
Nonlinear Differ. Equ. Appl. (2016) 23:8
c© 2016 Springer International Publishing
1021-9722/16/020001-18
published online March 24, 2016
DOI 10.1007/s00030-016-0361-6

Nonlinear Differential Equations
and Applications NoDEA

Existence and uniqueness for p-Laplace
equations involving singular nonlinearities

Annamaria Canino, Berardino Sciunzi and Alessandro Trombetta

Abstract. We consider quasilinear elliptic equations involving the p-Laplacian
and singular nonlinearities. We prove comparison principles and we de-
duce some uniqueness results.

Mathematics Subject Classification. 35J70, 35J92, 35B51.

Keywords. Existence of solutions, Uniqueness of solutions, p-Laplace equa-
tions.

Contents

1. Introduction and statement of the results 1
2. Uniqueness of the solution in star-shaped domains 4
3. Uniqueness of the solution in general domains 7
4. Appendix: Existence of the solution 14
References 17

1. Introduction and statement of the results

We study uniqueness (and existence) of weak solutions for the following sin-
gular quasilinear elliptic problem:

⎧
⎨

⎩

−Δpu = f(x)
uγ in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)
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where Ω ⊂ R
N is a bounded smooth domain, γ > 0, f ≥ 0 in Ω (not identically

zero) and where Δpu = div(|∇u|p−2∇u) is the p-Laplace operator, 1 < p <
+∞. Since solutions to p-Laplace equations generally are not of class C2, a
solution to (1.1) has to be understood in the weak distributional meaning.
Furthermore, the singular nature of the nonlinearity at zero has to be taken
into account. For this reasons, as customary in the literature, we adopt the
following definition:

Definition 1.1. We say that u ∈ W 1,p
loc (Ω) is a weak solution to

−Δpu =
f (x)
uγ

in Ω

if:

∀ω ⊂⊂ Ω ∃ cω : u ≥ cω > 0 in ω,

and
∫

Ω

|∇u|p−2 ∇u∇ϕ =
∫

Ω

f (x)ϕ

uγ
∀ϕ ∈ C∞

c (Ω) .

Generally the solution does not belongs to W 1,p
0 (Ω). Even in the semilin-

ear case p = 2, it occurs that solutions are not in H1
0 (Ω) for γ � 3. This causes

that the Dirichlet datum has to be understood in a generalized meaning as
here below:

Definition 1.2. We say that u ≤ 0 on ∂Ω if (u − ε)+ ∈ W 1,p
0 (Ω) for every

ε > 0. Furthermore u = 0 on ∂Ω if u is nonnegative and u ≤ 0 on ∂Ω.

Starting from the pioneering work [8] many authors studied singular semi-
linear elliptic equations, see e.g. [4–6,13,15,16,18,19,22]. Let us also mention
the contributions in [1,3,14] where related problems involving first order terms
are considered.

In this paper we deal with the uniqueness (and existence) issue for the
quasilinear problem (1.1). Actually the existence of a solution, under suitable
assumptions on f , follows relying on the technique introduced in [4] which is
based on a truncation argument and on a regularization argument. In [4] the
semilinear case p = 2 is considered but the adaptation of the technique to
the quasilinear case is not difficult. Anyway, since some technical changes are
needed, we will provide the details of the proofs in the appendix while we state
here the result:

Theorem 1.3. For γ ≥ 1 and p > 1 problem (1.1) has a solution u ∈ W 1,p
loc (Ω)

provided that f ∈ L1 (Ω). Such a solution fulfills the boundary datum in the
sense that u

γ+p−1
p ∈ W 1,p

0 (Ω) and also in the meaning of Definition 1.2.
In the case 0 < γ < 1 and 1 < p < N problem (1.1) has a solution

u ∈ W 1,p
0 (Ω) if f ∈ Lm (Ω) with

m =
Np

N (p − 1) + p + γ (N − p)
=

(
p∗

1 − γ

)′
.



NoDEA Existence and uniqueness Page 3 of 18 8

If p = N and 0 < γ < 1 the same result follows assuming that f ∈ Lm (Ω)
for some m > 1 while in the case p > N and 0 < γ < 1 the result is true if
f ∈ L1 (Ω).

The main issue considered here is the uniqueness problem.
Though the uniqueness is expected because the nonlinearity is decreasing

in u, only partial results have been provided in the literature. This is mainly
caused by the fact that the solutions generally are not in W 1,p

0 (Ω). On the other
hand, it is not difficult to prove a uniqueness result via standard arguments
in W 1,p

0 (Ω). This is the case also when restricting the attention to solutions
that are continuous up to the boundary. We refer the readers e.g. to [5,8].
Since in our case solutions are not in general in W 1,p

0 (Ω) and generally are
not continuous up to the boundary a positive answer to the uniqueness of the
solutions is still not known. Recently a positive answer has been provided in
[7] under very mild assumptions on f and in the semilinear case p = 2. The
quasilinear case is still undertaken and, unfortunately, the technique exploited
in [7] is very much related to the linear nature of the Laplace operator and
therefore it is difficult to exploit it in the quasilinear setting.

We provide here two different results based on two new different tech-
niques. The first result holds in star-shaped domains.

Theorem 1.4. Let γ > 0, f ∈ L1(Ω). Then, if Ω is star-shaped with respect to
the origin, the solution to problem (1.1) is unique.

More precisely, if u and v are solutions to (1.1) that fulfill the Dirichlet
datum in the sense of Definition 1.2 then it follows that u = v. The same holds
if u and v are solutions to (1.1) such that u

γ+p−1
p ∈ W 1,p

0 (Ω) and v
γ+p−1

p ∈
W 1,p

0 (Ω).

The proof of Theorem 1.4 is based on a scaling argument and on a fine
asymptotic analysis. The lack of regularity of the solutions up to the boundary
causes that standard test functions techniques cannot be exploited and the
star-shaped geometry of the domains is needed to apply the scaling argument.
We can avoid the restriction regarding the geometry of the domain if we require
some further summability assumptions. Namely we have the following:

Theorem 1.5. Let us consider problem (1.1) and assume that f ∈ L1(Ω) for
0 < γ ≤ 1 while, in the case γ > 1, we assume that f ∈ Lm(Ω) with m > N

p if
1 < p < N , f ∈ Lm(Ω) with m > 1 if p = N , f ∈ L1(Ω) if p > N .

Then the solution is unique.

In the whole paper the reader will guess that the case γ ≥ 1 is the most
difficult one to be considered. In the case 0 < γ < 1, according to Theorem 1.3,
we consider solutions in W 1,p

0 (Ω). The existence of such solutions is proved in
Theorem 1.3 requiring extra summability assumptions on f . Such restriction is
anyway not needed when dealing with the problem of uniqueness. Furthermore
a solution that fulfills the boundary datum in the sense that u

γ+p−1
p ∈ W 1,p

0 (Ω),
also fulfills the boundary datum in the meaning of Definition 1.2. This follows
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by direct computation exploiting the fact that u is strictly positive in the
support of (u − ε)+.

Theorem 1.5 is proved via a comparison argument based on a suitable
regularized problem. Namely standard techniques are applied to a suitable
regularized problem and the comparison principle follows passing to the limit.
The limiting process in this case is not standard because of the presence of the
singular nonlinearity in the right hand side.

The paper is organized as follows. In Sect. 2 we prove the uniqueness
result in star-shaped domains, namely we prove Theorem 1.4. In Sect. 3 we
prove the uniqueness of the solution in general domains, namely we prove
Theorem 1.5. We postpone the proof of the existence result, namely Theorem
1.3, in the appendix.

2. Uniqueness of the solution in star-shaped domains

In this section we will prove Theorem 1.4. The proof works in this case in the
same way for any γ > 0, anyway the result is crucial in the case γ > 1 since
here we only assume that f ∈ L1(Ω).

In the following we will frequently use the following well known elliptic
estimates (see [21]):

Lemma 2.1. ∀ p > 1 there exist positive constants C1, C2, depending on p, such
that ∀ η, η′ ∈ R

N with |η| + |η′| > 0

[|η|p−2η − |η′|p−2η′][η − η′] ≥ C1(|η| + |η′|)p−2|η − η′|2,
||η|p−2η − |η′|p−2η′| ≤ C2(|η| + |η′|)p−2|η − η′|. (2.1)

Proof of Theorem 1.4 We will carry out the proof in the case γ > 1. The
case 0 < γ ≤ 1 is simpler and only trivial modifications are needed.

Also we will consider the case of solutions u, v such that u
γ+p−1

p ∈
W 1,p

0 (Ω) and v
γ+p−1

p ∈ W 1,p
0 (Ω). When the Dirichlet datum is understood

as in Definition 1.2 only trivial modifications are needed that will be listed
below.

Fix 0 < ε < 1 and set

vε (x) := ε
p

γ+p−1 v
( x

ε

)
in Ωε := ε Ω.

In the following we consider vε defined in Ω by setting it equal to zero in Ω\Ωε.
It is easy to check that, in the distributional meaning, we have

− Δpvε =
fε

vγ
ε

in Ωε, (2.2)

where fε(x) := f( x
ε ). For any δ > 0 given, we also set

uδ := u + δ,

so that, in the weak distributional meaning, we have

− Δpuδ ≥ f

uγ
δ

in Ω. (2.3)
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We claim that :

(vε − uδ)+ ∈ W 1,p
0 (Ωε).

To prove this note that, since v
γ+p−1

p
ε ∈ W 1,p

0 (Ωε), then there exists a sequence
ϕn ∈ C∞

c (Ωε), ϕn ≥ 0, such that

ϕn
W 1,p

0 (Ωε)→ v
γ+p−1

p
ε .

Let us set

wn :=
(

ϕ
p

γ+p−1
n − uδ

)+

and observe that suppwn ⊂⊂ Ωε and

ϕn > δ
γ+p−1

p ,

in the support of wn.
Clearly ϕn is uniformly bounded in W 1,p

0 (Ωε) so that
∫

suppwn

∣
∣
∣∇

(
ϕ

p
γ+p−1
n

)∣
∣
∣
p

=
(

p

γ + p − 1

)p ∫

suppwn

1

ϕ
(γ−1)p
γ+p−1
n

|∇ϕn|p

<

(
p

γ + p − 1

)p 1
δγ−1

∫

suppwn

|∇ϕn|p

≤ Const.

Then

‖wn‖p

W 1,p
0 (Ωε)

=
∫

Ωε

∣
∣
∣
∣∇

(
ϕ

p
γ+p−1
n − uδ

)+
∣
∣
∣
∣

p

≤
∫

supp wn

∣
∣
∣∇ϕ

p
γ+p−1
n − ∇uδ

∣
∣
∣
p

≤ C

∫

suppwn

(∣
∣
∣∇ϕ

p
γ+p−1
n

∣
∣
∣
p

+ |∇uδ|p
)

≤ C

(∫

suppwn

∣
∣
∣∇ϕ

p
γ+p−1
n

∣
∣
∣
p

+
∫

Ωε

|∇u|p
)

≤ Const.

It follows that, up to subsequences, wn weakly converges to w ∈ W 1,p
0 (Ωε)

and wn a.e. converges to w in Ωε. Since we also now that wn a.e. converges to
(vε − uδ)

+ in Ωε, then we have w̄ = (vε − uδ)
+ and the claim is proved. Note

that the same claim follows when the Dirichlet datum is understood in the
meaning of Definition 1.2. The proof in this case is simpler since the support
of (vε − uδ)+ is contained in the support of (vε − δ)+.

Now we set Tk(s) := min{s, k}, k > 0. We have that

Tk

(
(vε − uδ)+

) ∈ W 1,p
0 (Ωε) ∩ L∞(Ωε).

Let ψn ∈ C∞
c (Ωε), ψn ≥ 0, such that

ψn
W 1,p

0 (Ωε)→ (vε − uδ)+.

We have that Tk(ψn) ∈ W 1,p
0 (Ωε) ∩ L∞(Ωε) and

Tk(ψn)
W 1,p

0 (Ωε)→ Tk

(
(vε − uδ)+

)
.
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Setting

T̃k(ψn) := min
{
Tk(ψn), Tk

(
(vε − uδ)+

)}
,

we have

supp T̃k(ψn) ⊂ suppTk

(
(vε − uδ)+

)
.

Choosing T̃k(ψn) as test function in (2.2) and (2.3), we get:
∫

Ωε

(
|∇vε|p−2 ∇vε − |∇uδ|p−2 ∇uδ

)
∇T̃k(ψn)

≤
∫

Ωε

(
fε

vγ
ε

− f

uγ
δ

)

T̃k (ψn)

=
∫

Ωε

fε

(
1
vγ

ε
− 1

uγ
δ

)

T̃k (ψn) +
∫

Ωε

fε − f

uγ
δ

T̃k (ψn)

≤
∫

Ωε

fε − f

uγ
δ

T̃k (ψn) .

Exploiting the Lebesgue Theorem, we pass to the limit and get

C

∫

Ωε

(|∇vε| + |∇uδ|)p−2 |∇Tk

(
(vε − uδ)+

) |2 ≤
∫

Ωε

fε − f

uγ
δ

Tk

(
(vε − uδ)+

)
.

(2.4)

Now we fix σ > 0 and use the notation x := εy. By Luzin’s Theorem we
can choose a compact Eσ ⊂ Ω with L (Ω\Eσ) < σ (where L is the Lebesgue
measure), such that u and v are continuous in Eσ. It is convenient to replace
Eσ by it’s interior in the following computations in order to use the continuity
of u and v in an open set. This is possible recalling that the boundary has zero
Lebesgue measure. We use the same notation. We get that

∣
∣
∣
∣

∫

Ωε

fε

uγ
δ

Tk

(
(vε − uδ)+

)
dx −

∫

Ω

f(y)
uγ

δ (y)
Tk

(
(v(y) − uδ(y))+

)
dy

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Ω

εNf(y)
uγ

δ (εy)
Tk

(
(vε(εy) − uδ(εy))+

)
dy

−
∫

Ω

f(y)
uγ

δ (y)
Tk

(
(v(y) − uδ(y))+

)
dy

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

Eσ

[
εNf(y)
uγ

δ (εy)
Tk

(
(vε(εy) − uδ(εy))+

)

− f(y)
uγ

δ (y)
Tk

(
(v(y) − uδ(y))+

)
]

dy

∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

Ω\Eσ

εNf(y)
uγ

δ (εy)
Tk

(
(vε(εy) − uδ(εy))+

)
dy

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

Ω\Eσ

f(y)
uγ

δ (y)
Tk

(
(v(y) − uδ(y))+

)
dy

∣
∣
∣
∣
∣
.
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We note now that, since u and v are continuous in Eσ, then uδ(εy) converges
to uδ and vε(εy) converges to v in Eσ, as ε → 1. This allows to pass to the
limit via the Lebesgue Theorem.

Furthermore, the other terms (namely the integrals outside Eσ), are ar-
bitrary small since L (Ω\Eσ) is arbitrary small and f ∈ L1(Ω). From this we
easily infer that

∫

Ωε

fε

uγ
δ

Tk

(
(vε − uδ)+

)
dx −→

ε→1

∫

Ω

f

uγ
δ

Tk

(
(v − uδ)+

)
dx

and, exploiting the fact that f ∈ L1(Ω), we have that
∫

Ωε

fε − f

uγ
δ

Tk

(
(vε − uδ)+

) −→
ε→1

0 .

By [9] it follows that ∇vε almost everywhere converges to ∇v. This can be
deduced by (2.2) exploiting [9] in each subset of the domain, recalling that the
L1-convergence of the right hand side follows since v is positive in the interior
of the domain. Therefore, letting ε → 1 in (2.4), we obtain

∫

Ω

(|∇v| + |∇uδ|)p−2 ∣
∣∇Tk

(
(v − uδ)+

)∣
∣2 = 0

so that v ≤ uδ in Ω. By the arbitrariness of δ we have v ≤ u in Ω and the
thesis follows reversing the roles of u and v. �

3. Uniqueness of the solution in general domains

In this section we prove Theorem 1.5. We start considering the regularized
problem:

⎧
⎨

⎩

−Δpu = f (x) gh (u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(3.1)

where gh (s) = min{ 1
sγ , h}, s > 0. We will find a solution to (3.1) looking at

the problem:
{−Δpun = fn (x) gh (un) in Ω,

un = 0 on ∂Ω,
(3.2)

where fn(x) := min{f(x), n}.
We have the following

Lemma 3.1. For each n ∈ N, there exists un ∈ W 1,p
0 (Ω) weak solution to (3.2).

Proof. For each v ∈ Lp (Ω) there exists a unique w ∈ W 1,p
0 (Ω) weakly solving

{−Δpw = fn (x) gh (|v|) in Ω,
w = 0 on ∂Ω,

(3.3)
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To prove this just consider the associated energy functional J : W 1,p
0 (Ω) → R

defined by

J (w) =
1
p

∫

Ω

|∇w|p −
∫

Ω

fngh (|v|) w

=
1
p

‖∇w‖p
Lp(Ω) −

∫

Ω

fngh (|v|) w .

It follows easily that J is continuous, strictly convex and coercive so that
the existence and the uniqueness of the solution to (3.3) follow by standard
arguments.

Therefore we can define the operator:

v ∈ Lp (Ω) → w = S (v) ∈ Lp (Ω) ,

where w is the solution to (3.3). It is not difficult to prove via standard ar-
guments that S is continuous and compact. Furthermore, we claim that there
exists a radius R > 0 such that the ball in Lp(Ω) of radius R is invariant under
the action of the operator S.

To prove the claim, let us plug w as test function in (3.3). Exploiting the
fact that fn ≤ n and gh(|v|) ≤ h, we get

∫

Ω

|∇w|p =
∫

Ω

fngh (|v|) w ≤ nh

∫

Ω

|w| ≤ nh |Ω| p−1
p

(∫

Ω

|w|p
) 1

p

.

Therefore, by the Poincaré’s inequality, we deduce
∫

Ω

|w|p ≤ Cnh |Ω| p−1
p

(∫

Ω

|w|p
) 1

p

,

so that

‖w‖Lp(Ω) ≤
(
Cnh |Ω| p−1

p

) 1
p−1

:= R,

proving the claim.
We can consequently exploit Schauder’s Fixed Point Theorem to deduce

that there exists un ∈ W 1,p
0 (Ω) such that un = S (un), namely un is a solution

to (3.2). �

Remark 3.2. We remark that, since fngh(|un|) ≥ 0 in Ω, then the weak max-
imum principle (see e.g. [21]) implies that un ≥ 0 in Ω. Furthermore, by the
strong maximum principle (see [21,27]), we infer that un > 0 in Ω since our
problem does not admits the trivial solution. Finally, since fngh ∈ L∞, by
standard regularity results [10–12,17,20,23–26], it follows that un ∈ C1,α(Ω)
for some α ∈ (0, 1).

Lemma 3.3. Let un be the solution to (3.2) given by Lemma 3.1. Then un is
unique and the family {un} is increasing with respect to n. Furthermore

∀ω ⊂⊂ Ω ∃ cω : ∀n ∈ N, un ≥ cω > 0 in ω.
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Proof. Since 0 ≤ fn ≤ fn+1 we have
∫

Ω

|∇un|p−2 ∇un∇ϕ =
∫

Ω

fngh (un) ϕ ≤
∫

Ω

fn+1gh (un) ϕ,

∫

Ω

|∇un+1|p−2 ∇un+1∇ϕ =
∫

Ω

fn+1gh (un+1) ϕ,

for each ϕ ∈ C∞
c (Ω) with ϕ ≥ 0 in Ω. By standard density arguments (ex-

ploiting the fact that the regularized problem is not singular) we see that
ϕ = (un − un+1)+ can be used as test function. Therefore, exploiting also the
fact that gh is non-increasing, we obtain

∫

Ω

(|∇un| + |∇un+1|)p−2
∣
∣
∣∇ (un − un+1)

+
∣
∣
∣
2

≤ C

∫

Ω

(
|∇un+1|p−2 ∇un+1 − |∇un|p−2 ∇un

)
∇ (un − un+1)

+ ≤ 0.

which implies (un − un+1)
+ = 0 a.e. in Ω and therefore un ≤ un+1 in Ω.

The fact that un is strictly bounded away from zero in the interior of
Ω follows now by the fact that u1 is strictly positive by the strong maximum
principle.

The uniqueness of the solution follows with similar arguments. Let n ∈ N

and consider two solutions un and vn, so that
∫

Ω

(
|∇un|p−2 ∇un − |∇vn|p−2 ∇vn

)
∇ϕ

=
∫

Ω

fn (gh (un) − gh (vn))ϕ

for each ϕ ∈ C∞
c (Ω), ϕ ≥ 0. Choosing ϕ = (un − vn)+, observing that gh is

decreasing, we obtain

C

∫

Ω

(|∇un| + |∇vn|)p−2
∣
∣
∣∇ (un − vn)+

∣
∣
∣
2

≤
∫

Ω

(
|∇un|p−2 ∇un − |∇vn|p−2 ∇vn

)
∇ (un − vn)+

≤
∫

Ω

fn (gh (un) − gh (vn)) (un − vn)+ ≤ 0.

From this we infer that (un − vn)+ = 0 a.e. in Ω and un ≤ vn. By symmetry,
this also implies un = vn. �

Lemma 3.4. Let 1 < p < N and let un be the solution to (3.2) and assume
that f ∈ Lm (Ω), with

m =
Np

N (p − 1) + p
= (p∗)′

.

Then the family {un} is uniformly bounded in W 1,p
0 (Ω).

If p = N the same result follows assuming that f ∈ Lm(Ω) for some
m > 1 while in the case p > N the result is true if f ∈ L1(Ω).
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Proof. We prove the result in the case 1 < p < N . Putting un as test function
in the weak formulation of (3.2), we get

∫

Ω

|∇un|p =
∫

Ω

fngh (un) un ≤ h

∫

Ω

fnun ≤ h

∫

Ω

fun

≤ h

(∫

Ω

fm

) 1
m

(∫

Ω

up∗
n

) 1
p∗

≤ Ch ‖f‖Lm(Ω)

(∫

Ω

|∇un|p
) 1

p

,

so that

‖∇un‖Lp(Ω) ≤
(
Ch ‖f‖Lm(Ω)

) 1
p−1

,

which gives the uniform boundedness of (un) in W 1,p
0 (Ω). �

Theorem 3.5. Let 1 < p < N and f ∈ Lm (Ω), with

m =
Np

N (p − 1) + p
= (p∗)′

.

Then (3.1) has a solution u ∈ W 1,p
0 (Ω).

If p = N the same result follows assuming that f ∈ Lm(Ω) for some
m > 1 while in the case p > N the result is true if f ∈ L1(Ω).

Proof. Let un be the solution to (3.2) found in Lemma 3.1. By Lemma 3.4
we know that {un} is uniformly bounded in W 1,p

0 (Ω). It follows, up to subse-

quences, that un
W 1,p

0 (Ω)
⇀ u, un

Lp(Ω)→ u and un(x) → u(x) a.e. in Ω.
We will show that that u is a solution to (3.1) proving the theorem. To

prove this let ϕ ∈ C∞
c (Ω). Since by Lemma 3.3 we know that un is bounded

away from zero in the interior of the domain, we can exploit the results in [2,9]
to deduce that ∇un(x) → ∇u(x) a.e. in Ω which implies

(|∇un (x)| + |∇u (x)|)p−2 ∇ (un (x) − u (x)) → 0 a.e. in Ω.

By Holder’s inequality, we get
∫

Ω

(|∇un| + |∇u|)p−2 |∇ (un − u)| |∇ϕ|

≤
∫

Ω

(|∇un| + |∇u|)p−1 |∇ϕ| ≤ ‖∇ϕ‖L∞(Ω)

(∫

Ω

(|∇un| + |∇u|)p

) p−1
p

|Ω| 1
p

≤ C ‖∇ϕ‖L∞(Ω)

(
‖∇un‖Lp(Ω) + ‖∇u‖Lp(Ω)

)p−1

|Ω| 1
p ≤ C |Ω| 1

p .

Therefore, exploiting Vitali’s Theorem, we get that
∣
∣
∣
∣

∫

Ω

(
|∇un|p−2 ∇un − |∇u|p−2 ∇u

)
∇ϕ

∣
∣
∣
∣

≤ C

∫

Ω

(|∇un| + |∇u|)p−2 |∇ (un − u)| |∇ϕ| → 0,

and
∫

Ω

|∇un|p−2 ∇un∇ϕ →
∫

Ω

|∇u|p−2 ∇u∇ϕ.
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It is easy to pass to the limit in right hand side of (3.2) and get that
∫

Ω

|∇u|p−2 ∇u∇ϕ =
∫

Ω

fgh (u) ϕ

proving the result. �
In the following, using the solution found in Theorem 3.5, we are going

to prove some comparison principles that shall allow to obtain the uniqueness
result. The case γ < 1, γ = 1 and γ > 1 exhibits some technical differences
and we will split the results in separate lemmata.

Lemma 3.6. Let 1 < p < N and f ∈ Lm(Ω), with

m =
Np

N (p − 1) + p
= (p∗)′

.

Moreover, let u ∈ W 1,p
loc (Ω) be a subsolution to (1.1) and let w be the solution

to (3.1). Then
u ≤ w + h− 1

γ

with h > 0 as in (3.1).
If p = N the same result follows assuming that f ∈ Lm(Ω) for some

m > 1 while in the case p > N the result is true if f ∈ L1(Ω).

Proof. We fix ε > 0 such that
1
εγ

< h.

Exploiting the fact that w ∈ W 1,p
0 (Ω) it follows that

(u − w − ε)+ ∈ W 1,p
0 (Ω) .

Therefore, setting Tτ (s) = min{s, τ} for s ≥ 0, by density arguments we can
put Tτ ((u − w − ε)+) as test function in (3.1) and get

∫

Ω

|∇w|p−2 ∇w∇Tτ

(
(u − w − ε)+

)
=

∫

Ω

fgh (w) Tτ

(
(u − w − ε)+

)
.

(3.4)

Let now ϕn ∈ C∞
c (Ω) with

ϕn
W 1,p

0 (Ω)→ (u − w − ε)+

and set

ϕ̃n,τ = Tτ

(
min

{
(u − w − ε)+ , ϕ+

n

})
.

Then ϕ̃n,τ ∈ W 1,p
0 (Ω) ∩ L∞

c (Ω) and consequently:
∫

Ω

|∇u|p−2 ∇u∇ϕ̃n,τ ≤
∫

Ω

f

uγ
ϕ̃n,τ .

Since |∇u|p is integrable in the support of (u − w − ε)+ (see Definitiom 1.2),
we can pass to the limit and deduce that

∫

Ω

|∇u|p−2 ∇u∇Tτ

(
(u − w − ε)+

)
≤

∫

Ω

f

uγ
Tτ

(
(u − w − ε)+

)
. (3.5)
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By (3.4) and (3.5) it follows:

C

∫

Ω

(|∇w| + |∇u|)p−2
∣
∣
∣∇Tτ

(
(u − w − ε)+

)∣
∣
∣
2

≤
∫

Ω

(
|∇u|p−2 ∇u − |∇w|p−2 ∇w

)
∇Tτ

(
(u − w − ε)+

)

≤
∫

Ω

f

uγ
Tτ

(
(u − w − ε)+

)
−

∫

Ω

fgh (w) Tτ

(
(u − w − ε)+

)

≤
∫

Ω

f

(
1
uγ

− gh (w)
)

Tτ

(
(u − w − ε)+

)

=
∫

Ω

f (gh(u) − gh (w)) Tτ

(
(u − w − ε)+

)

≤ 0,

where the last inequality is obtained exploiting the fact that ε > h− 1
γ (and

recalling the definition of gh) and exploiting the fact that u ≥ ε in the support
of (u − w − ε)+. Therefore we have

∫

Ω

(|∇u| + |∇w|)p−2
∣
∣
∣∇Tτ

(
(u − w − ε)+

)∣
∣
∣
2

= 0,

which implies Tτ ((u − w − ε)+) = 0 a.e. in Ω. By the arbitrariness of τ > 0,
we obtain u − w − ε ≤ 0 and the thesis is proved. �

Lemma 3.7. Let 1 < p < N and f ∈ Lm (Ω), with m > N
p . Moreover, let

v ∈ W 1,p
loc (Ω) be a supersolution of (1.1) and let w be the solution to (3.1).

Then w ≤ v.
If p = N the same result follows assuming that f ∈ Lm(Ω) for some m > 1
while in the case p > N the result is true if f ∈ L1(Ω).

Proof. We consider the case 1 < p < N . Since the regularized equation in (3.1)
is not singular, by the assumption m > N

p and standard regularity theory, it
follows that w is Holder continuous up to the boundary.

Since w = 0 on ∂Ω, it follows that there exists δ > 0 such that w ≤ ε
2 in

Aδ = {x ∈ Ω : dist(x, ∂Ω) < δ}. Then w − v − ε ≤ − ε
2 < 0 in Aδ so that the

support of (w−v−ε)+ is contained in Ω\Aδ ⊂⊂ Ω. Since (w−v−ε)+ ∈ W 1,p
0 (Ω)

we can therefore argue as in Lemma 3.6 and get
∫

Ω

|∇w|p−2 ∇w∇Tτ

(
(w − v − ε)+

)
=

∫

Ω

fgh (w) Tτ

(
(w − v − ε)+

)
,

(3.6)

where Tτ (s) = min{s, τ} for s ≥ 0. Let now ϕn ∈ C∞
c (Ω) with

ϕn
W 1,p

0 (Ω)→ (w − v − ε)+ ; ϕ̃n,τ = Tτ

(
min

{
(w − v − ε)+ , ϕ+

n

})
.

Then ϕ̃n,τ ∈ W 1,p
0 (Ω) ∩ L∞

c (Ω) and
∫

Ω

|∇v|p−2 ∇v∇ϕ̃n,τ ≥
∫

Ω

f

vγ
ϕ̃n,τ
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and, passing to the limit, we deduce that
∫

Ω

|∇v|p−2 ∇v∇Tτ

(
(w − v − ε)+

)
≥

∫

Ω

f

vγ
Tτ

(
(w − v − ε)+

)
. (3.7)

To prove this it is crucial the fact that the support of (w−v−ε)+ is contained
in Ω\Aδ ⊂⊂ Ω since we only know that v ∈ W 1,p

loc (Ω). By (3.6) and (3.7) now
we get

C

∫

Ω

(|∇w| + |∇v|)p−2
∣
∣
∣∇Tτ

(
(w − v − ε)+

)∣
∣
∣
2

≤
∫

Ω

(
|∇w|p−2 ∇w − |∇v|p−2 ∇v

)
∇Tτ

(
(w − v − ε)+

)

≤
∫

Ω

fgh (w) Tτ

(
(w − v − ε)+

)
−

∫

Ω

f

vγ
Tτ

(
(w − v − ε)+

)

≤
∫

Ω

f

(

gh (w) − 1
vγ

)

Tτ

(
(w − v − ε)+

)

≤
∫

Ω

f

(
1

wγ
− 1

vγ

)

Tτ

(
(w − v − ε)+

)
≤ 0,

so that
∫

Ω

(|∇w| + |∇v|)p−2
∣
∣
∣∇Tτ

(
(w − v − ε)+

)∣
∣
∣
2

= 0,

which implies Tτ ((w −v − ε)+) = 0 a.e. in Ω. By the arbitrariness of τ > 0, we
obtain that w − v − ε ≤ 0 and, passing to the limit as ε → 0, it follows that
w ≤ v. �

Remark 3.8. The reader should note that in Lemma 3.6 we do not pass to the
limit because w depends on h.

We are now ready to prove Theorem 1.5 in the case γ > 1.
Proof of Theorem 1.5, the case γ > 1. Let u and v be solutions of (1.1)

and let w be the solution to (3.1). By Lemma 3.6 and Lemma 3.7, we get
u ≤ w +h− 1

γ and w ≤ v so that, since h is arbitrary, we get that u ≤ v. In the
same way it follows that v ≤ u which implies u = v and the thesis is proved.

�
The uniqueness result in the case 0 < γ ≤ 1 is simpler, mainly because of

the fact that solutions are in W 1,p
0 (Ω) in this case. We provide a short proof

here below.
Proof of Theorem 1.5, the case 0 < γ ≤ 1. Let u, v ∈ W 1,p

0 (Ω) be solutions
to (1.1). Since (u − v)+ ∈ W 1,p

0 (Ω) we can take a sequence ϕn ∈ C∞
c (Ω)

ϕn
W 1,p

0 (Ω)→ (u − v)+ .

Set

ϕ̃n = min
{

(u − v)+ , ϕ+
n

}
∈ W 1,p

0 (Ω) ∩ L∞
c
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so that
∫

Ω

(
|∇u|p−2 ∇u − |∇v|p−2 ∇v

)
∇ϕ̃n

≤
∫

Ω

f

(
1
uγ

− 1
vγ

)

ϕ̃n ≤ 0.

Passing to the limit we obtain
∫

Ω

(|∇u| + |∇v|)p−2
∣
∣
∣∇ (u − v)+

∣
∣
∣
2

= 0,

and (u − v)+ = 0 a.e. in Ω. It follows u ≤ v and the thesis is proved reversing
the roles of u and v. �

4. Appendix: Existence of the solution

We start considering the following problem
{

−Δpun = fn(x)

(un+ 1
n )γ in Ω,

un = 0 on ∂Ω,
(4.1)

with fn = min{f, n}. Arguing exactly as in Lemmas 3.1 and 3.3, one can easily
prove the following:

Lemma 4.1. For each n ∈ N problem (4.1) has a solution un ∈ W 1,p
0 (Ω) ∩

L∞(Ω) and un > 0 in Ω. The sequence {un} is increasing with respect to n
and

∀ω ⊂⊂ Ω ∃ cω : ∀n ∈ N, un ≥ cω > 0 in ω.

From this we immediately deduce the following:

Theorem 4.2. If γ = 1 and f ∈ L1(Ω) then (1.1) has a solution u ∈ W 1,p
0 (Ω).

Proof. It is standard to prove that the sequence {un} given by Lemma 4.1 is
uniformly bounded in W 1,p

0 (Ω). Therefore we can obtain a solution passing to
the limit, namely arguing exactly as in Theorem 3.5. �

Lemma 4.3. Let 1 < p < N , γ > 1 and let un be the solution to (4.1). Assume

that f ∈ L1(Ω). Then {u
γ+p−1

p
n } is uniformly bounded in W 1,p

0 (Ω), {un} is
uniformly bounded in W 1,p

loc (Ω) and in Ls(Ω), with

s =
N (γ + p − 1)

N − p
=

p∗ (γ + p − 1)
p

. (4.2)

In the case p ≥ N the result holds and (4.2) holds for any s ≥ 1.

Proof. We consider the case 1 < p < N . The changes needed in the case p ≥ N
are trivial. Let us insert uγ

n as test function in (4.1) obtaining

γ

∫

Ω

|∇un|p uγ−1
n =

∫

Ω

fnuγ
n(

un + 1
n

)γ ≤
∫

Ω

fn ≤
∫

Ω

f = ‖f‖L1(Ω) .
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Therefore
∥
∥
∥
∥∇

(

u
γ+p−1

p
n

)∥
∥
∥
∥

Lp(Ω)

≤ C ‖f‖
1
p

L1(Ω)

and the first part of the thesis is proved. Recalling the assumption on the
exponent s we deduce that

‖un‖Ls(Ω) =
(∫

Ω

u
p∗(γ+p−1)

p
n

) 1
s

=
∥
∥
∥
∥u

γ+p−1
p

n

∥
∥
∥
∥

p∗
s

Lp∗ (Ω)

≤ C

∥
∥
∥
∥∇

(

u
γ+p−1

p
n

)∥
∥
∥
∥

p∗
s

Lp(Ω)

≤ C ‖f‖
p∗
ps

L1(Ω) ,

which gives the uniform boundedness of {un} in Ls (Ω).
To prove the uniform boundedness of {un} in W 1,p

loc (Ω) it could be enough
to use unϕ2 as test function in (4.1). Anyway this is also a simple consequence

of the first part of the theorem, namely the fact that {u
γ+p−1

p
n } is uniformly

bounded in W 1,p
0 (Ω) and the fact that {un} is bounded away from zero on

compact sets. �

Theorem 4.4. Let γ > 1 and let f ∈ L1(Ω). Then (1.1) has a solution u ∈
W 1,p

loc (Ω). Moreover u
γ+p−1

p ∈ W 1,p
0 (Ω).

Proof. By Lemma 4.3 we have that the sequence {un} of solutions to the
regularized problem (4.1) is uniformly bounded in W 1,p

loc (Ω).

It follows, up to subsequences, that un
W 1,p

loc (Ω)
⇀ u, un

Lp
loc(Ω)→ u and un(x)

→ u(x) a.e. in Ω. Let ϕ ∈ C∞
c (Ω) and let ω be the support of ϕ. Recalling

that the sequence un is bounded away from zero in the interior of the domain,
we can apply [2,9] to show that ∇un(x) → ∇u(x) a.e. in Ω which implies

(|∇un (x)| + |∇u (x)|)p−2 ∇ (un (x) − u (x)) → 0 a. e. in Ω.

Furthermore, by Holder inequality, we get
∫

Ω

(|∇un| + |∇u|)p−2 |∇ (un − u)| |∇ϕ|

≤
∫

Ω

(|∇un| + |∇u|)p−1 |∇ϕ| ≤ ‖∇ϕ‖L∞(Ω)

(∫

ω

(|∇un| + |∇u|)p

) p−1
p

|Ω| 1
p

≤ C(ω) |Ω| 1
p .

Therefore we can exploit Vitali’s Theorem to get
∣
∣
∣
∣

∫

Ω

(
|∇un|p−2 ∇un − |∇u|p−2 ∇u

)
∇ϕ

∣
∣
∣
∣

≤ C

∫

Ω

(|∇un| + |∇u|)p−2 |∇ (un − u)| |∇ϕ| → 0,

so that
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∫

Ω

|∇un|p−2 ∇un∇ϕ →
∫

Ω

|∇u|p−2 ∇u∇ϕ.

Moreover, recalling Lemma 4.1, we have that
∣
∣
∣
∣
∣

fnϕ
(
un + 1

n

)γ

∣
∣
∣
∣
∣
≤ ‖ϕ‖L∞(Ω)

cγ
ω

f in ω,

which allows to pass to the limit in (4.1) obtaining
∫

Ω

|∇u|p−2 ∇u∇ϕ =
∫

Ω

fϕ

uγ

showing that u is a solution to (1.1). The fact that u
γ+p−1

p ∈ W 1,p
0 (Ω) follows

by Lemma 4.3. �

In the following we consider the case 0 < γ < 1.

Lemma 4.5. Let 1 < p < N , 0 < γ < 1 and let un be the solution to (4.1).
Assume that f ∈ Lm(Ω) with

m =
Np

N (p − 1) + p + γ (N − p)
=

(
p∗

1 − γ

)′
,

then {un} is uniformly bounded in W 1,p
0 (Ω).

If p = N the same result follows assuming that f ∈ Lm(Ω) for some
m > 1 while in the case p > N the result is true if f ∈ L1(Ω).

Proof. We only consider the case 1 < p < N . The other cases are simpler and
can be proved in a similar way with trivial changes. We have that

∫

Ω

|∇un|p =
∫

Ω

fnun
(
un + 1

n

)γ ≤
∫

Ω

fnu1−γ
n ≤ ‖f‖Lm(Ω)

(∫

Ω

u(1−γ)m′
n

) 1
m′

.(4.3)

Since (1 − γ)m′ = p∗, then by Sobolev inequality, we get
(∫

Ω

|un|p∗
) p

p∗

≤ C

∫

Ω

|∇un|p ≤ C ‖f‖Lm(Ω)

(∫

Ω

up∗
n

) 1
m′

. (4.4)

Since p
p∗ > 1

m′ , by (4.4), we get that

‖un‖Lp∗ (Ω) ≤
(
C ‖f‖Lm(Ω)

) 1

p∗( p
p∗ − 1

m′ ) .

From this, exploiting (4.3), we deduce that {un} is uniformly bounded in
W 1,p

0 (Ω). �

Theorem 4.6. Let 1 < p < N and let 0 < γ < 1 and assume that f ∈ Lm(Ω)
with

m =
Np

N (p − 1) + p + γ (N − p)
=

(
p∗

1 − γ

)′
.

Then (1.1) has a solution u ∈ W 1,p
0 (Ω).

If p = N the same result follows assuming that f ∈ Lm(Ω) for some
m > 1 while in the case p > N the result is true if f ∈ L1(Ω).
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Proof. The proof follows now exploiting Lemma 4.5 and passing to the limit
arguing as in Theorems 4.2 and 4.4. �

Proof of Theorem 1.3. The proof of Theorem 1.3 follows collecting The-
orems 4.2, 4.4 and 4.6. �
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