∗∗ = (2∗)∗:

2∗ =
2n

n − 2
, 2∗∗ =

2n

n − 4
. (1.10)

The reason why we have to restrict ourselves to dimensions n ≥ 5 relate to
the Gagliardo–Nirenberg–Sobolev inequality: for n ≤ 4, W 2,2

∗ (Rn)N is not a
Banach space with respect to the L2 seminorm of the hessian. When n ≥ 5, we
prove existence, uniqueness and also an explicit representation formula for the
solution which lives in W 2,2

∗ (Rn)N by utilising the Fourier transform (Theorem
11). Next, in Sect. 4 we tackle the general case of fully nonlinear F satisfy-
ing Definition 1 (Theorem 15). This is based on the solvability of the linear
problem, our ellipticity assumption and Campanato’s result of “near opera-
tors” taken from [15], which we recall herein for the convenience of the reader
(Theorem 17). A byproduct of our method is a strong uniqueness estimate in
the form of a comparison principle for the distance of any solutions in terms
of the distance of the right hand sides of the equations. A crucial ingredient
of our analysis is the following sharp hessian estimate

∥
∥D2u

∥
∥

L2(Rn)
≤ 1

ν(A)

∥
∥A : D2u

∥
∥

L2(Rn)
(1.11)

valid for all u ∈ W 2,2
∗ (Rn)N , which is established in Proposition 10. The in-

equality (1.11) is a vectorial non-monotone extension of the Miranda–Talenti
inequality to the whole space and beyond the case A :D2u = Δu of the classi-
cal result. In Sect. 2 we discuss some examples and counterexamples, as well
as an equivalent formulation of our ellipticity condition which is the analogue
of Campanato’s “A-condition”. Finally, in Sect. 5 we discuss an extension of
our main result to result of stability type for strong global solutions of fully
nonlinear systems.

We note that Campanato’s notion of nearness has been relaxed by Buica–
Domokos in [9] to a “weak nearness”, which still retains most of the features
of (strong) nearness. In the same paper, the authors also use an idea similar to
ours, namely a fully nonlinear operator being “near” a general linear operator,
but they implement this idea only in the scalar case.

Except for its intrinsic analytical interest, the motivation to study the
present problem comes in part from Differential Geometry, in particular semi-
Riemannian Geometry/General Relativity,but also from Conformal Geometry.
In addition, understanding this problem is an important stepping stone in
order to understand the problem of non-existence of minimisers in Calculus of
Variations for 2nd order non-convex problems. More importantly, the present
problem can be seen as a simplified version of the complicated equations which
arise in the recently initiated vectorial Calculus of Variations in the space L∞

for supremal functionals. We have collected some details about these problems
and how they relate to the current paper in Sect. 6.

We conclude this introduction by noting that the fully nonlinear case of
(1.1) has been studied also when F is coercive instead of elliptic. By using the
analytic Baire category method of the Dacorogna–Marcellini [20] which is the
“geometric counterpart” of Gromov’s Convex Integration, one can prove that,
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under certain structural and compatibility assumptions, the Dirichlet problem
has infinitely many strong a.e. solutions in the space W 2,∞(Rn)n. However,
ellipticity and coercivity of F are, roughly speaking, mutually exclusive and in
order to get uniqueness under this method, appropriate extra selection criteria
of “good” solutions are required, yet to be determined.

On the other hand, the scalar theory of single elliptic equations has a
much richer theory, for both classical/strong a.e. solutions of strongly elliptic
equations, (see Gilbarg–Trudinger [28]) as well as for “nonvariational weak so-
lutions” of degenerate elliptic equations, namely viscosity solutions (Crandall–
Ishii–Lions [18], Cabré–Caffarelli [10] and for a pedagogical introduction see
the author’s monograph [32]). However, except for the (fairly) broad theory
for divergence strictly elliptic systems (see e.g. Giaquinta–Martinazzi [29]), for
fully nonlinear systems the existing theory is very limited (but see the very
recent development of the theory of D-solutions in [42,43] and Sect. 6).

2. Ellipticity, examples and counterexamples

We begin by noting the simple algebraic fact that our ellipticity notion of
Definition 1 implies a sort of generalised “non-monotone” Legendre–Hadamard
condition (or strict rank-one convexity in the linear case) relative to A. If A is
monotone, that is if

Aαβij = δαβAij ,

for some A ∈ S(n), then we reduce to rank-one convexity. Accordingly, we have
the next result:

Lemma 2. (Non-monotone rank-one convexity) Let Ω ⊆ R
n be open and let

F : Ω × (RN ⊗ S(n)
) −→ R

N be a Carathéodory map satisfying Definition 1
for some A, κ, λ and α. Then, we have the estimate
(
F
(
x,X + η ⊗ a ⊗ a

)− F (x,X)
)�(

A : η ⊗ a ⊗ a
) ≥ (λ − κ)ν(A)2

‖α‖L∞(Ω)
|η|2|a|4,

for all η ∈ R
N , a ∈ R

n and a.e. x ∈ Ω. In particular, if F is linear and
F (x,X) = G(x) : X, then

(
G(x) : η ⊗ a ⊗ a

)�(A : η ⊗ a ⊗ a) ≥ (λ − κ)ν(A)2

‖α‖L∞(Ω)
|η|2|a|4,

for all η ∈ R
N , a ∈ R

n.

Proof of Lemma 2 Choose Z := η ⊗ a ⊗ a for η �= 0 and observe that

|Z|2 = |η ⊗ a ⊗ a|2 = ηαaiaj ηαaiaj = |η|2|a|4 (2.1)

and also, by (1.7), we have

|A : Z|2 = max
|ξ|=1

∣
∣ξ�(A : η ⊗ a ⊗ a

)∣∣2 ≥
∣
∣
∣
∣

η

|η|
�(

A : η ⊗ a ⊗ a
)
∣
∣
∣
∣

2

=

=
1

|η|2
∣
∣ηαAαβijηβaiaj

∣
∣2 ≥ 1

|η|2 ν(A)2|η|4|a|4. (2.2)
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Hence, by (1.6) and (2.1), (2.2) we obtain
(
F
(
x,X + η ⊗ a ⊗ a

)− F (x,X)
)�(

A : η ⊗ a ⊗ a
)

≥ λ

α(x)
ν(A)2|η|2|a|4 − κ

α(x)
ν(A)2|η|2|a|4

≥ (λ − κ)ν(A)2

‖α‖L∞(Ω)
|η|2|a|4,

and the lemma ensues. �
We now rewrite our ellipticity condition of Definition 1 to a formulation

which is along the lines of Campanato’s “A-Condition” and Tarsia’s “Ax-
Condition” (see [57,58]).

Definition 3. (K-Condition) Let Ω ⊆ R
n be open and F : Ω×(RN⊗S(n)

) −→
R

N a Carathéodory map. We say that F is elliptic (or the PDE system
F (·,D2u) = f is elliptic) when there exist

A ∈ S(N×n) rank-one positive,
α ∈ L∞(Ω), α > 0 a.e. on Ω, 1/α ∈ L∞(Ω),

β, γ > 0 with β + γ < 1,

such that
∣
∣
∣A : Z − α(x)

(
F (x,X + Z) − F (x,X)

)∣∣
∣
2

≤ βν(A)2|Z|2 + γ|A : Z|2.
(2.3)

We recall that ν(A) is the ellipticity constant of A and is given by (1.7).
The following result certifies that the ellipticity condition of Definition 1 is
equivalent to the K-condition of Definition 3, if F is globally Lipschitz contin-
uous with respect to the second argument.

Lemma 4. (Ellipticity vs K-Condition) Let Ω ⊆ R
n be open and let F : Ω ×(

R
N ⊗ S(n)

) −→ R
N be a Carathéodory map. Then the following statements

are equivalent:
(1) There exist A ∈ S(N×n) rank-one positive, β, γ > 0 with β + γ < 1 and

α ∈ L∞(Ω) with α > 0 a.e. on Ω and 1/α ∈ L∞(Ω) with respect to which
F satisfies Definition 3.

(2) There exist A ∈ S(N ×n) rank-one positive, λ > κ > 0 and α ∈ L∞(Ω)
with α > 0 a.e. on Ω and 1/α ∈ L∞(Ω) with respect to which F satisfies
Definition 1. Moreover, X �→ F (x,X) is globally Lipschitz continuous on
R

N ⊗ S(n), essentially uniformly in x ∈ Ω:

ess sup
x∈Ω

sup
X �=Y in RN⊗S(n)

|F (x,Y) − F (x,X)|
|Y − X| =: M < ∞. (2.4)

Proof of Lemma 4 Assume (1) holds. Then, (2.3) implies

|A : Z|2 + α(x)2
∣
∣
∣F (x,X + Z) − F (x,X)

∣
∣
∣
2

− 2α(x)(A : Z)�
(
F (x,X + Z) − F (x,X)

)
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≤ βν(A)2|Z|2 + γ|A : Z|2

Hence,

α(x)(A : Z)�
(
F (x,X + Z) − F (x,X)

)
≥ 1 − γ

2
|A : Z|2 − β

2
ν(A)2|Z|2.

and we obtain (1.6) for

λ :=
1 − γ

2
, κ :=

β

2

since λ > κ > 0, because κ > 0 and λ − κ = 1
2

(
1 − (β + γ)

)
> 0. In addition,

again by (2.3), we have

α(x)
∣
∣F (x,X + Z) − F (x,X)

∣
∣ ≤ |A : Z| +

√
βν(A)|Z| +

√
γ|A : Z|

and hence
∣
∣F (x,X + Z) − F (x,X)

∣
∣ ≤ 1

α(x)

(
(1 +

√
γ)|A : Z| +

√
βν(A)|Z|

)

≤
∥
∥
∥

1
α

∥
∥
∥

L∞(Ω)

(
(1 +

√
γ)|A| +

√
βν(A)

)
|Z|.

Consequently, (2.4) follows and we have just shown that (1) implies (2).
Conversely, assume (2) and fix σ > 0. Let also M be as in (2.4). Then,

by (2.4) and (1.6) we have

α(x)2

(λσ)2
∣
∣F (x,X + Z) − F (x,X)

∣
∣2 ≤

(
Mα(x)
λσ ν(A)

)2

ν(A)2|Z|2

and

|A : Z|2 − 2
α(x)
λσ

(A : Z)�
(
F (x,X + Z) − F (x,X)

)

≤ 2κ

λσ
ν(A)2|Z|2 +

(
1 − 2

σ

)
|A : Z|2.

By adding the above two inequalities, we get
∣
∣
∣
∣A : Z − α(x)

λσ

(
F (x,X + Z) − F (x,X)

)∣∣
∣
∣

2

≤
(

2κ

λσ
+

1
σ2

(
Mα(x)
λ ν(A)

)2
)

ν(A)2|Z|2 +
(
1 − 2

σ

)
|A : Z|2.

Since κ/λ < 1, by choosing σ > 0 large, we can arrange things such that
Definition 3 is satisfied for the same A as in Definition 1 and

β :=
2
σ

(
κ

λ
+

1
2σ

(
M‖α‖L∞(Ω)

λν(A)

)2
)

, γ := 1 − 2
σ

, α′(x) :=
α(x)
λσ

,

because β + γ < 1, for σ large. The lemma has been established. �
The previous result allows us to exhibit a large class of nonlinear opera-

tors to which our existence-uniqueness results apply.



NoDEA Existence and Uniqueness Page 9 of 30 33

Example 5. (A class of elliptic “coefficients” satisfying the K-Condition) Non-
trivial fully nonlinear examples of maps F which are elliptic in the sense of
the Definition 1 above are easy to find. Let Ω ⊆ R

n be open, g measurable
with g2, 1/g2 ∈ L∞(Ω) and consider any fixed tensor A ∈ S(N ×n) for which
ν(A) > 0 and any Carathéodory map

G : Ω × (RN ⊗ S(n)
) −→ R

N

which is Lipschitz with respect to the second variable and

ess sup
x∈Ω

∥
∥
∥
∥

G(x, ·)
g2(x)

∥
∥
∥
∥

Lip
(
RN⊗S(n)

) < ν(A).

Then, the map F : Ω × (RN ⊗ S(n)
) −→ R

N given by

F (x,X) := g2(x)A : X + G(x,X)

satisfies Definition 3, since there is β ∈ (0, 1) such that
∣
∣
∣
∣A : Z − 1

g2(x)

(
F (x,X + Z) − F (x,X)

)∣∣
∣
∣

2

=
∣
∣
∣
∣
G(x,X + Z) − G(x,X)

g2(x)

∣
∣
∣
∣

2

≤ β ν(A)2|Z|2
≤ β ν(A)2|Z|2 + γ|A : Z|2,

and hence F satisfies (2.3) for α := g−2, some β ∈ (0, 1) and any γ ∈ (β, 1),
e.g. γ := (1 − β)/2.

Thus, every Lipschitz perturbation of an elliptic constant tensor gives a
fully nonlinear elliptic map, when the Lipschitz constant of the perturbation is
strictly smaller than the ellipticity constant of the tensor.

We now show that our ellipticity condition, either in the guises of Defin-
ition 1 or in the guises of Definition 3 is strictly weaker than the Campanato–
Tarsia definition. More precisely, we give an example of a symmetric A ∈
S(N ×n) which is (not merely rank-one positive, but) positive and the respec-
tive map F (X) := A : X does not satisfy (1.8). On the other hand, every such
F is automatically elliptic in our sense. The idea of this example is inspired
by the examples in [58].

Example 6. (A strictly convex A not satisfying Campanato’s A-Condition)
There exists A ∈ S(2×2) such that

A : Q ⊗ Q ≥ |Q|2, Q ∈ R
2×2, (2.5)

which is such that there do not exist constants c2 > c1 > 0 for which F (X) :=
A : X satisfies (1.8). Indeed, let us define

A :=
[
A11 0
0 A22

]

by setting

A11 := I =
[

1 0
0 1

]
, A22 := m

[
2 1
1 2

]
, m ≥ 8.
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In index form, this means A11ij = δij, A12ij = A21ij = 0, A2211 = A2222 = 2m,
A2212 = A2221 = m. Then, A satisfies (2.5), since

A : Q ⊗ Q = AαβijQαiQβj

= A11ijQ1iQ1j + A2211Q21Q21 + A2222Q22Q22

+ A2212Q21Q22 + A2221Q22Q21

= (Q11)2 + (Q12)2 + 2m
(
(Q21)2 + (Q22)2

)
+ 2mQ21Q22

≥ |Q|2 + m(Q21 + Q22)2.

Suppose now that there exist c2 > c1 > 0 such that X �→ A : X satisfies (1.8),
that is for all X ∈ R

2⊗ S(2),

AαβijXβijXαkk ≥ c2

(
XβiiXβjj

) − c1

(
XαijXαij

)
. (2.6)

We will show that specific choices of X lead to a contradiction and such an
estimate can not hold. We first choose

X :=
[

I
0

]

that is, we take X1ij = δij, X2ij = 0. We calculate:

AαβijXβijXαkk = A11ijX1ijX1kk = δijδijδkk = 4,

XβiiXβjj = X1iiX1jj = δiiδjj = 4,

XαijXαij = X1ijX1ij = δijδij = 2.

Then, (2.6) implies 4 ≥ 4c2 − 2c1, and since c1 < c2, we obtain

c2 < 2. (2.7)

Next, we choose

X :=

⎡

⎣
0

−1 3
3 −1

⎤

⎦

that is, we take X1ij = 0, X211 = X222 = −1, X212 = X221 = 3. We calculate:

AαβijXβijXαkk = A22ijX2ijX2kk = −2m(−2 − 2 + 3 + 3) = −4m,

XβiiXβjj = X2iiX2jj = (X211 + X222)2 = 4,

XαijXαij = X2ijX2ij = (−1)2 + (−1)2 + 32 + 32 = 20.

Hence, (2.6) implies −4m ≥ 4c2 − 20c1, which by using that c1 < c2 gives

c2 >
m

4
. (2.8)

Since (2.7) and (2.8) are incompatible, we see that (1.8) can not be satisfied
by A and X �→ A : X is not elliptic in the Campanato sense. However, A is
automatically elliptic in our sense since it satisfies Definition 1.

Tarsia proved in [59] that in the scalar case of N = 1 and for F (x,X)
linear, that it when F (x,X) = A(x) : X, the “Ax-Condition” (namely (2.3) for
N = 1 and Aαβij = δij) is equivalent to a condition with perhaps different β
and α, but with γ = 0. In other words, in the linear case, the term of the trace
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|Z : I| can be absorbed into the term of the norm |Z|. This result has been
simplified by Domokos in [19]. Now we show that in the nonlinear case this is
not in general possible, not even in the scalar case. Hence, we deduce that our
K-Condition of Definition 3 can not be simplified to a condition with γ = 0.

Example 7. (Optimality of the K-Condition) For any n ≥ 3, there exists a
Lipschitz function F ∈ C0,1

(
S(n)

)
which satisfies

∣
∣
∣Z : I − α

(
F (X + Z) − F (X)

)∣∣
∣
2

≤ β|Z|2 + γ|Z : I|2 (2.9)

for some α, β, γ > 0 with β + γ < 1 and all X,Z ∈ S(n), but does not satisfy
(2.9) with γ = 0 for any β ∈ (0, 1). The appropriate F : S(n) −→ R is given
by

F (X) := X : I − b|X| − c|X : I| (2.10)

where the parameters b, c satisfy

c > b > 0,
√

nc + b > 1, b + c < 1, b2 + c2 <
1
2
.

A specific choice of such values is

c =
1√
n

, b =
1

10 +
√

n
.

We begin with the next claim:

Claim 8. Let F be given by (2.10). Then, F satisfies (2.9) with

γ(α) := 2
(|1 − α| + αc

)2
, β(α) := 2(αb)2,

if and only if α ∈ (1 − α0, 1 + α0) for some α0 = α0(b, c) ∈ (0, 1).

Proof. For any α > 0, we have
∣
∣
∣Z : I − α

(
F (X + Z) − F (X)

)∣∣
∣
2

=
∣
∣
∣Z : I − αZ : I + α

[
b
(|X + Z| − |X|)

+ c
(|X : I + Z : I| − |X : I|)

]∣∣
∣
2

≤
((|1 − α| + αc

)|Z : I| + αb|Z|
)2

≤ 2
(|1 − α| + αc

)2|Z : I|2 + 2(αb)2|Z|2
= γ(α)|Z : I|2 + β(α)|Z|2.

Now note that

γ(α) + β(α) = 2
(|1 − α| + αc

)2 + 2(αb)2 −→ 2(c2 + b2) < 1,

as α → 1. Hence, there is an α0 > 0 such that γ(α) + β(α) < 1 if and only if
|α − 1| < α0. Conversely, if |α − 1| ≥ α0, then γ(α) + β(α) ≥ 1. We choose
X0 := 0 and Z0 such that

√
β(α)

2
|Z0| =

√
γ(α)

2
|Z0 : I|, (1 − α)Z0 : I > 0.
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As explicit such Z0 is

Z0 :=

⎡

⎣
sgn(1 − α) t 0

t 0 0
0 0 0

⎤

⎦ , t :=

√
1
2

(
γ(α)
β(α)

− 1
)

which is admissible choice since
γ(α)
β(α)

≥ c2

b2
> 1.

Then we have
∣
∣
∣Z0 : I − α

(
F (X0 + Z0) − F (X0)

)∣∣
∣
2

=
∣
∣
∣Z0 : I − αZ0 : I + αb|Z0|

+ αc|Z0 : I|
∣
∣
∣
2

=
∣
∣
∣(1 − α)Z0 : I + αb|Z0| + αc|Z0 : I|

∣
∣
∣
2

=
((|1 − α| + αc

)|Z0 : I| + αb|Z0|
)2

=

(√
γ(α)

2
|Z0 : I| +

√
β(α)

2
|Z0|

)2

= γ(α)|Z0 : I|2 + β(α)|Z0|2
and hence the estimate does not hold if |α − 1| ≥ α0. �

We now have the next:

Claim 9. Let F be given by (2.10). Then, for any α ∈ (1 − α0, 1 + α0), there
exist Z0,X0 ∈ S(n) with Z0 �= 0 such that

∣
∣
∣Z0 : I − α

(
F (X0 + Z0) − F (X0)

)∣∣
∣ = |Z0|. (2.11)

Hence, the estimate (2.9) can not hold with γ = 0 for any β ∈ (0, 1), regardless
the choice of admissible α.

Proof. For any fixed α ∈ (1 − α0, 1 + α0), we choose

X0 := 0, Z± :=

⎡

⎢
⎢
⎢
⎢
⎣

±ζ 1 · · · 1

1
. . . 1

...
. . .

...
1 · · · 1 ±ζ

⎤

⎥
⎥
⎥
⎥
⎦

, Z0 :=
{

Z+, when 1 − α0 < α ≤ 1,
Z−, when 1 < α < 1 + α0,

and

ζ :=
(1 − αb)

√
n − 1

√
n
(|1 − α| + αc

)2 − (
1 − αb

)2
.

Since we have chosen b, c such that
√

nc + b > 1, ζ is well defined as a real
number: indeed, by elementary algebra, we have
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n
(|1 − α| + αc

)2 − (
1 − αb

)2
> 0 ⇐⇒ √

nc + b >
√

n −
√

n − 1

α
=: χ(α),

when 1 − α0 < α ≤ 1, and

n
(|1 − α| + αc

)2 − (
1 − αb

)2
> 0 ⇐⇒ √

nc + b >
1 +

√
n

α
− √

n =: ψ(α),

when 1 ≤ α < 1 + α0. Since both χ(α) and ψ(α) are maximised when α = 1
and χ(1) = ψ(1) = 1, we deduce that indeed ζ ∈ R. We now show that F
satisfies (2.11) for these choices of X0, Z0. Indeed, we have that

(1 − α)(Z0 : I) = |1 − α| ∣∣Z0 : I
∣
∣

and hence
∣
∣∣Z0 : I − α

(
F (X0 + Z0) − F (X0)

)∣∣∣ =
∣
∣∣(1 − α)Z0 : I + αb|Z0| + αc|Z0 : I|

∣
∣∣

=
(|1 − α| + αc

)|Z0 : I| + αb|Z0|
=: γ̃(α)|Z0 : I| + β̃(α)|Z0|.

We conclude by showing that Z0 (and any multiple of it) solves the algebraic
equation

γ̃(α)|Z0 : I| + β̃(α)|Z0| = |Z0|. (2.12)

By the definition of ζ, we have

ζ =

(
1 − β̃(α)

)√
n − 1

√
nγ̃2(α) − (

1 − β̃(α)
)2

and by the definition of Z0, we have

|Z0 : I| = nζ , |Z0|2 = n2 − n + nζ2.

Thus, we have

Π(α) :=
(
1 − β̃(α)

)2|Z0|2 − γ̃2(α)|Z0|2

=
(
1 − β̃(α)

)2(
n(n − 1) + nζ2

)
− γ̃2(α)n2ζ2

= n

{
(
1 − β̃(α)

)2(n − 1) +
(
1 − β̃(α)

)2
(
1 − β̃(α)

)2(n − 1)

nγ̃2(α) − (
1 − β̃(α)

)2

− γ̃2(α)n

(
1 − β̃(α)

)2(n − 1)

nγ̃2(α) − (
1 − β̃(α)

)2

}

= 0.

The conclusion follows by observing that the equation Π(α) = 0 is equivalent
to (2.12). �
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3. Existence-uniqueness-representation for linear systems

In this section we prove unique solvability in the case of the linear system

A : D2u = f, a.e. on R
n, (3.1)

by a global solution in W 2,2
∗ (Ω)N for any f ∈ L2(Rn)N , when A ∈ S(N ×n) is

strictly rank-one positive and n ≥ 5. The functional “energy” space W 2,2
∗ (Ω)N

is given by (1.9). We note that in (1.9) the meaning of “L2∗
, L2∗∗

” is “Lp for
p = 2∗, 2∗∗” and not the dual or bidual space. The exponents 2∗ and 2∗∗ are
given by (1.10). The elementary ideas of Fourier Analysis we use herein can
be found e.g. in Folland [27] and we follow more or less the same notations
as therein. In particular, for the Fourier transform and its inverse we use the
conventions

û(z) =
∫

Rn

u(x)e−2πix·zdx ,
∨
u(x) =

∫

Rn

u(z)e2πix·zdz.

Here “·” is the inner product of R
n. Moreover, it is easy to see that if A ∈

S(N× n), then, in view of (1.7)

ν(A) > 0 ⇐⇒ min
|a|=1

{
det(A : a ⊗ a)

}
> 0, (3.2)

where A : a ⊗ a is the symmetric N×N matrix

A : a ⊗ a := (Aαβij aiaj) eα ⊗ eβ ∈ S(N).

With “sgn” we will denote the sign function on R
n, namely sgn(x) = x/|x|

when x �= 0 and sgn(0) = 0. With “cof(X)” we will denote the cofactor matrix
of X ∈ R

N×N and we will tacitly use the identity

Xcof(X)� = cof(X)�X = det(X)I.

The following are the two main results of this section. Proposition 10 below is
a variant of the Miranda–Talenti lemma from the case of the Laplacian (see
e.g. [48]) to the case of general A and on the whole space.

Proposition 10. (The hessian estimate in W 2,2
∗ (Rn)N ) Let n ≥ 5, N ≥ 2 and

A ∈ S(N × n) rank-one positive with ellipticity constant ν(A) given by (1.7).
Then, we have the estimate

∥
∥D2u

∥
∥

L2(Rn)
≤ 1

ν(A)

∥
∥A : D2u

∥
∥

L2(Rn)
(3.3)

valid for all u ∈ W 2,2
∗ (Rn)N (the space is given by (1.9)).

Theorem 11. (Existence-Uniqueness-Representation for the linear problem)
Let n ≥ 5, N ≥ 2 and A ∈ S(N ×n) a rank-one positive tensor. Let also
f ∈ L2(Rn)N . Then, the problem

A : D2u = f, a.e. on R
n,

has a unique solution u in the space W 2,2
∗ (Rn)N (given by (1.9)), which satisfies

the estimate

‖u‖L2∗∗ (Rn) + ‖Du‖L2∗ (Rn) + ‖D2u‖L2(Rn) ≤ C‖f‖L2(Rn) (3.4)
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for some C > 0 depending only on A and the dimensions, and also satisfies
the estimate (3.3).

Moreover, we have the following representation formula for the solution:

u = − 1
4π2

lim
m→∞

{

ĥm ∗
[

cof (A : sgn ⊗ sgn)�

det(A : sgn ⊗ sgn)

∨
f

]∧}

. (3.5)

In (3.5) (hm)∞
1 ⊆ §(Rn) is any sequence of even functions in the Schwartz

class for which

0 ≤ hm(x) ≤ 1
|x|2 and hm(x) −→ 1

|x|2 , fora.e.x ∈ R
n, asm → ∞.

The limit in (3.5) is meant in the weak L2∗∗
sense as well as a.e. on R

n, and
u is independent of the choice of sequence (hm)∞

1 .

Remark 12. The solution u in (3.5) is vectorial but real, although the formula
(3.5) involves complex quantities.

Remark 13. (Equivalent norms on W 2,2
∗ (Rn)N ) When n ≥ 5, the Gagliardo-

Nirenberg-Sobolev inequality (see e.g. Evans [22])

‖v‖Lp∗ (Rn) ≤ C(n, p)‖Dv‖Lp(Rn), p∗ =
np

n − p
,

applied to Du for p = 2 and to u for p = 2∗, imply that two equivalent norm
on W 2,2

∗ (Rn)N are

‖D2u‖L2(Rn) ≈ ‖u‖W 2,2
∗ (Rn) := ‖u‖L2∗∗ (Rn) + ‖Du‖L2∗ (Rn) + ‖D2u‖L2(Rn).

The first step towards the hessian estimate is the next simple algebraic
lemma, which allows to use Plancherel’s theorem.

Lemma 14. (Extension of rank-one convexity on C
N×n) Let A ∈ S(N × n) be

rank-one positive, that is

A : η ⊗ a ⊗ η ⊗ a ≥ ν|η|2|a|2, η ∈ R
N , a ∈ R

n.

We extend the quadratic form arising from A as a Hermitian form on C
N×n

by setting

A : C
N×n × C

N×n −→ C, (P,Q) �→ A : P ⊗ Q.

Then, we have that A : Q ⊗ Q ∈ R and also

A : ξ ⊗ a ⊗ ξ ⊗ a ≥ ν|ξ|2|a|2, ξ ∈ C
N , a ∈ R

n.

We note that the norms on the complex spaces are the euclidean: |ξ|2 =
ξαξα, etc.

Proof of Lemma 14 The arguments are elementary, but we give them for com-
pleteness. By the symmetry of A, we have

A : Q ⊗ Q = AαβijQαiQβj = AβαjiQβjQαi = AβαjiQβjQαi = A : Q ⊗ Q.

Hence, A : Q ⊗ Q ∈ R. Next, we split C
N � ξ = η + iθ and use symmetry

again to calculate

A : ξ ⊗ a ⊗ ξ ⊗ a = A : (η + iθ) ⊗ a ⊗ (η − iθ) ⊗ a
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= A : η ⊗ a ⊗ η ⊗ a − iA : η ⊗ a ⊗ θ ⊗ a

+ iA : θ ⊗ a ⊗ η ⊗ a + A : θ ⊗ a ⊗ θ ⊗ a

= A : η ⊗ a ⊗ η ⊗ a + A : θ ⊗ a ⊗ θ ⊗ a

≥ ν
(|η|2|a|2 + |θ|2|a|2)

= ν|ξ|2|a|2.
Hence, the lemma ensues. �

Proof of Proposition 10. We will prove the estimate when u ∈ C∞
c (Rn)N .

In view of Remark 13, the general case follows by a standard approximation
argument. Given such a u, we set

AαβklD
2
kluβ =: fα ∈ C∞

c (Rn). (3.6)

By applying the Fourier transform to the above equality, we have

AαβklD̂2
kluβ = f̂α

and hence

Aαβklûβ(z)(2πizk)(2πizl) = f̂α(z)

for a.e. z ∈ R
n. By multiplying by ûα(z) and summing in α, we get

−4π2Aαβklûβ(z)zlûα(z)zk = f̂α(z)ûα(z),

a.e. on R
n. We rewrite it as

4π2A : û(z) ⊗ z ⊗ û(z) ⊗ z = −f̂(z) · û(z). (3.7)

By Lemma 14, both sides of (3.7) are real and positive, and also (in view of
(1.7)) (3.7) implies

4π2|û(z)|2|z|2 ≤ − 1
ν(A)

f̂(z) · û(z). (3.8)

Now we calculate:
∣
∣D̂2u(z)

∣
∣2 =

∣
∣û(z) ⊗ (2πiz) ⊗ (2πiz)

∣
∣2

=
∣
∣û(z) ⊗ (2πiz)

∣
∣2 |2πiz|2

= 4π2|û(z)|2|z|2 |2πiz|2,
for a.e. z ∈ R

n. In view of (3.8), we obtain the estimate
∣
∣D̂2u(z)

∣
∣2 ≤ − 1

ν(A)
f̂(z) · û(z) |2πiz|2

≤ 1
ν(A)

∣
∣f̂(z)

∣
∣
∣
∣û(z)

∣
∣ |2πiz|2

=
1

ν(A)

∣
∣f̂(z)

∣
∣
∣
∣û(z) ⊗ (2πiz) ⊗ (2πiz)

∣
∣

=
1

ν(A)

∣
∣f̂(z)

∣
∣
∣
∣D̂2u(z)

∣
∣,
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for a.e. z ∈ R
n. For ε ∈ (0, ν(A)) and by Young’s inequality, the above estimate

gives
∣
∣D̂2u

∣
∣2 ≤ 1

ν(A)

( 1
4ε

∣
∣f̂
∣
∣2 + ε

∣
∣D̂2u

∣
∣2
)
,

a.e. on R
n, which, in view of (3.6), we rewrite as

∣
∣D̂2u

∣
∣2 ≤ 1

4ε
(
ν(A) − ε

)
∣
∣A : D̂2u

∣
∣2.

We choose ε := ν(A)/2 which is the choice which maximises the denominator
of the above inequality giving the value ν(A)2, and integrate oven R

n, to obtain
∥
∥D̂2u

∥
∥2

L2(Rn)
≤ 1

ν(A)2
∥
∥A : D̂2u

∥
∥2

L2(Rn)
.

By applying Plancherel’s theorem, the desired estimate ensues. �
Formal derivation of the representation formula. Before giving the rigorous
proof of Theorem 11, it is very instructive to derive formally a representation
formula for the solution of A : D2u = f . By applying the Fourier transform to
the PDE system, we have

A : D̂2u = f̂ , a.e. on R
n,

and hence,

−4π2 A : û(z) ⊗ z ⊗ z = f̂(z), for a.e. z ∈ R
n.

For clarity, let us also rewrite this equation in index form:

(Aαβijzizj) ûβ(z) = − 1
4π2

f̂α(z).

Hence, we have
(
A :

z

|z| ⊗ z

|z|
)

û(z) = − 1
4π2|z|2 f̂(z)

and by using the identity (see (3.2))

(
A : sgn(z) ⊗ sgn(z)

)−1 =
cof
(
A : sgn(z) ⊗ sgn(z)

)�

det
(
A : sgn(z) ⊗ sgn(z)

) (3.9)

we get

û(z) = − 1
4π2|z|2

(
A : sgn(z) ⊗ sgn(z)

)−1
f̂(z)

= − 1
4π2|z|2

cof
(
A : sgn(z) ⊗ sgn(z)

)�

det
(
A : sgn(z) ⊗ sgn(z)

) f̂(z).

By the Fourier inversion formula and the identity f∨(z) = f̂(−z), we obtain

u = − 1
4π2

{
1

| · |2
cof
(
A : sgn ⊗ sgn

)�

det
(
A : sgn ⊗ sgn

) f̂

}∨
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= − 1
4π2

{
1

| · |2
cof
(
A : sgn ⊗ sgn

)�

det
(
A : sgn(z) ⊗ sgn(z)

)
∨
f

}∧

.

Hence, we get the formula

u = − 1
4π2

1̂
| · |2 ∗

[
cof
(
A : sgn ⊗ sgn

)�

det
(
A : sgn ⊗ sgn

)
∨
f

]∧

. (3.10)

Formula (3.10) is “the same” as (3.5), if we are able to pass the limit inside
the integrals of the convolution and the Fourier transform. However, in general
this may not be possible. Convergence needs to be rigorously justified, and this
is part of the proof of Theorem 11. Further, by using the next identity (which
follows by the properties of the Riesz potential)

(
1

| · |2
)∧

= γn−2
1

| · |n−2

where the constant γα equals

γα =
2α πn/2 Γ(α/2)
Γ(n/2 − α/2)

, 0 < α < n,

we may rewrite (3.10) as

u = − γn−2

4π2| · |n−2
∗
[

cof
(
A : sgn ⊗ sgn

)�

det
(
A : sgn ⊗ sgn

)
∨
f

]∧

. (3.11)

Formula (3.11) is the formal interpretation of the expression (3.5), which we
will now establish rigorously.

Proof of Theorem 11. By Proposition 10, we have the a priori estimate (3.3)
for the solution, so it remains to prove existence of u and the desired formula
(3.5). Let (hm)∞

1 ⊆ S(Rn) be any sequence of even functions in the Schwartz
class for which

0 ≤ hm(x) ≤ 1
|x|2 and hm(x) −→ 1

|x|2 , for a.e. x ∈ R
n, asm → ∞. (3.12)

We set:

um := − 1
4π2

ĥm ∗
[

cof (A : sgn ⊗ sgn)�

det(A : sgn ⊗ sgn)

∨
f

]∧
. (3.13)

We will now show that the function um of (3.13) satisfies

um ∈
⋂

2≤r≤∞
Lr(Rn)N

⋂
C∞(Rn)N .

Indeed, observe first that since hm ∈ S(Rn) and the Fourier transform is
bijective on the Schwartz class, we have

ĥm ∈ S(Rn) ⊆ L1(Rn) ∩ L2(Rn).

Let now p ∈ [1, 2] and define r by

r :=
2p

2 − p
.



NoDEA Existence and Uniqueness Page 19 of 30 33

Then, we have

1 +
1
r

=
1
p

+
1
2
, 1 ≤ p ≤ 2,

and by Young’s inequality and Plancherel’s theorem, we obtain

‖um‖Lr(Rn) ≤ 1
4π2

∥
∥ĥm

∥
∥

Lp(Rn)

∥
∥
∥
∥
∥
∥

[
cof
(
A : sgn ⊗ sgn

)�

det
(
A : sgn ⊗ sgn

)
∨
f

]∧∥∥
∥
∥
∥
∥

L2(Rn)

≤ 1
4π2

∥
∥ĥm

∥
∥

Lp(Rn)

∥
∥
∥
∥
∥

cof
(
A : sgn ⊗ sgn

)�

det
(
A : sgn ⊗ sgn

)
∨
f

∥
∥
∥
∥
∥

L2(Rn)

.

We now recall that the estimate (2.2) implies

ess inf
z∈Rn

∣
∣ det(A : sgn(z) ⊗ sgn(z))

∣
∣ > 0

and hence we get

‖um‖Lr(Rn) ≤ 1
4π2

∥
∥ĥm

∥
∥

Lp(Rn)

∥
∥
∥
∥
∥

cof
(
A : sgn ⊗ sgn

)

det
(
A : sgn ⊗ sgn

)

∥
∥
∥
∥
∥

L∞(Rn)

∥
∥

∨
f
∥
∥

L2(Rn)

≤ C
∥
∥ĥm

∥
∥

Lp(Rn)
‖f‖L2(Rn) ,

for some C > 0 depending only on |A| and ν(A). Consequently, um ∈ Lr(Rn)N

for all r ∈ [2,∞]. Moreover, since ĥm ∈ S(RN ), we have that um ∈ C∞(Rn)N

by the properties of convolution.
Next, by (3.13) and the properties of convolution, we obtain

um = − 1
4π2

[

hm

cof
(
A : sgn ⊗ sgn

)�

det
(
A : sgn ⊗ sgn

)
∨
f

]∧

,

on R
n. The Fourier inversion theorem gives

∨
um = − 1

4π2
hm

cof
(
A : sgn ⊗ sgn

)�

det
(
A : sgn ⊗ sgn

)
∨
f,

a.e. on R
n. Since hm(−z) = hm(z) for all z ∈ R

n, we get

ûm(z) = − 1
4π2

hm(z)
cof
(
A :

−z

| − z| ⊗ −z

| − z|
)�

det
(
A :

−z

| − z| ⊗ −z

| − z|
) f̂(z)

= − 1
4π2

hm(z)
cof
(
A :

z

|z| ⊗ z

|z|
)�

det
(
A :

z

|z| ⊗ z

|z|
) f̂(z).

Hence, by the identity (3.9), we deduce

ûm(z) = − 1
4π2

hm(z)
(
A :

z

|z| ⊗ z

|z|
)−1

f̂(z),
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a.e. on R
n, which we rewrite as

A : ûm(z) ⊗ (2πiz) ⊗ (2πiz) =
(
hm(z)|z|2) f̂(z). (3.14)

Equivalently,

A : D̂2um(z) =
(
hm(z)|z|2) f̂(z). (3.15)

By (3.12) we have that

0 ≤ hm(z)|z|2 ≤ 1 (3.16)

and hence by (3.16), (3.15), we may employ Proposition 10, Remark 13 Fourier
inversion and Plancherel theorem to infer that each um satisfies

‖um‖W 2,2
∗ (Ω) ≤ C‖D2um‖L2(Ω)

= C
∥
∥
∥
[(

hm| · |2) f̂
]∨ ∥∥
∥

L2(Ω)

= C
∥
∥
∥
(
hm| · |2) f̂

∥
∥
∥

L2(Ω)

≤ C‖f‖L2(Ω).

Hence, (um)∞
1 is bounded in W 2,2

∗ (Rn)N and as such there is a subsequence
of m’s and a map u ∈ W 2,2

∗ (Rn)N such that, along the subsequence,

um −⇀ u, in L2∗∗
(Rn)N as m → ∞ (and a.e. on R

n),

Dum −⇀ Du, in L2∗
(Rn)Nn as m → ∞,

D2um −⇀ D2u, in L2(Rn)Nn2
as m → ∞.

By (3.16) and since hm(z)|z|2 → 1 for a.e. z ∈ R
n, the Dominated Convergence

theorem implies
(
hm | · |2)f̂ −→ f̂ , in L2(Rn)Nas m → ∞.

By passing to the weak limit as m → ∞ in (3.15), the Fourier inversion formula
implies that the limit u solves

A : D2u = f

a.e. on R
n. By passing to the limit as m → ∞ in (3.13), we obtain the desired

representation formula (4.1). Uniqueness of the limit u (and hence indepen-
dence from the choice of sequence hm) follows from the a priori estimate and
linearity. The theorem ensues. �

4. Existence-uniqueness for fully nonlinear systems

We now come to the general fully nonlinear system (1.1). We will utilise the
results of Sects. 2 and 3 plus a result of Campanato on near operators, which
is recalled later. Our ellipticity condition of Definition 1 will work as a “per-
turbation device”, allowing to establish existence for the nonlinear problem by
showing it is “near” a linear well-posed problem. In view of the well-known
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problems to pass to limits with weak convergence in nonlinear equations, Cam-
panato’s idea furnishes an alternative to the stability problem for nonlinear
equations, by avoiding this insuperable difficulty.

The main result of this paper and this section is the next theorem:

Theorem 15. (Existence-Uniqueness) Let n ≥ 5, N ≥ 2 and let also

F : R
n × (RN ⊗ S(n)

) −→ R
N

be a Carathéodory map, satisfying Definition 3 for Ω = R
n and F (·, 0) = 0.

Then, for any f ∈ L2(Ω)N , the system

F (·,D2u) = f, a.e. on R
n,

has a unique global strong a.e. solution u in the space W 2,2
∗ (Rn)N (given by

(1.9)), which also satisfies the estimate

‖u‖L2∗∗ (Rn) + ‖Du‖L2∗ (Rn) + ‖D2u‖L2(Rn) ≤ C‖f‖L2(Rn), (4.1)

for some C > 0 depending only on F and the dimensions. Moreover, for any
two maps w, v ∈ W 2,2

∗ (Rn)N , we have

‖w − v‖W 2,2
∗ (Rn) ≤ C

∥
∥F (·,D2w) − F (·,D2v)

∥
∥

L2(Rn)
, (4.2)

for some C > 0 depending only on F and the dimensions. The norm of
W 2,2

∗ (Rn)N is given in Remark 13.

We note that in view of Lemma 4, the assumption that F satisfies Defi-
nition 3 is equivalent to that F satisfies Definition 1 plus Lipschitz continuity
with respect to the second argument, essentially uniformly with respect to the
first argument. We also note that (4.2) is a strong uniqueness estimate, which
is a form of “comparison principle in integral norms”. Moreover, the restriction
to homogeneous boundary condition “u = 0 at ∞” does not harm generality,
since the Dirichlet problem we solve is equivalent to a Dirichlet problem with
non-homogeneous boundary condition by redefining the nonlinearity F in the
standard way.

The proof of Theorem 15 utilises the following result of Campanato taken
from [15], whose short proof is given for the sake of completeness at the end
of the section:

Theorem 16. (Campanato’s near operators) Let F,A : X −→ X be two maps
from the set X �= ∅ to the Banach space (X, ‖ · ‖). Suppose there exists 0 <
K < 1 such that∥

∥
∥F [u] − F [v] − (A[u] − A[v]

)∥∥
∥ ≤ K

∥
∥A[u] − A[v]

∥
∥, (4.3)

for all u, v ∈ X. Then, if A is a bijection, F is a bijection as well.

Proof of Theorem 15. Let α be the L∞ function of Definition 3. By our as-
sumptions on F , Proposition 4 implies that there exists M > 0 depending only
on F , such that for any u ∈ W 2,2

∗ (Rn)N , we have
∥
∥α(·)F (·,D2u)

∥
∥

L2(Rn)
≤ ∥
∥α(·)F (·, 0)∥∥

L2(Rn)
+ M‖α‖L∞(Rn)‖D2u‖L2(Rn)

= M‖α‖L∞(Rn)‖D2u‖L2(Rn).
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≤ M‖α‖L∞(Rn)‖u‖W 2,2
∗ (Rn). (4.4)

The last inequality is a consequence of Remark 13. Let also A ∈ S(N ×n) be
the tensor given by Definition 3 corresponding to F . Then, we have

‖A : D2u‖L2(Rn) ≤ |A| ‖D2u‖L2(Rn) ≤ |A|‖u‖W 2,2
∗ (Rn). (4.5)

By (4.4) and (4.5) we obtain that the operators
{

A[u] := A : D2u,
F [u] := α(·)F (·,D2u), (4.6)

map W 2,2
∗ (Rn)N into L2(Rn)N . Let u, v ∈ W 2,2

∗ (Rn)N . By Definition 3 and
the a priori hessian estimate of Proposition 10 we have

∥
∥
∥α(·)

(
F (·,D2u) − F (·,D2v)

)
− A :

(
D2u − D2v

)∥∥
∥

2

L2(Rn)

≤ β
∥
∥A : (D2u − D2v)

∥
∥2

L2(Rn)
+ γ

∥
∥A : (D2u − D2v)

∥
∥2

L2(Rn)

≤ (β + γ)
∥
∥A : (D2u − D2v)

∥
∥2

L2(Rn)
. (4.7)

Theorem 11 implies that the linear operator

A : W 2,2
∗ (Rn)N −→ L2(Rn)N

is a bijection. Hence, in view of the inequality (4.7) and the fact that
√

β + γ <

1, Campanato’s Theorem 17 implies that F : W 2,2
∗ (Rn)N −→ L2(Rn)N is

a bijection as well. As a result, for any g ∈ L2(Rn)N , the PDE system
α(·)F (·,D2u) = g has a unique solution in W 2,2

∗ (Rn)N . Since α, 1/α ∈ L∞(Rn),
by selecting g = αf , we conclude that the problem (1.1) has a unique solution
in W 2,2

∗ (Rn)N . Finally, by (4.7) we have
∥
∥
∥F (·,D2u) − F (·,D2v)

∥
∥
∥

L2(Rn)
≥ 1 − √

β + γ

‖α‖L∞(Rn)

∥
∥A : (D2u − D2v)

∥
∥

L2(Rn)

and by Proposition 10 and Remark 13, we deduce the estimate
∥
∥
∥F (·,D2u) − F (·,D2v)

∥
∥
∥

L2(Rn)
≥
(

ν(A)
1 − √

β + γ

‖α‖L∞(Rn)

)∥
∥D2u − D2v

∥
∥

L2(Rn)

≥ C ‖u − v‖W 2,2
∗ (Rn),

for some C > 0. The theorem ensues. �
We conclude this section with the proof of Campanato’s theorem on near

operators taken from [15], which we provide for the convenience of the reader.

Proof of Theorem 17. It suffices to show that for any f ∈ X, there is a unique
u ∈ X such that

F [u] = f.

In order to prove that, we first turn X into a complete metric space, by pulling
back the structure from X via A: for, we define the distance

d(u, v) :=
∥
∥A[u] − A[v]

∥
∥.
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Next, we fix an f ∈ X and define the map

T : X −→ X , T [u] := A−1
(
A[u] − (F [u] − f

))
.

We conclude by showing that T is a contraction on (X, d), and hence has a
unique u ∈ X such that T [u] = u. The latter equality is equivalent to F [u] = f ,
and then we will be done. Indeed, we have that

d
(
T [u], T [v]

)
=
∥
∥
∥
(
A[u] − (F [u] − f

)) − (
A[v] − (F [v] − f

)) ∥∥
∥

=
∥
∥
∥A[u] − A[v] − (F [u] − F [v]

)∥∥
∥,

and hence

d
(
T [u], T [v]

) (4.3)

≤ K
∥
∥A[u] − A[u]

∥
∥

K d(u, v).

Since K < 1, the conclusion follows and the theorem ensues. �

5. Extensions

In this section we discuss an extension of Theorem 15 in the form of “stability
theorem for strong solutions”.

Theorem 17. (Stability of strong solutions) Let n ≥ 5, N ≥ 2 and F,G :
R

n × (RN ⊗ S(n)
) −→ R

N Carathéodory maps. We suppose that

F : W 2,2
∗ (Rn)N −→ L2(Rn)N

is a bijection, where the space W 2,2
∗ (Rn)N is given by (1.9). If G(·, 0) = 0 and

ess sup
x∈Rn

sup
X�=Y

∣
∣
∣
∣
∣

(
F (x,Y) − F (x,X)

)− (G(x,Y) − G(x,X)
)

|Y − X|

∣
∣
∣
∣
∣

< ν(F ) (5.1)

where

ν(F ) := inf
v �=w

∥
∥F (·,D2w) − F (·,D2v)

∥
∥

L2(Rn)

‖D2w − D2v‖L2(Rn)
> 0, (5.2)

then, for any given g ∈ L2(Rn)N , the system

G(·,D2u) = g, a.e. on R
n,

has a unique global strong a.e. solution u in the space W 2,2
∗ (Rn)N .

Theorem 15 provides sufficient conditions on F is order to obtain solv-
ability. Hence, every G which is “close to F” in the sense of (5.1), gives rise
to a nonlinear coefficient such that the respective global Dirichlet problem is
uniquely solvable.

Proof of Theorem 17. We denote the right hand side of (5.1) by ν(F,G) and
we may rewrite (5.1) as

0 < ν(F,G) < ν(F ). (5.3)
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For any u, v ∈ W 2,2
∗ (Rn)N , we have

∥
∥
∥F (·, D2u) − F (·, D2v) − (G(·, D2u) − G(·, D2v)

)∥∥
∥

L2(Rn)

≤
(

ess sup
Rn

sup
X �=Y

∣
∣
∣
∣
∣
F (·,Y) − F (·,X) − (G(·,Y) − G(·,X)

)

|Y − X|

∣
∣
∣
∣
∣

)
∥
∥D2u − D2v

∥
∥

L2(Rn)

= ν(F, G)
∥
∥D2u − D2v

∥
∥

L2(Rn)

≤ ν(F, G)

ν(F )

∥
∥F (·, D2u) − F (·, D2v)

∥
∥

L2(Rn)
.

Hence, we obtain the inequality
∥
∥
∥F (·,D2u) − F (·,D2v) − (G(·,D2u) − G(·,D2v)

)∥∥
∥

L2(Rn)

≤ ν(F,G)
ν(F )

∥
∥F (·,D2u) − F (·,D2v)

∥
∥

L2(Rn)
, (5.4)

which is valid for any u, v ∈ W 2,2
∗ (Rn)N . By (5.3), Remark 13 and the in-

equality above for v ≡ 0, we have that F,G map W 2,2
∗ (Rn)N into L2(Rn)N .

By assumption, F : W 2,2
∗ (Rn)N −→ L2(Rn)N is a bijection. Hence, in view of

Campanato’s Theorem 17, the inequality (5.4) implies that G : W 2,2
∗ (Rn)N −→

L2(Rn)N is a bijection as well. The theorem ensues. �

6. Motivations and potential applications

In this section we collect some material relevant to the problem we are consid-
ering in this paper and to which our results may apply by perhaps imposing
appropriate conditions and/or restrictions. Our motivation to study this prob-
lem comes from the necessity to understand PDE systems arising in Differential
Geometry, Mathematical Physics and Calculus of Variations:
The Harmonic map problem Given two Riemannian manifolds (M, γ), (N , g),
then a smooth map u : M −→ N is called a harmonic map if and only if the
following PDE system is satisfied:

ΔMuα + γij Γα
μν(u)DiuνDjuμ = 0.

Here Γ denote the Christoffel symbols of the target metric g and

ΔMu =
1

det(γ)
Div

(√
det(γ)γ Du

)

is the Laplace–Beltrami operator. If u additionally is an isometric embedding,
then u(M) is a minimal submanifold of N . The problem is highly non-trivial
even when N = R

N and in the case of codimension greater than one, that is
when

dim(N ) − dim(M) ≥ 2

it is far from well understood. Moreover, it is well known (see e.g. Lawson–
Osserman [45]) that then (by using the properties of the second fundamental
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form) the system above can be written in an equivalent formulation of a non-
divergence 2nd order elliptic system of the form we are considering in this
paper.

Elliptic problem involving the Ricci curvature Let (M, g) be a Riemannian
metric. Then the principal part “P.P.” of the Ricci curvature in coordinates is

P.P.(Rμν) = gαβ
(
DμDαgβν + DνDαgβμ − DμDνgαβ − DαDβgμν

)
.

If we now consider harmonic coordinates (x1, ..., xn), that is those for which
ΔMxi = 0, then it follows from standard computations in Riemannian geom-
etry that the expression

DμDαgβν + DνDαgβμ − DμDνgαβ

is given by an expression which involves at most one derivative of the metric
components. Therefore, for harmonic coordinates we have

P.P.(Rμν) = gαβDαDβgμν

and hence, any identity that the Ricci curvature satisfies can be easily seen
to correspond to a non-divergence 2nd order elliptic system for the metric
components.

Elliptic problems arising in the Einstein equations and in Conformal geometry
The celebrated equations in the vacuum in local coordinates read

Rαβ = 0,

If the (unknown) metric g admits a Killing vector field which is timelike,
then the Einstein equations reduce by using the above to a quasilinear non-
divergence elliptic system (see e.g. [31]). Moreover, it is also well known that
fully nonlinear elliptic systems of the type we consider herein arise in Confor-
mal Geometry, see e.g. Trudinger [60], [30].

Non-convex 2nd order variational problems Consider the functional

E(u,Ω) =
∫

Ω

f
(
x,D2u(x)

)
dx

placed in the space W 2,p(Ω)N . Then, it is well known in Calculus of Variations
(see e.g. [19,20,29]) that if f fails to be quasiconvex with respect to the Hessian
argument, then minimisers may well not exist in the Sobolev space. Then, a
standing idea in order to construct minimisers is to solve a fully nonlinear 2nd
order PDE with vectorial solution of the form

f(·,D2u) = h

on the subdomain of Ω obtained when we consider the set whereon f is strictly
greater than its quasiconvex envelope f .

The equations of vectorial L∞ variational problems Calculus of Variations in
L∞ has a long history and was pioneered by Aronsson in the 1960s (see [2–8])
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who was the first to consider variational problems for supremal functionals of
the form

E∞(u,Ω) =
∥
∥H(·, u,Du)

∥
∥

L∞(Ω)
.

However, until the early 2010s the field was essentially restricted to the scalar
case. The foundations of the vectorial case have been laid in a series of recent
papers of the author (see [33–39]). In the simplest case of

E∞(u,Ω) = ‖Du‖L∞(Ω)

applied to Lipschitz maps u : Ω ⊆ R
n −→ R

N , the counterpart of the “Euler-
Lagrange” equations is the so-called ∞-Laplace system:

Δ∞u :=
(
Du ⊗ Du + |Du|2[Du]⊥⊗ I

)
: D2u = 0.

In the above, [Du(x)]⊥ denotes the orthogonal projection on the nullspace of
the operator Du(x)� : R

N −→ R
n and in index form reads

(
Diuα Djuβ + |Du|2[Du]⊥αβ δij

)
D2

ijuβ = 0.

The system above is nondivergence quasilinear degenerate elliptic, has discon-
tinuous coefficients and behaves like a fully nonlinear elliptic system. The prob-
lem we consider herein with pure Hessian dependence is an essential stepping
stone for the understanding on the ∞-Laplace system. Indeed, the results of
this paper have been invaluable tools in the very recent papers [42,43] wherein
we study the L∞ equations.
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[10] Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations, vol. 45, AMS,
Colloquium Publications, Providence (1995)

[11] Campanato, S.: A history of Cordes Condition for second order elliptic opera-
tors. In: Lions, J.L. et al (eds) Boundary Value Problems for Partial Differential
Equations and Applications. Res. Notes Appl. Math, vol. 29, pp. 319–325. Mas-
son, Paris (1983)

[12] Campanato, S.: A Cordes type condition for nonlinear non variational systems,
Rendiconti Accad. Naz. delle Scienze detta dei XL, vol. 198 (1989)

[13] Campanato, S.: L2 ,λ Theory for Nonlinear Non Variational Differential Systems,
Rendiconti di Matematica, vol. 10, Roma (1990)

[14] Campanato, S.: Nonvariational basic parabolic systems of second order. Atti
Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX Ser., Rend. Lincei, Mat. Appl.
2(No.2), 129–136 (1991)

[15] Campanato, S.: On the condition of nearness between operators. Analli di Mat.
Pura Appl. IV CLXVII, 243–256 (1994)

[16] Cordes, H.O.: Uber die erste Randwertaufgabe bei quasilinerian
Differentialgleichun-gen zweiter Ordnung in mehr als zwei Variablen. Math.
Ann. 131, 278–312 (1956)

[17] Cordes, H.O.: Zero order a priori estimates for solutions of elliptic differential
equations. Proc. Sympos. Pure Math. 4, 157–166 (1961)

[18] Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of 2nd
order partial differential equations. Bull. AMS 27, 1–67 (1992)

[19] Dacorogna, B.: Direct Methods in the Calculus of Variations, Applied Mathe-
matical Sciences, vol. 78. 2nd edn. Springer, Berlin (2008)

[20] Dacorogna, B., Marcellini, P.: Implicit Partial Differential Equations, Progress
in Nonlinear Differential Equations and Their Applications, Birkhäuser (1999)
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