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Abstract. We prove the local boundedness of variational solutions and
parabolic minimizers to evolutionary problems, where the integrand f is
convex and satisfies a non-standard p, q-growth condition with

1 < p ≤ q ≤ pn+2
n

.

A function u : ΩT := Ω × (0, T ) → R is called parabolic minimizer if it
satisfies the minimality condition∫

ΩT

u · ∂tϕ + f(x, Du)dz ≤
∫

ΩT

f(x, Du + Dϕ)dz

for every ϕ ∈ C∞
0 (ΩT ). Moreover, we will show local boundedness for

parabolic minimizers, if f satisfies an anisotropic growth condition.
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1. Introduction

We are interested in the regularity of variational solutions, where the integrand
f satisfies a non-standard p, q-growth condition

ν|ζ|p ≤ f(x, ζ) ≤ L (1 + |ζ|q)
for 1 < p ≤ q ≤ pn+2

n and 0 < ν ≤ L. The formal corresponding differential
equation is

∂tu − div ∂ζf(x,Du) = 0,

but since we do not assume that f is differentiable, the PDE above may have
no meaning at all. Moreover, such an equation would only be well-defined, if
the weak solution u belongs to the space Lq(0, T ;W 1,q(Ω)), but the theory
does not ensure the existence of such weak solutions. To overcome these prob-
lems, we consider the notion of variational solutions, which was introduced by
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Lichnewsky and Temam [12] in the context of evolutionary parametric mini-
mal surface equations. In the context of parabolic equations with p, q-growth,
the notion of variational solutions has been introduced by Bögelein et al. in
[1]. Therein they showed existence of variational solutions associated to a con-
vex integrand f , only assuming that f fulfils a coercivity condition. In this
paper we establish an L∞

loc-bound for these solutions. In order to show this,
we will use a parabolic version of the De Giorgi-classes, which was introduced
by DiBenedetto in [6]. The analogous elliptic problem is treated in [8,14,16],
where the convexity of f and a Δ2-condition is required. For integrands with
p, q-growth, it is crucial that the gap between p and q is not too large. Oth-
erwise, there exist examples of unbounded solutions (cf. [13]). In [14,16] local
boundedness of minimizers to elliptic variational integrands is shown, if

1 < p ≤ q < p� =
np

n − p

holds. Here, the embedding W 1,p(Ω) ↪→ Lq(Ω) is compact. In [8], this result is
extended to the case q = p� where the Sobolev embedding is only continuous.
However, it is not possible to state an explicit L∞-bound in this case. In
this paper, we prove boundedness of parabolic minimizers, provided the gap
between p and q is

1 < p ≤ q ≤ p
n + 2

n
=: p�.

The upper bound q ≤ p� stems from the parabolic embedding. Just as in the
elliptic setting, it is not possible to specify an explicit L∞-bound in the limit
case q = p�. Furthermore, we only need the convexity of the integrand f . This
assumption is essential for proving a Caccioppoli inequality, since f satisfies
only a non-standard growth condition. In the proof we have to handle the lack
of regularity of parabolic minimizers in time, a problem which can, due to the
growth condition, not be treated by a time regularization method like Steklov
averages. But we will use the methods of [2] to show that ∂tu ∈ L2(ΩT ) holds
for a variational solution u, if it possess time-independent boundary data. Thus
we can prove that these solutions are locally bounded.

We also consider parabolic minimizers of functionals, where the integrand
f satisfies an anisotropic growth condition of the form

ν

n∑
i=1

|ζi|pi ≤ f(x, t, u, ζ) ≤
n∑

i=1

L (1 + |ζi|pi) .

If we take p = min {pi} and q = max {pi}, we observe that this is a special case
of p, q-growth. Here we can additionally allow a u-dependency for f and do
not need a convexity assumption. This stems from the fact that we have more
structure conditions for the integrand f . Furthermore, we do not require any
information for the boundary data, since we are able to use Steklov averages to
compensate the lack of regularity in time. The analogous result for parabolic
equations with anisotropic growth conditions has been proved in [15]. Therein
the assumption
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pi ≤ p� with
1
p

=
1
n

n∑
i=1

1
pi

is needed for the exponents pi, which is exactly the same condition we need in
this paper. In the elliptic setting, an L∞

loc-bound for minimizers of integrands
satisfying an anisotropic or respectively a p, q-growth condition is proven in
[3], where pi ≤ p� or respectively p ≤ p� is needed. Analogous results for weak
solutions of systems are proven in [4]. Of course, the coefficients must satisfy
stronger assumptions in order to show regularity. For more details we refer to
[3,5] and the references given there.

1.1. Variational integrands with p, q-growth

Now we formulate our results for variational solutions, where the integrand
f satisfies and non-standard p, q-growth condition. Therefore, let Ω ⊂ R

n

be an open bounded domain and ΩT := Ω × (0, T ) describes the space-time
cylinder for T > 0. The integrand f : Ω × R

n → R ∪ {∞} is supposed to
be a Carathéodory-function and to fulfil the following convexity and growth
assumptions:{

R
n � ζ 	→ f(x, ζ)is convex for a.e. x ∈ Ω

ν|ζ|p ≤ f(x, ζ) ≤ L (|ζ|q + 1) , ∀(x, ζ) ∈ Ω × R
n,

(1.1)

for some 0 < ν ≤ L. For the initial and boundary datum u0 we assume that

u0 ∈ L2(Ω) ∩ W 1,p(Ω) and
∫

Ω

f(x,Du0)dx < ∞. (1.2)

We define variational solutions in the same way as in [1]:

Definition 1.1. Suppose that f : Ω × R
n → R ∪ {∞} is a variational inte-

grand satisfying (1.1) and that the Cauchy–Dirichlet datum u0 fulfills (1.2).
We identify a measurable map u : ΩT → R in the class

u ∈ Lp(0, T ;W 1,p
u0

(Ω)) ∩ C0([0, T ], L2(Ω))

as a variational solution if and only if the variational inequality∫ T

0

∫
Ω

f(x,Du)dxdt ≤
∫ T

0

∫
Ω

[∂tv · (v − u) + f(x,Dv)] dxdt

+
1
2
‖v(·, 0) − u0‖2

L2(Ω) − 1
2
‖(v − u)(·, T )‖2

L2(Ω) (1.3)

holds true, whenever v ∈ Lp(0, T ;W 1,p
u0

(Ω)) with ∂tv ∈ L2(ΩT ).

Here we used the shorthand notation

W 1,p
u0

(Ω) := u0 + W 1,p
0 (Ω)

and later on we will use the abbreviations
Bρ(x0) := {x ∈ R

n : |x − x0| < ρ} ,

Qρ(z0) := Bρ(x0) × (t0 − ρ2, t0),

with z0 = (x0, t0) ∈ R
n+1 and x0 ∈ R

n. In this setting we will show:
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Theorem 1.2. Let

u ∈ Lp(0, T ;W 1,p
u0

(Ω)) ∩ C0([0, T ];L2(Ω))

be a variational solution, where the variational integrand f satisfies (1.1) and
the initial datum u0 fulfills (1.2). If

2n

n + 2
< p ≤ q ≤ p� = p

n + 2
n

(1.4)

holds, then u is locally bounded in ΩT . Moreover, if q < p� holds, we have for
any δ with max {q, 2} ≤ δ < p� and Qρ(z0) � ΩT

sup
Q ρ

2
(z0)

|u| ≤ c

(
1 + ρ−δ n+p

n

∫
Qρ(z0)

|u|δdz

) p
n

1
p�−δ

with a constant c = c(n, p, q, L, ν).

Remark 1.3. Note that the right-hand side is finite, since u ∈ Lp�(ΩT ) holds
(c.f. Lemma 2.1).

It is also possible to show a comparable result in the sub-critical case
1 < p ≤ 2n/(n + 2), but we have to assume some higher integrability for u.

Theorem 1.4. Let

1 < p ≤ 2n

n + 2
and r >

n(2 − p)
p

.

If

u ∈ Lr
loc(ΩT ) ∩ Lp(0, T ;W 1,p

u0
(Ω)) ∩ C0([0, T ];L2(Ω))

is a variational solution, where the integrand f satisfies (1.1), the initial datum
u0 fulfills (1.2) and

p ≤ q ≤ p� = p
n + 2

n

holds, then u is locally bounded in ΩT . Additionally, if q < p� holds, we have
for any Qρ(z0) � ΩT

sup
Q ρ

2
(z0)

u ≤ c

(
1 + ρ− 2(n+p)

p

∫
Qρ(z0)

|u|rdz

) p
λr

,

with λr = n(p − 2) + rp and c = c(n, p, q, ν, L, r).

Remark 1.5. The assumption u ∈ Lr
loc(ΩT ) is already needed and sharp in

the case of parabolic equations with p-growth (cf. [6] Ch. 5). Otherwise, there
are examples of unbounded weak solutions. The condition r > n(2 − p)/p
guarantees that λr > 0 holds.



NoDEA Regularity of variational solutions Page 5 of 23 19

1.2. Anisotropic variational integrals

Here we consider local parabolic minimizers of evolutionary problems, where
the integrand f satisfies an anisotropic growth condition of the form

ν

n∑
i=1

|ζi|pi ≤ f(x, t, u, ζ) ≤ L

(
1 +

n∑
i=1

|ζi|pi

)
(1.5)

with pi > 1 and p > 1 where

1
p

=
1
n

n∑
i=1

1
pi

holds. Note that this is a special case of (1.1).
In this context, we define the anisotropic Sobolev space W 1,pi(Ω) as the

closure of C∞(Ω) under the norm

‖u‖W 1,pi (Ω) :=
n∑

i=1

‖Diu‖Lpi (Ω) + ‖u‖L1(Ω)

and we use the same definition of local parabolic minimizers as in [17]:

Definition 1.6. A measurable map u : ΩT → R is termed local parabolic
minimizer associated to the variational integrand f if and only if

u ∈ Lp(0, T ;W 1,pi(Ω)) ∩ C0([0, T ];L2(Ω))

and moreover, the following minimality condition∫
spt ϕ

u · ∂tϕ + f(x, t, u,Du)dz ≤
∫

spt ϕ

f(x, t, u + ϕ,Du + Dϕ)dz (1.6)

holds true, whenever ϕ ∈ C∞
0 (ΩT ).

The appearance of this definition is natural in the context of variational
solutions. In [1, Proposition 3.2] it is shown that every variational solution u
in the sense of Definition 1.1 also satisfies (1.6). Though the reverse statement
is only true, if ∂t ∈ L2(ΩT ) or ∂t ∈ Lp′

(0, T ;W−1,p′
(Ω)) holds.

Now we formulate our results for anisotropic integrands.

Theorem 1.7. Let

u ∈ Lp(0, T ;W 1,pi(Ω)) ∩ C0([0, T ];L2(Ω))

be a parabolic minimizer, where the variational integrand satisfies (1.5). If
2n

n + 2
< p and pi ≤ p� = p

n + 2
n

for any i ∈ {1, . . . , n} (1.7)

holds, then u is locally bounded in ΩT . Moreover, if pi < p� holds, we have for
any δ with max {pi, 2} ≤ δ < p� and Qρ(z0) � ΩT

sup
Q ρ

2
(z0)

|u| ≤ c

(
1 + ρ−δ n+p

n

∫
Qρ(z0)

|u|δdz

) p
n

1
p�−δ

with a constant c = c(n, pi, L, ν).
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Again we have an analogous result in the sub-critical case.

Theorem 1.8. For any i ∈ {1, . . . , n} let

1 < p ≤ 2n

n + 2
, pi ≤ p� = p

n + 2
n

and r >
n(2 − p)

p
.

If

u ∈ Lr
loc(ΩT ) ∩ Lp(0, T ;W 1,pi(Ω)) ∩ C0([0, T ];L2(Ω))

is a parabolic minimizer, where the variational integrand satisfies (1.5), then
u is locally bounded in ΩT . Additionally, if pi < p� holds, we have for any
Qρ(z0) � ΩT

sup
Q ρ

2
(z0)

u ≤ c

(
1 + ρ− 2(n+p)

p

∫
Qρ(z0)

|u|rdz

) p
λr

,

with λr = n(p − 2) + rp and c = c(n, pi, q, ν, L, r).

2. Preliminaries

2.1. Auxiliary tools

In this subsection we state several auxiliary tools, that will be needed through-
out the paper. We start with a parabolic version of the Sobolev embedding
(cf. [6, Ch. 1, Proposition 3.1]).

Lemma 2.1. Let u ∈ C0([0, T ];L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)). Then there exists

a constant c depending only on n and p such that(∫
ΩT

|u|p� dz

) n
n+p

≤ c

(
sup

0<t<T

∫
Ω

|u(·, t)|2dx +
∫

ΩT

|Du|pdz

)
,

with p� = pn+2
n .

We also need an anisotropic version of the last Lemma ([15, Lemma 1]):

Lemma 2.2. Let u ∈ C0([0, T ];L2(Ω)) ∩ Lp(0, T ;W 1,pi

0 (Ω)) and suppose that
(1.7) holds. Then there exists a constant c depending only on n and pi such
that (∫

ΩT

|u|p� dz

) n
n+p

≤ c

(
sup

0<t<T

∫
Ω

|u(·, t)|2dx +
∫

ΩT

n∑
i=1

|Diu|pi dz

)
,

with p� = pn+2
n .

Furthermore, we will use the following well known Lemmata (cf. [11,
Lemma 4.7, Ch.II], [6, Lemma 4.3, Ch. I] and [9, Lemma 1.1]):

Lemma 2.3. Let {Jh}h∈N0
be a sequence of non-negative numbers, verifying

the condition

Jh+1 ≤ MbhJ1+γ
h
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for h ∈ N0, where M,γ and b are positive constants and b > 1. Then:

Jh ≤ M
(1+γ)h−1

γ b
(1+γ)h−1

γ2 − h
γ J

(1+γ)h

0 .

In particular, if

J0 ≤ θ = M− 1
γ b

− 1
γ2 ,

then

Jh ≤ θb− h
γ

and therefore Jh → 0 as h → ∞.

Lemma 2.4. Let {Mh}h∈N0
be a sequence of equibounded positive numbers sat-

isfying the recursive inequalities

Mh ≤ CbhM1−α
h+1 ,

where C, b > 1 and α ∈ (0, 1) are given constants. Then

M0 ≤
(

2C

b1− 1
α

) 1
α

holds.

Lemma 2.5. Let f(t) be a non-negative bounded function defined for 0 ≤ T1 ≤
t ≤ T2. Suppose that for T1 ≤ s < t ≤ T2 we have

f(s) ≤ θf(t) + A(t − s)−α + B,

where A,B, α, θ are positive constants with θ < 1. Then there exists a constant
c, depending only on α and θ such that for every T1 ≤ ρ < R ≤ T2 we have

f(ρ) ≤ c[A(R − ρ)−α + B].

2.2. Time derivative

Now we prove the existence of the time derivative in L2(ΩT ) of variational
solutions, if they possess time independent boundary values (cf. [2]). Therefore,
we only need the convexity of the integrand f . To be more precise, we have:

Lemma 2.6. Let u ∈ C0([0, T ], L2(Ω)) ∩ Lp(0, T ;W 1,p
u0

(Ω)) be a variational
solution in the sense of Definition (1.1), where the initial datum u0 satisfies
(1.2) and f(x, ζ) is convex with respect to ζ. Then we have ∂tu ∈ L2(ΩT ).

Proof. We will use the mollification in time

[u]h(·, t) = e− t
h u0 +

1
h

∫ t

0

e
s−t

h u(·, s)ds.

For more properties of this mollification see [10, Lemma 2.2] and [1, Lemma
2.2, 2.3]. Now we can test the variational inequality with v = [u]h. If we use
[u]h(·, 0) = u0, we obtain∫ T

0

∫
Ω

f(x,Du)dxdt ≤
∫ T

0

∂t[u]h · ([u]h − u) + f(x,D[u]h)dxdt.
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But this implies∫ T

0

∫
Ω

|∂t[u]h|2dxdt = −
∫ T

0

∫
Ω

1
h

∂t[u]h · ([u]h − u)dxdt

≤ 1
h

∫ T

0

∫
Ω

f(x,D[u]h) − f(x,Du)dxdt

≤ 1
h

∫ T

0

∫
Ω

[f(x,Du)]h − f(x,Du)dxdt

= −
∫ T

0

∫
Ω

∂t [f(x,Du)]h dxdt

=
∫

Ω

[f(x,Du0)]h − [f(x,Du(·, T ))]hdx

≤
∫

Ω

f(x,Du0)dx < ∞.

Hence ∂tu ∈ L2(ΩT ,RN ) holds. Note that we used

∂t[u]h = − 1
h

([u]h − u)

and

f(x,D[u]h) ≤ [f(x,Du)]h,

which holds due to the convexity of f , cf. [1, Lemma 2.3]. �

3. L∞
loc-bound for p, q-integrands

In this section we show the L∞
loc-bound for variational solutions stated in The-

orems 1.2 and 1.4. First, we will only consider the case q < p(n+2)/n and give
an explicit L∞-bound for u. In Sect. 5 we will treat the case q = p(n + 2)/n.
In order to prove our results, we want to argue on the level of parabolic mini-
mizers. Therefore we use the following definition:

Definition 3.1. A measurable map u : ΩT → R is termed parabolic minimizer
associated to the variational integrand f and the Cauchy–Dirichlet datum u0

if and only if

u ∈ Lp(0, T ;W 1,p
u0

(Ω))

and moreover, the following minimality condition∫ T

0

∫
Ω

u · ∂tϕ + f(x,Du)dxdt ≤
∫ T

0

∫
Ω

f(x,Du + Dϕ)dxdt

holds true, whenever ϕ ∈ C∞
0 (ΩT ).

In [1, Proposition 3.2], it was shown, that every variational solution in
the sense of Definition 1.1 is also a parabolic minimizer in the sense of De-
finition 3.1. The reverse statement is only true if ∂tu ∈ L2(ΩT ) or ∂tu ∈
Lp′

(0, T ;W−1,p′
(Ω)) holds. Hence, it is not restrictive to use the definition of
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parabolic minimizer to show regularity for variational solutions. Our first aim
is to prove a Caccioppoli inequality on superlevel sets

A(k, ρ, θ) := A(k, ρ, θ; z0) := {(x, t) ∈ Qρ,θ(z0) : u(x, t) > k} ,

with

Qρ,θ(z0) := Bρ(x0) × (t0 − θ, t0)

and z0 = (x0, t0) ∈ R
n+1 and k, ρ, θ > 0. A crucial point in the proof is, that

we can not use the “hole-filling technique” due to the growth conditions. To
overcome this problem, we will use the convexity of f . A similar technique has
been used in [7, Lemma 3.1] to prove a Caccioppoli inequality.

Lemma 3.2. Let u ∈ C0([0, T ];L2(Ω)) ∩ Lp(0, T ;W 1,p
u0

(Ω)) be a variational
solution, where the integrand f satisfies (1.1) and the initial datum u0 fulfills
(1.2). Then for all cylinders Qρ,ρ2(z0) � ΩT and k, τ1, τ2 > 0 with 1

2ρ ≤ ρ1 <

ρ2 ≤ ρ, t0 − ρ2 ≤ t0 − τ2 < t0 − τ1 ≤ t0 − 1
2ρ2 and q ≤ δ ≤ p� we have

sup
t0−τ1<t<t0

∫
Bρ1 (x0)

|(u − k)+(·, t)|2dx +
∫

A(k,ρ1,τ1)

|Du|pdz

≤ c

∫
A(k,ρ2,τ2)

|(u − k)+|2
τ2 − τ1

+
|(u − k)+|δ
(ρ2 − ρ1)δ

+ 1dz

with a constant c = c(p, q, ν, L).

Proof. Since every variational solution is also a parabolic minimizer, we have
for any ϕ ∈ C∞

0 (ΩT )
∫

spt ϕ

u · ∂tϕ + f(x,Du)dz ≤
∫

spt ϕ

f(x,Du + Dϕ)dz. (3.1)

For k > 0 we choose

ϕ = −χεψ
qζq(u − k)+

as testing function, where the functions ψ ∈ C1((t0 − ρ2, t0)) and ζ ∈ C1
0 (Bρ)

are cut-off functions with 0 ≤ ψ, ζ ≤ 1. Additionally we can choose ζ such that
ζ ≡ 1 on Bρ1(x0), ζ ≡ 0 outside of Bρ2(x0) and 0 ≤ |Dζ| ≤ 2/(ρ2 − ρ1) holds.
For ψ we can assume that ψ ≡ 0 on (t0 − ρ2, t0 − τ2), ψ ≡ 1 on (t0 − τ1, t0)
and 0 ≤ ψ′ ≤ 2/(τ2 − τ1) holds. Last, the function χε is defined by

χε :=

⎧⎨
⎩

1 t0 − ρ2 ≤ t ≤ τ
1 − 1

ε (t − τ) τ < t < τ + ε
0 otherwise

for τ ∈ (t0 − τ1, t0 − ε) and 0 < ε � 1. From Lemma 2.6 we know that
∂tu ∈ L2(ΩT ) holds, because the solutions have time-independent boundary
values. Hence we can take ϕ as testing function, since this function can be
approximated by smooth functions with compact support in ΩT . Now we use
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the convexity of f to estimate the right hand side of (3.1)

∫
spt ϕ

f(x,Du + Dϕ)dz =
∫

spt ϕ

f(x, (1 − ψq)Du + ψq(Du + Dϕ̃))dz

≤
∫

spt ϕ

(1 − ψq)f(x,Du) + ψqf(x,Du + Dϕ̃)dz,

where we used the abbreviation

ϕ̃ := −χεζ
q(u − k)+.

If we use this estimate in (3.1) and subtract
∫
spt ϕ

(1 − ψq)f(x,Du)dz on both
sides, we achieve

∫
spt ϕ

u · ∂tϕ + ψqf(x,Du)dz ≤
∫

spt ϕ

ψqf(x,Du + Dϕ̃)dz. (3.2)

Note that
∫
spt ϕ

f(x,Du)dz is finite, since u is a parabolic minimizer. Thus
we were able to absorb this term. Next we estimate the right hand side, again
using the convexity of f

∫
spt ϕ

ψqf(x,Du + Dϕ̃)dz

=
∫

spt ϕ

ψqf (x,Du − D(χεζ
q(u − k)+)) dz

=
∫

spt ϕ

ψqf
(
x,D(u − k)+ − q(u − k)+χεζ

q−1Dζ − χεζ
qD(u − k)+

)
dz

=
∫

spt ϕ

ψqf
(
x, (1 − χεζ

q)D(u − k)+ + χεζ
q
(
−q (u−k)+

ζ Dζ
))

dz

≤
∫

spt ϕ

ψq(1 − χεζ
q)f(x,Du) + χεψ

qζqf
(
x,−q (u−k)+

ζ Dζ
)

dz.

Putting this into (3.2) and subtracting
∫
spt ϕ

ψq(1 − χεζ
q)f(x,Du)dz on both

sides, we obtain
∫

spt ϕ

u · ∂tϕ + χεψ
qζqf(x,Du)dz

≤
∫

spt ϕ

χεψ
qζqf

(
x,−q (u−k)+

ζ Dζ
)

dz

≤ L

∫
spt ϕ

χεψ
qζqqq |(u − k)+|q

ζq
|Dζ|q + χεψ

qζqdz

≤ c(L, q)
∫

spt ϕ

|(u − k)+|q|Dζ|q + 1dz. (3.3)
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Note that we used the growth-condition (1.1). Now we consider the term, that
involves the time derivative and compute∫

spt ϕ

u · ∂tϕdz

= −
∫

A(k,ρ2,τ2)

∂tu · ϕdz

=
∫

A(k,ρ2,τ2)

∂t(u − k)+χεψ
qζq(u − k)+dz

=
∫

A(k,ρ2,τ2)

1
2
∂t|(u − k)+|2χεψ

qζqdz

= −
∫

A(k,ρ2,τ2)

1
2
|(u − k)+|2 (

χ′
εψ

qζq + qχεψ
q−1ψ′ζq

)
dz

ε↓0−→ 1
2

∫
Bρ2 (x0)

ζq|(u − k)+(·, τ)|2dx

− q

2

∫
A(k,ρ2,τ2)

|(u − k)+|2ψq−1ψ′ζqχ(t0−τ1,τ)

≥ 1
2

∫
Bρ1 (x0)

|(u − k)+(·, τ)|2dx − q

∫
A(k,ρ2,τ2)

|(u − k)+|2
τ2 − τ1

dz.

If we let ε ↓ 0 in (3.3) and insert the last estimate, take the supremum over
τ ∈ (t0 − τ1, t0) in the first term on the left hand side, let τ → to − τ1 in the
second term on the left hand side and use the growth assumption (1.1), we get

sup
t∈(t0−τ1,t0)

∫
Bρ1 (x0)

|(u − k)+(·, t)|2dx +
∫

A(k,ρ1,τ1)

|Du|pdz

≤ c

∫
A(k,ρ2,τ2)

|(u − k)+|2
τ2 − τ1

+
|(u − k)+|q
(ρ2 − ρ1)q

+ 1dz

≤ c

∫
A(k,ρ2,τ2)

|(u − k)+|2
τ2 − τ1

+
|(u − k)+|δ
(ρ2 − ρ1)δ

+ 1dz,

with a constant c depending only on p, q, ν and L. �

Now we are ready to start with the proof of Theorem 1.2. Here we will
only show the L∞

loc-bound for the case q < p�. The limit case q = p� will be
treated in Sect. 5.

Proof of Theorem 1.2. Consider a parabolic cylinder Qρ,ρ2(z0) � ΩT and k ≥
1. For h ∈ N0 we define⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ρh := ρ
2 + ρ

2h+1 , ρh := ρh+ρh+1
2

τh :=
(

ρ2

4 + 3 ρ2

4h+1

)
, τh := τh+τh+1

2

kh := k
(
1 − 1

2h

)
(3.4)
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and

Jh :=
∫

A(kh,ρh,τh)

|u − kh|δdz. (3.5)

Now we choose ψh ∈ C1((t0 − ρ2, t0)) and ζh ∈ C1
0 (Bρ(x0)) with 0 ≤ ζh ≤ 1

and ζh ≡ 1 in Bρh+1(x0), ζh ≡ 0 outside of Bρh
(x0) and |Dζh| ≤ 2h

ρ . Further we
take 0 ≤ ψh ≤ 1 with ψh ≡ 1 in (t0 −τh+1, t0) and ψh ≡ 0 for t ≤ t0 −τh. With
these choices and the Lemmas 2.1 and 3.2, we have for max {q, 2} ≤ δ < p�

Jh+1 ≤
∫

A(kh+1,ρh,τh)

|(u − kh+1)ψhζh|δdz

≤
(∫

A(kh+1,ρh,τh)

|(u − kh+1)ψhζh|p� dz

) δ
p�

· |A(kh+1, ρh, τh)|1− δ
p �

≤ c

[
sup

t0−τh<t<t0

∫
Bρh

(x0)

|(u − kh+1)+(·, t)ψh(t)ζh|2dx

+
∫

A(kh+1,ρh,τh)

|D[(u − kh+1)ψhζh]|pdz

]
· |A(kh+1, ρh, τh)|1− δ

p �

≤ c

[
sup

t0−τh<t<t0

∫
Bρh

(x0)

|(u − kh+1)+(·, t)|2dx +
∫

A(kh+1,ρh,τh)

|Du|pdz

+
∫

A(kh+1,ρh,τh)

2hp

ρp
|u − kh+1|pdz

]n+p
n

δ
p �

· |A(kh+1, ρh, τh)|1− δ
p �

≤ c

[∫
A(kh+1,ρh,τh)

2hδ

ρδ
|u − kh+1|δ +

4h

ρ2
|u − kh+1|2 + 1dz

]n+p
n

δ
p �

× |A(kh+1, ρh, τh)|1− δ
p �

≤ c

[
2hδ

ρδ

∫
A(kh+1,ρh,τh)

|u − kh+1|δ + 1dz

]n+p
n

δ
p �

· |A(kh+1, ρh, τh)|1− δ
p � .

(3.6)

Now we observe that ∫
A(kh+1,ρh,τh)

|u − kh+1|δdz ≤ Jh (3.7)

and

|A(kh+1, ρh, τh)|(kh+1 − kh)δ ≤
∫

A(kh+1,ρh,τh)

(u − kh)δdz ≤ Jh

and since k ≥ 1, we have

|A(kh+1, ρh, τh)| ≤ 4(h+2)δ

kδ
Jh ≤ 4(h+2)δJh. (3.8)
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Then, (3.6) turns into

Jh+1 ≤ c

[
2hδ

ρδ
Jh

]n+p
n

δ
p �

(
4hδ

kδ
Jh

)1− δ
p �

=
c

k
δ

p�
(p�−δ)ρδ n+p

n
δ

p�

(
4δ(1+ δ

p�

p
n )

)h

J
1+ p

n
δ

p�

h , (3.9)

with c = c(n, p, q, L, ν). Now we use Lemma 2.3 with

γ =
p

n

δ

p�
, b = 4δ(1+ δ

p�

p
n ) and M =

c

k
δ

p�
(p�−δ)ρδ n+p

n
δ

p�

.

If we choose k ≥ 1 such that∫
Qρ,ρ2 (z0)∩{u>0}

|u|δdz = J0 ≤ M− 1
γ b

− 1
γ2 ,

we get limh→∞ Jh = 0 and thus

sup
Q ρ

2 ,
ρ2
4

(z0)

u ≤ k,

or

sup
Q ρ

2
(z0)

u ≤ c

(
1 + ρ−δ n+p

n

∫
Qρ(z0)

|u|δdz

) p
n

1
p�−δ

,

with c = c(n, p, q, L, ν). Now we have proved that u is locally bounded from
above in ΩT . Moreover, −u is a local minimizer of the integrand f̃(x, ζ) :=
f(x,−ζ). Since f̃ satisfies the same growth conditions as f , we conclude that
−u is locally bounded from above by the same bound and the proof is com-
pleted for q < p�. �

Now we will prove Theorem 1.4. Therefore, we let 1 < p ≤ 2n/(n + 2).
Since we are in the sup-critical case we need to assume that u is integrable
with exponent r > n(2 − p)/p in order to show the L∞

loc-bound. We also note,
that we can use Lemma 3.2, since we do not require any assumptions on p
there. Now we will only consider the case p < p�, for the limit case we refer to
Sect. 5.

Proof of Theorem 1.4. Let Qρ,ρ2(z0) � ΩT and k ≥ 1. First we notice that
p� = p(n + 2)/n ≤ 2 holds. We define ρh, ρh, τh, τh and kh as in (3.4) and set

Jh :=
∫

A(kh,ρh,τh)

|(u − kh)|2dz.

Now we choose ψh ∈ C1((t0 − ρ2, t0)) and ζh ∈ C1
0 (Bρ(x0)) with 0 ≤ ζh ≤ 1

and ζh ≡ 1 in Bρh+1(x0), ζh ≡ 0 outside of Bρh
(x0) and |Dζh| ≤ 2h

ρ . Further
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we take 0 ≤ ψh ≤ 1 with ψh ≡ 1 in (t0 − τh+1, t0) and ψh ≡ 0 for t ≤ t0 − τh

we obtain

Jh+1 ≤
∫

A(kh+1,ρh,τh)

|(u − kh+1)ψhζh|2dz

≤
(∫

A(kh+1,ρh,τh)

|(u − kh+1)ψhζh|qdz

) 2α
q

×
(∫

A(kh+1,ρh,τh)

|(u − kh+1)ψhζh|rdz

) 2(1−α)
r

, (3.10)

for α ∈ (0, 1) with

1 =
2α

q
+

2(1 − α)
r

.

With the abbreviation

M :=

(∫
Qρ(z0)

|u|rdz

) 2(1−α)
r

and Lemmas 2.1 and 3.2 (with δ = q), inequality (3.10) turns into

Jh+1 ≤
(∫

A(kh+1,ρh,τh)

|(u − kh+1)ψhζh|qdz

) 2α
q

×
(∫

A(kh+1,ρh,τh)

|(u − kh+1)ψhζh|rdz

) 2(1−α)
r

≤ M

(∫
A(kh+1,ρh,τh)

|(u − kh+1)ψhζh|qdz

) 2α
q

≤ M

⎛
⎝

(∫
A(kh+1,ρh,τh)

|(u − kh+1)ψhζh|p�

) q
p�

|A(kh+1, ρh, τh)|1− q
p�

⎞
⎠

2α
q

≤ cM

([
sup

t0−τh<t<t0

∫
K(ρh)

|(u − kh+1)+(·, t)|2dx +
∫

A(kh+1,ρh,τh)

|Du|pdz

+
∫

A(kh+1,ρh,τh)

4hp

ρp
|u − kh+1|pdz

]n+p
n

q
p�

· |A(kh+1, ρh, τh)|1− q
p�

⎞
⎠

2α
q
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≤ cM

⎛
⎝

[∫
A(kh+1,ρh,τh)

4hq

ρq
|u − kh+1|q +

4h

ρ2
|u − kh+1|2 + 1dz

]n+p
n

q
p�

× |A(kh+1, ρh, τh)|1− q
p�

⎞
⎠

2α
q

≤ cM

⎛
⎝

[∫
A(kh+1,ρh,τh)

42h

ρ2
|u − kh+1|2 + 1dz

]n+p
n

q
p�

× |A(kh+1, ρh, τh)|1− q
p�

⎞
⎠

2α
q

We proceed similarly as in the proof of Theorem 1.2 and conclude∫
A(kh+1,ρh,τh)

|u − kh+1|2dz ≤ Jh

and

|A(kh+1, ρh, τh)| ≤ 4(h+2)2

k2
Jh ≤ 4(h+2)2Jh.

Thus we get

Jh+1 ≤ cM
42α(1+ q

p�

p
n )h

k
2α
q

2
p�

(p�−q)ρ2 n+p
n

2α
p�

J
(1+ p

n
q

p�
) 2α

q

h .

Now we use Lemma 2.3 with

γ =
(

1 +
p

n

q

p�

)
2α

q
− 1 =

2α

n + 2
+

2α

r
− 2

r
.

Note that the assumptions for r and α imply that γ > 0 holds and if we choose

k = c

[
1 +

(∫
Qρ(z0)

|u|2dz

)
ρ− 4α

p�

n+p
n

1
γ M

1
γ

] q
2α

p�
2

γ
p�−q

,

we obtain

sup
Q ρ

2
(z0)

u ≤ k.

Since −u is also minimizer to an integrand satisfying the same growth condi-
tions, we conclude that u is bounded. But in order to get the optimal exponents
in the estimate we have to iterate again and use that u is locally bounded.
Therefore we define

J̃h :=
∫

A(kh,ρh,τh)

|u − kh|rdz
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and take the function ψh and ζh as above. If we use Lemmas 2.1 and 3.2 and
the fact that u is locally bounded, we obtain

J̃h+1 ≤
∫

A(kh+1,ρh,τh)

|(u − kh+1)ψhζh|rdz

≤ ‖u‖r−p�

L∞(Qρ(z0))

∫
A(kh+1,ρh,τh)

|(u − kh+1)ψhζh|p� dz

≤ c‖u‖r−p�

L∞(Qρ(z0))

[
sup

t0−τh<t<t0

∫
Bρh

(x0)

|(u − kh+1)+(·, t)|2dx

+
∫

A(kh+1,ρh,τh)

|Du|p +
2hp

ρp
|u − kh+1|pdz

]n+p
n

≤ c‖u‖r−p�

L∞(Qρ(z0))

[
22h

ρ2

∫
A(kh+1,ρh,τh)

|u − kh+1|2 + 1dz

]n+p
n

≤ c‖u‖r−p�

L∞(Qρ(z0))

(
4h

ρ2

)n+p
n

×
⎡
⎣
(∫

A(kh+1,ρh,τh)

|u − kh+1|r + 1dz

) 2
r

|A(kh+1, ρh, τh)|1− 2
r

⎤
⎦

n+p
n

.

(3.11)

Since k ≥ 1, we have ∫
A(kh+1,ρh,τk)

|u − kh+1|rdz ≤ J̃h

and

|A(kh+1, ρh, τh)| ≤ 2(h+2)r

kr
J̃h ≤ 2(h+2)rJ̃h.

With these estimates (3.11) turns into

J̃h+1 ≤ c‖u‖r−p�

L∞(Qρ(z0))

4h n+p
n

ρ2 n+p
n

1

k(r−2) n+p
n

J̃
n+p

n

h

and we can use Lemma 2.3 with

γ =
p

n
, M =

c‖u‖r−p�

L∞(Qρ(z0))

ρ2 n+p
n k(r−2) n+p

n

and b = 4
n+p

n .

Now we choose

k = c‖u‖
r−p�
r−2

n
n+p

L∞(Qρ(z0))

(
1 + ρ− 2(n+p)

p

∫
Qρ(z0)

|u|rdz

) p
(r−2)(n+p)
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for a constant c depending on n, p, q, ν, L, r and get∫
Qρ,ρ2 (z0)∩{u>0}

|u|rdz = J̃0 ≤ M− 1
γ b

− 1
γ2 .

But this implies

sup
Q ρ

2
(z0)

u ≤ c‖u‖
r−p�
r−2

n
n+p

L∞(Qρ(z0))

(
1 + ρ− 2(n+p)

p

∫
Qρ(z0)

|u|rdz

) p
(r−2)(n+p)

, (3.12)

with a constant c only depending on n, p, q, ν, L, r. With the definition

Mh := sup
Qρh,τh

(z0)

u,

we gain from (3.12)

Mh ≤ c

(
1 + ρ− 2(n+p)

p

∫
Qρ(z0)

|u|rdz

) p
(r−2)(n+p)

M
r−p�
r−2

n
n+p

h+1 .

Since the assumption

r >
n(2 − p)

p

is equivalent to

r − p�

r − 2
n

n + p
< 1,

we can use Lemma 2.4 with

α = 1 − r − p�

r − 2
n

n + p
=

λr

(r − 2)(n + p)

and

C =

(
1 + ρ− 2(n+p)

p

∫
Qρ(z0)

|u|rdz

) p
(r−2)(n+p)

and achieve

sup
Q ρ

2
(z0)

u ≤ c

(
1 + ρ− 2(n+p)

p

∫
Qρ(z0)

|u|rdz

) p
λr

,

where we used the abbreviation

λr = n(p − 2) + rp.

Again we can conclude that −u has the same upper bound and hence the proof
is completed. �
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4. L∞
loc-bound for anisotropic integrands

Now we consider parabolic minimizers of integrands with anisotropic growth
conditions. Our approach will be similar to the procedure of the last section.
We will also start with a Caccioppoli inequality on superlevel sets.

Lemma 4.1. Let u ∈ C([0, T ];L2(Ω)) ∩ Lp(0, T ;W 1,(pi)(Ω)) be a local min-
imizer, where the integrand satisfies (1.5) and pi ≤ p� holds. Then for all
cylinders Qρ,ρ2(z0) � ΩT and k, τ1, τ2 > 0 with 1

2ρ ≤ ρ1 < ρ2 ≤ ρ, t0 − ρ2 ≤
t0 − τ2 < t0 − τ1 ≤ t0 − 1

2ρ2 and pi ≤ δ ≤ p� we have

sup
t0−τ1<t<t0

∫
Bρ1 (x0)

|(u − k)+(·, t)|2dx +
∫

A(k,ρ1,τ1)

n∑
i=1

|Diu|pi dz

≤ c

∫
A(k,ρ2,τ2)

|(u − k)+|2
τ2 − τ1

+
|(u − k)+|δ
(ρ2 − ρ1)δ

+ 1dz

with a constant c = c(n, pi, ν, L).

Proof. For any k > 0 we choose

ϕ = −χεψ
pζp(u − k)+

as testing function, where the functions ψ ∈ C1(R) and ζ ∈ C1
0 (Bρ) are cut-off

functions with 0 ≤ ψ, ζ ≤ 1. Additionally we can choose ζ such that ζ ≡ 1
on Bρ1(x0), ζ ≡ 0 outside of Bρ2(x0) and 0 ≤ |Dζ| ≤ 2/(ρ2 − ρ1) holds. For
ψ we can assume that ψ ≡ 0 on (t0 − ρ2, t0 − τ2), ψ ≡ 1 on (t0 − τ1, t0) and
0 ≤ ψ′ ≤ 2/(τ2 − τ1) holds. Last, the function χε is defined by

χε :=

⎧⎨
⎩

1 t0 − ρ2 ≤ t ≤ τ
1 − 1

ε (t − τ) τ < t < τ + ε
0 otherwise

for τ ∈ (t0 − τ1, t0 − ε) and 0 < ε � 1. We can assume that ∂tu ∈ L2(ΩT )
holds, otherwise, we use Steklov-averages to justify ϕ as testing function in
(1.6). We treat the term with the time derivative in the same way as in the
proof of Lemma 3.2 and get∫

spt ϕ

u · ∂tϕdz

= −
∫

A(k,ρ2,τ2)

1
2
|(u − k)+|2 (

χ′
εψ

pζp + pχεψ
p−1ψ′ζp

)
dz

ε↓0−→ 1
2

∫
Bρ2 (x0)

ζp|(u − k)+(·, τ)|2dx

− p

2

∫
A(k,ρ2,τ2)

|(u − k)+|2ψp−1ψ′ζpχ(t0−τ1,τ)

≥ 1
2

∫
Bρ1 (x0)

|(u − k)+(·, τ)|2dx − p

∫
A(k,ρ2,τ2)

|(u − k)+|2
τ2 − τ1

dz
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With the computation

Diϕ = −ψpχε(pζp−1Diζ(u − k)+) + ζpDiuχ[u>k])

and the growth assumption (1.5) we estimate
∫

A(k,ρ2,τ2)

f(x, t, u + ϕ,Du + Dϕ)dz

≤ L

∫
A(k,ρ2,τ2)

n∑
i=1

|Diu + Diϕ|pi + 1dz ≤ c

∫
A(k,ρ2,τ2)

n∑
i=1

×
[(

χεψ
pζp−1

)pi |Diζ|pi(u − k)pi

+ + |Diu|pi(1 − χεψ
pζp)pi

]
+ 1dz

≤ c

∫
A(k,ρ2,τ2)

n∑
i=1

[|Diζ|pi(u − k)pi

+ + |Diu|pi(1 − χεψ
pζp)

]
+ 1dz.

Further we use the growth assumption (1.5)

∫
A(k,ρ2,τ2)

f(x, t, u,Du)dz ≥ ν

∫
A(k,ρ2,τ2)

n∑
i=1

|Diu|pi dz

and if we plug in our estimates and let ε ↓ 0, we obtain for any τ ∈ (t0 − τ1, t0)

∫
Bρ1 (x0)

|(u − k)+(·, τ)|2dx +
∫

A(k,ρ2,τ2)

n∑
i=1

|Diu|pi dz

≤ c

∫
A(k,ρ2,τ2)

|(u − k)+|2
τ2 − τ1

+ 1

+
n∑

i=1

( |(u − k)+|pi

(ρ2 − ρ1)pi
+ |Diu|pi(1 − ψpζpχ(t0−τ1,τ))

)
dz.

Now we add

c

∫
A(k,ρ2,τ2)

n∑
i=1

|Diu|piζpψpχ(t0−τ1,τ)dz

on both sides, divide the inequality by c + 1 and obtain

1
c + 1

∫
Bρ1 (x0)

|(u − k)+(·, τ)|2dx +
∫

A(k,ρ1,τ1)

χ(t0−τ1,τ)

n∑
i=1

|Diu|pi dz

≤ c

c + 1

∫
A(k,ρ2,τ2)

n∑
i=1

|Diu|pi dz

+
∫

A(k,ρ2,τ2)

n∑
i=1

|(u − k)+|pi

(ρ2 − ρ1)pi
+

|(u − k)+|2
τ2 − τ1

+ 1dz.



19 Page 20 of 23 T. Singer NoDEA

Now we take the supremum over τ ∈ (t0 − τ1) and get

1
c + 1

sup
t0−τ1<t<t0

∫
Bρ1 (x0)

|(u − k)+(·, t)|2dx +
∫

A(k,ρ1,τ1)

n∑
i=1

|Diu|pi dz

≤ c

c + 1

∫
A(k,ρ2,τ2)

n∑
i=1

|Diu|pi dz

+
∫

A(k,ρ2,τ2)

n∑
i=1

|(u − k)+|pi

(ρ2 − ρ1)pi
+

|(u − k)+|2
τ2 − τ1

+ 1dz.

Then Lemma 2.5 and Young’s inequality imply

sup
τ2<t<t0

∫
Bρ1 (x0)

|(u − k)+(·, t)|2dx +
∫

A(k,ρ1,τ2)

n∑
i=1

|Diu|pi dz

≤ c

∫
A(k,ρ2,τ1)

|(u − k)+|2
τ2 − τ1

+
n∑

i=1

|(u − k)+|pi

(ρ2 − ρ1)pi
+ 1dz

≤ c

∫
A(k,ρ2,τ1)

|(u − k)+|2
τ2 − τ1

+
|(u − k)+|δ
(ρ2 − ρ1)δ

+ 1dz,

with c = c(n, pi, ν, L). �

Now we prove Theorem 1.7 for the case pi < p� for all i ∈ {1, . . . , n}.

Proof of Theorem 1.7. We will use the notation from the proof of Theorem
1.2 and define the parameters just as in (3.4) and (3.5).

Now we choose ψh ∈ C1((t0−ρ2, t0)) and ζh ∈ C1
0 (Bρ(x0)) with 0 ≤ ζh ≤

1 and ζh ≡ 1 in Bρh+1(x0), ζh ≡ 0 outside of Bρh
(x0) and |Dζh| ≤ 2h

ρ . Further
we take 0 ≤ ψh ≤ 1 with ψh ≡ 1 in (t0 − τk+1, t0) and ψh ≡ 0 for t ≤ t0 − τh.
With these choices and Lemmas 2.2 and 4.1 we have

Jh+1 ≤
∫

A(kh+1,ρh,τh)

|(u − kh+1)ψhζh|δdz

≤
(∫

A(kh+1,ρh,τh)

|(u − kh+1)ψhζh|p� dz

) δ
p�

· |A(kh+1, ρh, τh)|1− δ
p�

≤ c

[
sup

t0−τh<t<t0

∫
Bρh

(x0)

|(u − kh+1)+|2(·, t)dx +
∫

A(kh+1,ρh,τh)

n∑
i=1

|Diu|pi dz

+
∫

A(kh+1,ρh,τh)

n∑
i=1

2hpi

ρpi
|u − kh+1|pi dz

]n+p
n

δ
p�

· |A(kh+1, ρh, τh)|1− δ
p�
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≤ c

[∫
A(kh+1,ρh,τh)

2hδ

ρδ
|u − kh+1|δ +

4h

ρ2
|u − kh+1|2 + 1dz

]n+p
n

δ
p�

× |A(kh+1, ρh, τh)|1− δ
p�

≤ c

[
4hδ

ρδ

∫
A(kh+1,ρh,τh)

|u − kh+1|δ + 1dz

]n+p
n

δ
p�

· |A(kh+1, ρh, τh)|1− δ
p�

(4.1)

Now we can iterate this inequality in exactly the same way as in the proof of
Theorem 1.2 and obtain the claim. �

Theorem 1.8 can be proved by combining the methods of the proofs of
Theorems 1.4 and 1.7.

5. Boundedness of solutions in the limit case

To complete the proofs of the Theorems 1.2, 1.4, 1.7 and 1.8 we have to consider
the limit case q = p� or respectively pi = p� for at least one i ∈ {1, . . . , n}.
We will start with variational solutions of integrands satisfying the p, q-growth
condition

2n

n + 2
< p < q = p

n + 2
n

.

First we use Lemma 3.2 with δ = q, hence we have for all Qρ,ρ2(z0) � ΩT and
k, τ1, τ2 > 0 with 1

2ρ ≤ ρ1 < ρ2 ≤ ρ, t0 − ρ2 ≤ t0 − τ2 < t0 − τ1 ≤ t0 − 1
2ρ2

sup
t0−τ1<t<t0

∫
Bρ1 (x0)

|(u − k)+(·, t)|2dx +
∫

A(k,ρ1,τ1)

|Du|pdz

≤ c

∫
A(k,ρ2,τ2)

|(u − k)+|2
τ2 − τ1

+
|(u − k)+|q
(ρ2 − ρ1)q

+ 1dz. (5.1)

Now we define ρh, ρh, τh and τh as in (3.4). But in contrast to Sect. 3 we set

kh := k

(
1 − 1

2h+1

)

and

Jh :=
∫

A(kh,ρh,τh)

|u − kh|qdz.

If we use (5.1) and Lemma 2.1 we can find an analogous estimate to (3.9)

Jh+1 ≤ c4hq n+p
n ρ−q n+p

n J
n+p

n

h .

The difference between this estimate and (3.9) is, that we only have a k-
dependence in the terms of Jh. But we also want to iterate this inequality
with the help of Lemma 2.3. Therefore we need

J0 ≤ M− 1
γ b

− 1
γ2 , (5.2)
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with M = cρ−q n+p
n , b = 2q n+p

n and γ = p
n . But by the definition of

J0 =
∫

Qρ,ρ2 (z0)∩{u> 1
2k}

∣∣u − 1
2
k
∣∣qdz,

we can choose k > 0 big enough, such that (5.2) holds. Hence Lemma 2.3
implies

sup
Q ρ

2
(z0)

u ≤ k,

i.e. u is locally bounded. This approach can also be applied in the sub-critical
case for anisotropic integrands.
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