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Mean-field SDEs with jumps and nonlocal
integral-PDEs
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Abstract. Recently Buckdahn et al. (Mean-field stochastic differential
equations and associated PDEs, arXiv:1407.1215, 2014) studied a mean-
field stochastic differential equation (SDE), whose coefficients depend on
both the solution process and also its law, and whose solution process
(xeoPe Xt = x0T l0), s € [BT), () € [0,T] x R, ¢ €
LQ(]-},]Rd), admits the flow property. This flow property is the key
for the study of the associated nonlocal partial differential equation
(PDE). In this work we extend these studies in a non-trivial manner
to mean-field SDEs which, in addition to the driving Brownian motion,
are governed by a compensated Poisson random measure. We show that
under suitable regularity assumptions on the coefficients of the SDE,
the solution X%®%¢ is twice differentiable with respect to z and its
law. We establish the associated nonlocal integral-PDE, and we show

that V(t,z, Pe) = E[(I)(X;:I’Pg7pxt,§)] is the unique classical solution
T

V 0, T] x R x Po(R?) — R of this nonlocal integral-PDE with terminal
condition ®.
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1. Introduction

The history of mean-field SDEs, also known as McKean—Vlasov equations, can
be traced back to the works by Kac [15] in 1956 and McKean [23] in 1966 on
stochastic systems with a large number of interacting particles. Since then
the theory of mean-field SDEs has attracted many researchers and has been
developing dynamically, see for example, [4,12,13,17,24-27] and the references
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therein. Moreover, in the last decade, more and more researchers have been
interested in related topics and problems in this field, such as Kloeden and
Lorenz [16], Kotelenez and Kurtz [18], Yong [30], Buckdahn et al. [5], Buck-
dahn et al. [6] and others. In particular, we remark that with their pioneering
paper [19], Lasry and Lions have enlarged considerably the horizon for the
applications of mean-field problems. They considered namely a general mean-
field approach to problems in economics, finance and, in particular, in game
theory.

Recently, inspired by the courses given by Lions at Collége de France [22]
(see also the notes of these courses made by Cardaliaguet [8]) many works have
been done. Among them one has to mention, in particular, those by Carmona
and Delarue [10,11] in which they studied the master equation for large popula-
tion equilibrium as well as forward—backward stochastic differential equations
and controlled McKean Vlasov dynamics. Cardaliaguet [9] proved the existence
and uniqueness of a weak solution for first order mean field game systems with
local coupling by variational methods, while Buckdahn et al. [7] investigated
mean-field stochastic differential equations governed by a Brownian motion
and they proved that the value function V(¢,z, P¢) involving the law is the
unique classical solution of an associated PDE. This latter work represents a
remarkable progress, since it helps to overcome the partial freezing of initial
data, which was done to have a flow property (see, e.g., Buckdahn et al. [6],
Hao and Li [14]).

The motivation to study mean-field SDEs with jumps stems on one hand
from previous study of mean-field SDEs driven only by a Brownian motion
and their applications, but on the other hand also from the fact that, because
of different applications, namely, in finance, the study of SDEs with jumps and
backward SDEs with jumps has been boosted. Let us refer, for instance, to the
large number of works on forward-backward stochastic differential equations
(FBSDEs) with jumps, for example, see Barles et al. [1], Bass [2], Bjork et
al. [3], Li and Peng [20], Li and Wei [21], Tang and Li [28], and Wu [29].
Especially, Barles et al. [1] were the first to study BSDEs with jumps and the
associated integral-PDEs. They proved that the cost functional introduced by
the solution of the BSDE with jumps was the unique viscosity solution of the
associated parabolic integral-PDE.

Inspired by above works, in this paper we will discuss mean-field stochas-
tic differential equations (SDEs) with jumps and the associated integral-PDEs.
More precisely, we consider a couple of SDEs with jumps:

X =¢+ / b(XPE, Pyre)dr + / o (XS, Pyre)dB,
t t
+/ / /B(Xifvprﬁ;e)p’x (dra de)v se [tﬂT]ﬂ (11)
t K
X0t =+ / b(X}E, Pyre)dr + / o (X8, Pyre)dB,
t t

—|—/ /ﬁ(X:f’g,Pxﬁ,g,e)ux(dr,de), s € [t,T), (1.2)
¢ JK
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with the initial data t € [0, 7], € R? and ¢ € L?(F;; R?). Recall that, for the
case without jumps, i.e., 8 = 0, such Egs. (1.1) and (1.2) are first studied in [7].
They are there the result of a splitting of the classical McKean—Vlasov SDE,
made with the objective to get the flow property which the McKean—Vlasov
equation usually does not have. Under suitable assumptions on the coefficients
b, o and [ (see Sect. 3 for details), the system (1.1) and (1.2) has a unique
adapted square integrable cadlag solution (X, X*%¢). From the uniqueness
of the solution of Eq. (1.1) we know that X*¢ = X*%¢|, _.. We will show that
the pair (X*®¢, X*€) satisfies flow property, i.e.,

t,@, 6 yt,& t,€
(T ) = (e X1, r el T,

forall0 <t <s <T, z¢€RY ¢ L2(F;RY, and that X»®¢ depends
on & only through the law of . This flow property is the key for the study
of the PDE associated with (1.1) and (1.2). In order to give an idea what
we can expect, we first consider a simple case: Let d = 1, the coefficients
b =0 = 0 and 3 only depends on e, i.e., B(z,u,e) = Be), v € R, pu €
P5(R), e € K. Moreover, suppose that f(Py) := g(E[h(9)]), ¥ € L*(F,R),
where g, h : R — R are C?-functions with bounded derivatives of all order.
Then considering that 0, f(Py,y) = ¢'(E[R(V)])h'(y), v € R (see Sect. 2),
a straight-forward application of It6’s formula to h(X%¢) and the fact that
0. f(Pyr)ds = g (E[A(X L)) E[dh(X4)], yield

// O f)(Pyec, XU+ pi(e))

— (@1 Xta,X;ﬂ)ﬁ(e)A(demp], seln.

0,f(Pyr.c)

We will see that this formula also holds in a more general case, when f defined
over the space P2(R) of the probability laws over R with finite second moment
is regular enough. The proof of such a formula in a general case is a central
element in our approach (see Theorem 7.1). It generalizes the second order
Taylor-type expansion in [7] and turns out to be much more suitable because
of the presence of jump terms. Let now ® : RxP2(R) — R be a function smooth
enough and consider the value function V(t,z,P) = E[@(Xth e PXt )],
defined over [0,7] x R x P2(R). As the formula for 9, f(P Xt ) suggests, the
function U(t,y) := ®(¢,y, PXtT,g) is C'12 with respect to (¢,y), and the classical

argument shows that V (¢, z, P¢) = E[VU(t, Xt " Pg)], (t,z) € [0,T] x R, satisfies
the following integral-PDE:

0= atV(t,a:,Pg)—l-/K (V(t,x+ﬂ(e),Pg)—V(t,x,Pg)—&IV(t,x,Pg)ﬁ(e))/\(de)

+E[ / / [(0,V)(t, 7, Pe, € + pB(e)) — (0, V) (t, 3, Pe, )] - Ble)A(de)dp]
0 K
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(t,2,€) € [0,T] x R x L*(F; R),

V(T,x, Pe) = ®(z, P), (v,£) € Rx L*(F;R).
Inspired by this simple case, we show that, in the general case, the associated
integral-PDE is of the form:

d
0=0V(t,x,Pe)+ > 0a,V(t,x, Pe)bi(w, Py)
i=1

d
1
t5 ; 1 97,5,V (t, 2, Pe) (0 01.) (, Pe)
1], R=

—l—/ (V(t,az + B(z, Pe,e), Pe) = V(t,x, Pe)
K

d
— Z 0y, V(t,z, Pe) i (x, P, e))/\(de) +FE

i=1

u

Z(aﬁtv)i(t’xv PE?f)bi(fa Pf)

=1

d
£5 2 OOV )it P )00 (6 Fo)

i,5,k=1

d 1
+§::/o /K[(aﬂv)i(tv% Pe,& + pB(&, Peye)).

_(auv)i(t7x7 P&?ﬁ)} : /61(57 P, e))‘(de)d/)]

(t,z,€) € [0,T] x RY x L*(F; RY),
V(T,z, P;) = ®(x, P), (¢,€) € RY x L*(F;RY). (1.3)

We show that the value function V (¢, z, P¢) is the unique classical solution
of Eq. (1.3) (see Theorem 7.3). Since the main tool in our proof is a generaliza-
tion of Itd’s formula, the first and second order derivatives of V (¢, z, P¢) with
respect to the law and their estimates are crucial. Their study necessitates the
investigation of the first and second order derivatives of X**"¢ with respect
to  and the law Pe.

We emphasize that, different from [7] we study the mean-field SDEs with
jumps, and give the probabilistic representation to the solution of a new type of
nonlocal integral PDE (1.3). For this, we need to prove several new results, in
particular a new It formula (see Theorem 7.2), whose proof is far from being
a direct extension of It6’s formula (for mean-field processes without jumps) in
[7]. Indeed, the key for the proof of the Itd formula consists in the study of
the derivative of f(Py:.¢) with respect to s (see Theorem 7.1). While in the
case without jumps in [7] this derivative was obtained as a direct consequence
of a kind of second order Taylor expansion of f(Pg 4,) at & € L%(P), as
E[|n]?] — 0, this approach is here in the case of jumps not possible anymore:
Indeed, while in the case without jumps E[\Xth — XL = O(h3/?), as
0 < h — 0, in the case with jumps (1.1) we only have E[|X§fh—X§’5|3] = O(h).
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To overcome this difficulty which has its origin in the jump part, we have to
consider the filtration generated by the Poisson random measure and enlarged
by the full information on the underlying Brownian motion, in order to apply
the It6 formula just to the jump part of the It6 process. This, combined with
a series of subtle estimates, allows to compute the derivative of f(Py:.¢) in

Theorem 7.1 under the standard assumption that f € Cf 1 (P(RY)), and thus
later to prove the It6 formula in Theorem 7.2. The “lack in the speed of
convergence” of E[|X;fh — X5¢3] in the jump case leads also at other places
of the manuscript to trickier estimates.

Our paper is organized as follows: In Sect. 2, we introduce our setting
and some notations, which are used frequently in what follows. The existence
and the uniqueness of the solution of SDE for X*¢ and that for X*®F¢ are
proved and the corresponding estimates are obtained in Sect. 3. Section 5 is
devoted to the investigation of the Fréchet derivative of X*®F¢ with respect
to P¢. The derivative of X 6% P with respect to the law is characterized as
solution of an SDE with jumps. Based on the first order derivatives, we discuss
the second order derivatives of X“®¢ in Sect. 6. The regularity of the value
function V' (¢, x, P¢) is investigated in Sect. 7. In the last Section, the associated
integral-PDE is studied. We prove that the value function V'(¢,, P¢) is the
unique classical solution of this integral-PDE of mean-field type.

2. Preliminaries

Let P(R?) be the set of probability measures on (R? B(R?)) and
P2(RY) = {p € PRY)| [pulz]® p(dz) < co}. We endow Pa(RY) with the
2-Wasserstein metric: for u, v € Po(R?),

2

Wa(p, v) := inf { (/ |x — y|2p(dajdy)> . p € Po(R*), such that
R2d

p(A x RY) = pu(A), AeBR?Y, p(R* x B) =v(B), Be B(Rd)}.

Let (Q,F,P) be a complete probability space, which we suppose to be
rich enough, i.e., for each v € 7Py(R?), there exists a random variable
¢ € L3(Q,F,P;RY) (L*(F;RY) for short) such that Py = v. Following the
approach introduced by Lions [8], we define the differentiability of a function
f: Po(RY) — Rin pu € Py(R?) as follows: If for the lifted function f(£) :=
f(Pe), € € L*(F;RY), there exists a & € L?(F;R?) with Pg, = p such that
f: L?(F;R%) — R is Fréchet differentiable in &y, then f is said to be differen-
tiable in p. In other words, if this is the case, then there exists a linear contin-
uous mapping D f(&y) : L?(F;RY) — R (Df(&) € L(L*(F;R%);R)) such that

F&o+m) = f(&) = DF(€0)(n) + o(Inl2), (2.1)
with ||z — 0, for n € L2(F;R%). By Ries~z’ Representation Theorem, there
exists a unique ¢ € L?(F;R?) such that Df(&)(n) = E[¢ - 0], n € L*(F;RY).
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Cardaliaguet [8] proved that ¢ is of the form ¢ = hy(&p), P-a.s., where hg is a
Borel function which only depends on the law P, but not on g itself. Hence,
(2.1) can be rewritten as

F(Peyin) = f(Pey) = Elho(&) - n] + o(|n|2), n € L*(F;RY).
The function 9, f(Pe,.y) = ho(y), y € RY is called the derivative of
f: P2(RY) — R at Pg,. Notice that 9, f(Ps,,y) is only P, (dy)-a.e. uniquely
determined.

Using the above introduced definition, we define the differentiability of a
function f : Py(R%) — R over Py(RY) by assuming that f : L2(F,R%) — R is
Fréchet differentiable over the whole space L?(F;R9).

Let us introduce two spaces which are used in what follows.

Definition 2.1. (1) C;’l(’PQ(Rd)) denotes the space of differentiable functions
f: P2(RY) — R, which satisfy 9,f(-,-) : Po(R%) x R? — R? is bounded
and Lipschitz continuous, i.e., there exists some positive constant C' such
that

(i) [0uf(p,2)| < C, p€ Pa(RY), xeRY,

i) 0, f (0 2) — Ouf(t,a)] < CWali ) + o — &/]), iy i €
Pao(RY), =, 2’ € R

(2) Cf’l(’Pg(]Rd)) denotes the space of all functions f € C’bl’l(Pg(Rd)), such

that

(i) (0u);(y) € Cy (P2(RY), for all y € RY, 1 < j < d, and 92f
Po(R?) x RY x R — R? @ R? is bounded and Lipschitz,

(ii) (8uf);(u,") : R4 — R is differentiable, for every u € P2(R?) and
the derivative 9,(9,f) : P2(R?) x R? — R? @ R? is bounded and

Lipschitz.
Here we use the notations 3ﬁf(u,:c,y) = (0,00, 1) (- y) (s ) 1< j<d,
(x,y) € Po(RY) x RY x R 0, f(p,y) = ((0uf)i(1sy))1<s<ds

(1) € Po(R?) x RY.

3. Mean-field stochastic differential equations with jumps

Let (©, F, P) be a complete probability space, B = (B;):>0 be a d-dimensional
Brownian motion and i be a Poisson random measure on R x K independent
of B, where K C R! is a nonempty open set equipped with its Borel field
K, with compensator v(dt,de) = A(de)dt such that, {s, ([0,t] x A) = (u —
v)([0,t] x A)},., is a martingale for all A € K satisfying A(A) < oc. Here A
is a given o-finite Lévy measure on (K, K), i.e., a measure on (K, K) with the
property that [, (1 A [e[*)A(de) < oo. Let T > 0 be a fixed time horizon and
F = {F,}1>0 be the filtration generated by the above mutually independent
processes, completed and augmented by a o-field Gy, i.e.,

Fi = o{Bs, u([0,s] x A)| s <t,Ae K},

Fi 5:.70'—t+ \/go(: ( ﬂ .7?—3)\/90>7 t€[0,7],

s:8>t
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where Gy C F is supposed to have the following properties:

(i) The Brownian motion B and the Poisson random measure p are inde-
pendent of Gg;
(ii) Go is “rich enough”, i.e., Po(RY) = {P¢, & € L?(Go; RY)};
(iii) Go D Np, where Np is the set of all P-null subsets.
The following space is used frequently. For ¢ € [0, T],

S2(t,T;RY) = {(Xs)se[tj] Ré-valued F-adapted cadlag process:
Blsupy< <7 | X,[?] < +o00}.
HE(t, T;RY) = {(¢s)se[t,T] Re-valued F-predictable process: ||[¢||? =
B[, ,[2ds] < +oc .
Let b : R¥xPy(R?Y) — R, 5 : RIxPy(RY) — RX? B : RIXPy(RY)x K —
R? satisfy:
(H3.1) (i) b, o are bounded and Lipschitz;

(ii) The coefficient [ is Borel measurable. Moreover, there exists some
positive constant L such that, for all e € K, x, 2’ € RY, pu, p’ € Pa(RY),

18, pre)| < L(UALel), |8, €) — B/ s )l < L1 Alel)(fo — 2] +
Wa(p, 1))

For t € [0,T), € € L?(F;RY) and x € RY, let us now consider two SDEs:

XUE gt / B(XES, Pyre)dr + / o(XH€, Pyic)dB,
t t
+//mﬁ£a%mmmw»sﬂmm (3.1)
t K

X =t [ P i+ [ oK Py aB,

t
S
+/t /K,B(Xﬁf“s,Pxﬁ,g,e)ux(dr,de)7 s € [t,T). (3.2)

Theorem 3.1. Under assumption (H3.1), the Eqgs. (3.1) and (3.2) admit unique
solutions X'¢ = (X08) e and XW¢ = (X% e in SE(E, T;R?). The
solution X*®¢ is independent of F;.

Proof. For convenience, we suppose b = 0. But our argument is also feasible
for b # 0. Let X° = ¢ € S2(¢,T;R?). For i > 0, we consider the following
iteration equation:

X§+1:£+/ a(Xfi,PX:.)dBﬁr/ /B(Xi—aPXi’e)Mx(dr’de)V selt,T].
’ t JK

(3.3)
Obviously, X*! € S2(¢, T;R%), i > 0. Denote X* = X! — X7 4 >0, then

T

Xi = [0} Px) ~ o(Xi7 Py )i,
t

+/ / ﬂ(Xrllfva,}'.ve) - /B(Xiilapxi—%e);u'x (drv de)7 s € [th]'
t K
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Thanks to Burkholder—-Davis—Gundy inequality and the Lipschitz assumption
on [ and o, it follows that for t < s <u < T,

E| sup |Xi?]

s€(t,u]

<CE [/ 0(X}, Pxi) —o(X] 7!, Pyio) dr]
+CE [/ / |ﬂ(Xﬁ,PX£,e)—ﬂ(Xf;1,PX;-1,e)|2)\(de)dr]
t K
<o | [ 1XP 4 WPy, P ]
t

+CE [/tu/K(l/\|e|2)(|)_(ﬁ_12+W2(PX;-7PX;-_1)2)>\(de)dr}. (3.4)

Recall that Wy(Px:, Pyi-1)? < E|X/7'[?. From Gronwall’s inequality
we have E{supse[t,u] |)_(;|2} < CE ["|Xi7*dr, where C depends only on

Lipschitz constants of § and o. This implies

B|IX!? < c/ E[| X1 2)dr < 02/ / E[| X2 )dridr

<CZ/// / E[XY_ |Pldri—y - - - dridr.

Hence, E[SUPse[t,T] |)_(;|2} <y (Cg , © >0, where Cj is independent of 4. It
follows that

[N

Z(E[ sup |5<;‘|2D < .

i>0 se(t,T]

This means that (X%);>0 C S2(t,T;R?) is a Cauchy sequence. Consequently,
there exists a process X € S2(t, T; R?) such that || X — X||sz(t,ripay — 0, i —
oo, and for r € [¢,T],

Wa(Pxi, Px,)* < E|X; = X, < ||IX* = X[ ppay — 0. i — oo

Taking ¢ — oo in (3.3),

stf—i—/ a(XT,PXT)dB,.—&—/ /ﬁ(XT_,PXT,e)uA(dr,de), s € [t,T].
t t JK

Hence, it only still remains to prove the uniqueness of the solution of SDE
(3.1). We suppose X* = (X!)sepp ) € SE(t, T;RY), i = 1,2 are two solutions
of SDE (3.1). In analogy to (3.4), we have for t <u < T,

BIX! - X2?< C/ E|X}! — X22dr.
t

From Gronwall’s inequality, we have X' = X2,
Once knowing Xt¢ and Pxre, Eq. (3.2) can be treated as a classi-
cal SDE with b(s,x) := b(z, Pyie), 6(s,7) 1= o(x, Pyue), and B(s,z,¢e) :=
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O(x, PX§’5’6)' Obviously, b, & and 3 are Lipschitz in 2. Hence, Eq. (3.2) has a
unique solution X%¢ € S2(¢, T;R?), and it is independent of F;. O

Remark 3.1. (i) From the uniqueness of Eq. (3.1) for X¢ we have X!¢ =
Xg’zvé‘ =X se [T,
(igic)_'&l‘ he solution of Eq. (3.1) and that of (3.2) satisfy a flow property:
(Xﬁ’x?z’fvx-?iXf’X-z’g) _ (X;t,,w,£7X:,£)7 r € [s,T],
forall0 <t <s<T, z€Re ¢£ec L2(FyRY).

Inspired by the work of Li and Wei [21], we obtain the following lemma.
Even if (3.5) was originally proved only for ¢ € S2(t,T; R%), by passing to the
limit one extends the estimate easily to all ¢ € H2(t, T;RY).

Lemma 3.1. For any ¢ € HZ(t,T;R?), we have for p > 2,

( Iy (1A|€2)|@rl2u(dﬁd€)> I scpE[ / sorpdrm]
t K t

t<u<T. (3.5)

E

Making use of the preceding lemma, the following estimates for X*®:¢
and X*¢ can be obtained.

Proposition 3.1. For p > 2, there exists a positive constant C,, depending on
the Lipschilz constants of b, o and (3, such that for all t € [0,T], =, T €
RY, ¢, € € L2(Fy;RY), P-a.s.,

(i) Elsupsep,q) [X0™¢P|F] < Cp(1+(2fP), Elsup,epr [X04PIF] < Cp(1+

€17), i
(ii) Blsup,eper | X0 — X0WPIF] < Cylle — 2P + Wa(Pe, Pe)?),
Blsup,epy,qy | X098 = XUEP|F] < Cp(1€ — EP + Wa(Pe, Pe)?),
(i) Elsupsepeern) (X0 =€ + | X0 — 2fP)|F] < Cph(1 + [€[P).

Proof. We will only prove E[sup,cp 1 |Xbos — XEEEP|F] < Cp(lx — 2P +
Wa(Pe, Pg)P). The other estimates can be proved with a similar argument.

Denote AX! = XL*u& - Xbr2:&2 - Ay = g1 — x5, From Burkholder—
Davis—Gundy inequality and the Lipschitz continuity of b, o, 3, we have, for
t<s<u<T,

E

sup |AXIP|F
s€E[t,u]

scp<|AxP+E / <W2<PX¢7517PX:@2>P+|Axﬁ|1’>dr|ft]>
t

+CpE[(/ /(1/\|e|2)(|AXﬁ|2+W2(PX¢,51,PXi,gQ)Q)u(dr,de)> |]—'t}
t K

(3.6)



17 Page 10 of 51 T. Hao and J. Li NoDEA

But, from Lemma 3.1 we have

E ( / / <1A|e|2>|AXﬁ|2u<dnde>> m]
t K
SCpE[/ IAXﬁl”drlft], (3.7)
t
E ( / / <1A|e|2>WQ<PX¢,,51,PX£,52>2u<dr,de>> ft]
t K
SCP/ WQ(PXt,gl,PXt,§2)pdT. (38)

Combining (3.6)—(3.8),

E

s€[t,u]

sup |AX§|”}}1

<G (AwIP + / Wa(Pyrer, Pyre)Pdr + E
t

/ |AXﬁ|pdr|}'t] )
t

S Cp <|A$|p + / WQ(PX’t,gl , PXt,§2 )pdT> s (39)
. " -

From Gronwall’s inequality we have

E| sup |[AXL]P|F,

sEt,u)

ie.,

E|: sup |X§7961751 _ X£79027f2|13|].‘t:|
s€[t,u]

u
< Cp (|.7J1 - x2|p + / Wz(PX:,gl s PX:,gz )pdr>, (3.10)
t
for all z1,z2 € R% On the other hand, recall that X;v””’fi, s € t,T], =; €
R% i = 1,2, is independent of F;. Hence, for all ¢; € L?(F;; R?) with Pe = P,
the laws of X5 and Xb&i& = Xb& (see Remark 3.1 (i) coincide. Thus,
for all £ € L*(Fy; RY) with Py = Pe,, i = 1,2,

Wa(Pyrer, Pyre)?

L€, t,Eh,
= WQ(PXi,sg,slaPX:,sg,s2)2 < EHXTS Xt 52|2]
= E[EHX;&'@M& - X:@%&|2“Ft”$1:§i,$2:€é]a re [thL
and from (3.10), for p = 2,

WalPyser, Pypa)? < CE[§ -]+ C [ WalPyger, Py Pdu, € [17)
t

Hence, from Gronwall’s inequality, sup,¢(, 7] Wa(Pyr6, Pyrea)? < CE[€] —
&%), and taking into account the arbitrariness of &/ € L*(Fy; RY) with Py =

Pe,, i =1,2, we obtain



NoDEA Mean-field SDEs with jumps and nonlocal Page 11 of 51 17

sup WQ( tsl,P t52) <CW2(P§1,P52).
relt,T)

This result combined with (3.10) yields
E| sup |X7f7f£17§1 _ X£72?27§2|P|‘7:t
relt,T)

€[0,T], 21, z2 € RY, &, & € L2(Fy; RY). O

< Cp(|901 —xa|P + W2(P£1,P52)P),

From Proposition 3.1, we know that the processes X*%¢1 and X»%:¢2 are
indistinguishable as long as &; € L?(F;;R?) and & € L?(F;; R?) have the same
law. This means that X*»®¢ depends on £ only through its law. Hence, we can
define Xt®Fe .= Xt@8 (t,2) € [0,T] x RY, & € L?(F;RY).

4. First order derivatives of X%

This section is devoted to study the first order derivatives of X»* ¢ with
respect to x and P;. Let us first make an assumption which is frequently used
in what follows.

(Assumption A.1) For every e € K, (b,0,0(-,-,¢)) € C;’l(Rd x Pa(RY) —
R? x R¥*4 x R?); the components bj,0i5,0(,-,e), 1 <i, j <d, are assumed
to satisfy:

(i) oi(z,),b(x,-),B(z, - e) € C;’l(,PQ(Rd)), for all z € R, e € K;

(11) Ui,j('?“)’ bj('uu)’ ﬁj(',/,é,e) € Cl}(Rd)’ for all € PQ(Rd)7 e € K;

(ili) The derivatives 0,055, Ozb; : R? x Py(R?) — R? and 0u0ij, Oubj :
RY x Py(R?) x RY — R are bounded and Lipschitz continuous;

(iv) There is some constant L € R such that 9,0;(-, -, ) : R? x Py(R?) — R?
and 9,,0;(-, - e) : RY x Pa(R?) x R? — R? are bounded by L(1 A |e|) and
Lipschitz continuous with Lipschitz factor L(1 A |e]), e € K, i.e., for all
, T, y, YERL p, i€ P(RY), ec K,1<j<d,

(V) 10uBj(, 1, €, y)| < L(L A [e]), [0:8; (2, p, )] < L(LAel),

(Vi) [0:0;(x; p, €) = x5 (%, 1, )| < L(LAfe])(|x — 2| + Wa(p, 1)), 10,5, (=, s,
e, y) — 0,05 (T, 1, €, 9)| < LA le]) (| — 2 + |y — gl + Wa(u, ).

We now study the L2-differentiability of X" with respect to .

Theorem 4.1. Under Assumption (A.1), the L2-derivative 0,X"%Te
(0 X 0o Ped) <5y of Xt@Pe exists and is characterized by the following SDE:

i

D e /%aj, (X708 Pyre) 0, X0 ™ T AL
k=1
+Z/ Du,b; XL Pe Pyi)0a, X XL Pek g,

+Z//%a] X0 Pxe, €000, X000  u, (dr de), (4.1)
t

e,T), 1<i, j<d.
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Considering the coefficients &(r,z) := o(z, Pytc), b(r,z) := b(x, Pyre)
and B(r,z,e) := 6($,PX$,5,€), this result is a classical one and we omit the
proof.

From standard estimates for classical SDEs and in analogy to Proposition
3.1 we get

Proposition 4.1. For all p > 2, there exists a positive constant C, only
depending on the Lipschitz constants of 0.b, 0,0 and 0.0, such that for all
t€[0,7], z, 2’ € RY, P¢, Py € Po(R?), P-a.s.,

t,x,Pe

() B|supsepn [0:X5"PIR] < €,
t,w'7P§/

(ll) E[Supse[t’ﬂ |8zX§’z’P§ —asz |p|ft:| < Cp(\x—x/|p+W2(P§7 PE/)p>,

t $7P5

(iil) Elsupgeps,psn) 10: X" — Ipa|P|F] < Cphy 0 <h <T —t.

Remark 4.1. Notice that all terms of (4.1) are independent of F;. Hence,
0, X4 Fe is independent of F;. Consequently, 0, X©%7¢ (= (9, X5 T60)1 < <4)
= ath’“”PE|Z:£(: (ﬁth’m*Pﬁ’j)1§j§d| is well defined and is the unique

solution of the following SDE:

w:f)

. d s
(9ziX£’§,PsJ =1+ Z / amkaj’l(X:7€>Pxﬁvi)awiXﬁ’g’Ps’kdBi
kil=1"1

d s
+Z/ 8¢kbj(X7t~’£’PX,ﬁ’5)8x¢X£’£7P£,kdr

k=17t
d s

+ / / OB (X)5, Pyre, €000, X5 8 (dr,de). (4.2)
k=1 t K

Moreover, from Proposition 4.1, for p > 2,

sup |BIX§’I’P§|”\.7-} < Cp, P-as.,
se(t,T]

E

sup |8mX§’E’P§|p|ft1 < sup E
€[, T] z€R4

where C,, is independent of the choice of £ and in fact, only depends on the
Lipschitz constants of 0,b, 0,0 and 0,0.

The following theorem shows that the solution X%%¢ of (3.2) interpreted
as a functional of ¢ € L?(F;; R?) is Gateaux differentiable.

Theorem 4.2. Let (b, o, 3) satisfy Assumption (A.1), and by Xt%¢ we denote
the solution X'®Fe of (3.2) lifted from Po(R?) to L?(Fy;RY), XLot =
Xt g e [t,T), € € L*(F;RY). Then, for all0 <t < s <T and z € R,
the mapping Xb* : L*(F;RY) — L2(F;RY) is Gateauz differentiable.

Moreover, there exists a stochastic process NV*Te(y) = (N;S’I’P5 (y))se[t 7 €

SZ(t,T;R™*) such that the Gdteauz derivative is of the form:
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DeXL™E(n) = BE[Ny™TE(€) - ([ZNifff D ,
1<i<d

fOT’ all n= (77177727 . 'and) € LQ(]:taRd) H@T’@ (é ’FI = (ﬁla v 777]d)> deﬁned on
some probability space (Q, F, P), obeys the same law as (€,n1 = (1n1,...,14)) on
(Q,F,P), and E|[] denotes the expectation under P; E[-] concerns here only £
and 7).

Proof. For simplicity we restrict ourselves only to the one-dimensional case.
The proof can be extended to the case d > 1 by using the same argument.
We suppose that (é, i1, B, i, ) is a copy of (§,m, B, i, ) on some complete
probability space (Q, F, ]5)7 and we denote by X*¢ the solution of SDE (3.1),
but now driven by the Brownian Motion B and the compensated Poisson
random measure j, instead of B and py, and with the initial value 5 instead

of &; X4 P& denotes the solution of SDE (3.2) for X**€ driven by B and ;.
Then,

Xt =i / W Py i+ [ o(X15 Py, aB,
t "
/ | BEE Py e, seltT) @)
~t,x,P; ~tx,P: =~ s ~tx,P; ~ ~
X, 5:x+/t b( X, E,Pﬁ,g)dr—i—/t (X, 57PX¢,é)dBr
s ~t,x,P- ~
[ [ BT Pyemdnde), selnT.  (14)
t K "

From Pg = P: we know that Xt=Pe = XtoPe  gpoe R, t € [0,T7,
and (é,ﬁX’t’LPﬁ,B,;TA) defined over (Q,f, ]5) is an independent copy of
(€,m,X4=Fe B ). Using the above notations, by 0, X5 we denote

the derivative of X™"¢ with respect to z, and we define 9, XtEPE =
aZXT ol ‘m* 3

_);-"
Let us consider the SDE

Ystﬁg(n) :/t 8wU<X;7£apxﬁ=5)W7£(n)dBr+/t aa:b<X7€7£7PXp§>Yvrt7£(n)dT
S
t
+/ E[&w(X%PX;,s,Xﬁ%-<azxi’“)€ i+ Y4 () |dB;
t

/ E[0,b(X}S, Pye, X5) - (0, X075 -4 + V1 (i) dr

//E Mﬂ t£Pf£7)~(ﬁ,§’e)

(O XU VR (), (dr de), s € [t,T). (4.5)
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It is straight-forward to show that (4.5) possesses a unique solution Y*¢(n) €
SZ(t,T;R). This solution Y*¢(n) of (4.5) allows to consider the following equa-
tion for which the existence and the uniqueness of a solution is standard too,

Yo m) = | 0u0 (X0 Pye) Y0 (n)d B,

t

+/ Db(X7 ", Py )Y, S () dr
t

+ / / o BXEDFE Pyse, )Y (), (dr, de)
t

s

B[00 (X", Pyre, XE5) - (0, X005 i + Y14(7))|dB,

f
+

BlOb(XE™TE Pye, XE€) - (0, XEST iy 4+ V14 () dr
s — t,x,PE ~t,£~
+ E[0,8(X. "¢ Pyee, X1¥ e)
t K
(0, X0 T 4 Y ()|, (dry de), s € [t,T). (4.6)

Obviously, from (4.5) the mapping Y¢(:) : L?(F;; R) — L%(Fg;R) is linear.

From standard estimates for SDE it follows that

sup [Y/4(n)]*| < CE[nf’], n € L*(FiR).

seft,T]

E

L?(F;;R) — L?(F;R) is a linear and continuous mapping.

Hence, Y}¢() :
Using this for (4.6), we also get Yo" "5(\) 1 L2(F;R) — L3(F,;R) is a linear

and continuous mapping.
In order to obtain the concrete expression of vt (

consider the following SDE:

1), we now, for y € R,

NEG) = [ 000X P NI, + [ 0ub(XEE Py N )ar
t
[ / DXL, Py, )N (y)i, (dr. de)
/ Bl0,0(X5E, Pyre, Xp"T6)0, X7
+0,0(XEE, Pye, XE5) - N (y)]dB,
/ BlO,b(XES, Pyve, X1 T6)9, X0 T

—i_aﬂb()(r7 aPXTEf)Xf"&) : N:7g(y)]dr
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/ /E F‘ﬂ 7—3 *757)27127%13&’6)6:8)27{7%135
O B(XEE Pyve, X1E,€) - NEE(y) i, (dr, de), (4.7)

€ [t,T], where (Ntvi(y),é,m) under P is assumed to have the same law
s (N%(y), B, ) under P. From our assumption on b, o and (3, as well
as the properties of the process 9, X"¥*¢ (see Proposition 4.1), it is easy to
prove that Eq. (4.7) possesses a unique solution N*¢(y) = (N4(y))sepr) €
S2(t,T). Moreover, with SDE standard estimates we can also show that, for
ally € R, t € [0,T], £ € L*(Fi;R), Elsupyep 1 INF(y)[!] < C, where C
depends only on the bounds of the derivatives of b, o and S.
Once having N%(y), we consider the unique solution N®*F¢(y) €
S2(t,T) of the following SDE:

ths /a th5 Pth)Nthg(y)dBr
/ab Xp O P NSO (y)dr

+ [ ] aBee e g N o)
/ Bl0,0(Xr" Pyve, X0 T6)9, X'
0 (X7 ™1, Pyye, X19) - NEE (y))d B,
/ BlOb(X7 " Pyoe, X709, X0
+Ob(XP T Pre, XEE) - NS (y))dr
//E DuB(X] 0T Prre, X )0, X1t T

+0,68(X, xhote , Py, Xﬁ’g, e)- ](7,'35(94)]/1A (dr, de). (4.8)

Since N“*¢(y) is independent of F;, and due to the uniqueness of the solution
of the Eq. (4.7) we obtain, by substituting & for x, N&¢(y) = N:H®<(y) ’1;57 s €

[t, T, P-a.s. After substituting € for y in N***(y), we multiply both sides of such
obtained equation by 7, and then take the expectation E[-] under P, where
(€,7, B, Tix) defined on some probability _space (2, F, P) is an independent
copy of (&,m, B, uy) (and, hence, also of (f,n,B ). This yields

EINS(9) - 7]
-/ 0,0(X1€, Py ) BINY(E) - )dB,

/ Dub(XEE, Py EINLE(E) - 7ldr
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+ / /K axmxff?PX;,f?e)E[N:ﬂé 7, (dr, de)

Since (&,7) is independent of (&,m, B, py) and (g,ﬁ,é,ﬂ;), and of the
same law under P as (£,7) under P, we have for f = b, o and for (3,

B[ El0, f(XEE, Py, X757)0, X157

—E{auf(Xﬁf,P I S E

)

—E [aug(xff, Py, X578 0)0, XPOTE f;} . (4.10)

B[B0,5(XIE, Py, X1E7 )0, X157

Combining (4.9) with (4.10), we have

EINY4(E) -7
/ 0,0(XH€, Py ) EINEE(E) - f]dB,

/ab Pyt ) EINEE(E) - ldr
+ / /K D, B(XLS, Pxﬁ,g,emwﬁf (&) - 7l (dr, de)
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// BIXEE, Pyee, X1 e)

X(BmXi’é’Pﬁ~77+E[1\75’5(5)-ﬁ])}m(dhdeh seltT.  (411)

However, Eq. (4.11) is just Eq. (4.5) for Y*¢(n). Due to the uniqueness of the
solution of this equation, we have

Y4 (n) = E[NJS(€) 1), s € [t,T].

Using the same argument as before but now for N*%:F(y) instead of N*¢(y),
we obtain

E[NSTTE(E) -7
:/t Duor (XEPFe Py )EINS™FE (&) - 1)dB,

+ / O.(XEPE Py ) BINESTE ) - g

+ / [ 0uBXL T Py VBN ) - il i de)

4 / E[0,0(XE5 T Py, X160, X147 i+ BN () - 7)) B,
+/tsE[aﬂb(XtIP£ Pyre, XU @, X050 + B[N @) - )| ar
[ ] Blosxin pye %)

X (0. XP5" i+ BINEE(E) 7)) | (dr de), s € [1,T). (4.12)

Equation (4.12) is nothing else but Eq. (4.6) for Y**7¢(5). Hence, from the
uniqueness for Eq. (4.6) it follows that

YIm ) = EINT@) ), s € [1T), n € LA(FGR).

In the following lemma (Lemma 4.1) we show that for the lifted process
Xbo& = Xt s € [t,T], the directional derivative in any direction
n € L*(Fi;R) exists, and coincides with Y& ¢ (p) + V&™) = L2 —
limy, g 3 (X508 — Xﬁ ©8) s € [t,T)]. Since Y1*F%(.) is a linear continuous
mapping from L?(F;R) to L?(Fg;R), € — X5®¢ is Gateaux differentiable on
L2(F4;R). 0

Lemma 4.1. Under the assumptions of Theorem 4.1 we have, for all (t,z) €
0,T] x RY, &, ne L*(Fi;RY),

E| sup |(Xo®Temm - x00) _py ST )2 < OlhY(ER?)?.
s€t,T]
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Proof. For simplicity, but without restriction of the generality of the method,
we consider d =1, b =0 and o = 0, i.e., we restrict ourselves to

t:ng .’L'+/ /5 twpg Pth, )MA(dT,d@),
Xtﬁ—x-i-/ /ﬁ Pyre,e)ur(dr,de), seft,T]. (4.13)

From Proposition 3.1, for all p > 2, there is some C,, € R such that, for all
&, ne L?(F;R), heR:

E[ sup X Xi*f”’Pf|p|ft] < CyWa(Peyn Pe)? < Col Bl E P,
se(t,T]

E[ sup | XHEHT _ X?ﬂ%] < G P (nl? + (EDDE). (4.14)
set,T]

Suppose that h # 0, we have from (4.13), for s € [t, T},

I(Xt$P5+h,, _th Pg)

/ / thth PXt £+hn76)_5(X7tf e P t£’6)>'u)\(dr’de).

But, using the regularity assumptions on 3 we get

ﬁ(thPgHW PXt g+hn7€)_ﬁ(X:iv e PXt g, € )

= BG4 (XD = XPTT) Peinn,€) = BT Pyresnn,€)

+B(X! X Pe , Py xtetn_xie),€ )—ﬁ(X:ng Pyie,e)

1
_/ (@, B) (X" 4 (X:wPerhn_X:_acPé)’PXﬁyg_*_hme)dp
0

) (Xif’Pth _ xthe Pg / E uﬂ xh® Pg PXt€+p(Xt cthn X‘E)’X 13
(XS - X)) (XS — X1 )ldp.

As concerns the notations X*¢, Xt6+h7 e refer to the first part of the proof
of Theorem 4.2. Hence,

1(thP§+h77 _XthE)

xr 1 s, 3Ty
= [ [ @B Py 0 (R = X )

//E l‘ﬂ th& P tian?éa )

+ RL™EN(h), s € [t,T], (4.15)

L(guErnn 08, (dr, de)

> \
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where

s 1
Ri,x,&,n(h):/ / / ((8xﬁ)( th§+ (th P£+h"—X:f’Pg),PX£1§+hﬂ7e)
t K

(0uB) (XL, Py ) )y (X120 — X261 (dr, de)

s
- ta:P
"r/t /K/O E[((&Mﬂ)( ¢ P t§+p(xt§+hn th),X’

FPREEMT — REE) ) — (0,8) (X157 Py, 1€, 0))

1 o= o
X E(Xﬁ’&'h" — Xf,’g)} dppx(dr,de).

Thus, in virtue of the Lipschitz property of 9,3 and 0,0,

E[mm|Rw@meu4
s€[t,T)

< C/ / 1 A |6 |Xﬁ7x7P£+fL'r] _ X£7x7P£|2

1 T T
+W2( Xf §+hn;PX7{=§)2) |h|2|Xt »Pethn _ ij ’P€|2|‘7:t /\(de)dr

+C/ / 1/\|€| (Wg( XEE 4 p(XPEThT_ Xt g),PX:‘,g)

e ged)y Lygrdens Xf.»f|]) A(de)dr

i
t,x, P, n t,x, P
<0 [ (Bl - xR

“r‘WEHX:’I’PEHm N X:,I,PE |2|th] . EHX;?&-HIU _ Xﬁ7£|2]>d’l"

+0/|;AEM$“MX%HVW
t

and from (4.14) we get for C' € R, independent of ¢, z, &, 7,
B| sw IR0 < CIOEELA, e R
s€t,T]

On the other hand, notice that

%(X7{7§+hn _ thﬂé)

1
_ 7(X?f,§+h77,135+hn - Xﬁ»&aP§+hn) +

h

l(xﬁf’PH’m - Xﬁ,ﬁapg)

h
:/ 9y X PPt g n+h(Xt5P“h"—Xﬁ7f7P5), re[t,T),
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and

T .
E{ Iy |E[<am><xif”°aPxi,a,fcﬁf,@
t K

1
/(&c REEFPIPe _ g gtEPey g 5
0

|2A(de)d7}

1
SC/ (1A le*)A(de) / E{ sup \mxﬁ”*’*”h"”’ﬁ”*’—8xXﬁ’5’PE‘2}dp-E[n21
K 0

reft,T)
< CIn*(E™)?,
we have, from (4.15),
1 (Xt 2, Pe by _ Xt , T, Pg)
1
/ / 8, B)(XL" P ts,e)E(Xﬁf’P“h" — X2 1 (dr, de)

/ / tLP&?PX?%Xi,é,e)(anﬁ,E,Pg 1]

(ST RSP s (drde) + R, (416)

where

E[ sup |]~%Z’I’E”7(h)|2|ft] < C’|h|2(E[772])27 heR, zcR.
set,T]

Substituting & for z in (4.16), we get

1 (Xté Peynn Xt € P&)
/ OB P ) (X150 = X1 s . de)
/ / )(XEE, Pyoe, XUE ) (amX?g’Pé 7]
+%(Xﬁ’§’P chin _ ZHEP ﬁ))} pix(dr, de) + RE$$7(h), (4.17)

with Elsup,cp, 11 [RESS(0)P] < Elsup,ep Elsup,ep r [REW47 (M) F]] <
Clh*(E[n?]).
Combining (4.17) with (4.5) (of course, for o = 0, b = 0), we obtain

1
(Xt§P£+hn_Xt€P£) th()

= [ [ @B XL Py ) (ORS00 XY ) s )

// )(XEE, Py, X14 e)

" (E(XtE \Peynn Xt’é’Pﬁ)—?f’é(ﬁ))}N,\(dﬁ de) + RESEN(R), selt,T),
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and moreover, an SDE standard estimate yields:

1
B| sup [ (XS - XL i)

set,T] h
< CE | sup |RYSST(R))?] < ClAX(ER?])? — 0, ash—0. (4.18)
set,T]
Combining now (4.16) and (4.6), we have

1 .z, z, x
SO G RS G

[ fioini

( (x4 Petnn _ Xﬁ_x’Pf) - Yrt’_gE’P£ (n))ﬂk(drv de)

/ / txPs Pth7X:’é,€)

1 - -
x (E<Xi’f’f’“'m *Xf’E’Pg)*W’g(ﬁ))] pa(dr, de)+ RE™EM(h), €[t T),

and from (4.18) and Gronwall’s inequality it follows that

1 z © @
. { sup |- (X - X0 -y ()
s€[t,T] h

} < ClHP(ER).

We have finished the proof for the Gateaux derivative.

Lemma 4.2. Let Assumption (A.1) hold true. By N*Te, N& we denote the
unique solutions of (4.8) and (4.7), respectively. Then, for all p > 2, there
exists a positive constant C,, such that, for t € [0,T], z, o', y, vy’ € R? and
6, gl € Lz(ft;]Rd)a

(i) B S?%](|N;,m,z>g(y)|p+ IN?&(y)I”)} <Gy,
selt,

. ,z, P, t,II,P/ ’
(i) £ SEPT](INﬁ fy) = NP+ INDE(y) — N (y’)|p)]
selt,

< Cyje @+ ly—y'lP + WalPe, PP,

(iii) E| sup |NI©TE (y)|1’] < Cph, 0<h<T—t.
L s€[t,t+h]

Proof. For convenience we only consider d = 1 and set b = 0. The proof is
standard. However, for the reader’s convenience we shall give a sketch of it
here.

From the boundedness of 9,b, 0,0, 0.0 and the fact that E[supse[tﬂ |
Dy X |p|.7-"t] < C), (see Proposition 4.1), it is standard to prove (i), (iii) by
using the Egs. (4.7) and (4.8).
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Concerning the proof of (ii), we notice that its main ingredient are the
following two estimates, which make use of the Lipschitz property and the
boundedness of 9,0, J,,3, as well as of Propositions 3.1 and 4.1:

[|E[(8 o) (X! xboPe, PXﬁyg’Xﬁ,y,Ps)anﬁ,y,Ps
t ac Pg/

— (0uo)(Xr , P, X,

X

ty Per

Jo. X1

< Cp (EHX:,I,Pg . X:,m Per |p] + W2(PX}~'§7PX)E’5' )P

t,y/7P§/

+E[|IxtTe _ x! P 4 |9, xEv e o, XY 7P5/|p])’ re[t,T),

(4.19)

and for t <u < T,
tI Pg/

{/ /E|8uﬂ X7 Pye, X7 )0, X
i P, bty P, P
—9,8(X,, PX@&I,Xﬁ,y P ,e)@xX:’y Py i, (dr, de)‘ }

v x' Py
SC”EK/ /(1A|e\2)(|Xﬁ’f’P5 — X, R 4 Wa(Pyre, Py )’
t K "

(NS

|

+ B[R - X TR g, X afy%WDmmmg

ofs

+ / B[IXp P~ X TP 4o, X0 g, x0T ] dr). (4.20)
t

/ b Pe X vP£’|pdr +/ Wa(Pyre, Pyver)Pdr
t

Applying Propositions 3.1 and 4.1, we immediately have
B[| B0, (X, Py, REPF0, R0

Xt
t,z' Py ty' Py ty' Py
— O (X} g’thf’Xy g)ng &Hp}
Cp(|x — 2P+ y—yP+ Wg(Pg,ng)p), (4.21)

and

/ E‘auﬁ tzPE PXt57XtyPE7e)8zXﬁf’PE

t,x’ Pg/

P/
— 08X P X

)0 X" |, (dr, de)

j
< Cplu=1)(Jz—a[" + |y — y/|" + Wa(Pe, Pe)" ). (4.22)

With the help of (4.21), (4.22) and Gronwall’s inequality we deduce from (4.8)
and (4.7) the wished result. O
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Theorem 4.3. We make the same assumptions as in Theorem 4.2. Then, for
all0 <t < T, x € R, the lifted mapping X : L2(Fy; RY) — L2(Fy;RY) is
Fréchet differentiable and its Fréchet derivative is just the Gateaux derivative,
i.e.,

DX () = 0 X006 () = B[NST(€) ), s € [1.T), € LA(FuRY),

where for y € RY, NU=Pe(y) = (N7 (9))seqnm)iss, j<a € SE(ET3R)
is the unique solution of (4.8).

Proof. We suppose d = 1. It is sufficient to show the continuity of the Gateaux
derivative 9 X5®¢ with respect to ¢ € L%(F;R). The Gateaux derivative
e X1™¢ as a continuous linear mapping from L2?(F;;R) to L%(Fy;R), ie
it belongs to L(L*(F;R), L?(Fs;R)), and the operator norm of 9 X5®¢ —
Qe Xbo€ s e [t,T), (t,x) € [0,T] x R, &, & € L*(F;R), in this space can be
estimated as follows: from Lemma 4.2 we have

2
‘35)(;,3?7& _ ang””’f,

L(L2(F5R), L2 (FsiR))

2
= [axensin) - axime )
nEL2(FyiR) L?
|7/|L2 <1

— sup B|J9XIE(n) — 9x 1 W}
neL2(FyR) L
|77|L2§1

— s BBV -

nEL2(Fy;R)
|77|L2 Sl

tJCPg/

€]

< s E[(BINEETE) - NER@) (~|ﬁ|2)}

nEL2(Fy¢iR)
Ml 2<1

< B| BN -

@, Pes

@P]

|2
0P, e
< C(EIE— &)+ Wa(Pe, P)?) <2CE|E - ¢, t<s<T.

t,$,P§/

< B [EHN.S””’P& (v) - N

The proof is complete. O

Remark 4.2. From Theorem 4.3 we know that X*®¢ is Fréchet differentiable
with respect to £. In extension of the definition of the derivative of function f :
Py(R?T) — R over Py(R?), this allows to consider X**:T¢ as differentiable with

respect to the law, and the derivative is just N*®T¢(y), i.e., GHX?Z’PE (y) =
No™Te(y), se [t,T), ye RL0<t < T, z € RY, € € L2(F;;RY).
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5. Second order derivatives of X%

The existence and the properties of the second order derivatives of X*® "¢ are

studied in this section.

(Assumption A.2) Suppose that for all e € K, (b,0,0(-,-,¢)) belongs to

CP (RIxPy(RY) — RIXRXIXRY) ie., (b, 0, B(-, -, €)) € Cp (R x Py(R?) —

R?xR¥*4xR?) and the derivatives of the components 0ij, bj, B3, 1 <14, 7 <d,

have the following properties:

(1) Opy0ii(-s+), Opcbj(+, ) and 9y, B;(+, -, €) belong to C’bl’l(Rd x Po(R?)), for
all1 <k <d, ec K,

(i) 0o (ses-)y Dubi(yes-)s 8uBile, -, e) belong to Cp ' (R x Py(RY) x RY),
forall 1 <i, j<d,e€ K;

(iii) All the derivatives of o, ;,b; up to order 2 are bounded and Lipschitz
continuous, and all the derivatives of 3;(-, -, e) up to order 2 are bounded
by L(1 A le]) and Lipschitz continuous with a Lipschitz factor L(1 A |e|),
where the constant L is independent of e € K.

The following lemma states the equality of the second order mixed derivatives
for functions from Cp"' (R? x Pa(R?)):

Lemma 5.1. Suppose g € Cg’l(Rd x Po(R?)). Then, for all 1 <1 <d,

Oy (092, 11,y)) = 0 (02,9(w, 1)) (), (1, y) € RY x Py(RY) x RY.

The proof is standard. The reader is referred to Buckdahn et al. [7].
Let us now state the main result of this section.

Proposition 5.1. Let Assumption (A.2) hold true. Then the first order deriv-
atives asz?””’Pf and 3ILX£’x’P£(y), which are interpreted as functional of
¢ € L*>(F;RY), are Fréchet differentiable with respect to &, and also L*-
differentiable with respect to x and y. Furthermore, for all t € [0,T],
x, y, 2 € R and ¢ € L%*(F;RY), there exist two stochastic processes
0u(0:, XP=e) (y) € SR, T;R™), 1 < i < d, and 92X""TFe(y,z) =
0,0, X4 e (y))(2) € SE(t,T;R™™9) such that the Fréchet derivatives in &

of 8$iX§’I’PE and BHX?I’PE (y), satisfy
. .z, P, ~ ,x, P, o ~
(1) Deld, X51(0) = E[0,(92, X)) -,
(i) Del0, X" (y)](n) = B0 X"" (y,€) -, (5.1)
setT], ye R?, 5 e LQ(]:t;Rd). Moreover, the mized second order deriva-
tives O, (0, X" (y)) and 0,,(0,, X" F¢)(y) coincide, and the process

t,x, P,
Qs,ai:,j ¢ (y> Z)

= (02,4, X0 0,00, X5 (), 02X0 7T y,2), 0, (0, X7 ),

XTiTyj

1 <14, j <d, has the following properties: For all p > 2, there exists a positive
real constant C, such that, for all t € [0,T], =, o', y, y' 2z, 2/ € R? and
57 é-/ € Lg(ft;Rd>7 1 S i7 .7 S d;
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i) £ | s 1007 2P| <G
sE
. P, t,a’, P/
(iv) B SEP QU (y,2) — Q1) (1/@’)”]
se
<Cp(lo =2l 41y =y + 2= 217 + WalPe, Po)?).
(V)E|: [suph|QS” (y ,z)p}SC’ph, 0<h<T-—t. (5.2)
SE[t,t+h]

Proof. For convenience we suppose d = 1 and b = 0. Let us recall the equation
t,{L’,P& .
for 0, Xs :

9, Xyl = 1+/ 0p0 (X7 " Poc)0, X" T4 dB,

//Bmﬁ xbre p tg,e)amXif’PguA(dr,de), s € [t,T).
(5.3)

A straight-forward extension of the approach developed in the proof of Lemma
4.1 for the directional differentiability of L*(F;;R) 3 ¢ — Xt@€(:= X1 ¢
L?(F4;R), and in the proof of Theorem 4.2 for its Gateaux differentiability,
allow to show that the mapping L?(F;R) 3 € — 9, X4 (= 9, Xb%F) €
L?(F;R) is differentiable in any direction n € L?(F;;R), and its directional

derivative O¢[0, X’ oo Pﬁ]( ) in direction n € L?(F:;R) satisfies the following
equation:

Yi(n) = /t RAOE 020 (X7 ™% Pyie)dB,
+EU88 XP® e 2o (X7 Pyie)0u X ”P‘(g)dBr-ﬁ}
+E U B X" B10,,(020) (X7 ™%, Py, XLEPey 9, XDEPe
+ 0u(020) (X2, Py, X1%) - 0,X tfPﬁ(é)]dBr-ﬁ}
[ [ ) 0B P s de)
EU / 0. X1 O2B(XET P Py, )0, X1 (€)pa(dr, de) }
+E{//Bz XETP L B[0,(0:8) (X178, Pyye, K00 0) - 0, X0

0,0, 8(X T Pyoe, K€ €0, XS (€) s (dr, de) - n} (5.4)
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Here (£, ) denotes an independent copy of (&,n) (and, also (£,7)) and is defined
on some probablhty space (Q .7-' P) E[-] denotes the expectation under prob-
ability measure P.

From the structure of (5.4) it yields

00, X" () = E[0,0,X07T4(€) ), s € [t,T],

where 6M6$X§’$’P§ (y) is the unique solution in SZ(¢,T) of the following equa-
tion:

N / 0o (X718, Pxe) - 0u0: X7 ™ (y)dBr
t

S
+/ 020(Xr " Pyre) - 0 X205 0, X0 (y)d B,
t

+/ E[au(azo—)(Xtac : PX’£7 ) 0 thpﬁ( )}an:i’x’PgdB'r
/ 815()(:;6 e ths, e) - 00 thpg( Yx (dr, de)

/ D2B(X, " Pyre,e) - 0. X715 0, X0 (y) pa (dr, de)

/

+// Bl0u(0:8) (X718 Pxre, X707 €) - 0, X0 710, X100 i (dr, de)
t K
/ [aﬂ(am/ﬁ)( tng PX‘53XT ) ) 8# tgP&( )}8m tl’P§ (dT,de),
t

(5.5)

s € [t,T]. Indeed, substituting € for y and multiplying both sides of (5.5)
with 7 before taking the expectation E[], we get Eq. (5.4), but solved by
E[BHGZX?I’PE (€)7], s € [t,T]. Thus, the equality stated above follows from
the uniqueness of the solution of SDE (5.4). Moreover, applying Propositions
3.1 and 4.1 it follows from standard SDE estimates that, for all p > 2, there

exists a positive real constant C), such that, for all ¢t € [0,T], z, 2/, y, ¥ € R
and 57 6/ € L2(-7:t;R)a

() B[ sup_[0,0. X075 ()] < ©,

s€[t,T]

(i) B[ sup 0,057 (y) - 0,0, X" (/)]
s€[t,T]

< Cyjo =@l + Iy = /| + WalPe, Per)?),
(iii) E[ sup 0,0, X500 (y)|p] <Cyh, 0<h<T—t.
sE[t,t+h]

Using the second estimate, we can prove that the Gateaux derivative of
L3(FiR) 2 € v 0, Xb%¢ € L3(F;R) is in fact a Fréchet derivative (see
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the proof of Theorem 4.3 for the corresponding proof for & — X%%¢), and the
Fréchet derivative Dg[0, X 17| satisfies the relation

De[0. X5 (n) = E[0,0, X0 (&) -],

s € [t,T),n € L*(F4;R). This means that 9,0, thpé( ) is the deriva-
tive of 9, X" with respect to the measure Pe. Now recall Eq. (4.8) for

Oy xlmre (y) = NI ey ). Standard arguments allow to show that, due to our
assumptions on coefficients o and 3, z +— Nt%Fe(y) € L2(F;;R) is differen-
tiable (in L2-sense) and the derivative satisfies the equation (recall that in this
proof b = 0):

6IN§’I’PE(?/)
_ / (000 (X577 Pyge) - 0.NEe ()
t

+(020) (X, P

XL f) azXTE’LPE . qu,w,Pg (y))dBr

+ / B0,(0,0) (X7 ™%, Pyre, X0 78) - 0, X7 )0, X107 % dB,
t

+/ B0, (0,0) (X018, Pyre, X5€) - NEE ()]0, X075 dB,

// D B(XITT Puve,e) - 0,2 (y)

+(O2B)(X) T, Page, ) - 0, X715 NI (y) ) a (dr, de)

+/ / E[0,(8,8)(X7, Py, tg,X“v‘Pi €)
t K

-0y Xt*y’Pf]a X2y (dr, de)

/ / t T Pg PXt £7AX't é, 6) . Nﬁ’é(y)}ainf’Pglu,\(dﬁ d@)a
s € [t,T] (5.6)

(see Theorem 4.1 for the equation for 9, X2 PE) Due to Lemma 5.1, 0,(9,,0) =
0u(0z0) and 0,(0,0)(-,-,-,e) = 0,(0:0)(-,-,-,e), e € K. Consequently, as
9 Xt’w’PE( ) = N2 (y) (see Remark 4.2), (5.5) and (5.6) coincide, and from
the uniqueness of the solution it follows 8, (8, X¢™ Pey)) = 9, N“Pe(y) =
0, (0. X" (y), s € [t,T), x, y € R and &€ € L2(F4;R).

Let us now study the second order derivative of X with respect
to the measure P, 97X Lo e (y,2), v,z € R. For this, recall the Eq. (4.8) for
N5 Pe(y) = 9, X5 Fe (y) and that for N©4(y) (1= NboTe (y)\ﬁ E)- Under our

assumptions on coeflicients b, ¢ and [, following the argument of the proof
of Lemma 4.1, we can show that L2(F;;R) 3 € — NE©€(y) (= NOTE(y)) €

t,x, P
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L?(F;R) is differentiable in any direction n € L?(F;;R), and the directional
derivative 9¢[N5®4(y)](n) satisfies the following equation:

ag[N“””’P%y)](n)
/ (0a0) (XETFE, Py )0 [NE™ T ()] (n)d By

t

/<82 )X O Py ) NPT () BIND DT (€) - 7)d By

t

+ [ Biou0:0) (X Py KONE )
t

x (0, X055 4 BINYE(E) - 4))|dB,

+/ Bl(0u0) (X2, Pyve, X0PT5) - B[0,0. X075 (€) - ]l dB,
t

S
Bl0:(8u0)(X7™ 1%, Pyoe, XPPT8) - 0, X0V ] BIND®TE () - 7)d By
t

/E [(020) (X078, Pyve, X007 XS - 0, X007

X (D X5 *+E[Ntf<é> i))])dB;
/ B[y (0,0) (XP" Pxoe, XEVT) 0, X0V BINEY T (6) - ) dB,

x (0. XS+ BINDE(E) - )] dB,

+ /1t E[ay(a#a)(xi’“f,Pxﬁ,s,ffﬁé)- v (y)

(@ XEETE 4 BINEE(E) - i))dB,

+ / / (DuB) (X1, Py, )06 [N ()] (n) s (dr, de)

/(aim( XU Py, e)NEP T (y) BINES T (€) - il un (dr, de)
’ 0, (0B) (XL Py XEE )NV Pe () (0, XIS i

+// E[0,(0:8) (X2, Py, K1, )N ) 7

NEE(E) - a)]pa(dr, de)
/ E[(0,8)(X ta:Pg thﬁ,X’y’PE,e)
0

[3u L X7V (E) - il (dr, de)
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//E (OuB) (X7, Pyre, X% ) - 0, X
BN TE(E) - il (dr, de)
//E [(2B)(x LT Pth,X“’P§ XHE e)
x 0, X1V (0, X0+ BINEE(E) - ])] ua (dr, de)
[ B0@A X P X0 0,8
BINZYTE () - ijl] pa(dr, de)
+/ [ B0, P K1, 0[N ) la . e

[ B0 (xiT Pre XE )

NS ) EINETTEE) - dlua(dr, de)
+//E[E[(aiﬁ)(Xﬁf’Pg,PXﬁws,Xi’é,Xﬁ’g,e)
t K
NP @)@ X7 G4 BINDEE) - ) ua (dr, de)
+/ / E[0y(0,8) (X158 Pyoe, X0 0) - NEE(y) - (0. X057
t K

+ EINSE () - )] pa(dr, de), (5.7)

s € [t,T]. Here (X®¢, N%(y)) obeys the same law, but under P on (Q, F), a
the corresponding processes endowed with ™ or ™ under P and P respectwely
The quadruple &7, B, Tix) is an independent copy of (£,7, B, MA) (€,7, B, 1ix)
and (€7, B, ix), and X*€ is the solution of the SDE for X*¢, and N*¢ that
of the SDE for N*¢, but both with the data (&, B, iy) under P, instead of
(¢, B, py) under P. We remark that the equation for 9¢[N*¢(y)] is obtained
by substituting z = £ in the above equation for d¢[N*®F¢(y)].

Let us consider the process S4*F¢(y, 2) = (S (y, 2 ))SE[t’T], which is

defined as the unique solution in S2(¢,T') of the following SDE:
St x, Pg( Z)
/ (@)X Py ) ST (9, 2)dB,

,x, Pe .z, P, ,x, P,
X0 P ) N (y) Ny (2)d B,

t“”’PE,PX;‘;&,X;@N?”C’P& (y)NEE(2)]dB,

- t:vP
an' 5Pth,

X706 9,0, X7 (2))dB,

/ f ,T P§ PXt g’Xt z, Pé)N,,f7$7P§ (y) . GIX:,Z,PE]dBT
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/ Bl0:(0,0) (X718, Pyve, X00T%) - 0, X0 T5) - NPT (2)d B,

/ E 62 t Iapg’PX?'&’X?%P&X?LP&)
'81Xr’y)P§ : anf’ = PS]]dBT

+/ BIE[(020) (X7 ™", Pyre, Xp0T X156 - 0, X007 NES(2)]]d B,
t

»

el

[0y(0,0) (X0 ™8 Pyoe, X0 T5) - 0, X007 NPT (2)]d B,

+

»

+
eyt

[(8,0) (X" T8 P, X0€) - S5 (y, 2)]dB,

@

T

[02(0,0) (X0, Pve, XE6) - NES(y)] - NP Te (2)d B,

+

@

Er
E\

020) (X7 TE, Py, X6, X05T)  NEE(y) - 0, X7 7€))dB,

_|_

®

[(920) (X778, Pyoe, X06, X1€) - N (y) - NES(2)]1dB,

+
Ez
es]

®

el

[8 (a O')( tng P 15 thpg) N7t\7Z7P£( ) 8 XtZPE]dBT

+

tijz

[0, (8,0) (X078, e, X0€) - NEE(y) - NEE(2)]dB,

_l_

xbore p b6 €)SL e (y, 2) i (dr, de)

+

_|_

(028)(X) 5", Pyre, e) N8 (y) NPT (2) i (dr de)

T

x\w\w\

+ (77 Py, X )N )
-0, X ] A(dr, de)
+ E (XLm e s Py, g,Xﬁ’; )N (y)Nf’g(z)],uA(dr, de)

X0 Pve, X0PT ) - 0,0, X007 ()] ua (dr, de)

t,m,P& P

t,y, P, ot,y, P
th,X g,e)w’?er 5]

\\\
\\\
tljr

“U

N“” ()ux(drde)

/ /E 826 tach P e, X t,y,Pe thPE )
O XV 9, X5 o (dr, de)

// E[(@28) (X578, Pyre, X007 X1 e)
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L0, X7 NEE ()] ua (dr, de)

+/ / E[ay(aﬂﬂ)(Xﬁf’P£7P fvatyPE 6)
t K

0 XU NPT ()] (dr de)
/ / B(0,8) (X757 Pyre, X, €) - S5y, 2)]pa(dr, de)

+/ / E[ax(aﬂﬁ)(X:fJD&vPxﬁ’ﬁX?;B) : Nﬁ7£(y)}
N (2) s (dr de)

/ / E[(026)(X,; 57 Pyve, X06, X707 o)
NEE(y) - 0, X0 Pfﬂm(dr de)

/ / E 626 t * Ps PX’ ) XﬁV&: Xﬁfa 6)

NEE(y N“( ) (dr, de)

// (X227 Pyoe, X7 o)

NPT (y) - 0, Xt’z’PE],u,\(dr de)

/ /E tng Pth,Xt57e)

NEE(y) - NS () (dr, de), s € [t, T (5.8)

Here S™¢(y,z) = (S%%(y,2))sep,r) is the unique solution of the equation
obtained by substituting = = f in that for SH®Fe(y, 2). Multlplymg (5.8)
with # after having substituted £ for z, and taking the expectation E[] with
respect to P on both sides of the equation, we see that E[St’” Pe(y, €) - )
solves the same equation as J¢[Ns NL©Te (1)](n) and E[S"¢(y,€) - 7] the same as

O¢[ N5 NLmTe (¥)](n)|z=¢. Hence, due to the uniqueness of the solution of (5.7), we
get

B[N () () = B[Se™ T (y,€) i), se[t,T], yeR.

Moreover, standard SDE estimates in (5.8) yield that, for p > 2, there exists
some C), € R such that, for all ¢ € [0,T], z, 2/, y, ¥/, z, 2/ € R and
§, & € L(Fi;R),

(iv) E | sup [S57 % (y,2)[?| <O,
sEt,T]

(v) E . 155" (y, 2) — 55Ty z’>|p]
se|t,
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<Cy(Jo =P+ ly =yl +12 = #1P + Wa(Pe, Pe)" ).

(vi) B[ suwp |87 2P| <Ch, 0<h<T -8, (5.9)
sE[t,t+h)]

(see also Propositions 3.1 and 4.1). Estimate (v) allows to show that 9, X%**
is Fréchet differentiable (we use the same argument as that in the proof of
Theorem 4.3), and the Fréchet derivative satisfies

,T, P .z, P, S .z, P, A
De[0, X5 (1))(n) = De[NS™ ()] (n) = B[S (y,€) - ).
Consequently, 0, X0 is differentiable with respect to the law P, and
Xy, 2) = 0,0, X (y))(2) = 577y, =), s € (1T,

for all t € [0,7], z, vy, 2 € R, £ € L*(F;R). The other both second
order derivatives 92X 5P and 9,(0,X""F¢(y)) of X"*Fc and their esti-
mates can be investigated by using arguments developed above. The proof is
complete. O

6. Regularity of the value function

Our purpose in this section is to study the regularity of the function
V(t,z, Pe) = BO(XF", Pyo)l, (t2,€) € [0,T] x RY x L2(F; RY),
associated with the SDEs (3.1) and (3.2).

Proposition 6.1. Let & < C’;’I(Rd x Pa(R?)) and let Assumption (A.1)
hold true. Then V(t,-,-) € Cp'(R? x Py(RY)), t € [0,T] and its deriv-
atives 0,V (t,x,Pe) = (0., V(t, 2, Pe))i<i<a, 0,V (t, 2, Pe,y) = ((0,V)i(t,
Pe,y))i<i<a satisfy, respectively,

M=

OnV (1,2, Pe) = S B (00, @) (X5, Pye) - 0, X557 6.1)

<.
I
a

(8MV)i(tax7P57y) =

M=

E[(0,®)(X7"", Py )0, X757 )i(w)

<.
Il
—_

+ B[(0,0);(X7™", Pyre, X7%) - 0, X7
t:cP St.é St,6,P,
+(0,2); (X7, Pyve, X5°) - (0, X755 )W) (6:2)
Furthermore, for

Fi(t,.’ll,Pg,y) = (awlv(t7x7PE)’ (auv)l(twrwp&ay))? 1 S 1 S d7
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there is a constant C' > 0 such that, for allt, t1, to € [0,T), z, x1, T2, Y1, Y2 €
Rd and 517 52 € Lz(ft;Rd)v 1 < 1 < du

(i) [Fi(t,z, Pe,y)| < C,
(i) |Fi(t, @1, Pe,,y1) — Fi(t, x2, Pe,, y2)|
< O — 2| + [y1 — yo| + Wa(Pe,, Py,)),
(i) [V (t1,z, Pe) — V(te,x, Pe)| + |Fi(t1, , Pe,y) — Fi(ta, z, Pe,y)]
< Clty — a2 (6.3)

Proof. The proof of (6.1), (6.2) and (6.3)(i) and (ii) of our preceding results
are standard (see also Lemma 5.1 in [7] for the case without jumps). We only
prove that V' is %—H'dlder continuous with respect to t. The proof of %—Hélder
continuity for the first order derivatives of V' uses an argument similar to that
for V and is therefore omitted. As before, for simplicity we consider only the
one dimensional case and let b = 0.

We choose (t,x) € [0,T] x R arbitrarily but fix it. Recall that G is
rich enough, such that we can find for each & € L?(F;R), ¢ € L*(Go; R)
such that Pg = Pe. This implies xbPe = xb I’Pg/ s € [t,T]. We define
Bl := Byys— By, p'([0, 5] x A) := u([0,s+t] x A) — ([O,t] xA), s>0, Ae Kk,
and we see that X®¢' and X®*¢ can be regarded as the solutions of the
following two SDEs:

X;ft §/+/ (X:Etvp tg’ dB +/ / ﬁ 7‘+t7 Xt 5/ E)Mk(dT de)

thE/ ths/

XU s / o (XI5 Py B!
t T Pil
ﬁ rt Xt £ e)uh (dr,de), s€[0,T -1, (6.4)

where ,utA([O,s] x A) = pt([0,s] x A) — A(de)d(s), s € [0,T —t], is a mar-
tingale for all A € K. Since (B!, p4([0,s] x A)) obeys the same law as
(Bs, pa([0,8] x A)), and £ is Go-measurable and, thus, independent of B
and u, the process (X_tﬁ’Py,X,t_;_]},) has the same law as (X% P x0.Fer),
where (X% Fe x0.Fe) is the solution of (6.4) but driven by B and pu.
Consequently,

t,w,P ’ O,I,P ’
V(t,e,Pe) = V(t,x, Pe) = E[@(X7" ¥ Pyre)] = EI®(X72, ¥ Pyo ).

Hence, thanks to the Lipschitz continuity of ®, for t1, to € [0,T],
|V (t1, @, Pe) — V(ta, x, Pe)|

O x, P ’ O,ZE,P ’

< E[|®(X7 ", Proer ) = ®(X7700," s Proer ]
0,2,P,/ 0,2,P,/

< C(BIXE, = Xp 0,5 1+ Wa(Pyoo 7PX0£/ )

0,2,P,/ 0,z,P;/ % R , / %
< C(E[lXTftls - XTftQs |2]) + C(E“X%Etl - X%if]) :
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On the other hand, letting without loss of generality 0 < t; < t5 < T, i.e.,
T —ty < T —t1, we have from the flow property of (Xﬁ’z’P6 , X5€) (see Remark
3.1 (ii))

[N

1
0,2,P,/ 0,2,P¢s 2 0,¢’ 0,¢’
(EHX:/LM5 - XTftQE ‘2]) + (EHXTEtl - XT§t2|2])

T—ta. X, ¢ X9, 0.2, 27\ 3
= (EHXT—tl ’ Xy, | ])
T—ty, X%¢ 0.¢ 3
+ (Bl - xS, )

and from Proposition 3.1 (iii),

1
2

[N

0,z,P, 0,z,P,
(BIXPZRE = X720 )

< C(E |:E[ sup (|X5T*t2,y,P7, B y|2
s€[T—t2,T—14]

+ (BIXDS, - X95,,1%)

N

XTI )| F,

y=Xy ¢ ,n:xgvf’tj )
<Oty —11)3.
Consequently, we have
|V (t1,2, Pe) — V(ta,z, Pe)| < Clty — ta]2.
O
Using now the regularity results obtained for (Xﬁ"T’P5 , X5¢) in the pre-

ceding section we can proceed similarly as for Proposition 6.1, in order to show
the following result.

Proposition 6.2. Suppose that b, o and [ satisfy Assumption (A.2) and ® €
CP (RY x Po(RY)). Then V(t,-,-) € CF' (RY x Po(R?), t € [0,T) and
02, (0uV (t, 2, Pe,y)) = 0u(0n, V (L, 2, Fe)) (y), (6.5)
(t,z,y) € [0,T] x R* x R, ¢ € L2(F;RY), 1<1i <d, and for
Wi i(t,x, Pe,y,z) = (GZV(t,x,Pg,y7z),(9iﬂjV(t,x,Pg),

92, (0, V)t 2, Pe,y), 0y, (9, V)(t, 2, Pe, y))

there exists a constant C > 0 such that, for all t, t;, to € [0,T],
T, x1, T2, Y1, Y2, 21, 22 € R and &, & € LA(F;RY), 1<, j <d,
(i) |Wi7j(t7x7PanaZ)| <C,
(i) |Wi (¢, 21, Pey,ya, 21) — Wi (8, @2, Pe,, ya, 22)|
< O(lzr — 22| + [y1 — yol + |21 — 22 + Wa(Pe,, Pe,)),
(ili) |Wi;(t1, z, Pe,y, 2) — Wi j(ta, x, Pe,y, 2)| < Clt1 — t2|%. (6.6)
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7. Associated nonlocal integral-PDE

The objective of this section is to study the nonlocal PDE associated with the
mean-field SDE. The It6’s formula which is established through the following
both theorems will play an important role in our approach.

Theorem 7.1. Suppose [ € Cf’l(Pg(Rd)). Then, under Assumption (A.2), for
all0 <t <s<T, ¢ L*(Fi;RY), we have

O f(Pype) = Zd: i(Pyee, X09)bi(X04, Pyre)
i
+ 2}; 0y, (0 f)1)(Pyr.e, X0 (03.101) (XEE, Pyvce)
i1
3 [ 0P 2 O Py
— (0uf)i(Pyre, X9)] Bi(XLE, Pyre,e)N(de)dp | .

Proof. Without loss of generality we restrict ourselves to the one dimensional
case and prove first the existence of 9 f(Py. g)‘ . The general case will be

obtained by using the flow property of X%,
We first observe that under our assumptions on f the mapping

p = [Py xre_g) is differentiable on [0,1], and 9,[f (P, ,x1c_¢)] =
B0 f(Peyie o€+ p(XEE—£)) - (X0E — )], pe [0,1]. Hence,

f(P ;,5) _f(Pé)
1
- /0 OoF (P pixis—gy)dp

- /o1 B (0 (Peypixze o €+ p(X1E = €))) - (X1 = )] dp
= B[0,f(Pe, ©)(X{* - €)]
[ B[0Pyt~ 0 (PO) X =)o (= 1)

1
+A E[<al“‘f(P§+p(X§75,§)7§+ p(szf _ f))

*8#f(P5+p(X§*€f£>’5))(X§’E *f)}dﬂ (= I2)

Notice 9, f(P, (X1 E)’E) Ouf(Pe,€) is Fy-measurable, b is bounded and
Ouf is Lipschitz-continuous. Hence, from the estimates of Proposition 3.1,



17 Page 36 of 51 T. Hao and J. Li

NoDEA
11|_’/ (Ouf (Pey pixté 0 €) — Ouf (Pe. ) /bXT ,Pyrc)dr

/t o(X1E PfgdBJr//ﬁ

v, €)a(dr, de))}d ’

[0 (Pey it €) — 0uF (P ) / XL Py

SC( )W (Pg+p(xf5 —£)’ Pe)<C(s—t)E (1X0% —¢f? ]5 §C(s—t)%.

As concerns I, putting n = £ + p(XH¢ — €), we have
1
= [ E[(@uD)(Py + pole, PO(B. - B
0

+p/ts/Kﬂ(§,P5,e)M>\(d7‘,de)) —~ (aﬂf)(pn,g))(xgs_g)}dHRh

1
Ri- [ E
0

- (auf) (Pm§ + PU(fapf)(Bs — Bt)

p / ) /K B(E, Pe, €)pux(dr, de)) }(X;f - f)] p.

Thanks to our assumptions that b is bounded and 0, f, o and [ are Lipschitz
we have,

1
IR, <c/0 [Wf a(

+

where

{(8uf)(Pm§ + p(X;”E —-¢))

b(XLE, Py )dr

[ (ot P~ otere) Jap,
# [ (st pgee >—6<§,Pg,e>)m<dr,de>|>]dp

< c{<s COBIXEE — ] + (BIXEE - g?)}

E|/ o(XEE, Pyre) — (&, Pe))dB, |?)?

+(B|X5S —

He [ s P - a6 P o) )

< c<s—t>E\X§v€—e|+c<s—t>f({E [ (xee-ep e mpxs—gar)

[N
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+{E / /Ku A RP)OXES —gf? 4 B — gPDaerar )
< O(s—1)2.

On the other hand, we notice
1 s
| Bl(@un P+ pote OB~ B+ [ [ (6 Pcpalande)
0 t JK

— (Ou) (P, ©) ) (X = )] dp = Lo + Do + Do,

where
Iy = /OlEK(auf)(P € + pol€, Pe)(Bs — B)
+p/ /ﬁgpf, €)pix(dr, de)) — P,.¢) /bXT Pyce)dr]dp.
o= [ B[O+ pote POB. - B
o [ [ s peomnde))  @.0)(8.9) [ o(xE, PyaB i
o= [ B[(@u)(P + pote POB. - B
o / B(E, Pese)pa(dr, de)) — (0f)(Pr6))

/ / BIXES, Pyre, e)ua(dr, de)]dp.

For I5 1, due to the boundedness of b, ¢ and the Lipschitz continuity of
Ouf, we get

1 s
o] < / E[|(a NPy &+07(6 POB~B+p | [ 56 Peohunar,de)
P, 8- |/ bthPfgdr| dp

gC/ pE \Bs—Bt|+|/ /Kﬁ(&P@e)m(dﬁde)\)

|/ Py dr| dp

1

§C(sft)((E|B B+ E|/ /55135, &)y (dr, de)| )%)
< C(sft)f.
We put M, = fts I B(E, Pe,€)p(dr,de). Then

o = 55~ 0)E10,(0)(Pe, (6, Po?*) + Ry + R
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where

1
R2:§E

1
Ri= [ B
0

X / o(XEE, Pyie)dB,
t

)

0D, 1) (Pe. ) / (6, Pe)(0(XEE, Pyre) — o€, Pe))dr

((@J)(Pm §+4 po (& Pe)(Bs — Bt) + pMs) — (9,.f) (P, 5))

dp

1
—-F
2

3y(3ltf)(Pg,€)/t U(gvpé)a(X:é:PX?&i)dT]-

From the boundedness of 9,(0, f) and o, and the Lipschitz continuity of o it
follows

IR, < c( / (BIXYE €+ (BIXYS - s|2>%>dr> <O(s—1)%.

Let F¥ = of{u([0,r] x A), r < s, A € K}. Then, since 0, f(P,,&) is Fi-
measurable and M; is F; V F¥-measurable, while the increments of the Brown-
ian Motion B after ¢ are independent of F; V F#, then

1
| e
0
1
:/E
0

S
x U o(XEE, Pyee)dB,|F v .7-'5] ] dp=0.
t

dp

((8uf)(Pna§ + pM;) — (8uf)(Pm§)> /tS a(X}5, Pyre)dBy

((@Af)(PnaE + pM;) — (8uf)(Pna§)>E

Consequently,

1 1
Ry = / / E {ay(auf)(Pn,g + pM; + pyo (&, Pe)(Bs — By))
0 0

-p/ O'(f,Pg)dBr-/ U(Xﬁ’E,PX;,g)dBT.] ddp
t t

_1E{8y(3uf)<P£a§) | ote.paatxiep Xﬁf)d’"}

2
- /01 /01 pEKay((?uf)(me + pMs + pyo (&, Pe)(Bs — By))

—9,(0, f)(Pg,g)) . /t o(&, Pe)dB, - /t a(Xﬁ’f,Pxﬁ.g)dBr]dﬂydp.
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Hence,

|R3| § CEH /S J(f,Pg)dBr
t

. /t o (X5, Pyrs)dB,

- (<E|X;%’g )} 4 |M,|+ 1Bl — Bt'ﬂ
1

<c(B [ o rorar) - (Bl [ lo(xt€, o) Parp
( / ) (=] )

(( EIXY€ — ¢P)} + (EIMP)} + (BB, - Bt|2>%)

3

S 2
We now compute I 3. Let

Fr=oc{u(0,u] x A)JAe K, u<r}, 0<r<T,

s>r

Gr=F (==ﬂfﬁva{3u7 OSuST}vgo), 0<r<T,

where Gy is defined in Sect. 3. We set

@(2") = (B, f)(Py, 2'), 05 := &+ po(€, Pe)(Bs — By),
02:¢ := (85 + pM, + pB(E, Pe,e)) — (65 + pM,,)
— ' (8s + pMy) - pB(&, Pe,e).

Applying Itd’s formula to ¢(ds + pM,,) with respect to u over [t, s], we obtain
(recall that M = (My)yeft, 1 is a G := (G,)- martingale)

P(Gut pMy) = o(6,) + / o (80 + pM,_)dM, + / / 02 u(dr, de)
t t K
+/ /GiS’GA(de)dr
t K

+ / S / (P(Gut-pMy—+pB(E, e, €))—p(Sut pMy_))pua (dr, de).
t K

Consequently,

ha- [ 1 B |{wt. +pM>—<a,tf><Pms>}

//5 Pyie,e )u,\(dr,de)]dp
- [ [ /K (@uf) (P& o6, POBL B) oM, 40916, )

— (Ouf) (P, & + po (&, Pe)(Bs — By) + er))m(dn de) + ¢(0s)
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+// 02 A(de)dr — (9, f)(Pmé)}
//5 L6 € e)u(dr, de)]dp.

Since ([, [, B(Xr’_f,PXi‘g,e)u,\(dr, de))s>t is G = (G,)r>o-martingale and
©(d5), (Ouf)(Py,&) are Gi-measurable, we have

El(¢(5.) PO) [ [ BOCE Py o (drde)] <o
Consequently,
o= [ B[{ [ [ (@05 erootc. BB o106 Pl
O+ pol€ (B — Bi) + pM,) s (drde)

//5 Py, e)ur(dr, de)]dﬂ+R4,

where

R47/ U/azexdedr//ﬁx Ptge,u)\(dr,de)}dp.

From the Lipschitz continuity of 0,(0d,f), Holder inequality as well as
Burkholder—Davis—Gundy inequality we have

1 s
|R4| = El:/t /K {8uf(P7]a 6s+er+pﬁ(€v P, e))_auf(Pna 5s+er)

— Oy (Ouf)( Py, s —l—pMT)pﬁ({,Pg,e)})\(de)dr

/ / BXEE, Pyve, )pn(dr, de)]dp‘
EM /K/O {ay(aﬂf)(P,,,és+er+vﬁ(£7Pg,e))

—0,(0,F)(Py. 6. + pMT)}ﬂ(& Pe. €)dy(de)dr

//ﬁX Pyre, eu,\(dr,de)]dp‘

SC/O (E[ ) ; {ay(auf)(Pna5s+pMT+vﬁ(§,P§,e))

= 0y(Ouf) (Py, 05 + er)}g(g, Pe, )dyA(de)dr 2} )
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el DK

s—t

x5 €)pa(de, dr)

Hence, I3 can be written as

[2,3—/ |:/ /( ;l,f meJrPU(ﬁ P&)(Bs Bt)+ﬂMr+pﬁ(€7P&6))
— (Ouf)(Pp,E+po(&, Pg)(BS —Bt)—i—pMT))ﬂ(Xf,’g, PXﬁ,s , e))\(de)dr] dp+p(s)

-0 f E[ / ((aufog,wms,Pg,e»—(auf)(Pg,5))&(5,Pg,e>x<de>} dp
+ p(s) + Rs + Rs,

where |p(s)| < C(s —t)2 and

,/ U / {( 0, f) (P, € + po(€, Pe)(Bs — By) + pM, + pB(E, Pe, ¢))
— (0 f) (P, & + po (€, Pe)(Bs — By) +pMT))
(0P + 316 Pece) = Ou)(Py©)) b BOCEE, Py N @e)r]d
Re*/ U / {(auf )Py, €+ pB(E, Fe e ))f(a#f)(Pn,g))ﬂ(ngwa’e)

- ((auf)(P@é T pB(E, Preye)) - <auf><P5,s>)ﬁ<5,P@e>}x<de>dr} dp.

However, using the Lipschitz property of 9, (9, f), with the help of Burkholder—
Davis—Gundy inequality we obtain

wi= o]

= Oy (Ouf) (P, E+7B(E, Pe €))

(Ouf)(Py, & + po(§, Pe)(Bs — Bt) + pMy +vB(&, P, €))

1 X, Py o) 906, Peoe) Ade)dr | do
< CB| [ [ lo(6. P~ B+ 31 1O, Py, )] 816, Pes ) A(aer]|

< C{E/S|Bszt dr}«/ (1A le]*)A(de)
<O(s—1)} +C(s— 1)} (/ d)

< C(s—t)%

e)ux(dr, de)

/ B(E, Pe, ) un (dr, de)
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Moreover, again from the Lipschitz continuity of 0,(0,f) and that of 5 (see
(H3.1) (i),

mo=| [ B[ [ [ [ (aouniee s ree

e)) — ay((%f)
(Per €+ (6. P, e>>)ﬁ(£, Pe,e)B(X"%, ngae)dw(de)dr} d

+/1EU/ ((5uf)(P§,§+P5(§7P£7e))_(8uf)(P€>§)>

<5(X ,Pyic,e) - ﬁ({,Pg,e)))\(de)dr]dp‘

/ (B|X5E —

\ /\

N\c«

i [ (BIXEE gl BIXE - gy )ar)

C(s—

Summing up the above estimates, we obtain

B2 = 55~ 0] EL0,01) (Pe )ate. P

+/01E[/K ((8Hf)(Pg,§+Pﬁ(§,vae))

~ OuP8) ) BLE Pes @) o+ ),

where |p(s)| < C(s —t)2. Hence,
f(Pyre) = f(Pe)
— (5~ O ELO (P e, Pe)] + 510, (00f) (Pe a6 P
v [ 8| [ |@unmees ot ree

0.1 (Pg, (P, e)A(de)} dp} T a(s) + ()

where |p(s)| < C(s —t)2 and

pa(s)] = |E[ / (0 (e, OBXES, Pyr) — (e, Pmdr} < O(s— 1)t

Consequently, s — f(P Xt ) is differentiable from the right at s = ¢, and the
right-derivative is given by
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6;_f(PX.§’5)

s=t

= [@f)(f’svﬁ)b(&&)} + 3 E10,(0f) (Pe, (6, P
1
+EU0 /K {@f )(Pe, E+pB(E, Pey €)= (0, f)(Pe, ©)]B(E, Pe, e)A(de)dp).

From the arbitrariness of ¢ and the flow property of X%¢ we get the existence
of the right-derivative

. 1
Of f(Pyre) = ogﬂo h

(f(Pyre ) = f(Pyre))

s+h
. 1
= B(0) (Pyse, XOB(XEE, Py )]

20,0 (P, XE)o(X!S, Py’
1
8] [ ] 1@y X0 950X P
0 K
- (aﬂf)(PxévﬁvX?&))ﬂ(X?g, PX;,§76)]>\(d€)dp ) ERS [ta T)

Finally, from the continuity of s — 0F f(X%¢), s € [t,T], it follows that
the function 4(s) := f(Pyee) — [ 0 f(Pyre)dr, s € [t,T), is continuous,
right-differentiable at [t,T), and 974 (s) =0, s € [t,T). Consequently, ¥ (s) =
Y(t) = f(P), s € [t,T), Le, s — f(Pyue) is differentiable: O f(Pyre) =
OF f(Pxee), s€[t,T]. O

Definition 7.1. We say a function F : [0,7] x R? x Py(R?) — R is in
Oy ([0,T] x R x Pa(RY)), if

(i) F(t,-,-) € CPH (R x Py(R%)), for all t € [0,T];
(ii) F(,x,p) € CL([0,T)), for all (x, ) € R? x Py(RY);
(iii) All derivatives, that in ¢ of first order, and those in (x, 1) of first and sec-
ond order, are uniformly bounded over [0, 7] x R? x Py(R%) and Lipschitz
in (z, 1), uniformly with respect to t.

Theorem 7.2. Let U € C;’(z’l)([O,T] x R% x Py(R?)). Under Assumption (A.2),
we have the following Ité’s formula: for 0 < t < s < T, z € R, ¢ €
L2(Fy;RY),

U(s, X" Pyoe) — W(t,z, Pe)

s d
- / <6‘t\11(7‘, XPPTE Pece)+ 3 00, W(r, Xr™ T P )by (X008 Pyie)
t

i=1
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P, P
+ E 02, U(r, Xp "5 Pyre) (050 i) (X" Eypxgé))d?“
i,5,k=1

+/ / <\IJ( txP§+ﬂ( tﬁUP& P tg,6),PX7§,5)—\II(’/‘,X:f7P§7PXfl‘g)

_Za U(r ”Pg s Pye) - Bi( X, x o s Pyre,e )))\(de)dr

sd o
*Jm{Zwmvxm&Puﬁ%mﬂﬁam
t

i=1

+ Z 0y, (0,9);(r, X0 TE Poe, X0€) (0400 ) (XEE, Pyre)
ljk 1

+Z/ / 8\:[/ TthPEPtﬁaxﬁ’é—’_pﬂ(*xtsptﬁ? e))

— (8,0)i(r, X7 Pyve, XEO)] - Bi(XEE, Pyoe, e)\(de)dp| dr

/Zazzqf XpPT Pone)oi (X0 0TE Pyye)dB]

1,5=1
+[/(wnt“hw<mﬁpw&»
— W (r, x0T Pst)>u>\(dr,de). (7.1)

Proof. As before in other proofs let us restrict ourselves to the dimension
d = 1. Define F(s,x) := ¥(s,z, Pyi¢). From Theorem 7.1 we know that

F e C*([0,T] x R) and
OF (s, ) = (0:W)(s,x, Pyre) + E[(0,9) (s, @, Pyre, X0O)b(XL®, Pyre)]
1

+§E[8y(6ulp)(8, x, PXﬁ’f y Xﬁ’g)U(X;’g, PXZ£)2}

1
+EU / (mﬂ)(s’zvpxz’fv?f?g+pB(X§’5,PXg,E,e))
0 K E t

- (au\l’)(s,x,PXi,s,X;’E))ﬂ(X§’§7PX£,5,6)/\(d€)dp .

Applying Itd’s formula to F'(s, X;’m’Pg), we get
F(s, X257 — Pt x)
S
- / [(%F(r, XrPT) 4 0, F (r, X ™)X T8 Pyve)
t

1 . .
+502F(r, X e (X ’Pé,Pxﬁ,g)ﬂ dr
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//( mP£ +AX! xbeoPe Pyic.e)) - F(TthPE)
— O F(r, X2 BX 0TS Prve e )))\(de)dr

+/ 0o F(r, X018 o( X715 Py )dB,
t

+/t/ (F(r, X0 BT Pue,e))

— F(r, X" PE))uA(dr, de), s € [t,T).

Consequently, substituting the representation formula for 0;F(s,z), we get

(7.1) for d = 1 (recall that X'¢ on (Q,F,P) is an independent copy of the
process X*¢ on (Q, F, P)). O

Lemma 7.1. Suppose ® € C’2 (R % Py(RY)) and Assumption (A.2) holds true.
Then V(t,z, Pe) := E[cb(X” P Pyo)ls (63,8 € [0,T) x RY x LA(F;RY),
belongs to C’1 (1) ([0, T] x R? x Py(R?)). Moreover, there is some positive real
constant C such that, for allt € [0,T], =, 2’ € R, and &, & € L*(F;R?),
(i) [0V (t,@, Pe)| < C;
(i) |0:V/ (¢, 2, Pe) = 0V (1, 2", Per)| < C(Jar — 2’| + Wa(Pe, Per));
(iii) |0,V (t,x, Pe) — O,V (t',x, Pe)| < Clt — /3.

Proof. From Proposition 6.1 we know already that V(t,-,-) € CP'(R? x
Py(R?)). Thus, we have still to prove the differentiability of V with respect
to t. As the o-field Gy is rich enough, in the sense that Py(RY) =

{P¢|¢ € L*(Go; RY)} it suffices to study the function V (t,x, P;) for £ running
L?(Go;RY). But, as £ € L?(Go; R?) the processes Xff;’Ps = (Xifgpf)se[oj_t]
and X0oPe = (X0t )seo,7—t) Obey the same law, for all z € R? and so
t,€, P

, 0,,P
do Xfft = (Xs+t = X7 sepor—y and X0 = (X4 = X ¢ *)selo,7—1]-
Consequently,

V(t, @, Pe) = E@(X3"", Pyoo)] = BO(Xp", Pyoc )]

(see the proof of Lemma 5.1 in [7], or Proposition 6.1). Applying Itd’s formula
in Theorem 7.2 to <I>(XO = Fe , Pyoe), s € [0,T—t], and taking the expectation
on both sides, we obtain that

V(t,l’ Pg) - V(T T Pg)

:/0 {Za DX Proe)  bi(X) 0T, Proe)

1 P T
5 S 02 BN Py oo ) (X P
i,4,k=1
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+/K <(P(X7(?,m,Ps n ﬁ(XE,x,Pﬁ’PX9~€76)7PX9,§) — (P(Xg’x’PiPngs)

d
- Z 8961‘(1)(X?11’P5 ) Pxﬂvﬁ )/B’L (ngz-,Pg’ Px{}’& ) 6)) A(de)
i=1

d
e {Z@u@)xxf*”””)%szfsi%)bi(???ff oe)
i=1

d
1 x
3 2 00 (X0 Py, X (0100, 1) (XD, Prpe)
ij k=1

d 1 . -
+Z/ /K [(8M‘I>)i(XS’$’P£,PXQ,&XE’g + pB(X%, Pyoe,€))
i=1"0

_ (auq))i(XS,w,Pg’ng,g,f(f’f)] .ﬂi(f(f_’f, ng,g,e)/\(de)dp”dr (7.2)

From the continuity in 7 of the integrand in (7.2) it follows that V (¢, z, P¢) is
continuously differentiable with respect to ¢, and

atv(taxa Pf)

d
0,z, P, 0,z, P
= _E{Z axiq)(XTft §7PX%Et) ) bi(XTft 5 X%’ft)
i=1

d
1 0,z,P, 0,z,P,
+3 DR 10 e *, Pyoe )0ik0sn) (X7, %, Pyoe )
i.g.k=1

0,z, P, 0,z,P, 0,z,P;
"'/K (‘D(XT—t ) +ﬁ(XT—t 5 X%Et’e)’PX%Et) - (D(XT—t g’PX%E )

t

d
_ Z awl(b(ngf%‘D& R PX%Et )/62 (X’;)“’f;PE R PX%Et s 6)) )\(de)
i=1

0,7, P, 0, 0,6
Z(auq))i(XTft 5 X%Et’XTEt)bi(XTEwPXgEt)

d
1 0,z,P, 0, 0,&
+§ Z Oy, (auq))j(XT—t EvngvftaXTEt)(Ui,kULk)(XTEwPX

)

0,§
T—t

—

2, P 0,€ 0,&
i /K [(M»(X%L © Pyoc , X35, + pB(XYS,, Pyoc )
=1

0,z,P, >0,€ >0,€
—(0u®)i(X75, 5, Pyoe s X35 ) | - Bi(XpE t,PX%gt,e)/\(de)dp”. (7.3)
Furthermore, from (7.3) the estimates (i)—(iii) of 0;V stated in the lemma can

be obtained directly from the estimates got in the preceding sections, namely
in Proposition 3.1. The proof is complete. O
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Let us now consider the nonlocal integral-PDE:

d
0= 8tV(t,x,P5) + Zaziv(tvxvpf)bi(xapﬁ)

=1

d
1
t5 Ek laizjV(tvfﬂ,Ps)(Uz',Wj,k)(%Ps)
,],R=

+/ <V(t,3:—|—ﬂ(x,P5,e),P5)—V(t,z,Pg)
K

d

— Z 0y, V(t,z, Pe)Bi(x, P, e)) A(de)
i=1
d

+B| Y0t P Oli(e, P

=1

d
+% Z 0y, (0,V);(t,x, Pe, &) (05 ko)1) (&, Pe)

i,7,k=1
dj 1
DY [ 1@ )ttee+ g0t P - @1 P

ﬂi(&,Pg,@)A(d@)dp} ,(t,2,€) € [0,T] x RY x L*(F; RY),

V(T,z, P;) = ®(z, P), (z,€) € RY x L2(Fy; RY). (7.4)
Theorem 7.3. Let € C’g’l(Rd x P2(RY)) and let Assumption (A.2) hold true.
Then the function V (t,z, P) := E[(D(X;w’Pg, X;g)], (t,2,€) € [0,T] x R4 x

L%(Fy; RY), is the unique solution in C;’(Q’l)([o, T] x R% x Po(R%)) of the PDE
(7.4).

Proof. As before in other proofs, we restrict ourselves again to the one

dimensional case. From the definition of V', the flow property and the Fj-
e t,x,Pe

measurability of X , we have

V(SaX?%PEv Xﬁvf) = V(57y7p77)

tw, P
)

y=Xs n=X5¢

t,w,Pg
,

y=X, n=X5¢

3
= E[®(X, xp

t,
s xbs
T

)| 7]
= Blo(X;"", Pyeo)| B, s €[0,T).

But this means that V(S,X;’LPE,PX;g) is a martingale.
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On the other hand, due to Proposition 6.2 and Lemma 7.1, the function

Ve 01,(2,1)([0 T] x R x P2(R)) satisfies the necessary regularity conditions

t,x,Pe P

for 1t6’s formula. Hence, by applying It6’s formula to V (s, X Xt £), we

obtain the following semimartingale decomposition:
V(s, XoP Pyie) = V(t,z, Pe)
- / {8tV(r,Xﬁ’I’P57PX£,g)+8$V(T7Xﬁ’w’P5,PX£,g)b(XﬁIPf Pye)
t
1 z -
+5 0V (1 X, Xpo T Peie)o(Xr ™ Pye)?
+/ (V(T th P —l—ﬁ( tw P PXt e, € ) PX,E’E) — V(T,Xﬁ’LPE,PXﬁ,g)
K
— 0,V (r, X0 ™ Pie) - BXGTTE Py e )))\(de)
+E[8 V(r, X0 0T Pe, XEOB(XES, Pyre)
1 t z,Pg vt t,E 2
+26 (8 V)( P tg,XT )O'(XT ’PX,E’E)
+ / / {(3HV) (T, X7E7x7pg 3 PX”t.,s ) X:}é + pﬂ()z?t“’éa PX;fgﬁ ) 8))
0 JK
OV X P X1 B Pl dp| L
+ / GIV(T,X?I’PE,PXﬁ,g)a(XﬁmPE Pyre)dB,
t

*l/(Wnt“ﬂw<”&meuua

—V(r X thg , Py, g)>/¢)\(dr,de),

€ [t, T]. Consequently, as V(s,Xﬁ’I’Ps,Pxé,g), s € [t, T], is a martingale,
V(s, Xo™T Pyie) = V(t,x, Pe)

/ 8 V t:nP Xt{) (Xf"z’PE7PX£,§)dBT
/ / ( tIP§+6( twpg PXtE’ )PX,?’E)
—V( thg PXfE))NX(dnde)’s S [t,T]a

and

o:/t {&V(T,Xﬁ’z’Pg,PXﬁ, )+ 0V (r, X7 T P b(X T8 Pye)

1 T x
+§8§V(’I‘, 7t“ ol Pth) (Xf“’ ’ngprné)Q
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+/K (V(T’X’"IPE + B(Xr T P '5576)7PX£’5)_V(TvXﬁ’x’PiPXﬁ’f)

trP

— 0,V (1, X0 Pne) - BT Pee )))\(de)

+E {auV(r, XP P Puve, XEOD(XEE, Pye)
13 t @, Pe t,& ot 2
+590uV)(r, X  Pyre, XP9)a (X5, Pyre)
+/ / |:(aﬂv)(raXf‘,z7P£7ijvia)zﬁ’é+pﬂ(Xt£ P tfa ))
0 K
— (8 V) (r, X7 Poe, X16) ﬂ(Xﬁ*g,PX:,s,e)/\(de)dp]}dh s € [t T].

Letting s | ¢, we obtain the wished PDE.

It remains to prove the uniqueness of the solution of the PDE. We suppose
W e C’;’(Q’l)([O7 T] x R x P2(R)) is a solution of the PDE. Then, applying It6’s
formula to W(S,X3’$7P£,PX§,5), we have

W (s, Xe™T8, Pyoe) — W(t,z, Pr)

/aWrX”P Pyre)o(Xp 0% Pyie)dB,

// ( tzP5+ﬁ( 3, Pe Py, e) Pyce)

—W(r, thps pth)),u)\(dr,de), s€et,T],

where we have taken into account that W satisfies (7.4) (for d = 1). But
this means that W(s,Xﬁ’w’Pg,ng,g) —Wi(t,z, P), s € [t,T], is a martingale.
Hence, for all (¢,z,&) € [0,7] x R x L?(F; R),

W(t, 2, Pe) = BIW(T, X;"", Pyoo)| ] = E[®(X7"", Pyro)| 7]
= Bo(X7""%, Pyre)] = V(t, @, P).

The proof is complete. O
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