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Abstract. This paper investigates a Schrödinger problem with power-type
nonlinearity and Lipschitz-continuous diffusion term on a bounded one-
dimensional domain. Using the Galerkin method and a truncation, results
from stochastic partial differential equations can be applied and uniform a
priori estimates for the approximations are shown. Based on these bound-
edness results and the structure of the nonlinearity, it follows the unique
existence of the variational solution.
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1. Introduction

The one-dimensional complex Ginzburg–Landau equation

dX(t) = (a1 + ia2)ΔX(t) dt + (b1 + ib2)|X(t)|2σX(t) dt + c1X(t) dt

(1.1)

with a1, a2, b1, b2, c1 ∈ R and σ > 0 represents a nonlinear generalized
Schrödinger equation with complex coefficients. It involves non-steady, dif-
fusive and dispersive terms as well as nonlinear and linear effects that can
be interpreted physically, see for example [19,20,26,32]. This equation has
many applications in physics such as fluid mechanics, nonlinear optics, wave
propagation, the theory of phase transitions, hydrodynamic instabilities and
wave envelopes, chemical and biological dynamics. Furthermore, it describes
physical phenomena like Rayleigh–Bénard convection, Taylor–Couette flow,
Bose–Einstein condensation, superconductivity and superfluidity. Throughout
this work, we consider stochastic degeneracies of the one-dimensional complex
Ginzburg–Landau equation.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-016-0374-1&domain=pdf
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In [17], we deal with the stochastic nonlinear Schrödinger equation

dX(t) = iΔX(t) dt + iλ|X(t)|2σX(t) dt + ig(t,X(t)) dW (t)

for all t ∈ [0, T ], where λ > 0, g is a special linear function in X and W is an
infinite-dimensional Wiener process. We investigate the existence and unique-
ness of the variational solution on a closed interval in R

1. Due to the approach,
σ is restricted to the interval (0, 2). Deterministic Schrödinger equations of this
type are already considered for different types of solutions, from classical so-
lutions in [14,22,28] over strong solutions in [2,15,27] and mild solutions in
[3,4,12] right up to generalized (weak/variational) solutions in [10,11,15,26].
Since physical experiments are burdened with random disturbances, stochas-
tic Schrödinger equations, based on the semigroup approach, are treated with
additive noise in [6,9] and with multiplicative noise in [1,5,6,23]. So far, varia-
tional solutions are only investigated for locally Lipschitz-continuous nonlinear
drift and diffusion terms in [13].

In this paper, we focus on the unique existence of the variational solution
of the following stochastic nonlinear Schrödinger equation

dX(t) = iΔX(t) dt − λ|X(t)|2σX(t) dt + g(t,X(t)) dW (t)

over a finite time horizon and a bounded one-dimensional domain, where λ > 0,
σ ≥ 1, g is a Lipschitz-continuous function of bounded growth and W is a
cylindrical Wiener process. Deterministic Schrödinger equations of this type
are treated in [15,18,22]. Our aim is to enlarge the ideas of [18] to the stochastic
case. Note that the power-type nonlinearity does not satisfy the local Lipschitz-
continuity assumption from [13]. However, in comparison with [17], the missing
imaginary unit in front of the nonlinear drift term is crucial for this approach.

Since the variational solution we are concerned with is more regular than
the mild solution, we obtain more general results than the papers using the
semigroup approach. Notice that each variational solution is also a mild solu-
tion but not vice versa. The price we have to pay is that we only get results
for the one-dimensional bounded domain. Instead of using Strichartz’ esti-
mates that are only valid for the unbounded space domain, we establish some
inequalities for our special nonlinear drift term (compare the Appendix).

The paper proceeds in the following way: Sect. 2 contains some useful
notations and the formulation of the stochastic nonlinear Schrödinger prob-
lem and its variational solution. The uniqueness of such a solution is shown
in Sect. 3. Then the Schrödinger problem is approximated by the Galerkin
method and a special truncation is introduced to state and prove a priori esti-
mates thereafter. In Sect. 5, we deduce global existence results for the stochas-
tic nonlinear Schrödinger equation, which is followed by a last section about
possible generalization where we especially discuss the unique existence of
the variational solution of the stochastic one-dimensional complex Ginzburg–
Landau equation by using similar ideas. The Appendix at the end includes
some auxiliary results applied within the paper.
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2. Formulation of the problem

Let K be a separable real Hilbert space, H := L2(0, 1) and V := H1(0, 1).
Then the inner product in H is given by

(
u, v
)

:=
∫ 1

0

u(x) v(x) dx, for all u, v ∈ H,

where v is the complex conjugate of v, while the inner product in V is consti-
tuted by
(
u, v
)
V

:=
∫ 1

0

[
u(x) v(x) +

d

dx
u(x)

d

dx
v(x)
]

dx, for all u, v ∈ V.

The norms in H and V are represented by ‖·‖ and ‖·‖V , respectively. Fur-
thermore, let V ∗ be the dual space of V and

〈·, ·〉 denotes the duality pairing
of V ∗ and V . The appropriate choice of H and V and the identification of
H with its dual space H∗ allow to work on a triplet of rigged Hilbert spaces
(V,H, V ∗) with continuous and dense embeddings, which is also known as a
Gelfand triplet. Moreover, we regard the operator A : V → V ∗ given by the
bilinear form

〈
Au, v

〉
:=
∫ 1

0

d

dx
u(x)

d

dx
v(x) dx, for all u, v ∈ V. (2.1)

Let (μk)k∈N be the increasing sequence of real-valued eigenvalues and let
(hk)k∈N be the corresponding eigenfunctions of A with respect to homogeneous
Neumann boundary conditions. The eigenfunctions (hk)k∈N form an orthonor-
mal system in H and they are orthogonal in V . Obviously, for all u ∈ H and
all v ∈ V , it holds that

u =
∞∑

k=1

(
u, hk

)
hk, Av =

∞∑

k=1

μk

(
v, hk

)
hk

and
〈
Av, v

〉
=

∞∑

k=1

μk

∣
∣(v, hk

)∣∣2 ≥ 0.

Now, we consider the stochastic nonlinear Schrödinger equation

dX(t, x) = − iAX(t, x) dt − λf(X(t, x)) dt + g(t,X(t, x)) dW (t) (2.2)

with initial condition X(0, ·) = ϕ(·) ∈ V and homogeneous Neumann bound-
ary conditions. Here, X is the complex-valued wave function depending on
t ∈ [0, T ] and x ∈ [0, 1], i is the imaginary unit, A represents the one-dimen-
sional negative Laplacian defined by (2.1), λ > 0, T > 0 and the function
f : V → H has the form

f(v) := |v|2σv, for all v ∈ V,

where σ ≥ 1 is fixed. Furthermore, let (Ω,F , (Ft)t∈[0,T ], P ) be a filtered com-
plete probability space and L2(K,H) the space of all Hilbert-Schmidt oper-
ators from K into H. Then (W (t))t∈[0,T ] in (2.2) is a K-valued cylindrical
Wiener process adapted to the filtration (Ft)t∈[0,T ] and the diffusion function
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g : Ω× [0, T ]×H → L2(K,H) is measurable, Ft-adapted and assumed to fulfill
the following assumptions:

• there exists a constant cg > 0 such that

‖g(t, u) − g(t, v)‖2L2(K,H) ≤ cg‖u − v‖2 (2.3)

for all t ∈ [0, T ], all u, v ∈ H and a.e. ω ∈ Ω;
• there exists a constant kg > 0 such that

‖g(t, v)‖2L2(K,V ) ≤ kg

(
1 + ‖v‖2V

)
(2.4)

for all t ∈ [0, T ], all v ∈ V and a.e. ω ∈ Ω.
Note that the noise term appearing in (2.2) includes additive as well as mul-
tiplicative Gaussian noise.

Definition 2.1. An Ft-adapted process

X ∈ L2(Ω;C([0, T ];H)) ∩ L2(Ω × [0, T ];V )

is called a variational solution of the stochastic nonlinear Schrödinger equation
(2.2) with initial condition ϕ ∈ V if it fulfills

(
X(t), v

)
=
(
ϕ, v
)− i

∫ t

0

〈
AX(s), v

〉
ds − λ

∫ t

0

(
f(X(s)), v

)
ds

+
(∫ t

0

g(s,X(s)) dW (s), v
)

(2.5)

for all t ∈ [0, T ], all v ∈ V and a.e. ω ∈ Ω.

In this paper, we will investigate the existence and uniqueness of the
variational solution of (2.5) by using the Galerkin method and a truncation.
At first, we will point out some important properties of the nonlinear functions
f and g. Due to Lemmas 7.1 and 7.2 in the Appendix, we have for all u, v ∈ V
that

‖f(v)‖2 ≤ 22σ+1‖v‖4σ+2
V , (2.6)

‖f(u) − f(v)‖2 ≤ 22σ+1(4σ − 1)2
(‖u‖4σ

V + ‖v‖4σ
V

) ‖u − v‖2. (2.7)

Hence, f : V → H is correctly defined and Lemma 7.3 implies for all u, v ∈ V
that

Re
(
f(v), v

) ≥ 0, Re
(
f(u) − f(v), u − v

) ≥ 0. (2.8)

A more general form of the nonlinear function f is discussed in Sect. 6. Because
of the representation of the Hilbert-Schmidt norm and the properties (2.3) and
(2.4) of g, it follows for all t ∈ [0, T ] and a.e. ω ∈ Ω that

‖g(t, 0)‖2L2(K,H) ≤ ‖g(t, 0)‖2L2(K,V ) ≤ kg,

‖g(t, u)‖2L2(K,H) ≤ 2cg‖u‖2 + 2kg, for all u ∈ H. (2.9)

Finally, let (u(t))t∈[0,T ] be an H-valued process with

sup
t∈[0,T ]

‖u(t)‖2 < ∞, for a.e. ω ∈ Ω.
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Then we introduce for R ∈ N the stopping time

τu
R :=

⎧
⎪⎨

⎪⎩

T, if sup
t∈[0,T ]

‖u(t)‖2 < R2,

inf
{
t ∈ [0, T ]

∣
∣ ‖u(t)‖2 ≥ R2

}
, if sup

t∈[0,T ]

‖u(t)‖2 ≥ R2.

(2.10)

Note that (τu
R)R is an increasing sequence with

lim
R→∞

τu
R = T, for a.e. ω ∈ Ω. (2.11)

Below, C(p1, p2, . . . , pm) represents a generic positive constant depending on
certain parameters p1, p2, . . . , pm. The value of this constant may vary from
line to line.

3. Uniqueness of the variational solution

While the existence of a variational solution of the stochastic nonlinear Schrö-
dinger problem (2.5) will be shown in Sect. 5, we first treat its uniqueness.

Theorem 3.1. If X ∈ L2(Ω;C([0, T ];H)) ∩ L2(Ω × [0, T ];V ) is a variational
solution of the Schrödinger problem (2.5), then it is unique.

Proof. Assume that there are two variational solutions

X, X̂ ∈ L2(Ω;C([0, T ];H)) ∩ L2(Ω × [0, T ];V )

of problem (2.5). By denoting δX := X−X̂ and applying the stochastic energy
equality, we obtain

‖δX(t)‖2 = 2 Im
∫ t

0

〈
AδX(s), δX(s)

〉
ds

− 2λ Re
∫ t

0

(
f(X(s)) − f(X̂(s)), δX(s)

)
ds

+ 2Re
∞∑

j=1

∫ t

0

([
g(s,X(s)) − g(s, X̂(s))

]
ej , δX(s)

)
dβj(s)

+
∫ t

0

∥
∥
∥g(s,X(s)) − g(s, X̂(s))

∥
∥
∥
2

L2(K,H)
ds

for all t ∈ [0, T ] and a.e. ω ∈ Ω. The first addend on the right-hand side
vanishes since Im

〈
Av, v

〉
= 0 for all v ∈ V , and the second one is less

or equal to zero because of the second property in (2.8). With the help of
the Burkholder–Davis–Gundy inequality (see [25, p. 44, Theorem 7]) and the
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Lipschitz-continuity (2.3) of g, we estimate the Itô integral by

2E sup
t∈[0,T ]

∣
∣
∣
∣
∣
∣

∞∑

j=1

∫ t

0

([
g(s,X(s)) − g(s, X̂(s))

]
ej , δX(s)

)
dβj(s)

∣
∣
∣
∣
∣
∣

≤ 6E

[∫ T

0

∥
∥
∥g(s,X(s)) − g(s, X̂(s))

∥
∥
∥
2

L2(K,H)
‖δX(s)‖2 ds

] 1
2

≤ 1
2
E sup

t∈[0,T ]

‖δX(t)‖2 + 18cg

∫ T

0

E sup
s∈[0,t]

‖δX(s)‖2 dt.

Finally, the Hilbert–Schmidt norm will be treated analogously referring to
(2.3) such that it follows

E sup
t∈[0,T ]

‖δX(t)‖2 ≤ 38cg

∫ T

0

E sup
s∈[0,t]

‖δX(s)‖2 dt.

Gronwall’s lemma yields E sup
t∈[0,T ]

‖δX(t)‖2 = 0, which implies

X(t) = X̂(t) for all t ∈ [0, T ] and a.e. ω ∈ Ω.

�

4. Galerkin method and a priori estimates

We need some preliminaries for the finite-dimensional approximations. For
each n ∈ N, we regard the finite-dimensional space Hn := sp{h1, h2, . . . , hn}
and the orthogonal projection πn : H → Hn given by

πnu :=
n∑

k=1

(
u, hk

)
hk, for all u ∈ H. (4.1)

It especially holds for all u ∈ H and all h ∈ Hn that
(
πnu, h

)
=
(
u, h
)
, ‖πnu‖2 ≤ ‖u‖2. (4.2)

Next, observe that the norms ‖·‖ and ‖·‖V are equivalent on Hn, which means
that

‖u‖2 ≤ ‖u‖2V = ‖u‖2 +
〈
Au, u

〉 ≤ (1 + μn)‖u‖2, for all u ∈ Hn, (4.3)

since μn := max {μk | k ∈ {1, 2, . . . , n}} and the operator A : Hn → Hn is
linear, continuous and satisfies

Im
〈
Au, u

〉
= 0, Au =

n∑

k=1

μk

(
u, hk

)
hk, ‖Au‖2 ≤ μ2

n ‖u‖2,

〈
Au, u

〉
=

n∑

k=1

μk

∣
∣(u, hk

)∣∣2 =
∥
∥
∥
∥

d

dx
u

∥
∥
∥
∥

2

, for all u ∈ Hn, (4.4)

and
(
v,Au

)
=
〈
Au, v

〉 ≤
∥
∥
∥
∥

d

dx
u

∥
∥
∥
∥

∥
∥
∥
∥

d

dx
v

∥
∥
∥
∥ , for all u, v ∈ Hn. (4.5)
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Let (ej)j∈N be an orthonormal basis in K and Kn := sp {e1, e2, . . . , en}. Then
we use the notations ϕn := πnϕ, fn(u) := πnf(u) and gn(·, u)w := πng(·, u)w
for all u ∈ Hn and all w ∈ Kn hereafter. The finite-dimensional Wiener process
in Kn is represented by

Wn(s) :=
n∑

j=1

ej βj(s).

Thus, adapting the Galerkin method for deterministic nonlinear Schrödinger
equations for the case of problem (2.5), we regard for each n ∈ N the finite-
dimensional Galerkin equations
(
Xn(t), hk

)
=
(
ϕn, hk

)− i

∫ t

0

〈
AXn(s), hk

〉
ds − λ

∫ t

0

(
fn(Xn(s)), hk

)
ds

+
(∫ t

0

gn(s,Xn(s)) dWn(s), hk

)
(4.6)

for all t ∈ [0, T ], all k ∈ {1, 2, . . . , n} and a.e. ω ∈ Ω.
For fixed M ∈ N, we further introduce the Lipschitz-continuous real-

valued truncation function ψM : [0,∞) → [0,∞) by

ψM (r) :=

⎧
⎪⎨

⎪⎩

1, if 0 ≤ r ≤ M,

M + 1 − r, if M < r < M + 1,

0, if r ≥ M + 1

and choose fM
n : Hn → Hn defined by fM

n (u) := ψM (‖u‖)fn(u) for each
u ∈ Hn. We consider the following finite-dimensional equations
(
XM

n (t), hk

)
=
(
ϕn, hk

)− i

∫ t

0

〈
AXM

n (s), hk

〉
ds − λ

∫ t

0

(
fM

n (XM
n (s)), hk

)
ds

+
(∫ t

0

gn(s,XM
n (s)) dWn(s), hk

)
(4.7)

for all t ∈ [0, T ], all k ∈ {1, 2, . . . , n} and a.e. ω ∈ Ω. Referring to the equiv-
alence of norms (4.3) and the property (2.7) of f , one can show that the
nonlinear truncated function fM

n : Hn → Hn is Lipschitz-continuous and
growth-bounded on Hn for fixed M,n ∈ N. Since the noise term g is also
Lipschitz-continuous by (2.3) and satisfies (2.9), gn fulfills similar properties.
Hence, we know from the theory of finite-dimensional stochastic differential
equations (with Lipschitz-continuous mappings) that there exists a unique so-
lution XM

n ∈ L2(Ω;C([0, T ];Hn)). Due to the equivalence of the norms ‖ · ‖
and ‖·‖V on Hn, we further get that XM

n ∈ L2(Ω×[0, T ];V ). In the subsequent
theorems, we state uniform a priori estimates for the Galerkin approximation
XM

n in L2p(Ω;C([0, T ];H)) and L2p(Ω × [0, T ];V ) for p ≥ 1.

Theorem 4.1. Let M,n ∈ N be arbitrarily fixed and p ≥ 1. Then there exists a
positive constant C depending on p, T, cg and kg such that

E sup
t∈[0,T ]

∥
∥XM

n (t)
∥
∥2p ≤ C(p, T, cg, kg)

[
1 + ‖ϕ‖2p

]
.
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Proof. For simplicity, we use the notation Y (t) := XM
n (t), apply the stochastic

energy equality to (4.7), use (4.2) and get

‖Y (t)‖2 = ‖ϕn‖2 + 2 Im
∫ t

0

〈
AY (s), Y (s)

〉
ds

− 2λ Re
∫ t

0

ψM (‖Y (s)‖)
(
f(Y (s)), Y (s)

)
ds

+ 2Re
n∑

j=1

∫ t

0

(
gn(s, Y (s))ej , Y (s)

)
dβj(s)

+
∫ t

0

‖gn(s, Y (s))‖2L2(Kn,Hn)
ds

for all t ∈ [0, T ] and a.e. ω ∈ Ω. Note that Im
〈
AY (s), Y (s)

〉
= 0 because of

the first property in (4.4). Let p > 1 and apply the Itô formula such that

‖Y (t)‖2p = ‖ϕn‖2p − 2λp Re
∫ t

0

ψM (‖Y (s)‖)
(
f(Y (s)), Y (s)

)‖Y (s)‖2(p−1) ds

+ 2p Re
n∑

j=1

∫ t

0

(
gn(s, Y (s))ej , Y (s)

) ‖Y (s)‖2(p−1) dβj(s)

+ 2p(p − 1)
∫ t

0

n∑

j=1

∣
∣Re
(
gn(s, Y (s))ej , Y (s)

)∣∣2 ‖Y (s)‖2(p−2) ds

+ p

∫ t

0

‖gn(s, Y (s))‖2L2(Kn,Hn)
‖Y (s)‖2(p−1) ds

for all t ∈ [0, T ] and a.e. ω ∈ Ω. Observe that the term with the nonlinearity
f is less or equal to zero by the first property in (2.8) and we also have

2p(p − 1)
∫ t

0

n∑

j=1

∣
∣Re
(
gn(s, Y (s))ej , Y (s)

)∣∣2 ‖Y (s)‖2(p−2) ds

+ p

∫ t

0

‖gn(s, Y (s))‖2L2(Kn,Hn)
‖Y (s)‖2(p−1) ds

≤ p(2p − 1)
∫ t

0

‖gn(s, Y (s))‖2L2(Kn,Hn)
‖Y (s)‖2(p−1) ds.

Consequently, one obtains

‖Y (t)‖2p ≤ ‖ϕn‖2p + 2p Re
n∑

j=1

∫ t

0

(
gn(s, Y (s))ej , Y (s)

) ‖Y (s)‖2(p−1) dβj(s)

+ p(2p − 1)
∫ t

0

‖gn(s, Y (s))‖2L2(Kn,Hn)
‖Y (s)‖2(p−1) ds (4.8)
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for all t ∈ [0, T ] and a.e. ω ∈ Ω. We use the notation τ := τY
R with R ∈ N and

observe that for each γ ∈ [0,∞) it holds

γE

(∫ t∧τ

0

‖Y (s)‖4p ds

) 1
2

≤ γE

[

sup
s∈[0,t∧τ ]

‖Y (s)‖p

(∫ t∧τ

0

‖Y (s)‖2p ds

) 1
2
]

≤ 1
2
E sup

s∈[0,t∧τ ]

‖Y (s)‖2p +
γ2

2
E

∫ t∧τ

0

‖Y (s)‖2p ds.

(4.9)

The Burkholder–Davis–Gundy inequality, Young’s inequality, estimate (2.9)
and relation (4.9) lead to

2pE sup
s∈[0,t∧τ ]

Re
n∑

j=1

∫ s

0

(
gn(r, Y (r))ej , Y (r)

) ‖Y (r)‖2(p−1) dβj(r)

≤ 6pE

[∫ t∧τ

0

‖g(s, Y (s))‖2L2(K,H) ‖Y (s)‖4p−2 ds

] 1
2

≤ 6pE

[
1
2p

∫ t∧τ

0

‖g(s, Y (s))‖4p
L2(K,H) ds +

2p − 1
2p

∫ t∧τ

0

‖Y (s)‖4p ds

] 1
2

≤ C(p, T, kg) +
1
2
E sup

s∈[0,t∧τ ]

‖Y (s)‖2p + C(p, cg)E
∫ t∧τ

0

‖Y (s)‖2p ds.

Moreover, the inequality of Young with p > 1 and (2.9) yield

p(2p − 1)E sup
s∈[0,t∧τ ]

∫ s

0

‖gn(r, Y (r))‖2L2(Kn,Hn)
‖Y (r)‖2(p−1) dr

≤ (2p − 1)
[
E

∫ t∧τ

0

‖g(s, Y (s))‖2p
L2(K,H) ds + (p − 1)E

∫ t∧τ

0

‖Y (s)‖2p ds

]

≤ C(p, cg)E
∫ t∧τ

0

‖Y (s))‖2p ds + C(p, T, kg).

Based on (4.8), we obtain

E sup
s∈[0,t∧τ ]

‖Y (s)‖2p ≤ 2‖ϕn‖2p + C(p, T, kg)

+ C(p, cg)
∫ t

0

E sup
s∈[0,r∧τ ]

‖Y (s)‖2p dr.

By applying Gronwall’s lemma we receive

E sup
s∈[0,T∧τ ]

‖Y (s)‖2p ≤ C(p, T, cg, kg)
[
1 + ‖ϕn‖2p

]
.

Let R → ∞, use (2.11), the notation Y (t) = XM
n (t) and ‖ϕn‖ ≤ ‖ϕ‖ to get

E sup
t∈[0,T ]

∥
∥XM

n (t)
∥
∥2p ≤ C(p, T, cg, kg)

[
1 + ‖ϕ‖2p

]
.

The proof for the case p = 1 follows analogous ideas as above. �
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Theorem 4.2. Let M,n ∈ N be arbitrarily fixed and p ≥ 1. Then there exists a
positive constant C depending on p, T, cg and kg such that the solution XM

n of
(4.7) satisfies the estimate

E sup
t∈[0,T ]

∥
∥XM

n (t)
∥
∥2p

V
≤ C(p, T, cg, kg)

[
1 + ‖ϕ‖2p

V

]
.

Proof. We denote again Y (t) := XM
n (t), consider (4.7) and use the energy

equality and (4.2) to write
∣
∣(Y (t), hk

)∣∣2 =
∣
∣(ϕn, hk

)∣∣2 + 2 Im
∫ t

0

〈
AY (s),

(
Y (s), hk

)
hk

〉
ds

− 2λ Re
∫ t

0

ψM (‖Y (s)‖)
(
f(Y (s)),

(
Y (s), hk

)
hk

)
ds

+ 2Re
n∑

j=1

∫ t

0

(
gn(s, Y (s))ej ,

(
Y (s), hk

)
hk

)
dβj(s)

+
∫ t

0

n∑

j=1

∣
∣(gn(s, Y (s))ej , hk

)∣∣2 ds

for all t ∈ [0, T ] and a.e. ω ∈ Ω, where the second term on the right-hand side
vanishes. Multiplication with the real-valued eigenvalues μk of A, summing up
over all k ∈ {1, 2, . . . , n} and using the relations (4.4) result in∥
∥
∥
∥

∂

∂x
Y (t)
∥
∥
∥
∥

2

=
∥
∥
∥
∥

d

dx
ϕn

∥
∥
∥
∥

2

− 2λ Re
∫ t

0

ψM (‖Y (s)‖)
(
f(Y (s)), AY (s)

)
ds

+ 2Re
n∑

j=1

∫ t

0

(
gn(s, Y (s))ej , AY (s)

)
dβj(s)

+
∫ t

0

n∑

j=1

∥
∥
∥
∥

∂

∂x
[gn(s, Y (s))ej ]

∥
∥
∥
∥

2

ds

for all t ∈ [0, T ] and a.e. ω ∈ Ω. Let again p > 1, then the application of the
Itô formula yields
∥
∥
∥
∥

∂

∂x
Y (t)
∥
∥
∥
∥

2p

=
∥
∥
∥
∥

d

dx
ϕn

∥
∥
∥
∥

2p

− 2λp Re
∫ t

0

ψM (‖Y (s)‖)
(
f(Y (s)), AY (s)

)
∥
∥
∥
∥

∂

∂x
Y (s)
∥
∥
∥
∥

2(p−1)

ds

+ 2p Re
n∑

j=1

∫ t

0

(
gn(s, Y (s))ej , AY (s)

)
∥
∥
∥
∥

∂

∂x
Y (s)
∥
∥
∥
∥

2(p−1)

dβj(s)

+ 2p(p − 1)
∫ t

0

n∑

j=1

∣
∣Re
(
gn(s, Y (s))ej , AY (s)

)∣∣2
∥
∥
∥
∥

∂

∂x
Y (s)
∥
∥
∥
∥

2(p−2)

ds

+ p

∫ t

0

n∑

j=1

∥
∥
∥
∥

∂

∂x
[gn(s, Y (s))ej ]

∥
∥
∥
∥

2 ∥∥
∥
∥

∂

∂x
Y (s)
∥
∥
∥
∥

2(p−1)

ds
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for all t ∈ [0, T ] and a.e. ω ∈ Ω. Due to Lemma 7.4 (see Appendix), the
second term on the right-hand side is less or equal to zero. For the Itô integral,
we apply the Burkholder-Davis-Gundy inequality, property (4.5), the growth-
boundedness (2.4), Young’s inequality and relation (4.9) to receive for τ := τY

R

that

2pE sup
s∈[0,t∧τ ]

Re
n∑

j=1

∫ s

0

(
gn(r, Y (r))ej , AY (r)

)
∥
∥
∥
∥

∂

∂x
Y (r)
∥
∥
∥
∥

2(p−1)

dβj(r)

≤ 6pE

⎡

⎣
∫ t∧τ

0

n∑

j=1

∥
∥
∥
∥

∂

∂x
[gn(s, Y (s))ej ]

∥
∥
∥
∥

2 ∥∥
∥
∥

∂

∂x
Y (s)
∥
∥
∥
∥

4p−2

ds

⎤

⎦

1
2

≤ 6p
√

kg E

[∫ t∧τ

0

(
1 + ‖Y (s)‖2V

)
∥
∥
∥
∥

∂

∂x
Y (s)
∥
∥
∥
∥

4p−2

ds

] 1
2

≤ 6p
√

kg E

[
1
2p

T +
1
2p

∫ T

0

‖Y (s)‖4p ds +
6p − 2

2p

∫ t∧τ

0

∥
∥
∥
∥

∂

∂x
Y (s)
∥
∥
∥
∥

4p

ds

] 1
2

≤ C(p, T, kg) +
1
2
E sup

s∈[0,T ]

‖Y (s)‖2p + C(p, kg)E
∫ T

0

‖Y (s)‖2p ds

+
1
2
E sup

s∈[0,t∧τ ]

∥
∥
∥
∥

∂

∂x
Y (s)
∥
∥
∥
∥

2p

+ C(p, kg)E
∫ t∧τ

0

∥
∥
∥
∥

∂

∂x
Y (s)
∥
∥
∥
∥

2p

ds.

Next, we write

E sup
s∈[0,t∧τ ]

2p(p − 1)
∫ s

0

n∑

j=1

∣
∣Re
(
gn(r, Y (r))ej , AY (r)

)∣∣2
∥
∥
∥
∥

∂

∂x
Y (r)
∥
∥
∥
∥

2(p−2)

dr

+ E sup
s∈[0,t∧τ ]

p

∫ s

0

n∑

j=1

∥
∥
∥
∥

∂

∂x
[gn(r, Y (r))ej ]

∥
∥
∥
∥

2 ∥∥
∥
∥

∂

∂x
Y (r)
∥
∥
∥
∥

2(p−1)

dr

≤ E sup
s∈[0,t∧τ ]

p(2p − 1)
∫ s

0

n∑

j=1

∥
∥
∥
∥

∂

∂x
[gn(r, Y (r))ej ]

∥
∥
∥
∥

2 ∥∥
∥
∥

∂

∂x
Y (r)
∥
∥
∥
∥

2(p−1)

dr

≤ C(p, T, kg)+C(p, kg)E
∫ T

0

‖Y (s)‖2p ds+C(p, kg)E
∫ t∧τ

0

∥
∥
∥
∥

∂

∂x
Y (s)
∥
∥
∥
∥

2p

ds
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because of the same calculations like in the case of the stochastic integral.
Combining these estimates, we obtain

E sup
s∈[0,t∧τ ]

∥
∥
∥
∥

∂

∂x
Y (s)
∥
∥
∥
∥

2p

≤ 2
∥
∥
∥
∥

∂

∂x
ϕn

∥
∥
∥
∥

2p

+ C(p, T, kg) + E sup
s∈[0,T ]

‖Y (s)‖2p

+ C(p, kg)E
∫ T

0

‖Y (s)‖2p ds

+ C(p, kg)
∫ t

0

E sup
s∈[0,r∧τ ]

∥
∥
∥
∥

∂

∂x
Y (s)
∥
∥
∥
∥

2p

dr.

Applying Gronwall’s lemma, it results that

E sup
s∈[0,T∧τ ]

∥
∥
∥
∥

∂

∂x
Y (s)
∥
∥
∥
∥

2p

≤C(p, T, kg)

[

1 +
∥
∥
∥
∥

∂

∂x
ϕn

∥
∥
∥
∥

2p

+ E sup
s∈[0,T ]

‖Y (s)‖2p

+ E

∫ T

0

‖Y (s)‖2p ds

]

.

Letting R → ∞ and taking into account (2.11) and Theorem 4.1, we get

E sup
t∈[0,T ]

∥
∥
∥
∥

∂

∂x
Y (t)
∥
∥
∥
∥

2p

≤ C(p, T, cg, kg)
[
1 + ‖ϕn‖2p

V

]
.

Hence, with Y (t) = XM
n (t), ‖ϕn‖V ≤ ‖ϕ‖V and Theorem 4.1 it follows that

E sup
t∈[0,T ]

∥
∥XM

n (t)
∥
∥2p

V
≤ C(p, T, cg, kg)

[
1 + ‖ϕ‖2p

V

]
.

The proof for the case p = 1 can be proved with analogous ideas as above. �

5. Existence of the variational solution

Based on the a priori estimates from the last section, we are now able to
show the unique existence of the variational solution of the finite-dimensional
problem (4.6) and of the infinite-dimensional problem (2.5) thereafter.

Theorem 5.1. For each fixed n ∈ N and p ≥ 1 there exists a unique variational
solution Xn ∈ L2p(Ω;C([0, T ];H))∩L2p(Ω×[0, T ];V ) of the finite-dimensional
stochastic nonlinear Schrödinger problem (4.6). Besides, we have for each fixed
n ∈ N and p ≥ 1 the estimates

E sup
t∈[0,T ]

‖Xn(t)‖2p ≤ C(p, T, cg, kg)
[
1 + ‖ϕ‖2p

]
,

E

∫ T

0

‖Xn(t)‖2p
V dt ≤ C(p, T, cg, kg)

[
1 + ‖ϕ‖2p

V

]
.

Proof. For the whole proof, we fix n ∈ N. Then the uniqueness of the vari-
ational solution follows similarly to the proof of Theorem 3.1. Consider the
stopping time τM := τu

M for u := XM
n , which is equal to the stopping time in
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(2.10) for R = M . From the definition of τM , Markov’s inequality and Theorem
4.1 (for p = 1) we obtain

P (τM < T ) ≤ P

(

sup
t∈[0,T ]

∥
∥XM

n (t)
∥
∥2 ≥ M2

)

≤ C(T, cg, kg)
M2

[
1 + ‖ϕ‖2

]
.

(5.1)

Thus, the increasing sequence of stopping times (τM )M converges a.s. to T . Let
ΩM be the set of all ω ∈ Ω such that XM

n (ω, ·) satisfies (4.7) for all t ∈ [0, T ]
and all k ∈ {1, 2, . . . , n} and XM

n (ω, ·) has continuous trajectories in H. We
introduce Ω′ :=

⋂∞
M=1 ΩM with P (Ω′) = 1. Furthermore, we define

S :=
∞⋃

M=1

⋃

1≤K≤M

{
ω ∈ Ω′ ∣∣ τK = T and ∃ t ∈ [0, T ] : XK

n (ω, t) 
= XM
n (ω, t)

}
.

It holds that P (S) = 0 because otherwise there exist two natural numbers
K0,M0 with K0 < M0 such that

SM0,K0 :=
{
ω ∈ Ω′ ∣∣ τK0 = T and ∃ t ∈ [0, T ] : XK0

n (ω, t) 
= XM0
n (ω, t)

}

has the probability P (SM0,K0) > 0. Denoting

X∗(ω, t) :=

{
XK0

n (ω, t), if ω ∈ SM0,K0 ,

XM0
n (ω, t), if ω ∈ Ω′\SM0,K0

for each t ∈ [0, T ], we see that for all ω ∈ SM0,K0 there exists a t ∈ [0, T ]
such that X∗(ω, t) 
= XM0

n (ω, t). This contradicts the almost sure uniqueness
of the variational solution of (4.7) (for M = M0), and it follows that P (S) = 0.
Letting

Ω′′ := Ω′ ∩
( ∞⋃

M=1

{τM = T}\S

)

,

using (5.1) and the definition of S, we get

P (Ω′′) = lim
M→∞

P ({τM = T}\S) = 1 − lim
M→∞

P (τM < T ) = 1.

Now, we choose ω ∈ Ω′′. For this ω there exists an M0 ∈ N such that τM = T
for all M ≥ M0. Therefore, ψM

(∥∥XM
n (s)
∥
∥) = 1 for all s ∈ [0, T ] and all

M ≥ M0, and consequently

(
XM

n (t), hk

)
=
(
ϕn, hk

)− i

∫ t

0

〈
AXM

n (s), hk

〉
ds − λ

∫ t

0

(
fn(XM

n (s)), hk

)
ds

+
(∫ t

0

gn(s,XM
n (s)) dWn(s), hk

)

for all t ∈ [0, T ], all M ≥ M0 and all k ∈ {1, 2, . . . , n}. For this fixed ω ∈ Ω′′

we define

Xn(ω, ·) := XM
n (ω, ·), for each t ∈ [0, T ] and all M ≥ M0. (5.2)
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Hence, we have

(
Xn(t), hk

)
=
(
ϕn, hk

)− i

∫ t

0

〈
AXn(s), hk

〉
ds − λ

∫ t

0

(
fn(Xn(s)), hk

)
ds

+
(∫ t

0

gn(s,Xn(s)) dWn(s), hk

)

for all ω ∈ Ω′′, all t ∈ [0, T ] and all k ∈ {1, 2, . . . , n}. By the way, this equals
Eq. (4.6). Due to the properties of XM

n , the process (Xn(t))t∈[0,T ] is H-valued,
F × B[0,T ]-measurable, adapted to the filtration (Ft)t∈[0,T ] and has almost
surely continuous trajectories in H. Because of (5.2), it results for each p ≥ 1
that

lim
M→∞

sup
t∈[0,T ]

∥
∥XM

n (t) − Xn(t)
∥
∥2p

= 0, for a.e. ω ∈ Ω,

lim
M→∞

∫ T

0

∥
∥XM

n (t) − Xn(t)
∥
∥2p

V
dt = 0, for a.e. ω ∈ Ω.

The Lemma of Fatou, Theorems 4.1 and 4.2 finally yield

E sup
t∈[0,T ]

‖Xn(t)‖2p ≤ lim inf
M→∞

E sup
t∈[0,T ]

∥
∥XM

n (t)
∥
∥2p

≤ C(p, T, cg, kg)
[
1 + ‖ϕ‖2p

]
,

E

∫ T

0

‖Xn(t)‖2p
V dt ≤ lim inf

M→∞
E

∫ T

0

∥
∥XM

n (t)
∥
∥2p

V
dt

≤ C(p, T, cg, kg)
[
1 + ‖ϕ‖2p

V

]
.

Thus, Xn ∈ L2p(Ω;C([0, T ];H)) ∩ L2p(Ω × [0, T ];V ) is the unique variational
solution of (4.6) for all p ≥ 1. �

Now, we state our main result concerning the unique existence of the
variational solution of the stochastic nonlinear Schrödinger problem (2.5).

Theorem 5.2. The stochastic nonlinear Schrödinger problem (2.5) possesses a
unique variational solution X ∈ L2p(Ω;C([0, T ];H)) ∩ L2p(Ω × [0, T ];V ) for
each p ≥ 1, which satisfies

E sup
t∈[0,T ]

‖X(t)‖2p ≤ C(p, T, cg, kg)
[
1 + ‖ϕ‖2p

]
,

E

∫ T

0

‖X(t)‖2p
V dt ≤ C(p, T, cg, kg)

[
1 + ‖ϕ‖2p

V

]
.

Moreover, the sequence of Galerkin approximations (Xn)n converges to X
strongly in L2(Ω;C([0, T ];H)) and weakly in L2p(Ω × [0, T ];V ).

Proof. It suffices to focus on the existence of a solution because the uniqueness
can be found in Theorem 3.1. We know from Theorem 5.1 that there exists
a unique variational solution Xn ∈ L2p(Ω;C([0, T ];H)) ∩ L2p(Ω × [0, T ];V )
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of (4.6) and its corresponding uniform a priori estimates. Due to (2.6) and
Theorem 5.1, the nonlinear drift term obeys

E

∫ T

0

‖f(Xn(t))‖2 dt ≤ C(σ, T, cg, kg)
[
1 + ‖ϕ‖2(2σ+1)

V

]
, (5.3)

which implies the uniform boundedness of (f(Xn))n in L2(Ω × [0, T ];H). The
property (2.9) and Theorem 5.1 lead to

E

∫ T

0

‖g(t,Xn(t))‖2L2(K,H) dt ≤ C(T, cg, kg)
[
1 + ‖ϕ‖2

]
,

hence, (g(·,Xn))n is uniformly bounded in L2(Ω × [0, T ];L2(K,H)).
First, we fix p ≥ 4σ. By the above uniform boundedness properties and

Lemma 7.5, it follows that there exist a subsequence, which we denote by
(Xn)n as well, and functions Z ∈ L2p(Ω × [0, T ];V ), f∗ ∈ L2(Ω × [0, T ];H)
and g∗ ∈ L2(Ω × [0, T ];L2(K,H)) such that we receive for n → ∞ that

Xn ⇀ Z, in L2(Ω × [0, T ];H), L2(Ω × [0, T ];V )

and L2p(Ω × [0, T ];V ), (5.4)

f(Xn) ⇀ f∗, in L2(Ω × [0, T ];H), (5.5)

g(·,Xn) ⇀ g∗, in L2(Ω × [0, T ];L2(K,H)). (5.6)

Taking n → ∞ in (4.6) and using these weak convergence results, we get for
a.e. (ω, t) ∈ Ω × [0, T ] and all k ∈ N that

(
Z(t), hk

)
=
(
ϕ, hk

)− i

∫ t

0

〈
AZ(s), hk

〉
ds − λ

∫ t

0

(
f∗(s), hk

)
ds

+
(∫ t

0

g∗(s) dW (s), hk

)
. (5.7)

There exists an Ft-measurable H-valued process which is equal to Z(t) for
a.e. (ω, t) ∈ Ω× [0, T ] and equal to the right-hand side of (5.7) for all t ∈ [0, T ]
and a.e. ω ∈ Ω. We also denote this process by (Z(t))t∈[0,T ]. Therefore,

(
Z(t), hk

)
=
(
ϕ, hk

)− i

∫ t

0

〈
AZ(s), hk

〉
ds − λ

∫ t

0

(
f∗(s), hk

)
ds

+
(∫ t

0

g∗(s) dW (s), hk

)
(5.8)

for all t ∈ [0, T ], all k ∈ N and a.e. ω ∈ Ω. The process (Z(t))t∈[0,T ] has in H
almost surely continuous trajectories (see [25, p. 73, Theorem 2]).

Next, we denote by Zn := πnZ and g∗
n(·)w := πng∗(·)w for all w ∈ Kn the

finite-dimensional approximations of Z and g∗(·)w, respectively, and we choose
ξ(t) := exp{−2(1 + cg)t} for all t ∈ [0, T ]. Using (4.6), (5.8), the stochastic
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energy equality and the properties (4.4) of A, we obtain

E ξ(T ) ‖Xn(T ) − Zn(T )‖2

= −2λE Re
∫ T

0

ξ(t)
(
f(Xn(t)) − f∗(t),Xn(t) − Zn(t)

)
dt

− 2(1 + cg)E
∫ T

0

ξ(t) ‖Xn(t) − Zn(t)‖2 dt

+ E

∫ T

0

ξ(t) ‖gn(t,Xn(t)) − g∗
n(t)‖2L2(Kn,Hn)

dt

+ E

∫ T

0

ξ(t)
∑

j>n

n∑

k=1

∣
∣(g∗(t)ej , hk

)∣∣2 dt. (5.9)

Due to monotone convergence and since g∗ ∈ L2(Ω×[0, T ];L2(K,H)), we have
for n → ∞ that

E

∫ T

0

ξ(t)
∑

j>n

n∑

k=1

∣
∣(g∗(t)ej , hk

)∣∣2 dt ≤ E

∫ T

0

ξ(t)
∑

j>n

‖g∗(t)ej‖2 dt → 0.

For simplicity, we omit to write the dependence on t ∈ [0, T ] in the following
two auxiliary results. The second property in (2.8) entails

− 2λ Re
(
f(Xn) − f∗,Xn − Zn

)

= −2λ Re
(
f(Xn) − f(Zn),Xn − Zn

)− 2λ Re
(
f(Zn) − f(Z),Xn − Zn

)

− 2λ Re
(
f(Z) − f∗,Xn − Zn

)

≤ λ2‖f(Zn) − f(Z)‖2 + ‖Xn − Zn‖2 − 2λ Re
(
f(Z) − f∗,Xn − Zn

)
,

and, regarding (2.3), it results that

‖gn(·,Xn) − g∗
n‖2L2(Kn,Hn)

≤ ‖g(·,Xn) − g∗‖2L2(K,H)

= ‖g(·,Xn) − g(·, Z)‖2L2(K,H) +
(
g(·,Xn) − g∗, g(·, Z) − g∗)

L2(K,H)

+
(
g(·, Z) − g∗, g(·,Xn) − g∗)

L2(K,H)
− ‖g(·, Z) − g∗‖2L2(K,H)

≤ 2cg‖Xn − Zn‖2 + 2cg‖Zn − Z‖2 +
(
g(·,Xn) − g∗, g(·, Z) − g∗)

L2(K,H)

+
(
g(·, Z) − g∗, g(·,Xn) − g∗)

L2(K,H)
− ‖g(·, Z) − g∗‖2L2(K,H).

We use that Zn = πnZ and 2p ≥ 8σ ≥ 4 to state

Zn, Z ∈ L2p(Ω × [0, T ];V ) ↪→ L4(Ω × [0, T ];V ) ↪→ L4(Ω × [0, T ];H).

Observe that ‖Zn(t) − Z(t)‖ → 0 for all t ∈ [0, T ] and a.e. ω ∈ Ω as n → ∞
such that

lim
n→∞ E

∫ T

0

‖Zn(t) − Z(t)‖4 dt = E

∫ T

0

lim
n→∞ ‖Zn(t) − Z(t)‖4 dt = 0.

(5.10)
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Based on (2.7), the Cauchy–Schwarz inequality and ξ(t) ≤ 1 for all t ∈ [0, T ],
we have

E

∫ T

0

ξ(t) ‖f(Zn(t)) − f(Z(t))‖2 dt

≤ C(σ)

(

E

∫ T

0

(‖Zn(t)‖8σ
V +‖Z(t)‖8σ

V

)
dt

) 1
2
(

E

∫ T

0

‖Zn(t)−Z(t)‖4 dt

) 1
2

,

(5.11)

which yields, due to Zn, Z ∈ L2p(Ω×[0, T ];V ) ↪→ L8σ(Ω×[0, T ];V ) and (5.10),
that

f(Zn) → f(Z) in L2(Ω × [0, T ];H) as n → ∞. (5.12)

Because Zn → Z in L2(Ω × [0, T ];H) (since Zn = πnZ), Xn − Zn ⇀ 0 in
L2(Ω× [0, T ];H) (by (5.4)) and g(·,Xn) ⇀ g∗ in L2(Ω× [0, T ];L2(K,H)) (see
(5.6)), it follows by (5.9) for n → ∞ that

E ξ(T ) ‖Xn(T ) − Zn(T )‖2 → 0, E

∫ T

0

ξ(t) ‖Xn(t) − Zn(t)‖2 dt → 0,

and, therefore,

E

∫ T

0

‖Xn(t) − Zn(t)‖2 dt → 0. (5.13)

Furthermore, we obtain

E

∫ T

0

ξ(t) ‖g(t, Z(t)) − g∗(t)‖2L2(K,H) dt = 0,

which implies

g(t, Z(t)) = g∗(t), for a.e. (ω, t) ∈ Ω × [0, T ].

Consider η ∈ L2(Ω × [0, T ];H) to be a simple function. Hence, it is uniformly
bounded with respect to the variables ω and t. We use Lemmas 7.1 and 7.2 in
the Appendix and the Cauchy–Schwarz inequality to compute

∣
∣
∣
∣
∣
E

∫ T

0

(
f(Xn(t)) − f(Zn(t)), η(t)

)
dt

∣
∣
∣
∣
∣

≤ C(σ)

(

E

∫ T

0

‖η(t)‖2 (‖Xn(t)‖4σ
V + ‖Zn(t)‖4σ

V

)
dt

) 1
2

×
(

E

∫ T

0

‖Xn(t) − Zn(t)‖2 dt

) 1
2

.

As a result of (5.13) and the fact that (Xn)n is bounded in L4σ(Ω × [0, T ];V )
(see Theorem 5.1) and (Zn)n is bounded in L4σ(Ω × [0, T ];V ) (due to the
embedding L2p(Ω × [0, T ];V ) ↪→ L4σ(Ω × [0, T ];V )), we conclude that

E

∫ T

0

(
f(Xn(t)) − f(Zn(t)), η(t)

)
dt → 0.
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Based on f(Xn) ⇀ f∗ (by (5.5)) and f(Zn) − f(Z) → 0 in L2(Ω × [0, T ];H)
(by (5.12)), it follows

E

∫ T

0

(
f∗(t) − f(Z(t)), η(t)

)
dt = 0.

However, the set of simple functions in L2(Ω × [0, T ];H) is dense in the space
L2(Ω × [0, T ];H), so we deduce that

E

∫ T

0

(
f∗(t) − f(Z(t)), η(t)

)
dt = 0, for all η ∈ L2(Ω × [0, T ];H).

Thus,

f(Z(t)) = f∗(t), for a.e. (ω, t) ∈ Ω × [0, T ].

Then (5.8) yields for all t ∈ [0, T ], all k ∈ N and a.e. ω ∈ Ω that

(
Z(t), hk

)
=
(
ϕ, hk

)− i

∫ t

0

〈
AZ(s), hk

〉
ds − λ

∫ t

0

(
f(Z(s)), hk

)
ds

+
(∫ t

0

g(s, Z(s)) dW (s), hk

)
.

Since sp{h1, h2, . . . , hn, . . .} is dense in V , the above equation also holds for all
v ∈ V . Hence, X := Z is the variational solution of the stochastic nonlinear
Schrödinger problem (2.5), and X ∈ L2(Ω;C([0, T ];H)) ∩ L2p(Ω × [0, T ];V )
for fixed p ≥ 4σ.

For p ∈ [1, 4σ) we use the continuous embedding result

L8σ(Ω × [0, T ];V ) ↪→ L2p(Ω × [0, T ];V ).

Consequently, weak convergence in L8σ(Ω×[0, T ];V ) implies weak convergence
in L2p(Ω × [0, T ];V ) (see [30, p. 265, Proposition 21.35(c)]). By now, we know
that a subsequence of (Xn)n converges to X strongly in L2(Ω × [0, T ];H) and
weakly in L2p(Ω × [0, T ];V ). In fact, the whole sequence has these proper-
ties because of [29, p. 480, Proposition 10.13(1) and (2)] and since (2.5) pos-
sesses a unique solution. Using the weak convergence of (Xn)n towards X in
L2p(Ω × [0, T ];V ) for all p ≥ 1 and the result of Theorem 5.1, we get

E

∫ T

0

‖X(t)‖2p
V dt ≤ lim inf

n→∞ E

∫ T

0

‖Xn(t)‖2p
V dt ≤ C(p, T, cg, kg)

[
1 + ‖ϕ‖2p

V

]
.

(5.14)

The estimate

E sup
t∈[0,T ]

‖X(t)‖2p ≤ C(p, T, cg, kg)
[
1 + ‖ϕ‖2p

]

can be shown similarly to Theorem 4.1. Therefore, it holds that

X ∈ L2p(Ω;C([0, T ];H)) ∩ L2p(Ω × [0, T ];V ).

To verify the strong convergence of (Xn)n to X in L2(Ω;C([0, T ];H)),
we take (2.5) and (4.6), apply the stochastic energy equality to their difference
and obtain
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‖X(t) − Xn(t)‖2

= ‖ϕ − ϕn‖2 + 2 Im
∫ t

0

〈
A [X(s) − Xn(s)] ,X(s) − Xn(s)

〉
ds

− 2λ Re
∫ t

0

(
f(X(s)) − fn(Xn(s)),X(s) − Xn(s)

)
ds

+ 2Re
n∑

j=1

∫ t

0

(
[g(s,X(s)) − gn(s,Xn(s))] ej ,X(s) − Xn(s)

)
dβj(s)

+ 2Re
∑

j>n

∫ t

0

(
g(s,X(s))ej ,X(s) − Xn(s)

)
dβj(s)

+
∫ t

0

n∑

j=1

‖[g(s,X(s)) − gn(s,Xn(s))] ej‖2 ds +
∫ t

0

∑

j>n

‖g(s,X(s))ej‖2 ds

for all t ∈ [0, T ] and a.e. ω ∈ Ω. Based on the series representation, the first
term on the right-hand side converges to zero as n → ∞ and the second one
vanishes. Due to (4.1) and (5.13) (with Zn = πnZ = πnX), observe that

E

∫ T

0

‖X(s) − Xn(s)‖2 ds

≤ 2E

∫ T

0

‖X(s) − πnX(s)‖2 ds + 2E

∫ T

0

‖πnX(s) − Xn(s)‖2 ds → 0

(5.15)

as n → ∞. The Cauchy–Schwarz inequality yields

E sup
t∈[0,T ]

−2λ Re
∫ t

0

(
f(X(s)) − fn(Xn(s)),X(s) − Xn(s)

)
ds

≤ 2λ

(

E

∫ T

0

‖f(X(s))−fn(Xn(s))‖2 ds

) 1
2
(

E

∫ T

0

‖X(s)−Xn(s)‖2 ds

) 1
2

,

which converges to zero as n → ∞ because the first expression in parentheses
is bounded (compare (5.3) and (5.14)), while the second one goes to zero (by
(5.15)). Using the Burkholder–Davis–Gundy inequality, we get

2E sup
t∈[0,T ]

Re
n∑

j=1

∫ t

0

(
[g(s,X(s)) − gn(s,Xn(s))] ej ,X(s) − Xn(s)

)
dβj(s)

≤ 6E

⎡

⎣
∫ T

0

n∑

j=1

‖[g(s,X(s)) − gn(s,Xn(s))] ej‖2 ‖X(s) − Xn(s)‖2 ds

⎤

⎦

1
2

≤ 36E

∫ T

0

n∑

j=1

‖[g(s,X(s)) − gn(s,Xn(s))] ej‖2 ds

+
1
4
E sup

t∈[0,T ]

‖X(t) − Xn(t)‖2 .
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Relations (4.1) and (4.2), the definition of gn(·, u)w for all u ∈ Hn and all
w ∈ Kn, Cauchy’s Double Series Theorem (see [8, p. 22]) and the Lipschitz-
continuity (2.3) of g entail

E

∫ T

0

n∑

j=1

‖[g(s,X(s)) − gn(s,Xn(s))] ej‖2 ds

≤ 2E

∫ T

0

n∑

j=1

‖g(s,X(s))ej − πng(s,X(s))ej‖2 ds

+ 2E

∫ T

0

n∑

j=1

‖πng(s,X(s))ej − gn(s,Xn(s))ej‖2 ds

≤ 2E

∫ T

0

∑

k>n

∞∑

j=1

∣
∣(g(s,X(s))ej , hk

)∣∣2 ds + 2cgE

∫ T

0

‖X(s) − Xn(s)‖2 ds.

This expression also converges to zero as n → ∞ because of relation (5.15),
the fact that g ∈ L2(Ω × [0, T ];L2(K,H)) and the rest of a convergent series
goes to zero. Furthermore, the Burkholder-Davis-Gundy inequality leads to

2E sup
t∈[0,T ]

Re
∑

j>n

∫ t

0

(
g(s,X(s))ej ,X(s) − Xn(s)

)
dβj(s)

≤ 6E

⎡

⎣
∫ T

0

∑

j>n

‖g(s,X(s))ej‖2 ‖X(s) − Xn(s)‖2 ds

⎤

⎦

1
2

≤ 36E

∫ T

0

∑

j>n

‖g(s,X(s))ej‖2 ds +
1
4
E sup

t∈[0,T ]

‖X(t) − Xn(t)‖2

where the same reasoning of a convergent series is valid such that

E

∫ T

0

∑

j>n

‖g(s,X(s))ej‖2 ds → 0 as n → ∞.

Finally, the equation given by the stochastic energy equality results in

E sup
t∈[0,T ]

‖X(t) − Xn(t)‖2 → 0 as n → ∞.

Thus, the sequence of Galerkin approximations (Xn)n converges to X strongly
in L2(Ω;C([0, T ];H)) and weakly in L2p(Ω × [0, T ];V ). �

6. Generalizations

1. Instead of homogeneous Neumann boundary conditions, we can also think
of homogeneous Dirichlet or periodic boundary conditions. Then all re-
sults of this paper for the stochastic nonlinear Schrödinger problem stay
the same. Furthermore, during this work, we used Lipschitz-continuity and
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growth-boundedness conditions of the diffusion function g. These assump-
tions can be weakened to local Lipschitz-continuity in L2(K,H) and growth-
boundedness in L2(K,H) and L2(K,V ):
• for each L ∈ N there exists a constant cg,L > 0 such that

‖g(t, u) − g(t, v)‖2L2(K,H) ≤ cg,L‖u − v‖2
for all t ∈ [0, T ], all u, v ∈ H with ‖u‖ ≤ L, ‖v‖ ≤ L and a.e. ω ∈ Ω;

• there exist constants cg, kg > 0 such that

‖g(t, u)‖2L2(K,H) ≤ cg

(
1 + ‖u‖2) ,

‖g(t, v)‖2L2(K,V ) ≤ kg

(
1 + ‖v‖2V

)

for all t ∈ [0, T ], all u ∈ H, all v ∈ V and a.e. ω ∈ Ω.
Similar existence and uniqueness results as in the case of a globally Lipschitz-
continuous function g hold: we use the Galerkin method and the truncation
to prove the existence of the finite-dimensional equation and then we shift
the results to the investigated equation (the steps are similar as in [13,
Section 3.2]).

2. More general types of nonlinearities may be considered. In place of the
power-term f(v) = |v|2σv for all v ∈ V , we can take f : V → H defined
by f(v) := F (|v|2)v, where F : [0,∞) → [0,∞) is a C1-function with
F ′(x) ≥ 0 for each x ≥ 0, and there exist C > 0 and σ > 1 such that for
each x1, x2 ≥ 0

|F (x1) − F (x2)| ≤ C
(
1 + |x1|σ−1 + |x2|σ−1

) |x1 − x2|. (6.1)

The case σ = 1 may also be included by assuming that F is globally
Lipschitz-continuous. Assumption (6.1) substitutes the inequality from
Lemma 7.2. With the help of Lemma 7.1 and Young’s inequality, one can
verify the analogues of (2.6) and (2.7)

‖f(v)‖ ≤ C(σ)
(
1 + ‖v‖2σ+1

V

)
,

‖f(u) − f(v)‖ ≤ C(σ)
(
1 + ‖u‖2σ

V + ‖v‖2σ
V

) ‖u − v‖
for each u, v ∈ V . These inequalities permit to derive similar estimates
as (5.3) and (5.11) needed in Theorem 5.2. The result from Lemma 7.3 is
replaced by

Re
{(

F (|z1|2)z1 − F (|z2|2)z2
)
(z1 − z2)

} ≥ 0, for all z1, z2 ∈ C,

which is proved analogously to Lemma 7.3 while using the fact that F is an
increasing and positive function. Furthermore, the inequality from Lemma
7.4 is exchanged by

Re
{(

F (|v|2)v,Av
)} ≥ 0, for each v ∈ V such that Av ∈ H,

which is shown similarly to Lemma 7.4 since F and F ′ are positive functions.
The case F (x) = xσ with σ ≥ 1 corresponds to f(v) = |v|2σv and

(6.1) is replaced by the inequality from Lemma 7.2. Such nonlinearities
appear for example in the deterministic papers [16,21,22]. We can also take
a polynomial of the form F (x) = λ0 +λ1x+λ2x

2 with λi ≥ 0 for i = 0, 1, 2,
which represents a cubic-quintic nonlinearity. In that case our method also
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works and yields the same results. Without loss of generality, this idea
can be transferred to polynomials of finite degree with positive coefficients
and also to linear combinations of power-type nonlinearities of the form
F (x) = λ1x

σ1 + λ2x
σ2 with λi > 0, σi ≥ 1 for i = 1, 2.

3. Due to our approach, we have considered the stochastic nonlinear Schrö-
dinger problem over a bounded one-dimensional domain. Taking R instead
of the interval (0, 1) with H := L2(R) and V := W 1,2(R), we can further
ensure the same results as in this paper if we
• regard the continuity of the embedding V ↪→ H (see [31, p. 1027, (45e)]);
• use an analogue of Lemma 7.1 in form of

sup
x∈R

|v(x)|2 ≤ c‖v‖2V , for all v ∈ V,

with the embedding constant c of V ↪→ C(R) (see [31, p. 1027, (45d)]);
• replace the operator A in our Schrödinger equation by A := A + Q,

where Q ∈ L1
loc(R) is bounded from below and satisfies Q(x) → ∞ as

|x| → ∞, such that A has a purely discrete spectrum of eigenvalues and
a complete set of eigenfunctions (see [24, p. 249, Theorem XIII.67]).

4. Referring to the deterministic equation (1.1), we investigate the unique ex-
istence of the variational solution of the stochastic one-dimensional complex
Ginzburg–Landau equation

(
X(t), v

)
=
(
ϕ, v
)− (a1 + ia2)

∫ t

0

〈
AX(s), v

〉
ds

+ (b1 + ib2)
∫ t

0

(
f(X(s)), v

)
ds + c1

∫ t

0

(
X(s), v

)
ds

+
(∫ t

0

g(s,X(s)) dW (s), v
)

(6.2)

for all t ∈ [0, T ], all v ∈ V and a.e.ω ∈ Ω, where we choose a1, a2, b1, b2,
c1 ∈ R and σ > 0 additionally to the assumptions in Sect. 2. Note that the
results of the previous sections correspond to Eq. (6.2) with the coefficients
a1 = 0, a2 = 1, b1 < 0, b2 = 0, c1 = 0 and σ ≥ 1.

Now, we discuss the case a1 > 0, a2 ∈ R, b1 < 0, b2 = 0, c1 ∈ R and
σ ≥ 1 by using the same ideas as in the study of Eq. (2.5). The main result
is the analogue of Theorem 5.2 stating that the stochastic one-dimensional
complex Ginzburg–Landau equation (6.2) possesses a unique variational
solution X ∈ L2p(Ω;C([0, T ];H))∩L2p(Ω× [0, T ];V ) for each p ≥ 1. More-
over, similar results are true by choosing a1 > 0, a2∈R, b1=0, b2 > 0, c1∈R,
σ ∈ (0, 2) and linear multiplicative noise, compare the ansatz in [17]. Then
we get a unique variational solution X ∈ L2(Ω;C([0, T ];H)) ∩ L2(Ω ×
[0, T ];V ) which also satisfies X ∈ L2(Ω;L∞([0, T ];V )). Note that we apply
two different methods (in [17] and here) that cannot be mixed.

Appendix

Here, we provide some results used throughout the paper.
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Lemma 7.1. [10, Lemma 1.1] For v ∈ V it holds that

sup
x∈[0,1]

|v(x)|2 ≤ ‖v‖
(

‖v‖ + 2
∥
∥
∥
∥

dv

dx

∥
∥
∥
∥

)
≤ 2‖v‖2V .

Lemma 7.2. Let z1 and z2 be two complex-valued numbers and σ ≥ 1
2 . Then

the following inequality is fulfilled
∣
∣|z1|2σz1 − |z2|2σz2

∣
∣ ≤ (4σ − 1)

(|z1|2σ + |z2|2σ
) |z1 − z2|.

Proof. Initially, we prove the auxiliary inequality

xs − 1 ≤ s(x − 1)xs−1, for all x ≥ 1 and all s ≥ 1. (7.1)

We regard F : [1,∞) → R defined by F (x) := (s − 1)xs − sxs−1 + 1. So, we
have F (1) = 0 and F ′(x) = s(s−1)xs−2(x−1) ≥ 0 for all x ≥ 1 and all s ≥ 1.
Therefore, F is a monotonically increasing real-valued function on [1,∞) and
F (x) ≥ F (1) for all x ≥ 1. Thus, inequality (7.1) is true.

Now, we face the assertion of our lemma and assume that |z1| > |z2| and
z2 
= 0 (in the case |z1| = |z2| or |z2| = 0 the inequality is obvious). Since

∣
∣|z1|2σz1 − |z2|2σz2

∣
∣ ≤ |z1|2σ|z1 − z2| +

(|z1|2σ − |z2|2σ
) |z2|

and inequality (7.1) applied for x =
∣
∣
∣
∣
z1
z2

∣
∣
∣
∣ and s = 2σ yields

(|z1|2σ − |z2|2σ
) ≤ 2σ (|z1| − |z2|) |z1|2σ−1 ≤ 2σ|z1 − z2||z1|2σ−1

for all σ ≥ 1
2 , we receive with Young’s inequality that
∣
∣|z1|2σz1 − |z2|2σz2

∣
∣ ≤ 2σ

(|z1|2σ + |z1|2σ−1|z2|
) |z1 − z2|

≤ (4σ − 1)
(|z1|2σ + |z2|2σ

) |z1 − z2|.
�

Lemma 7.3. Let z1 and z2 be two complex-valued numbers and σ > 0, then

Re
{(|z1|2σz1 − |z2|2σz2

)
(z1 − z2)

} ≥ 0.

Proof. Let z1 = r1(cos α1 + i sin α1) and z2 = r2(cos α2 + i sin α2), where
r1, r2 ≥ 0 and α1, α2 ∈ [0, 2π). By using trigonometric formulas and taking
into account that the codomain of the cosine function is [−1, 1], we compute

Re
{(|z1|2σz1 − |z2|2σz2

)
(z1 − z2)

}

= r2σ+2
1 + r2σ+2

2 − r1r
2σ+1
2 cos(α1 − α2) − r2r

2σ+1
1 cos(α1 − α2)

≥ r2σ+2
1 + r2σ+2

2 − r1r
2σ+1
2 − r2r

2σ+1
1 =

(
r2σ+1
1 − r2σ+1

2

)
(r1 − r2) ≥ 0.

�
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Lemma 7.4. Let v ∈ V such that Av ∈ H and let σ ≥ 1, then

Re
{(|v|2σv,Av

)} ≥ 0.

Proof. Observe that

Re
{(|v|2σv,Av

)}
= Re

{(
Av, |v|2σv

)}
= Re

{(
Av, |v|2σv

)}
.

Moreover, |v|2σv ∈ V for each v ∈ V such that the definition of A and the
relation d

dx |v|2 =
(

d
dxv
)
v + v

(
d
dxv
)

entail

(
Av, |v|2σv

)
=
∫ 1

0

(
d

dx
v

)(
d

dx
(|v|2σv)

)
dx

=
∫ 1

0

|v|2σ

∣
∣
∣
∣

d

dx
v

∣
∣
∣
∣

2

dx + σ

∫ 1

0

|v|2(σ−1) v

(
d

dx
v

)(
d

dx
|v|2
)

dx.

Taking the real part, one obtains

Re
{(

Av, |v|2σv
)}

=
∫ 1

0

|v|2σ

∣
∣
∣
∣

d

dx
v

∣
∣
∣
∣

2

dx +
1
2
σ

∫ 1

0

|v|2(σ−1)

(
d

dx
|v|2
)2

dx,

which is non-negative. �

Lemma 7.5. Let (Un)n be a bounded sequence in L2p(Ω× [0, T ];V ) with p ≥ 1.
Then there exist a subsequence (Un′)n′ and a function U ∈ L2p(Ω × [0, T ];V )
such that (Un′)n′ converges weakly to U in L2(Ω× [0, T ];H), L2(Ω× [0, T ];V )
and L2p(Ω × [0, T ];V ).

Proof. Note that L2p(Ω × [0, T ];V ) is a reflexive Banach space (see [7, p. 100,
Corollary 2]). Hence, (see [30, p. 258, Proposition 21.23(i)]) there exist a sub-
sequence (Un′)n′ and a function U ∈ L2p(Ω × [0, T ];V ) such that (Un′)n′

converges weakly to U in L2p(Ω × [0, T ];V ). Using the continuity of the em-
beddings

L2p(Ω × [0, T ];V ) ↪→ L2(Ω × [0, T ];V ) ↪→ L2(Ω × [0, T ];H),

we receive the weak convergences of (Un′)n′ to U in L2(Ω × [0, T ];V ) and
L2(Ω × [0, T ];H) as well (see [30, p. 265, Proposition 21.35(c)]). �
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