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Quasilinear parabolic problem with
p(x)-laplacian: existence, uniqueness of weak
solutions and stabilization

Jacques Giacomoni, Sweta Tiwari and Guillaume Warnault

Abstract. We discuss the existence and uniqueness of the weak solution
of the following quasilinear parabolic equation

⎧
⎪⎨

⎪⎩

ut − Δp(x)u = f(x, u) in QT
def
= (0, T ) × Ω,

u = 0 on ΣT
def
= (0, T ) × ∂Ω,

u(0, x) = u0(x) in Ω

(PT )

involving the p(x)-laplacian operator. Next, we discuss the global behav-
iour of solutions and in particular some stabilization properties.
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1. Introduction

Our main goal in this paper is to study the existence, uniqueness and global
behaviour of the weak solutions to the following parabolic equation involving
the p(x)-laplacian operator

⎧
⎨

⎩

ut − Δp(x)u = f(x, u) in QT = (0, T ) × Ω,
u = 0 on ΣT = (0, T ) × ∂Ω,
u(0, x) = u0(x) in Ω

(PT )

where Ω ⊂ R
d, d ≥ 2, is a smooth bounded domain, p : Ω → [1,+∞] and

f : Ω × R → R is a Caratheodory function.
Let P(Ω) be the family of all measurable functions q : Ω → [1,+∞] and set

P log(Ω) def=
{

q ∈ P(Ω) :
1
q

globally log-Hölder continuous
}

.
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In particular, for any p ∈ P log(Ω), there exists a function w such that

∀(x, y) ∈ Ω2, |p(x) − p(y)| ≤ w(|x − y|) and lim sup
t→0+

−w(t) ln t < +∞.

There is an abundant literature devoted to questions on existence and
uniqueness of solutions to (PT ) for p(x) ≡ p (see for instance [7] and ref-
erences therein). More recently, parabolic and elliptic problems with variable
exponents have been studied quite extensively, see for example [1,3–5,9,21,23].
The importance of investigating these problems lies in their occurrence in
modeling various physical problems involving strong anisotropic phenomena
related to electrorheological fluids (an important class of non-Newtonian flu-
ids) [1,22,23], image processing [9], elasticity [29], the processes of filtration in
complex media [6], stratigraphy problems [18] and also mathematical biology
[16].

Regarding the current literature, we bring in this paper new results about
the regularity of weak solutions and about the behaviour of global weak solu-
tions. In particular, we investigate the question of asymptotic convergence to
a steady state. To prove the existence of weak solutions, we follow a semi-
group approach, involving a semi-discretization in time method, that pro-
vides the existence of mild solutions belonging to C([0, T ];W 1,p(x)

0 (Ω)) and
C([0, T ];L∞(Ω)). Then the existence of subsolutions and supersolutions and
the weak comparison principle reveal the stabilization property for a suitable
class of nonlinearities f .

In our knowledge, the existence of mild solutions and the convergence to a
stationary solution for quasilinear parabolic equations with variable exponents
were not investigated previously in the literature and all the corresponding re-
sults brought in the present paper are new. To establish these results, we use
some former contributions about the validity of a strong comparison principle
(see [28]), the regularity of solutions (see in particular [1,12,17]) and some
extensions proved in Appendix C. We point out that other aspects of global
behaviour of weak solutions (extinction in finite time, localization, blow-up in
finite time) are discussed in [4,5]. In [3], the Galerkin method is used alterna-
tively to prove existence of weak solutions. In the same way, in the case where
f ≡ 0 or f depends only to (t, x) ∈ QT , the authors of [2,6] use a perturbation
method to establish the existence of solutions of (PT ).

Concerning quasilinear elliptic equations with variable exponents, strik-
ing results about existence and nonexistence of eigenvalues contrasting with
the constant exponent case are proved in [21,24] showing the complex nature
of the p(x)-laplacian operator. Furthermore, in [24], the authors established
also multiplicity results for combined concave-convex function f .

Before going further, we recall the definitions and useful results on the
variable exponent Lebesgue and Sobolev spaces. For more details, we refer to
the book [10] and the paper [19]. Let p ∈ P(Ω). We define the semimodular

ρp(u) def=
∫

Ω\Ω∞
|u|p(x)dx + ess sup

Ω∞
|u(x)|
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where Ω∞ = {x ∈ Ω | p(x) = ∞}. Then the variable exponent Lebesgue space
is defined as follows:

Lp(x)(Ω) def= {u |u is measurable on Ω and ρp(λu) < ∞ for some λ > 0} .

If p ∈ L∞(Ω), this definition is equivalent to (see Theorem 3.4.1 in [10])

Lp(x)(Ω) = {u |u is measurable on Ω and ρp(u) < ∞} .

This is a normed linear space equipped with the Luxemburg norm

‖u‖Lp(x)(Ω) = inf
{

λ > 0 : ρp

(u

λ

)
≤ 1

}
.

Define p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x). Then

Lp+(Ω) ⊂ Lp(x)(Ω) ⊂ Lp−(Ω).

We denote by pc the conjugate exponent of p defined as

pc(x) =
p(x)

p(x) − 1
.

We have the following well-known properties on Lp(x) spaces (see [19]).

Proposition 1.1. Let p ∈ L∞(Ω). Then for any u ∈ Lp(x)(Ω) we have:
(i) ρp(u/‖u‖Lp(x)(Ω)) = 1.
(ii) ‖u‖Lp(x)(Ω) → 0 if and only if ρp(u) → 0.
(iii) Lpc(x)(Ω) is the dual space of Lp(x)(Ω).

Proposition 1.1 (i) implies that: if ‖u‖Lp(x)(Ω) ≥ 1,

‖u‖p−
Lp(x)(Ω)

≤ ρp(u) ≤ ‖u‖p+

Lp(x)(Ω)
(1.1)

and if ‖u‖Lp(x)(Ω) ≤ 1

‖u‖p+

Lp(x)(Ω)
≤ ρp(u) ≤ ‖u‖p−

Lp(x)(Ω)
. (1.2)

Moreover, we have also the generalized Hölder’s inequality: for p ∈ P(Ω),
there exists a constant C = C(p+, p−) ≥ 1 such that for any f ∈ Lp(x)(Ω) and
g ∈ Lpc(x)(Ω)

∫

Ω

|f(x)g(x)|dx ≤ C‖f‖Lp(x)(Ω)‖g‖Lpc(x)(Ω). (1.3)

The corresponding Sobolev space is defined as follows:

W 1,p(x)(Ω) def=
{

u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

.

A natural norm defined on W 1,p(x)(Ω) is

‖u‖W 1,p(x) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω).

For the sake of convenience, we define W = W
1,p(x)
0 (Ω), the closure of C∞

0 (Ω)
in W 1,p(x)(Ω) for p ∈ P log(Ω) ∩ L∞(Ω). Since the domain Ω is a bounded
domain, the Poincaré inequality holds and thus we define the norm on W as
‖u‖W = ‖∇u‖Lp(x)(Ω).
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Lp(x)(Ω), W 1,p(x)(Ω) and W are Banach spaces. Moreover they are separable
if p ∈ L∞(Ω) and reflexive if 1 < p− ≤ p+ < ∞ (see [19]). Furthermore we
have the following Sobolev embedding Theorem (see [10]):

Theorem 1.2. Let p ∈ P log(Ω) satisfies 1 ≤ p− ≤ p+ < d. Then, W 1,p(x)(Ω) ↪→
Lα(x)(Ω) for any α ∈ L∞(Ω) such that for all x ∈ Ω, α(x) ≤ p∗(x) = d p(x)

d−p(x) .

Also the previous embedding is compact for α(x) < p∗(x) − ε a.e. in Ω for any
ε > 0.

The paper is organized as follows. The next section (Sect. 2) contains
the statements of our main results on the existence, uniqueness, regularity of
solutions to (PT ) (see Theorems 2.4, 2.5, 2.8) and on the global behaviour of
solutions (see Theorems 2.5 and 2.10). In Sect. 3, we deal with the existence
of weak solutions to the auxilary problem (ST ). Main results concerning the
existence of weak solutions to (PT ) are established in Sect. 4. Finally the
existence of mild solutions and stabilization properties are proved in Sect. 5.
The appendices A, B contain some technical lemmata about monotonicity and
compactness properties of p(x)-laplacian operator. In Appendix C, we establish
some new regularity results (L∞-bound) about quasilinear elliptic equations
involving p(x)-laplacian used in Sects. 3–5.

2. Main results

In the rest of the paper, we assume that p ∈ P log(Ω) such that

2d

d + 2
< p− ≤ p+ < d.

First we consider the following problem:
⎧
⎨

⎩

ut − Δp(x)u = h(t, x) in QT ,
u = 0 on ΣT ,
u(0, x) = u0(x) in Ω,

(ST )

where T > 0, h ∈ L2(QT ) ∩ Lq(QT ), q >
d

p−
. Considering the initial data in

u0 ∈ W ∩ L∞(Ω), we study the weak solution to (ST ) defined as follows:

Definition 2.1. A weak solution to (ST ) is any function u ∈ L∞(0, T ;W) such
that ut ∈ L2(QT ) and satisfying for any φ ∈ C∞

0 (QT )
∫ T

0

∫

Ω

utφ dxdt +
∫ T

0

∫

Ω

|∇u|p(x)−2∇u · ∇φ dxdt =
∫ T

0

∫

Ω

h(t, x)φ dxdt

and u(0, .) = u0 a.e. in Ω.

Similarly we define a weak solution to the problem (PT ) as follows:

Definition 2.2. A solution to (PT ) is a function u ∈ L∞(0, T ;W) such that
ut ∈ L2(QT ), f(., u) ∈ L∞(0, T ;L2(Ω)) and for any φ ∈ C∞

0 (QT )
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∫ T

0

∫

Ω

utφ dxdt +
∫ T

0

∫

Ω

|∇u|p(x)−2∇u · ∇φ dxdt =
∫ T

0

∫

Ω

f(x, u)φ dxdt

and u(0, .) = u0 a.e. in Ω.

Hence with the above definitions, we establish the following local exis-
tence results:

Theorem 2.3. Let T > 0, u0 ∈ W∩L∞(Ω) and h ∈ L2(QT )∩Lq(QT ), q > d
p−

.
Then, (ST ) admits a unique solution u in the sense of Definition 2.1. Moreover
u ∈ C([0, T ];W).

Theorem 2.4. Let f : Ω × R → R be a Caratheodory function satisfying the
following two conditions:

(f1) t → f(x, t) is locally Lipschitz uniformly in x ∈ Ω;
(f2) there exists α ∈ R such that x → f(x, α) ∈ L2(Ω) ∩ Lq(Ω), q > d

p−
.

Assume in addition that one of the following hypotheses holds:

(H1) there exists a nondecreasing locally Lipschitz function L0 such that

|f(x, v)| ≤ L0(v), a.e. (x, v) ∈ Ω × R;

(H2) there exist two nondecreasing locally Lipschitz functions L1 and L2 such
that

L1(v) ≤ f(x, v) ≤ L2(v), a.e. (x, v) ∈ Ω × R.

Then, for any u0 ∈ W∩L∞(Ω), there exists T̃ ∈ (0,+∞] such that for any T ∈
[0, T̃ ), (PT ) admits a unique solution u in sense of Definition 2.2. Moreover
for any r > 1, u ∈ C([0, T ];Lr(Ω)) ∩ C([0, T ];W).

Under additional hypothesis about the growth of f and regularity of the
initial data, we are able to prove the existence of global solutions. Precisely,
we have the following result:

Theorem 2.5. Let f be a Caratheodory function satisfying (f1) and the addi-
tional condition:

(f3) there exists C > 0 such that ∀(x, s) ∈ Ω×R, |f(x, s)| ≤ C(1+ |s|β) where
β < p− − 1.

Assume in addition that one of the following conditions is valid:

(C1) u0 ∈ W such that Δp(x)u0 ∈ Lq(Ω) where q > d
p−

;
(C2) u0 ∈ C1

0 (Ω) and p ∈ C1(Ω).

Then, for any T > 0, (PT ) admits a unique weak solution in the sense of
Definition 2.2. Moreover u ∈ C([0, T ];W).

Remark 2.6. 1. Theorem 2.5 is still valid, under the condition (C2), replac-
ing (f3) by the hypotheses on f :
(f4) there exists ζ ∈ R such that x → f(x, ζ) ∈ L∞(Ω);
(f5) lim|s|→+∞

|f(x,s)|
|s|p−−1 = 0.
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2. Under an additional asymptotic super homogeneous growth assumption
on f and for initial data large enough, blow up in finite time of solutions
can also occur. For instance, let f(x, v) = vq with q > p+ and define the
energy functional

E(u) def=
∫

Ω

|∇u|p(x)

p(x)
dx −

∫

Ω

uq+1

q + 1
dx.

Then, using a well-known energy method and for any initial data u0 sat-
isfying E(u0) < 0, the weak solution to (PT ) blows up in finite time. For
further discussions of global behaviour of solutions (blow up, localization
of solutions, extinction of solutions) to quasilinear anisotropic parabolic
equations involving variable exponents, we refer to [4,5].

Next, we investigate the asymptotic behaviour of global solutions, in par-
ticular the convergence to a stationary solution. For that we appeal the theory
of maximal accretive operators in Banach spaces (see Chapters 3 and 4 in
[8]) that provides the existence of mild solutions. Precisely, observing that the
operator A

def= −Δp(x), with Dirichlet boundary conditions, is m-accretive in
L∞(Ω) with

D(A) = {u ∈ W ∩ L∞(Ω) |Au ∈ L∞(Ω)}
as the domain of the operator A, we get the above results which essentially
follow from Theorems 2.3 and 2.4 with Theorem 4.2 (page 130) and Theorem
4.4 (page 141) in [8]:

Theorem 2.7. Let T > 0, h ∈ L∞(QT ) and let u0 be in W ∩ D(A)
L∞

. Then,
(i) the unique weak solution u to (ST ) belongs to C([0, T ]; C0(Ω)).
(ii) If v is another mild solution to (ST ) with the initial datum v0 ∈ W ∩

D(A)
L∞

and the right-hand side k ∈ L∞(QT ), then the following estimate
holds:

‖u(t)− v(t)‖L∞(Ω) ≤ ‖u0 − v0‖L∞(Ω) +
∫ t

0

‖h(s)−k(s)‖L∞(Ω) ds, 0 ≤ t ≤ T.

(2.1)
(iii) If u0 ∈ D(A) and h ∈ W 1,1(0, T ;L∞(Ω)) then u ∈ W 1,∞(0, T ;L∞(Ω))

and Δp(x)u ∈ L∞(QT ), and the following estimate holds:
∥
∥
∥
∥

∂u

∂t
(t)

∥
∥
∥
∥

L∞(Ω)

≤ ‖Δp(x)u0 + h(0)‖L∞(Ω) +
∫ T

0

∥
∥
∥
∥

∂h

∂t
(t)

∥
∥
∥
∥

L∞(Ω)

dτ. (2.2)

Concerning problem (PT ), we deduce the following similar result:

Theorem 2.8. Assume that conditions and hypotheses on f in Theorem 2.4
are satisfied. Let u0 ∈ W ∩ D(A)

L∞
. Then, the unique weak solution to (PT )

belongs to C([0, T ];C0(Ω)) and
(i) there exists ω > 0 such that if v is another weak solution to (PT ) with

the initial datum v0 ∈ W∩ D(A)
L∞

then the following estimate holds for
T < T̃ :

‖u(t) − v(t)‖L∞(Ω) ≤ eωt‖u0 − v0‖L∞(Ω), 0 ≤ t ≤ T.
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(ii) If u0 ∈ D(A) then u ∈ W 1,∞(0, T ;L∞(Ω)) and Δp(x)u ∈ L∞(QT ), and
the following estimate holds:

∥
∥
∥
∥

∂u

∂t
(t)

∥
∥
∥
∥

L∞(Ω)

≤ eωt‖Δp(x)u0 + f(x, u0)‖L∞(Ω).

Remark 2.9.

1. The constant ω in Theorem 2.8 is the Lipschitz constant of f in
[v1(T ), v2(T )] (respectively [−v0(T ), v0(T )]) given in (4.1). If f is non-
increasing with respect to the second variable and x → f(x, 0) ∈ L∞(Ω),
ω = 0 can be taken in assertions (i) and (ii) above. In this case, note that
−Δp(x) − f(x, ·) is m-accretive in L∞(Ω) (see Proposition 5.1).

2. If we assume hypotheses in Theorem 2.5, then the weak solution to (PT )
belongs to C([0,+∞), C0(Ω)).

Using the above results, we give some stabilization properties for (PT )
for global solutions. Precisely, we prove the following:

Theorem 2.10. Assume that f satisfies (f1), (f4) and is nonincresing in re-
spect to the second variable. Then, for any initial data u0 ∈ C1

0 (Ω), the weak
solution, u, to (PT ) is defined in (0,∞)×Ω, belongs to C([0,+∞);C0(Ω)) and
verifies

u(t) → u∞ in L∞(Ω) as t → ∞
where u∞ is the unique stationary solution to (PT ).

Remark 2.11. [11] establish uniqueness results for quasilinear elliptic equations
involving the p(x)-laplacian under different conditions on f (see Theorem 1.2
for instance). Theorem 2.10 is still valid in this case.

3. Existence of solutions of (ST )

First, we consider the following quasilinear elliptic problem:
{

u − λΔp(x)u = g in Ω,
u = 0 on ∂Ω (P)

with λ > 0 and g a measurable function. Concerning (P ), we have the following
result.

Lemma 3.1. Let g ∈ Lq(Ω), q > d
p−

. Then for any λ > 0, (P ) admits a unique
weak solution u ∈ W satisfying

∫

Ω

uϕdx + λ

∫

Ω

|∇u|p(x)−2∇u.∇ϕdx =
∫

Ω

gϕ dx, ∀ϕ ∈ W.

Furthermore, u ∈ L∞(Ω).

Remark 3.2. Lemma 3.1 still holds under the assumptions p− > d and q > 1.
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Proof. Consider the energy functional Jλ associated to (P ) given by

Jλ(u) =
1
2

∫

Ω

u2 dx + λ

∫

Ω

|∇u|p(x)

p(x)
dx −

∫

Ω

gu dx.

Note that Jλ is well-defined and Gâteaux differentiable on W. Indeed, q > d
p−

and 1 < p− ≤ p+ < d imply that Lq ⊂ (Lp∗(x))′.
By Theorem 1.2 and (1.1), for ‖u‖W ≥ 1:

Jλ(u) =
1
2

∫

Ω

u2 dx + λ

∫

Ω

|∇u|p(x)

p(x)
dx −

∫

Ω

gu dx ≥ λ

p+
‖u‖p−

W
− C‖u‖W.

Thus Jλ is coercive. Furthermore Jλ is continuous and strictly convex on W

and therefore admits a global minimizer u ∈ W which is a weak solution to
(3.1). In addition, applying Corollary C.5 in Appendix C, u ∈ L∞(Ω). �

Proof of Theorem 2.3 Let N ∈ N
∗, T > 0 and set Δt = T

N . For 0 ≤ n ≤ N , we
define tn = nΔt. We perform the proof along five steps.
Step 1. Approximation of h.
For n ∈ {1, . . . , N}, we define for t ∈ [tn−1, tn) and x ∈ Ω

hΔt
(t, x) = hn(x) def=

1
Δt

∫ tn

tn−1

h(s, x)ds.

Then by Jensen’s Inequality:

‖hΔt
‖q

Lq(QT ) = Δt

N∑

n=1

‖hn‖q
Lq = Δt

N∑

n=1

‖ 1
Δt

∫ tn

tn−1

h(s, x)ds‖q
Lq

≤
N∑

n=1

∫ tn

tn−1

‖h(s, .)‖q
Lqds ≤ ‖h‖q

Lq(QT ).

Thus hΔt
∈ Lq(QT ) and hn ∈ Lq(Ω). Also note that hΔt

→ h in Lq(QT ).
Indeed let ε > 0, there exists hε ∈ C1

0 (QT ) such that

‖h − hε‖Lq(QT ) <
ε

3
.

Hence

‖hΔt
− (hε)Δt

‖Lq(QT ) ≤ ‖h − hε‖Lq(QT ) <
ε

3
.

Since ‖hε − (hε)Δt
‖Lq(QT ) → 0 as Δt → 0, we have for Δt small enough

‖hΔt
− h‖Lq(QT ) ≤ ‖hΔt

− hε
Δt

‖Lq(QT ) + ‖hε − hε
Δt

‖Lq(QT )

+‖h − hε‖Lq(QT ) < ε.

Hence hΔt
→ h in Lq(QT ).

Step 2. Time-discretization of (ST ).
We define the following iterative scheme u0 = u0 and for n ≥ 1,

un is solution of

⎧
⎨

⎩

un − un−1

Δt
− Δp(x)u

n = hn in Ω,

un = 0 on ∂Ω.
(3.1)
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Note that the sequence (un)n∈{1,...,N} is well-defined. Indeed, existence and
uniqueness of u1 ∈ W∩ L∞(Ω) follows from Lemma 3.1 with g = Δth

1 + u0 ∈
Lq(Ω). Hence by induction we obtain in the same way the existence of (un),
for any n = 2, . . . , N .
Defining the functions, for n = 1, . . . , N and t ∈ [tn−1, tn):

uΔt
(t) = un and ũΔt

(t) =
(t − tn−1)

Δt
(un − un−1) + un−1, (3.2)

we get
∂ũΔt

∂t
− Δp(x)uΔt

= hΔt
in QT . (3.3)

Step 3. A priori estimates for uΔt
and ũΔt

.
Multiplying the equation in (3.1) by (un − un−1) and summing from n = 1 to
N ′ ≤ N , we get

N ′
∑

n=1

∫

Ω

|∇un|p(x)−2∇un.∇(un − un−1)dx

+
N ′
∑

n=1

Δt

∫

Ω

(
un − un−1

Δt

)2

dx =
N ′
∑

n=1

∫

Ω

hn(un − un−1)dx, (3.4)

hence by Young’s inequality and using the convexity of u →
∫

Ω

|∇u|p(x)

p(x)
dx we

obtain:
N ′
∑

n=1

∫

Ω

1
p(x)

(
|∇un|p(x) − |∇un−1|p(x)

)
dx

+
1
2

N ′
∑

n=1

Δt

∫

Ω

(
un − un−1

Δt

)2

dx ≤ 1
2
‖h‖2

L2(QT ).

Thus we obtain
(

∂ũΔt

∂t

)

Δt

is bounded in L2(QT ) uniformly in Δt, (3.5)

(uΔt
) and (ũΔt

) are bounded in L∞(0, T ;W) uniformly in Δt. (3.6)
Furthermore, using (3.5) we have

sup
[0,T ]

‖uΔt
− ũΔt

‖L2(Ω) ≤ max
n=1,...,N

‖un − un−1‖L2(Ω) ≤ CΔ1/2
t . (3.7)

Therefore for Δt → 0+, there exist u, v ∈ L∞(0, T,W) such that (up to a
subsequence)

ũΔt

∗
⇀ u in L∞(0, T,W), uΔt

∗
⇀ v in L∞(0, T,W), (3.8)

∂ũΔt

∂t
⇀

∂u

∂t
in L2(QT ). (3.9)

It follows from (3.7) that u ≡ v. By (3.8), for any r ≥ 1

ũΔt
, uΔt

⇀ u in Lr(0, T ;W). (3.10)
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Step 4. u satisfies (ST ).
Plugging (3.5), (3.6) and since the embedding W

1,p(x)
0 (Ω) ↪→ L2(Ω) is com-

pact, the Aubin-Simon’s compactness result (see [25]) implies that (up to a
subsequence),

ũΔt
→ u ∈ C([0, T ];L2(Ω)). (3.11)

Now multiplying (3.3) by (uΔt
− u) we get

∫ T

0

∫

Ω

∂ũΔt

∂t
(uΔt

− u)dxdt −
∫ T

0

〈Δp(x)uΔt
, uΔt

− u〉dt

=
∫ T

0

∫

Ω

hΔt
(uΔt

− u)dxdt.

Rearranging the terms in the last equation and using (3.7)–(3.10) we have
∫ T

0

∫

Ω

(
∂ũΔt

∂t
− ∂u

∂t

)

(ũΔt
− u)dxdt −

∫ T

0

〈Δp(x)uΔt
− Δp(x)u, uΔt

− u〉dt

= oΔt
(1)

where oΔt
(1) → 0 as Δt → 0+. Thus we get

1
2

∫

Ω

|ũΔt
(T ) − u(T )|2dx −

∫ T

0

〈Δp(x)uΔt
− Δp(x)u, uΔt

− u〉 = oΔt
(1).

Using (3.11), we obtain
∫ T

0

〈Δp(x)uΔt
− Δp(x)u, uΔt

− u〉dt = oΔt
(1)

and by Lemma B.1 we conclude that
∫ T

0

∫

Ω

|∇(uΔt
− u)|p(x)dxdt → 0. (3.12)

This implies ∇uΔt
converges to ∇u in Lp(x)(QT ) and uΔt

converges to u in
W. Furthermore

|∇uΔt
|p(x)−2∇uΔt

→ |∇u|p(x)−2∇u in (Lpc(x)(QT ))d. (3.13)

Indeed, we write
∫

QT

||∇uΔt
|p(x)−2∇uΔt

− |∇u|p(x)−2∇u| p(x)
p(x)−1 dxdt

=
∫ T

0

∫

Ω\Ω2

(. . .)dxdt +
∫ T

0

∫

Ω2

(. . .)dxdt (3.14)

where Ω2 = {x ∈ Ω | p(x) > 2}. We apply inequality (A.1). Then the first term
in the right-hand side converges to zero as Δt → 0+. For the second term, we
apply Hölder’s inequality (1.3):

∫ T

0

∫

Ω2

(. . .)dxdt ≤
∫ T

0

∫

Ω2

|∇(uΔt
− u)| p(x)

p(x)−1 (|∇uΔt
| + |∇u|) p(x)(p(x)−2)

p(x)−1 dxdt

≤ cXY
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where

X = ‖ |∇(uΔt
− u)| p(x)

p(x)−1 ‖Lp(x)−1(QT,2),

Y = ‖ (|∇uΔt
| + |∇u|) p(x)(p(x)−2)

p(x)−1 ‖
L

p(x)−1
p(x)−2 (QT,2)

,

QT,2 = (0, T ) × Ω2 and c ≥ 1 is a constant independent of Δt. We define
r = p|Ω2 the restriction of p on Ω2. Then r− = 2 and r+ = p+. With the new
notations and applying Lemma A.1, we have

X ≤ ‖∇(uΔt
− u)‖

2
p+−1

Lp(x)(QT )
+ ‖∇(uΔt

− u)‖p+

Lp(x)(QT )
(3.15)

and

Y ≤ 1 + ‖ |∇uΔt
| + |∇u| ‖p+(p+−2)

Lr(x)(QT,2)

≤ 1 + ‖ |∇uΔt
| + |∇u| ‖p+(p+−2)

Lp(x)(QT )

≤ 1 + c(p)(‖∇uΔt
‖p+(p+−2)

Lp(x)(QT )
+ ‖∇u‖p+(p+−2)

L(x)(QT )
)

≤ C(p) (3.16)

since (uΔt
) is bounded in L∞(0, T ;W) uniformly in Δt.

Plugging (3.12), (3.15) and (3.16), we deduce that the second term in the
right-hand side of (3.14) converges to 0 as Δt → 0+. Hence we have (3.13).
Finally, gathering Step 1., (3.9) and (3.13), we conclude passing to the limit, in
the distribution sense, in Eq. (3.3) that u is a weak solution of (ST ). Further-
more u is the unique weak solution of (ST ). Indeed assume that there exists v
another weak solution of (ST ). Then,

∫ T

0

∫

Ω

∂(u − v)
∂t

(u − v) dxdt −
∫ T

0

〈Δp(x)u − Δp(x)v, u − v〉 dt = 0.

Since u(0) = v(0), the above equality implies that u ≡ v.

Step 5. u belongs to C([0, T ];W).
Since u ∈ C([0, T ];L2(Ω))∩L∞([0, T ];W) and p ∈ P log(Ω), u : t ∈ [0, T ] → W

is weakly continuous.
Fix t0 ∈ [0, T ]. Since ρp is weakly lower semicontinuous (see Theorem 3.2.9 in
[10]) we have

∫

Ω

|∇u(t0)|p(x)

p(x)
dx ≤ lim inf

t→t0

∫

Ω

|∇u(t)|p(x)

p(x)
dx.

From (3.4) with
∑N ′

n=N ′′ for 1 ≤ N ′′ ≤ N ′ and since |∇uΔt
| converges to |∇u|

in Lp(x), it follows that u satisfies for any t ∈ [t0, T ]:
∫ t

t0

∫

Ω

(
∂u

∂t

)2

dxds +
∫

Ω

|∇u(t)|p(x)

p(x)
dx −

∫

Ω

|∇u(t0)|p(x)

p(x)
dx

≤
∫ t

t0

∫

Ω

h
∂u

∂t
dxds. (3.17)
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Passing to the limit, we get

lim sup
t→t+0

∫

Ω

|∇u(t)|p(x)

p(x)
dx ≤

∫

Ω

|∇u(t0)|p(x)

p(x)
dx.

Define v(t) = ∇u(t)/(p(x))1/p(x). Thus we get limt→t+0
ρp(v(t)) = ρp(v(t0)).

Now we prove the left continuity. Let 0 < k ≤ t − t0. Multiplying (ST ) by
τk(u)(s) = u(s+k)−u(s)

k and integrating over (t0, t) × Ω, the convexity gives
∫ t

t0

∫

Ω

τk(u)
∂u

∂t
dxds +

∫ t+k

t

∫

Ω

|∇u(s)|p(x)

kp(x)
dxds

−
∫ t0+k

t0

∫

Ω

|∇u(s)|p(x)

kp(x)
dxds

≥
∫ t

t0

∫

Ω

τk(u)h dxdt. (3.18)

By Dominated Convergence Theorem as k → 0+:
∫ t+k

t

∫

Ω

|∇u(s)|p(x)

kp(x)
dxds →

∫

Ω

|∇u(t)|p(x)

p(x)
dx,

∫ t0+k

t0

∫

Ω

|∇u(s)|p(x)

kp(x)
dxds →

∫

Ω

|∇u(t0)|p(x)

p(x)
dx.

Hence (3.18) yields
∫ t

t0

∫

Ω

(
∂u

∂t

)2

dxds +
∫

Ω

|∇u(t)|p(x)

p(x)
dx −

∫

Ω

|∇u(t0)|p(x)

p(x)
dx

≥
∫ t

t0

∫

Ω

h
∂u

∂t
dxds.

From the above inequality, we deduce that we have the equality in (3.17). This
implies, using the Dominated Convergence Theorem, that ρp(v(t)) → ρp(v(t0))
as t → t0.
Since v(t) ⇀ v(t0) in Lp(x)(Ω) and ρp(v(t)) → ρp(v(t0)) as t → t0, Lemma B.2
implies the convergence of v(t) to v(t0) in Lp(x)(Ω). Therefore we deduce that
u ∈ C([0, T ];W). �

4. Existence of solution of (PT )

Proof of Theorem 2.4 We proceed as in the proof of Theorem 2.3 splitting the
proof in several steps.
Step 1. Existence of barrier functions.
Consider the equations, for i ∈ {0, 1, 2}

{
dvi

dt
= Li(vi),

vi(0) = (−1)iκ,
(4.1)

where κ = ‖u0‖∞.
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By Cauchy–Lipschitz Theorem, there exists Tmax
i ∈ (0,+∞] and a unique

maximal solution vi to (4.1) on [0, Tmax
i ).

If (H1) holds, we take T ∈ (0, Tmax
0 ) otherwise, if (H2) holds, we take T ∈

(0,min(Tmax
1 ;Tmax

2 )).
Let N ∈ N

∗. Set Δt = T
N and consider the family (vn

i ) defined by vn
i = vi(tn) =

vi(nΔt) for n ∈ {1, . . . , N}. Hence for any i ∈ {0, 1, 2}

vn+1
i = vn

i +
∫ tn+1

tn

Li(vi(s))ds, ∀n ∈ {0, . . . , N − 1}.

Replacing L1 (resp. L2) by min(L1, 0) (resp. max(L2, 0)) in (H2), we can as-
sume that L1 ≤ 0 and L2 ≥ 0. We get for n ∈ {0, . . . , N}, v1(T ) ≤ vn

1 ≤ −κ
and for i = 0 or i = 2, κ ≤ vn

i ≤ vi(T ).
Step 2. Semi-discretization in time of (PT ).
Introduce the following iterative scheme (un) defined as

u0 = u0 and

{
un − ΔtΔp(x)u

n = un−1 + Δtf(x, un−1) in Ω,
un = 0 on ∂Ω.

We just prove the existence of u1. The conditions (f1)-(f2) insure that f(., u0) ∈
Lq(Ω) with q > d

p−
. Thus Lemma 3.1 applying with g = u0 + Δtf(x, u0) ∈

Lq(Ω) gives the existence of u1 ∈ W ∩ L∞(Ω).
Let uΔt

and ũΔt
be defined as in (3.2) and for t < 0, uΔt

(t) = u0. Thus (3.3)
is satisfied with hΔt

(t) def= f(x, uΔt
(t − Δt)).

Step 3. (un) is bounded in L∞(Ω) uniformly in Δt. First we consider the case
where (H1) is valid. We claim that for all n, |un| ≤ vn

0 in Ω. We just prove for
n = 1. Since L0 and v0 are nondecreasing, we get

u1 − v1
0 − ΔtΔp(x)u

1 =
∫ Δt

0

f(x, u0) − L0(v0(s))ds + u0 − v0
0 ≤ 0.

Multiplying the previous inequality by (u1 − v1
0)+ = max(u1 − v1

0 , 0) and
integrating on O = {x ∈ Ω | u1(x) > v1

0}, we get
∫

O
(u1 − v1

0)2dx + Δt

∫

O
|∇u1|p(x)dx ≤ 0.

Hence, u1 ≤ v1
0 and by the same method we have −v1

0 ≤ u1.
For (H2) we claim that for all n, vn

1 ≤ un ≤ vn
2 in Ω. Let n = 1. Since L1, L2,

−v1 and v2 are nondecreasing:

u1 − v1
1 − ΔtΔp(x)u

1 =
∫ Δt

0

f(x, u0) − L1(v1(s))ds + u0 − v0
1 ≥ 0,

u1 − v1
2 − ΔtΔp(x)u

1 =
∫ Δt

0

f(x, u0) − L2(v2(s))ds + u0 − v0
2 ≤ 0.

Multiply the first inequality by (v1
1 − u1)+ and the second inequality by (u1 −

v1
2)+. Integrating respectively on O1 = {x ∈ Ω | v1

1 > u1(x)} and O2 = {x ∈
Ω | v1

2 < u1(x)}, we get
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−
∫

O1

(u1 − v1
1)2dx − Δt

∫

O1

|∇u1|p(x)dx ≥ 0,

∫

O2

(u1 − v1
2)2dx + Δt

∫

O2

|∇u1|p(x)dx ≤ 0.

Then v1
1 ≤ u1 ≤ v1

2 . By induction, we deduce that for n ∈ {0, . . . , N}, vn
1 ≤

un ≤ vn
2 in Ω.

Thus we have

(uΔt
), (ũΔt

) are bounded in L∞(QT ) uniformly in Δt. (4.2)

and
(hΔt

) is bounded in L2(QT ) uniformly in Δt

Indeed, either (H1) holds which implies

|f(x, un)| ≤ L0(un) ≤ L0(v0(T ))

or (H2) holds, we have

|f(x, un)| ≤ max(−L1(un), L2(un)) ≤ max(−L1(v1(T )), L2(v2(T ))).

Hence

‖hΔt
‖2

L2(QT ) = Δt

N∑

n=1

‖f(x, un−1)‖2
L2(Ω) ≤ C.

Step 4. End of the proof.
By the same computations of Step 3. of the proof of Theorem 2.3, we obtain
estimates and we prove there exists u ∈ L∞(0, T,W) such that

ũΔt
, uΔt

∗
⇀ u in L∞(0, T,W) and

∂ũΔt

∂t
⇀

∂u

∂t
in L2(QT ).

(3.5) implies that (ũΔt
) is equicontinuous in C([0, T ];Lr(Ω)) for 1 ≤ r ≤ 2.

By the interpolation inequality and (4.2) we obtain (ũΔt
) is equicontinuous in

C([0, T ];Lr(Ω)) for any r > 1.
By (3.6) and Theorem 1.2, we deduce applying the Ascoli-Arzela Theorem
that (up to a subsequence) for any r > 1

ũΔt
→ u in C([0, T ];Lr(Ω)).

Since (uΔt
) is uniformly bounded in L∞(QT ), (f1) implies

‖hΔt
(t) − f(., u(t))‖L2(Ω) ≤ C‖uΔt

(t − Δt) − u(t)‖L2(Ω).

Hence we deduce that hΔt
→ f(., u) in L∞(0, T ;L2(Ω)). Next we follow Step

4 of Theorem ?? and obtain that u is a weak solution to (PT ).
Now, we prove the uniqueness of the solution to (PT ). Let w be another weak
solution of (PT ). By (f1), for t ∈ [0, T ]:

1
2
‖u(t) − w(t)‖2

L2(Ω) −
∫ t

0

〈Δp(x)u − Δp(x)w, u − w〉ds

=
∫ T

0

∫

Ω

(f(x, u) − f(x,w))(u − w)dxds ≤ C

∫ t

0

‖u(s) − w(s)‖2
L2(Ω)ds.
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Since u → Δp(x)u is a monotone operator from W to W
′, the second term in

the left-hand side is nonnegative. Then, by Gronwall’s Lemma, we deduce that
u ≡ w.
Step 5 of the proof of Theorem 2.3 again goes through and completes the
proof. �
Now we give the proof of Theorem 2.5.
Proof of Theorem 2.5 First we introduce the stationary quasilinear elliptic
problem associated to (PT ):

{−Δp(x)u = f(x, u) in Ω,
u = 0 on ∂Ω.

(E)

Thus we claim that if (C1) or (C2) holds there exist u, u ∈ W∩L∞(Ω), a sub-
and a supersolution of (E) such that u ≤ u0 ≤ u.
First, consider that (C1) holds. For (x, s) ∈ Ω × R, define

G(x, s) = |Δp(x)u0(x)| + |f(x, s)|.
Consider the following problems:

{−Δp(x)u = −G(x, u) in Ω,
u = 0 on ∂Ω

and {−Δp(x)u = G(x, u) in Ω,
u = 0 on ∂Ω.

The existence of u and u ∈ W follows from the sub-homogeneity of f given by
(f3) (see Theorem 4.3 in [14]) and by Corollary C.5 we have u, u ∈ L∞(Ω).
Moreover

−Δp(x)u = −G(., u) ≤ −Δp(x)u0 a.e in Ω.

and

−Δp(x)u = G(., u) ≥ −Δp(x)u0 a.e in Ω.

Hence Lemma A.4 implies u ≤ u0 and u is a subsolution of (E). Similarly we
have that u ≥ u0 and u is a supersolution of (E).
Now, if (C2) holds. We have the following lemma which follows from [13,27]:

Lemma 4.1. Let p ∈ C1(Ω) and λ ∈ R
+. Let wλ ∈ W ∩ L∞(Ω) be the unique

solution of
{−Δp(x)wλ = λ in Ω,

wλ = 0 on ∂Ω.
(4.3)

Then, there exists two constants C1 and C2 which do not depend to λ such
that

‖wλ‖L∞ ≤ C1λ
1

p−−1 and wλ(x) ≥ C2λ
1

p+−1+μ dist(x, ∂Ω)

where μ ∈ (0, 1).
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Fix λ > 0, let wλ be the solution of (4.3). Since β < p− − 1 and by
Lemma 4.1: for λ large enough, wλ verifies

− Δp(x)wλ = λ ≥ C

(

1 + Cβ
1 λ

β
p−−1

)

≥ C(1 + wβ
λ) ≥ |f(x,wλ)|. (4.4)

Moreover, since u0 ∈ C1
0 (Ω), there exists K > 0 such that for any x ∈ Ω,

|u0(x)| ≤ Kdist(x, ∂Ω). Hence choosing λ large enough, we have by Lemma 4.1
wλ ≥ |u0| in Ω.
Set u = wλ and u = −wλ. We deduce for λ large enough, u and u are a super-
and a subsolution of (E) such that u ≤ u0 ≤ u.
Now we proceed as the proof of Theorem 2.4. We define the sequence (un) as
follows.

{
un − ΔtΔp(x)u

n = un−1 + Δtf(x, un−1) in Ω,
un = 0 on ∂Ω

for n = 1, 2, . . . , N with u0 = u0. we prove for n ≥ 1, u ≤ un ≤ u in Ω. Indeed
for n = 1, we have

u − u1 − Δt(Δp(x)u − Δp(x)u
1) ≤ u − u0 + Δt(f(x, u0) − f(x, u)).

Let Λ be the Lipschitz constant of f on [−M,M ], where M is the maximum
of ‖u‖L∞ and ‖u‖L∞ . Then

u − u1 − Δt(Δp(x)u − Δp(x)u
1) ≤ (Id − Δtf)(u − u0).

For Δt small enough, the function Id − Δtf is nondecreasing. Then the right-
hand side of the above inequality is nonpositive and thus by Lemma A.4 we
have u ≤ u1. Similarly we prove u1 ≤ u.

By induction, for n ≥ 1, u ≤ un ≤ u in Ω. Thus (un) is uniformly
bounded in L∞(Ω). The rest of the proof follows Step 3 and 4 of the proof of
Theorem 2.4. �

5. Existence of mild solutions and stabilization

In this section we prove Theorems 2.7, 2.8 and 2.10. We first show the m-
accretivity of A = −Δp(x):

Proposition 5.1. Let f be locally Lipschitz and nonincreasing in respect to
the second variable. Assume further that f sastifies (f4). Then, Af defined by

Af (u) def= −Δp(x)u − f(., u), is m-accretive in L∞(Ω).

Proof. First, let h ∈ L∞(Ω) and λ > 0. Then,
{

u + λAf (u) = h in Ω,
u = 0, on ∂Ω

admits a unique solution, u ∈ W ∩ L∞(Ω). Indeed, for μ > 0 large enough
wμ and −wμ defined in (4.3) in Lemma 4.1 are respectively supersolution
and subsolution to the above equation and then from the weak comparison
principle, u ∈ [−wμ, wμ] and u is obtained by a minimization argument and
a truncation argument. The uniqueness of the solution follows from the strict
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convexity of the associated energy functional. Next we prove the accretivity of
Af . Let h and g ∈ L∞(Ω) and set u and v the unique solutions to

u + λAfu = h in Ω,

v + λAfv = g in Ω.

Substracting the two above equations and using the test function w = (u−v−
‖h − g‖L∞(Ω))+, we get u − v ≤ ‖h − g‖L∞(Ω) and reversing the roles of u and
v, we get that ‖u − v‖L∞(Ω) ≤ ‖h − g‖L∞(Ω). This proves the proposition. �

Next, we prove Theorem 2.7.
Proof of Theorem 2.7 We follow the approach in the proof of Theorems 4.2
and 4.4 in [8]. Let u0, v0 be in D(A)

L∞(Ω)
. For z ∈ D(A) and r, k in L∞(QT ),

set

ϕ(t, s) = ‖r(t) − k(s)‖L∞(Ω) ∀ (t, s) ∈ [0, T ] × [0, T ];
b(t, r, k) = ‖u0 − z‖L∞(Ω) + ‖v0 − z‖L∞(Ω) + |t|‖Az‖L∞(Ω)

+
∫ t+

0

‖r(τ)‖L∞(Ω)dτ +
∫ t−

0

‖k(τ)‖L∞(Ω)dτ, t ∈ [−T, T ],

and

Ψ(t, s) = b(t − s, r, k) +

⎧
⎪⎪⎨

⎪⎪⎩

∫ s

0

ϕ(t − s + τ, τ)dτ if 0 ≤ s ≤ t ≤ T,
∫ t

0

ϕ(τ, s − t + τ)dτ if 0 ≤ t ≤ s ≤ T,

the solution of
⎧
⎪⎨

⎪⎩

∂Ψ
∂t

(t, s) +
∂Ψ
∂s

(t, s) = ϕ(t, s) (t, s) ∈ [0, T ] × [0, T ],

Ψ(t, 0) = b(t, r, k) t ∈ [0, T ],
Ψ(0, s) = b(−s, r, k) s ∈ [0, T ].

(5.1)

Moreover, let denote by (un
ε ) the solution of (3.1) with Δt = ε, h = r, rn =

1
ε

∫ nε

(n−1)ε
r(τ, ·)dτ and (un

η ) the solution of (3.1) with Δt = η, h = k, kn =
1
η

∫ nη

(n−1)η
k(τ, ·)dτ respectively. For (n,m) ∈ N

∗ elementary calculations lead
to

un
ε − um

η +
εη

ε + η
(Aun

ε − Aum
η ) =

η

ε + η
(un−1

ε − um
η )

+
ε

ε + η
(un

ε − um−1
η ) +

εη

ε + η
(rn − km),

and since A is m-accretive in L∞(Ω) we first verify that Φε,η
n,m = ‖un

ε −
um

η ‖L∞(Ω) obeys

Φε,η
n,m ≤ η

ε + η
Φε,η

n−1,m +
ε

ε + η
Φε,η

n,m−1 +
εη

ε + η
‖rn − km‖∞,

Φε,η
n,0 ≤ b(tn, rε, kη) and Φε,η

0,m ≤ b(−sm, rε, kη),
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and thus, with an easy inductive argument, that Φε,η
n,m ≤ Ψε,η

n,m where Ψε,η
n,m

satisfies

Ψε,η
n,m =

η

ε + η
Ψε,η

n−1,m +
ε

ε + η
Ψε,η

n,m−1 +
εη

ε + η
‖hn

ε − hm
η ‖∞,

Ψε,η
n,0 = b(tn, rε, kη) and Ψε,η

0,m = b(−sm, rε, kη).

For (t, s) ∈ (tn−1, tn) × (sm−1, sm), set

ϕε,η(t, s) = ‖rε(t) − kη(s)‖∞,

Ψε,η(t, s) = Ψε,η
n,m,

bε,η(t, r, k) = b(tn, rε, kη)

and

bε,η(−s, r, k) = b(−sm, rε, kη).

Then Ψε,η satisfies the following discrete version of (5.1):

Ψε,η(t, s) − Ψε,η(t − ε, s)
ε

+
Ψε,η(t, s) − Ψε,η(t, s − η)

η
= ϕε,η(t, s),

Ψε,η(t, 0) = bε,η(t, r, k) and Ψε,η(0, s) = bε,η(s, r, k),

and from bε,η(·, r, k) → b(·, r, k) in L∞([0, T ]). Furthermore,

Nn∑

n=1

∫ tn

tn−1

‖r(s) − rn‖∞ds → 0, as ε → 0+,

Nm∑

m=1

∫ sm

sm−1

‖k(s) − km‖∞dτ → 0 as η → 0+.

The above statements follow easily from the fact that r, k ∈ L1(0, T ;L∞(Ω))
and a density argument.
Then, we deduce that ρε,η = ‖Ψε,η−Ψ‖L∞([0,T ]×[0,T ]) → 0 as (ε, η) → 0 (see for
instance [8, Chap.4,Lemma 4.3,p. 136] and [8, Chap.4, proof of Theorem 4.1,
p. 138]). Then from

‖uε(t) − uη(s)‖∞ = Φε,η(t, s) ≤ Ψε,η(t, s) ≤ Ψ(t, s) + ρε,η, (5.2)

we obtain with t = s, r = k = h, v0 = u0:

‖uε(t) − uη(t)‖L∞(Ω) ≤ 2‖u0 − z‖L∞(Ω) + ρε,η,

and since z can be chosen in D(A) arbitrary close to u0, we deduce that uε is a
Cauchy sequence in L∞(QT ) and then that uε → u in L∞(QT ). Thus, passing
to the limit in (5.2) with r = k = h, v0 = u0 we obtain

‖u(t) − u(s)‖L∞(Ω) ≤
∫ max(t,s)

0

‖h(|t − s| + τ) − h(τ)‖L∞(Ω)dτ

+ 2‖u0 − z‖L∞(Ω) +
∫ |t−s|

0

‖h(τ)‖L∞(Ω)dτ

+ |t − s|‖Az‖L∞(Ω),
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which, together with the density D(A) in L∞(Ω) and h ∈ L1(0, T ;L∞(Ω)),
yields u ∈ C([0, T ];L∞(Ω)).
Analogously, from (5.2) with ε = η = Δt, r = k = h, v0 = u0 and t = s + Δt

we deduce that

‖uΔt
(t) − ũΔt

(t)‖L∞(Ω) ≤ 2‖uΔt
(t) − uΔt

(t − Δt)‖L∞(Ω)

≤ 4‖u0 − z‖L∞(Ω) + 2
∫ t

0

‖h(Δt + τ) − h(τ)‖∞dτ

+ 2
∫ Δt

0

‖h(τ)‖L∞(Ω)dτ + 2Δt‖Az‖L∞(Ω)

which gives the limit ũΔt
→ u in C([0, T ];L∞(Ω)) as Δt → 0+. Note that

since ũΔt
∈ C([0, T ];C0(Ω)), the uniform limit u belongs to C([0, T ];C0(Ω)).

Moreover, passing to the limit in (5.2) with t = s we obtain

‖u(t) − v(t)‖L∞(Ω) ≤ ‖u0 − z‖L∞(Ω) + ‖v0 − z‖L∞(Ω) +
∫ t

0

‖r(τ) − k(τ)‖∞dτ,

and (2.1) follows since we can choose z arbitrary close to v0. Finally, if Au0 ∈
L∞(Ω) and h ∈ W 1,1(0, T ;L∞(Ω)) and if we assume (without loss of general-
ity) that t > s then with z = v0 = u(t − s) and (r, k) = (h, h(· + t − s)) in the
last above inequality we obtain

‖u(t) − u(s)‖L∞(Ω) ≤ ‖u0 − u(t − s)‖L∞(Ω)

+
∫ s

0

‖h(τ) − h(τ + t − s)‖L∞(Ω)dτ. (5.3)

From (2.1) with v = u0, k = Au0:

‖u0 − u(t − s)‖L∞(Ω) ≤
∫ t−s

0

‖Au0 − h(τ)‖L∞(Ω)dτ. (5.4)

Using (5.4) and gathering Fubini’s Theorem and

h(τ) − h(τ + t − s) =
∫ τ+t−s

τ

dh

dt
(σ)dσ,

the right-hand side of (5.3) is smaller than

(t − s)‖Au0 − h(0)‖L∞(Ω) +
∫ t−s

0

‖h(0) − h(τ)‖L∞(Ω)dτ

+
∫ s

0

‖h(τ) − h(τ + t − s)‖L∞(Ω)dτ.

Thus

‖u(t) − u(s)‖L∞(Ω) ≤ (t − s)‖Au0 − h(0)‖L∞(Ω)

+ (t − s)
∫ T

0

∥
∥
∥
∥

dh

dt
(τ)

∥
∥
∥
∥

L∞(Ω)

dτ. (5.5)
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Dividing the expression (5.5) by |t−s|, we get that u is a Lipschitz function and
since ∂u

∂t ∈ L2(QT ), passing to the limit |t− s| → 0 we obtain that u(t)−u(s)
t−s →

∂u
∂t as s → t weakly in L2(QT ) and *-weakly in L∞(QT ). Furthermore,

∥
∥
∥
∥

∂u

∂t

∥
∥
∥
∥

L∞(Ω)

≤ lim inf
s→t

‖u(t) − u(s)‖L∞(Ω)

|t − s| .

Therefore, we get u ∈ W 1,∞(0, T ;L∞(Ω)) as well as inequality (2.2). �
The proof of Theorem 2.8 follows easily:

Proof of Theorem 2.8 The existence of mild solutions can be obtained similarly
as in the proof of Theorem 2.7 taking into account the L∞-bound given by the
barrier functions v0, v1 and v2. (i) is the consequence of (2.1) together with
the fact that f is locally Lipschitz and the Gronwall’s Lemma.

Regarding assertion (ii), we follow the proof of Proposition 2.7: assume
without loss of generality that t > s. Then,

‖u(t) − u(s)‖L∞(Ω) ≤ ‖u0 − u(t − s)‖L∞(Ω)

+
∫ s

0

‖f(x, u(τ)) − f(x, u(τ + t − s))‖L∞(Ω)dτ.

From assertion (i) and the fact that f is Lipschitz on [v1(T ), v2(T )], it follows
that

‖u(t) − u(s)‖L∞(Ω) ≤ ‖u0 − u(t − s)‖L∞(Ω) + ω

∫ s

0

eωτdτ‖u0 − u(t − s)‖L∞(Ω)

≤ eωs‖u0 − u(t − s)‖L∞(Ω).

Now, we estimate the term ‖u0 − u(t − s)‖L∞(Ω) in the following way:

‖u0 − u(t − s)‖L∞(Ω) ≤
∫ t−s

0

‖Au0 − f(x, u(τ))‖L∞(Ω)dτ

≤ (t − s)‖Au0 − f(x, u0)‖L∞(Ω)

+ ω

∫ t−s

0

‖u0 − u(τ)‖L∞(Ω)dτ.

From Gronwall’s lemma, we deduce that

‖u0 − u(t − s)‖L∞(Ω) ≤ (t − s)eω(t−s)‖Au0 − f(x, u0)‖L∞(Ω).

Gathering the above estimates, we get

‖u(t) − u(s)‖L∞(Ω) ≤ (t − s)eωt‖Au0 − f(x, u0)‖L∞(Ω).

Then, the rest of the proof follows with the same arguments as in the proof of

Theorem 2.7. �
We are ready now to prove our stabilization result:

Proof of Theorem 2.10 From Proposition 5.1, Af (u) = −Δp(x)u − f(x, u) is
m-accretive in L∞(Ω) and according to the Remark 2.9, Theorem 2.8 holds
with u0 ∈ C1

0 (Ω) replacing A by Af , the barrier functions v0, v1 and v2 by
the subsolution −wμ and the supersolution wμ respectively and for μ > 0
large. Furthermore, ω = 0 in assertion (i) of Theorem 2.8 and the solution
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is global. Now, from the comparison principle, the solution u(t) emanating
from u0 belongs to the conical shell [u1(t), u2(t)] where u1 and u2 are the mild
solutions with initial data −wμ and wμ ∈ D(Af ), respectively. Again from
the weak comparision principle, t → u1(t) and t → u2(t) are nondecreasing
and nonincreasing respectively. Furthermore, from the uniqueness of the mild
solution, u1 and u2 converge in L∞(Ω) to the stationary solution, u∞, to (PT )
which is unique from the monotonicity of Af . Then, u(t) → u∞ as t → ∞. �

Remark 5.2. If one assumes in addition that f(x, 0) ≥ 0 for all x ∈ Ω, then it
is easy to prove that u∞ is positive and if u0 is nonegative, u(t) is nonnegative
for all t ≥ 0.
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Appendix A. Algebraic tools

We recall suitable inequalities due to Simon [26]: for all u, v ∈ R
d

∣
∣|u|p−2u − |v|p−2v

∣
∣ ≤

{
c|u − v|(|u| + |v|)p−2 if p ≥ 2;
c|u − v|p−1 if p ≤ 2; (A.1)

< |u|p−2u − |v|p−2v, u − v >≥
⎧
⎨

⎩

c̃|u − v|p if p ≥ 2;

c̃
|u − v|2

(|u| + |v|)2−p
if p ≤ 2

(A.2)

where c, c̃ are positive constants and < ., . > is the scalar product of Rd.

Lemma A.1. Let p ∈ L∞(Ω) such that p ≥ 0, p �≡ 0. Let q ∈ P(Ω) such that
p(x)q(x) ≥ 1 a.e. on Ω. Then for every f ∈ Lp(x)q(x)(Ω),

‖fp(x)‖Lq(x)(Ω) ≤ ‖f‖p−
Lp(x)q(x)(Ω)

+ ‖f‖p+

Lp(x)q(x)(Ω)
. (A.3)

Proof. To simplify the notations we set α(.) = p(.)q(.). Let f ∈ Lα(x)(Ω), we
define β = p− if ‖f‖Lα(x)(Ω) ≤ 1 and β = p+ if ‖f‖Lα(x)(Ω) > 1. Then, for
λ = ‖f‖Lα(x)(Ω)

ρq

(
fp(x)

λβ

)

=
∫

Ω

∣
∣
∣
∣
∣

f

‖f‖Lα(x)(Ω)

∣
∣
∣
∣
∣

α(x)

.
1

λβq(x)−α(x)
dx ≤ 1.

Hence by the definition of the norm of Lα(x)(Ω), we obtain the estimate. �

Now we prove a technical inequality in the case p+ ≤ 2.
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Lemma A.2. Let p ∈ C(Ω), 1 < p− ≤ p+ ≤ 2. Then, there exists C > 0 such
that for any u, v ∈ W

∫

Ω

(|∇u|p(x)−2∇u − |∇v|p(x)−2∇v).∇(u − v)dx (A.4)

≥ C

⎛

⎝

∫

Ω
|∇(u − v)|p(x)dx

‖(|∇u| + |∇v|)α(x)‖
L

2
2−p(x) (Ω)

⎞

⎠

γ

, (A.5)

where α(x) = p(x)(2−p(x))
2 and γ ∈ { 2

p+
; 2

p−
}.

Proof. First, Hölder’s inequality implies
∫

Ω

|∇(u − v)|p(x)dx

(

‖(|∇u| + |∇v|)α(x)‖
L

2
2−p(x) (Ω)

)−1

(A.6)

≤ C

∥
∥
∥
∥

|∇(u − v)|p(x)

(|∇u| + |∇v|)α(x)

∥
∥
∥
∥

L
2

p(x) (Ω)

def= CI. (A.7)

On the other hand, since p+ ≤ 2 we have using (A.2):
∫

Ω

(|∇u|p(x)−2∇u − |∇v|p(x)−2∇v).∇(u − v)dx ≥ C

∫

Ω

|∇(u − v)|2
(|∇u| + |∇v|)2−p(x)

dx.

In the case where I < 1, plugging the last inequality (A.6) and (1.2) we obtain
(A.4) with γ = 2

p−
. In the other case: I ≥ 1 then by (1.1), we get inequality

(A.4) with γ = 2
p+

. �

Remark A.3. In the case p− ≥ 2, using inequality (A.2) , on can be easily
prove that there exists C̃ > 0 such that:

∫

Ω

(|∇u|p(x)−2∇u − |∇v|p(x)−2∇v).∇(u − v)dx ≥ C̃

∫

Ω

|∇(u − v)|p(x)dx.

We have the following comparison principle:

Lemma A.4. Let u, v ∈ W such that −Δp(x)u ≥ −Δp(x)v in Ω in the sense
that

∀ϕ ∈ W, ϕ ≥ 0,

∫

Ω

(|∇u|p(x)−2∇u − |∇v|p(x)−2∇v) · ∇ϕdx ≥ 0.

Then u ≥ v a.e. in Ω.

Proof. Set ϕ = max(v − u, 0) ∈ W. Then
∫

{v>u}
(|∇u|p(x)−2∇u − |∇v|p(x)−2∇v) · ∇ϕdx ≥ 0

By Lemma A.2 and Remark A.3 we deduce that
∫

{v>u}
|∇ϕ|p(x)dx ≤ 0.

Hence ϕ = 0 a.e. in Ω. Therefore u ≥ v a.e. in Ω. �
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Appendix B. Convergence tools

Lemma B.1. Let (un) be a bounded sequence in L∞(0, T,W) uniformly in n.
Let u ∈ L∞(0, T,W) such that

lim
n→+∞

∫ T

0

∫

Ω

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u).∇(un − u)dxdt = 0.

Then, ∇un converges to ∇u in Lp(x)(QT ).

Proof. Define ∇X = |∇un|p(x)−2∇un − |∇u|p(x)−2∇u. Thus we have,

−
∫ T

0

〈Δp(x)un − Δp(x)u, un − u〉dt =
∫ T

0

∫

Ω\Ω2

∇X.∇(un − u)dxdt

+
∫ T

0

∫

Ω2

∇X.∇(un − u)dxdt

where Ω2 = {p(x) > 2}. By Lemma A.2, with α(x) = p(x)(2−p(x))
2 , and Re-

mark A.3, we get as n → +∞
∫ T

0

∫

Ω2

|∇(un − u)|p(x)dxdt → 0

and
∫ T

0

∫

Ω\Ω2
|∇(un − u)|p(x)dx

‖(|∇un| + |∇u|)α(x)‖
L

2
2−p(x) (Ω\Ω2)

dt → 0.

Applying Lemma A.1, we prove that the mapping

t → ‖(|∇un| + |∇u|)α(x)‖
L

2
2−p(x) (Ω\Ω2)

is bounded on [0, T ]. Hence we obtain
∫ T

0

∫

Ω\Ω2

|∇(un − u)|p(x)dxdt → 0.

We conclude by Proposition 1.1 (ii) that ∇un converges to ∇u in Lp(x)(QT ).
�

Finally we recall the following Corollary A.3 in [20].

Lemma B.2. Let Ω be a smooth bounded domain. Consider (un), u ∈ Lp(x)(Ω)
such that un converges to u weakly in Lp(x)(Ω). Then, ρp(un) converges to
ρp(u) implies that un converges to u in Lp(x)(Ω).

Appendix C. Regularity result

We begin by recalling the regularity result due to Fan and Zhao [15]:
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Proposition C.1 (Theorem 4.1 in [15]). Let p ∈ C(Ω) and u ∈ W satisfying
∫

Ω

|∇u|p(x)−2∇u.∇Ψdx =
∫

Ω

f(x, u)Ψdx, ∀Ψ ∈ W,

where f satisfies for all (x, t) ∈ Ω×R, |f(x, t)| ≤ c1+c2|t|r(x)−1 with r ∈ C(Ω)
and ∀x ∈ Ω, 1 < r(x) < p∗(x). Then u ∈ L∞(Ω).

For f(x, .) = f(x), we have the following proposition.

Proposition C.2. Let p ∈ C(Ω̄) with p− < d and u ∈ W satisfying
∫

Ω

|∇u|p(x)−2∇u.∇Ψdx =
∫

Ω

fΨdx, ∀Ψ ∈ W, (C.1)

where f ∈ Lq(Ω), q > d
p−

. Then u ∈ L∞(Ω).

To prove Proposition C.2, we need a regularity lemma.

Lemma C.3. Let u ∈ W 1,p
0 (Ω), 1 < p < d, satisfying for any BR, R < R0, and

for all σ ∈ (0, 1), and any k ≥ k0 > 0
∫

Ak,σR

|∇u|pdx ≤ C

[∫

Ak,R

∣
∣
∣
∣

u − k

R(1 − σ)

∣
∣
∣
∣

p∗

dx + kα|Ak,R| + |Ak,R| p
p∗ +ε

+

(∫

Ak,R

∣
∣
∣
∣

u − k

R(1 − σ)

∣
∣
∣
∣

p∗

dx

) p
p∗

|Ak,R|δ
⎤

⎦

where Ak,R = {x ∈ BR ∩Ω | u(x) > k}, 0 < α < p∗ = dp
d−p and ε, δ > 0. Then

u ∈ L∞(Ω).

Proof. Fusco and Sbordone have already proved in [17] the local boundedness
of u in the case u ∈ W 1,p(Ω) and the inequality is satisfied for any BR ⊂⊂ Ω.
We claim that the result is still valid in our situation. For that we will prove
the boundednes of u in a neighborhood of the boundary ∂Ω.
Let x0 ∈ ∂Ω, BR be the ball centred in x0. We define KR

def= BR ∩ Ω and we
set

rh =
R

2
+

R

2h+1
, r̃h =

rh + rh+1

2
and kh = k

(

1 − 1
2h+1

)

for any h ∈ N.

Also define

Ih =
∫

Akh,rh

|u(x) − kh|p∗
dx and ϕ(t) =

{
1 if 0 ≤ t ≤ 1

2 ,
0 if t ≥ 3

4

satisfying ϕ ∈ C1([0,+∞); [0, 1]). We set ϕh(x) = ϕ
(

2h+1

R (|x| − R
2 )

)
. Hence

ϕh = 1 on Brh+1 and ϕh = 0 on R
d\Br̃h+1 .

We have

Ih+1 =
∫

Akh+1,rh+1

|u(x) − kh+1|p∗
dx =

∫

Akh+1,rh+1

(|u(x) − kh+1|ϕh(x))p∗
dx

≤
∫

KR

((u(x) − kh+1)+ϕh(x))p∗
dx.
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Since u ∈ W 1,p
0 (Ω), (u − kh+1)+ϕh ∈ W 1,p

0 (KR). Thus

Ih+1 �
(∫

KR

|∇((u − kh+1)+ϕh)|pdx

) p∗
p

�
(∫

Akh+1,r̃h

|∇u|pdx +
∫

Akh+1,r̃h

(u − kh+1)pdx

) p∗
p

where we use the notation f � g in the sense there exists a constant c > 0
such that f ≤ cg. Since r̃h < rh, we have

I
p

p∗
h+1 � 2hp∗

∫

Akh+1,rh

|u − kh+1|p∗
dx + kα

h+1|Akh+1,rh
| + |Akh+1,rh

| p
p∗ +ε

+ 2hp

(∫

Akh+1,rh

|u − kh+1|p∗
dx

) p
p∗

|Akh+1,rh
|δ

+
∫

Akh+1,rh

|u − kh+1|p∗
dx.

Moreover, for any h, kh ≤ kh+1, this implies

Ih =
∫

Akh,rh

|u − kh|p∗
dx ≥

∫

Akh+1,rh

|u − kh|p∗
dx (C.2)

≥
∫

Akh+1,rh

|kh − kh+1|p∗
dx = |Akh+1,rh

||kh+1 − kh|p∗
. (C.3)

Then, for any k > k0 and h ∈ N

|Akh+1,rh
| + kα

h+1|Akh+1,rh
| � 2hp∗

Ih

where the constant in the notation depends only on k0, p and α. Replacing in
(C.2), we obtain

I
p

p∗
h+1 � 2hp∗

Ih + 2h(p+εp∗)I
p

p∗ +ε

h + 2h(p+δp∗)I
p

p∗ +δ

h . (C.4)

Setting M = p
p∗ max(p∗, p+εp∗, p+δp∗) and θ = min(1− p

p∗ , ε, δ) and noting
that

Ih ≤
∫

KR

(|u − kh|+)p∗
dx ≤

∫

KR

|u|p∗ ≤ ‖u‖p∗
W 1,p

0
,

(C.4) becomes

Ih+1 � 2hMI
1+ θp∗

p

h

where the constant depends on ||u||W 1,p
0

, k0, α and p. We need the following
lemma to conclude.

Lemma C.4. (Lemma 4.7, Chapter 2, [20]) Let (xn) be a sequence such that
x0 ≤ λ− 1

η μ
− 1

η2 and xn+1 ≤ λμnx1+η
n , for any n ∈ N

∗ with λ, η and μ are
positive constants and μ > 1. Then (xn) converges to 0 as n → +∞.
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It suffices to prove that I0 is small enough. Indeed u ∈ Lp∗
(Ω) implies

I0 =
∫

A k
2 ,R

|u − k

2
|p∗

dx → 0 as k → ∞.

Hence for k large enough, I0 ≤ C− 1
η (2M )− 1

η2 with η = θp∗

p . Thus Ih converges
to 0 as h → +∞ and

∫

A
k, R

2

|u − k|p∗
dx = 0.

We deduce that u ≤ k on KR
2
. In the same way, we prove that −u ≤ k on KR

2
.

Since Ω is compact, we conclude that u ∈ L∞(Ω). �
Proof of Proposition C.2 We follow the idea of the proof of Theorem 4.1 in
[15].
Let x0 ∈ Ω, BR be the ball of radius R centered in x0 and KR = Ω ∩ BR. We
define

p+ def= max
KR

p(x) and p− def= min
KR

p(x)

and we choose R small enough such that p+ < (p−)∗ = dp−

d−p− .
Fix (s, t) ∈ (R∗

+)2, t < s < R then Kt ⊂ Ks ⊂ KR. Define ϕ ∈ C∞(Ω),
0 ≤ ϕ ≤ 1 such that

ϕ =
{

1 in Bt,
0 in R

d\Bs

satisfying |∇ϕ| � 1/(s − t). Let k ≥ 1, using the same notations as previously
Ak,λ = {y ∈ Kλ | u(y) > k} and taking Ψ = ϕp+

(u − k)+ ∈ W in (C.1), we
obtain

∫

Ak,s

|∇u|p(x)ϕp+
dx + p+

∫

Ak,s

|∇u|p(x)−2∇u · ∇ϕϕp+−1(u − k)+ dx (C.5)

=
∫

Ak,s

fϕp+
(u − k) dx. (C.6)

Hence by Young’s inequality, for ε > 0, we have

p+

∫

Ak,s

|∇u|p(x)−2∇u.∇ϕϕp+−1(u − k) dx

≤ ε

∫

Ak,s

|∇u|p(x)ϕ(p+−1) p(x)
p(x)−1 dx + cε−1

∫

Ak,s

(u − k)p(x)|∇ϕ|p(x) dx.

Since |∇ϕ| ≤ c/(s − t) and for any x ∈ KR, p+ ≤ (p+ − 1) p(x)
p(x)−1 , we have

ϕ(p+−1) p(x)
p(x)−1 ≤ ϕp+

. This implies

p+

∫

Ak,s

|∇u|p(x)−2∇u.∇ϕϕp+−1(u − k) dx (C.7)

≤ ε

∫

Ak,s

|∇u|p(x)ϕp+
dx + cε−1

∫

Ak,s

(
u − k

s − t

)p(x)

dx. (C.8)
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Using Hölder’s inequality we estimate the right-hand side of (C.5) as follows:

∫

Ak,s

fϕp+
(u − k) dx ≤ ‖f‖Lq

(∫

Ak,s

(u − k)
q

q−1 dx

) q−1
q

.

Since q > d
p− , we have (p−)∗

p−
q−1

q > 1. So, applying once again the Hölder’s
inequality, we obtain

∫

Ak,s

fϕp+
(u − k) dx ≤ C

(∫

Ak,s

(u − k)
(p−)∗

p− dx

) p−
(p−)∗

|Ak,s|δ, (C.9)

where δ = q−1
q − p−

(p−)∗ > 0. Set {u−k > s−t} = {x ∈ KR | u(x)−k > s−t} and
its complement as {u − k ≤ s − t}. Now we split the integral in the right-hand
side of (C.9) on Θ = Ak,s ∩ {u − k > s − t} and Ak,s\Θ:

I def=
∫

Ak,s

(
u − k

s − t

)(p−)∗

dx + |Ak,s| (C.10)

�
∫

Θ

(
u − k

s − t

) (p−)∗
p−

(s − t)
(p−)∗

p− dx (C.11)

+
∫

Ak,s\Θ

(
u − k

s − t

) (p−)∗
p−

(s − t)
(p−)∗

p− dx. (C.12)

In the same way, the second term in the right-hand side of (C.7) can be
estimated as follows.

∫

Θ

(
u − k

s − t

)p(x)

dx +
∫

Ak,s\Θ

(
u − k

s − t

)p(x)

dx � I. (C.13)

Finally, plugging (C.7)–(C.13) and we obtain for ε small enough
∫

Ak,s

|∇u|p(x)ϕp+
dx � I + |Ak,s|δI

p−
(p−)∗

where the constant depends on p, R and ε. Moreover we have

I
p−

(p−)∗ �
(∫

Ak,s

(
u − k

s − t

)(p−)∗

dx

) p−
(p−)∗

+ |Ak,s|
p−

(p−)∗ .

Hence using the Young’s inequality, we obtain the following estimate.
∫

Ak,t

|∇u|p−
dx ≤

∫

Ak,s

|∇u|p(x)ϕp+
dx + |Ak,s|

�
∫

Ak,s

(
u − k

s − t

)(p−)∗

dx + |Ak,s|
p−

(p−)∗ +δ

+ |Ak,s| + |Ak,s|δ
(∫

Ak,s

(
u − k

s − t

)(p−)∗

dx

) p−
(p−)∗

.
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By Lemma C.3, we deduce that u bounded in Ω. �
Combining Propositions C.1 and C.2, we have the following corollary:

Corollary C.5. Let p ∈ C(Ω̄) such that p− < d and u ∈ W
1,p(x)
0 (Ω) satisfying

∫

Ω

|∇u|p(x)−2∇u · ∇Ψdx =
∫

Ω

(f(x, u) + g)Ψdx, ∀Ψ ∈ W,

where f satisfies |f(x, t)| ≤ c1 + c2|t|r(x)−1 with r ∈ C(Ω) and ∀x ∈ Ω, 1 <
r(x) < p∗(x) and g ∈ Lq, q > d

p−
. Then u ∈ L∞(Ω).
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