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Abstract. Let p ∈ (1, ∞), s ∈ (0, 1) and Ω ⊂ R
N a bounded open set with

boundary ∂Ω of class C1,1. In the first part of the article we prove an
integration by parts formula for the fractional p-Laplace operator (−Δ)s

p

defined on Ω ⊂ R
N and acting on functions that do not necessarily vanish

at the boundary ∂Ω. In the second part of the article we use the above
mentioned integration by parts formula to clarify the fractional Neumann
and Robin boundary conditions associated with the fractional p-Laplacian
on open sets.
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1. Introduction

Let Ω ⊂ R
N be a bounded open set with Lipschitz continuous boundary ∂Ω,

1 < p < ∞ and let Δpu = div(|∇u|p−2∇u) be the p-Laplace operator. Using
the following well known integration by parts formula,

−
∫

Ω

vΔpu dx =
∫

Ω

|∇u|p−2∇u · ∇v dx −
∫

∂Ω

v|∇u|p−2∇u · ν dσ, (1.1)

valid for u, v ∈ W 1,p(Ω) such that Δpu ∈ L
p

p−1 (Ω) and |∇u|p−2∇u · ν =
|∇u|p−2∂u/∂ν ∈ L

p
p−1 (∂Ω, σ), where σ denotes the usual Lebesgue surface

measure on ∂Ω, it is nowadays classical to define the Neumann boundary
conditions associated with the operator Δp, given by |∇u|p−2∇u · ν = g on
∂Ω, and the Robin boundary conditions, |∇u|p−2∇u · ν + γ|u|p−2u = g on ∂Ω,
where g is a given function on ∂Ω. Here ν denotes the outer normal vector
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at ∂Ω. We call |∇u|p−2∇u · ν the p-normal derivative of u so that the 2-
normal derivative, ∇u ·ν, coincides with the classical normal derivative of u. A
realization ΔN

p and ΔR
p of the p-Laplace operator with zero (g = 0) Neumann

and Robin boundary conditions, respectively, can then be defined directly, if
Ω has a Lipschitz continuous boundary, or by using the method of proper,
convex, lower semi-continuous functional if Ω is not smooth enough (see e.g.
[2,26]).

The main concerns in the present article are the following: let p ∈ (1,∞),
0 < s < 1 and Ω ⊂ R

N a bounded open set with boundary ∂Ω of class C1,1.
• Find a suitable definition of an (s, p)-normal derivative of a function u

defined only on Ω, so that as s ↑ 1, it converges to |∇u|p−2∇u · ν (the
p-normal derivative of u mentioned above).

• Find an integration by parts formula for the fractional p-Laplace opera-
tor defined on Ω and acting on functions defined only on Ω and do not
necessarily vanish at the boundary ∂Ω, that is, a formula comparable to
(1.1) for the fractional p-Laplace operator.

• Define a realization in L2(Ω) of the fractional p-Laplace operator with
fractional Neumann and Robin type boundary conditions.

In the above items, we have insisted that the functions are defined only on Ω
and do not necessarily vanish on ∂Ω. In fact, this makes the situation difficult
to define the recently studied fractional Laplace operator.

For the convenience of the reader and in order to make the paper as
self-contained as possible, we start by introducing the fractional p-Laplace
operator. Let 0 < s < 1, p ∈ (1,∞) and set

Lp−1(Ω) :=
{

u : Ω → R measurable,
∫

Ω

|u(x)|p−1

(1 + |x|)N+ps
dx < ∞

}
.

For u ∈ Lp−1(RN ), x ∈ R
N and ε > 0, we write

(−Δ)s
p,εu(x) = CN,p,s

∫
{y∈RN ,|y−x|>ε}

|u(x) − u(y)|p−2 u(x) − u(y)
|x − y|N+ps

dy,

with the normalized constant CN,p,s given by

CN,p,s =
s22sΓ

(
ps+p+N−2

2

)

π
N
2 Γ(1 − s)

, (1.2)

where Γ is the usual Gamma function (see e.g. [3,5,7,14,17,18] for the linear
case p = 2).

The fractional p-Laplacian (−Δ)s
pu of the function u is defined by the

formula

(−Δ)s
pu(x) = P.V. CN,p,s

∫
RN

|u(x) − u(y)|p−2 u(x) − u(y)
|x − y|N+ps

dy

= lim
ε↓0

(−Δ)s
p,εu(x), x ∈ R

N , (1.3)

provided that the limit exists. We refer to Sect. 4 below for the class of functions
for which the limit exists. We notice that if 0 < s < p−1

p and u is smooth,
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for example, u ∈ L∞(RN ) ∩ C0,1(RN ), then the integral in (1.3) is in fact not
singular near x.

We mention that even in the case Ω = R
N , Lp−1(RN ) is different from the

space Lp−1
sp (RN ) introduced in [10,11,22]. In fact Lp−1(RN ) is the right space

on which for every ε > 0, (−Δ)s
p,εu is well defined on R

N and is continuous
where the function u is continuous.

The linear fractional Laplacians being the generator of s-stable processes
(Levy flights in some of the physical literature) are widely used to model sys-
tems of stochastic dynamics with applications in operation research, queuing
theory, mathematical finance, risk estimate and others. Nonlocal models differ
from the classical partial differential equation models in the fact that in the lat-
ter case interactions between two domains occur only due to contact, whereas
in the former case interactions can occur at a distance. For more applications
and details on these facts we refer to [3,6,9,27–29] and the references therein.

As we have mentioned above, of concern in this article is to define a
realization of the fractional p-Laplace operator with fractional Neumann and
Robin type boundary conditions on open subsets of R

N . Since the operator
(−Δ)s

p is nonlocal, it cannot be used on domain automatically. We proceed as
follows. Let Ω ⊂ R

N be an arbitrary open set. For u ∈ Lp−1(Ω), x ∈ Ω and
ε > 0, we let

(−Δ)s
Ω,p,εu(x) = CN,p,s

∫
{y∈Ω,|y−x|>ε}

|u(x) − u(y)|p−2 u(x) − u(y)
|x − y|N+ps

dy,

and we define the operator

(−Δ)s
Ω,pu(x) = lim

ε↓0
(−Δ)s

Ω,p,εu(x), x ∈ Ω, (1.4)

provided that the limit exists. In [17,18] the linear operator (−Δ)s
Ω,2 has been

called the regional fractional Laplacian. We shall use this terminology to call
(−Δ)s

Ω,p the regional fractional p-Laplace operator.
We have the following. Let u ∈ D(Ω). Since u = 0 on R

N\Ω, a simple
calculation gives

(−Δ)s
Ω,pu = CN,p,sP.V.

∫
RN

|u(x) − u(y)|p−2 u(x) − u(y)
|x − y|N+ps

dy

− CN,p,s

∫
RN \Ω

|u(x)|p−2u(x)
|x − y|N+ps

dy

= (−Δ)s
pu(x) − VΩ,p(x)|u(x)|p−2u(x), (1.5)

where the potential VΩ,p is given by

VΩ,p(x) := CN,p,s

∫
RN \Ω

1
|x − y|N+ps

dy. (1.6)

The fractional p-Laplace operator (−Δ)s
p (for all p ∈ (1,∞)) with the Dirich-

let boundary condition has been investigated in [16,21,29] and the references
therein. More precisely in [16] some spectral properties of a realization in L2(Ω)
of this operator with Dirichlet boundary condition has been studied, in [21]
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the authors have shown some global Hölder continuity results of the associated
quasi-linear elliptic problem with the Dirichlet boundary condition and finally
in [29] some well-posedness, fine estimates of solutions and existence results to
parabolic and non-linear elliptic problems associated to (−Δ)s

p with Dirichlet
boundary condition have been obtained. Similar elliptic problems associated
to general non-local operators defined on R

N where |x−y|−N−sp is replaced by
a general symmetric kernel K(x, y) have been recently studied in [10,11,22].
We notice that in [16,21], (−Δ)s

p has been introduced without a normalized
constant, but this is not restrictive in the framework considered there. Here we
have introduced an explicit constant CN,p,s that coincides with the well-known
constant CN,s in the linear case p = 2 contained in the above mentioned ref-
erences. The justification of the constant CN,p,s is given in Remark 4.2 below.
In fact the constant is needed to approach the classical p-Laplace operator as
s goes to 1 (see e.g. [4,14]).

At our knowledge there is almost no reference (except the Ph.D Disser-
tation of Tang [25] where parabolic problems associated with the operator
(−Δ)s

Ω,p have been mentioned without going into details) where the regional
fractional p-Laplacian (−Δ)s

Ω,p has been deeply studied. We think that one of
the reason is that there is no appropriate Green type formula associated with
this operator when it acts on functions that are defined only on Ω and do not
vanish on ∂Ω. An integration by parts formula is crucial and the main tool
in the study of parabolic, hyperbolic and elliptic partial differential equations.
We also mention that for a general open set Ω, we are not sure that an iden-
tity as the one in (1.5) can be established for functions defined only on Ω and
do not vanish on ∂Ω. Indeed, letting ũ be an extension of such a function u
(if it is possible) to all RN such that (−Δ)s

pũ exists, then a relation between
(−Δ)s

pũ and (−Δ)s
Ω,pu can be established but the relation may not be inde-

pendent of the choice of the extension except in the case where there is only
one possible extension. Parabolic problems associated with the linear operator
(−Δ)s

Ω,2 have been intensively studied in [5,8,18] and the references therein,
by using some probabilistic approach and in [27,28] by a direct method. The
method of proper, convex and lower semi-continuous functional will be used
to define a realization in L2(Ω) of (−Δ)s

Ω,p with suitable fractional Neumann
and Robin type boundary conditions. To characterize the Neumann or/and
the Robin type boundary conditions for (−Δ)s

Ω,p, one needs to introduce first
the object in the regional fractional p-Laplacian playing the role that the p-
normal derivative does in the case of the p-Laplace operator. Second, one
needs a Green type formula for the regional fractional p-Laplace operator.
The case p = 2 has been recently investigated in [12,13,17,18,27]. More pre-
cisely, for the case p = 2, Guan and Ma [18] (for the one-dimenional case)
and Guan [17] (for the N -dimensional case) have shown that if 1

2 < s < 1
and u(x) = f1(x)ρ(x)2s−1 + g1(x), v(x) = f2(x)ρ(x)2s−1 + g2(x) for some
f1, f2, g1, g2 ∈ C2(Ω) where ρ(x) = dist(x, ∂Ω), x ∈ Ω, then one has the fol-
lowing integration by parts formula:
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∫
Ω

v(−Δ)s
Ω,2u dx =

CN,2,s

2

∫
Ω

∫
Ω

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s

dxdy

− BN,s

∫
∂Ω

vN 2−2s
2 u dσ, (1.7)

where BN,s is an explicit constant and the boundary operator N 2−2s
2 u is de-

fined for every z ∈ ∂Ω by

N 2−2s
2 u(z) = lim

t↓0

du(z + t	n(z))
dt

t2−2s,

and 	n(z) denotes the inner normal vector to ∂Ω at the point z ∈ ∂Ω. We call
the function N 2−2s

2 u, the (s, 2)-normal derivative of u. In fact, by [27], (1.7)
holds for every v ∈ W s,2(Ω) and by [28] the constant BN,s = Bs depends only
in s (see also Remark 3.10 below).

In the present article we take inspiration from Guan and Ma’s approach
for the linear case p = 2 (see also [27] for a weak formulation) to obtain
a general integration by parts formula for the quasi-linear operator (−Δ)s

Ω,p

acting on functions that do not necessarily vanish on ∂Ω. With the help of
the obtained integration by parts formula, we will be able to characterize
completely the fractional Neumann and Robin type boundary conditions for
the operator (−Δ)s

Ω,p which are also consistent with the linear case p = 2.
It turns out that if p ∈ (1,∞), max{p−1

p , 1
p} < s < 1, β = ps−1

p−1 + 1 and
u(x) = f(x)ρ(x)β−1 + g(x) = u0(x) + g(x) for some f, g ∈ C2(Ω), then the
fractional Neumann boundary conditions for (−Δ)s

Ω,pu correspond to

Cp,sN 2−β
p u := Cp,s|β − 1|p−1

∣∣∣∣ u0

ρβ−1

∣∣∣∣
p−2

u0

ρβ−1
= g on ∂Ω, (1.8)

where Cp,s is an explicit constant (see formula (3.20) below). If g ∈ C(∂Ω),
then (1.8) means that for every z ∈ ∂Ω,

Cp,sN 2−β
p u(z) := Cp,s|β − 1|p−1 lim

Ω�x→z

(∣∣∣∣ u0(x)
ρ(x)β−1

∣∣∣∣
p−2

u0(x)
ρ(x)β−1

)
= g(z).

If g ∈ L
p

p−1 (∂Ω), then (1.8) means that the function
∣∣∣∣ u0

ρβ−1

∣∣∣∣
p−2

u0

ρβ−1
has a

trace on ∂Ω and for every v ∈ Lp(∂Ω) we have that

Cp,s|β − 1|p−1

∫
∂Ω

∣∣∣∣ u0

ρβ−1

∣∣∣∣
p−2

u0

ρβ−1
v dσ =

∫
∂Ω

gv dσ.

The function
∣∣∣∣ u0

ρβ−1

∣∣∣∣
p−2

u0

ρβ−1
is the object in the Green formula for the re-

gional fractional p-Laplacian playing the role that |∇u|p−2∇u · ν does in the
classical Green formula for the p-Laplace operator. If 0 < s ≤ 1

p , since W s,p
0 (Ω)

and W s,p(Ω) coincide (see e.g. [27, Example 4.11] and [5] for the case p = 2),
we have that the Dirichlet and the fractional Neumann boundary conditions
for the operator (−Δ)s

Ω,p coincide.
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The rest of the paper is organized as follows. In Sect. 2 we give some
notation, introduce the function spaces and recall some known results as they
are used to obtain our main results. In Sect. 3 we state the main results of the
paper. In particular, we introduce and give some properties of the (s, p)-normal
derivative of a function u. Section 4 contains some existence results and some
estimates for (−Δ)s

Ω,pu that will be used in the proofs of the main results.
In Sect. 5 we prove the main results stated in Sect. 3. In the final section 6,
we use the results obtained in Sect. 3 to define the realization in L2(Ω) of
the regional fractional p-Laplacian with fractional Neumann and Robin type
boundary conditions.

2. Functional setup and notation

Let Ω ⊂ R
N be an arbitrary open set with boundary ∂Ω. We denote by D(Ω)

the space of test functions on Ω. For k ∈ N∪{0} and 0 < β ≤ 1, Ck,β(Ω) is the
space of all functions in Ck(Ω) whose partial derivatives of order k are locally
Hölder continuous in Ω with exponent β. By Ck,β(Ω) we mean the space of all
functions in Ck(Ω) whose partial derivatives of order k are uniformly Hölder
continuous in Ω with exponent β. By definition,

Ck,β(Ω) = {u|Ω, u ∈ Ck,β(U) for some open set U ⊃ Ω}.

For p ∈ [1,∞) and s ∈ (0, 1), we denote by

W s,p(Ω) :=
{

u ∈ Lp(Ω) :
∫

Ω

∫
Ω

|u(x) − u(y)|p
|x − y|N+ps

dx dy < ∞
}

the fractional order Sobolev space endowed with the norm

‖u‖W s,p(Ω) :=
(∫

Ω

|u|p dx +
∫

Ω

∫
Ω

|u(x) − u(y)|p
|x − y|N+ps

dx dy

)1/p

.

We let

W s,p
0 (Ω) = D(Ω)

W s,p(Ω)
.

For more information on fractional order Sobolev spaces we refer to [1,
14,20,27] and their references.

Let Ω ⊂ R
N be an open set and δ > 0 a real number. We shall use the

notation:

ρ(x) = dist(x, ∂Ω) = inf{|y − x| : y ∈ ∂Ω}, x ∈ Ω,

dΩ = diameter of Ω = sup{|x − y| : x, y ∈ Ω},

Ω�
δ = {x ∈ Ω : 0 < ρ(x) < δ},

Ωδ = {x ∈ Ω : ρ(x) > δ},

	n(z) = the inner normal vector of ∂Ω at the point z ∈ ∂Ω,

ν(z) = −	n(z) the outer normal vector of ∂Ω at the point z ∈ ∂Ω,
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χA = the characteritic function of the set A ⊂ R
N ,

〈x, y〉 = x · y =
N∑

i=1

xiyi for x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ R
N .

An open set Ω ⊂ R
N is said to be of class C1,1, if there exists a constant

r0 > 0 such that for every z ∈ ∂Ω, we can find a C1,1-function Γz : R
N−1 → R

and an orthonormal coordinate system such that

Ω ∩ B(z, r0) = {y = (y1, . . . , yN ) : yN > Γz(y1, . . . , yN−1)} ∩ B(z, r0). (2.1)

It follows from (2.1) that for every z ∈ ∂Ω and y ∈ Ω ∩ B(z, r0
2 ),

ρ(y) = inf{|y − ξ| : ξ = (ξ1, . . . , ξN ) ∈ B(z, r0), ξN = Γz(z1, . . . , zN−1)}.
(2.2)

The following result is taken from [19, Proof of Lemma 14.16] (see also
[23, Lemmas 2.1 and 2.2]).

Lemma 2.1. Let Ω ⊂ R
N be a bounded open set with boundary ∂Ω of class

C1,1. Then for every δ > 0 small enough and x ∈ Ω�
δ , there exists a unique

point z = z(x) ∈ ∂Ω such that

|x − z| = ρ(x) and x − z = −ν(z)ρ(x) = 	n(z)ρ(x). (2.3)

Moreover, z ∈ C1(Ω
�

δ0
) for some δ0 ∈ (0, r0

2 ) and

∇ρ(x) =
x − z(x)
|x − z(x)| , ∀ x ∈ Ω�

δ0
.

In addition, we have that ρ ∈ C2(Ω
�

δ0
). Here, r0 > 0 is the constant specified

in (2.1).

For r, t > 0 we denote by B(r, t) the usual beta function defined by

B(r, t) =
∫ 1

0

τ r−1(1 − τ)t−1 dτ.

The following inequalities will be useful. Let a > 0, b > 0 and 1 < α < 2. Then

|bα−1 − aα−1| ≤ bα−2|b − a|. (2.4)

If a, b ∈ R and q ≥ 1 (see e.g. [21]), then

||a|q−1a − |b|q−1b| ≤ q(|a|q−1 + |b|q−1)|a − b|. (2.5)

3. Main results

Before, we state the main results of the paper, we need first to introduce the
(s, p)-normal derivative of a function u and give its properties.
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3.1. The (s, p)-normal derivative

Throughout the rest of this subsection, without any mention, Ω ⊂ R
N denotes

a bounded open set of class C1,1 with boundary ∂Ω.
We define the following boundary operator.

Definition 3.1. For 0 ≤ α < 2, p ∈ (1,∞), u ∈ C1(Ω) and z ∈ ∂Ω, we define
the operator N α

p on ∂Ω by

N α
p u(z) := − lim

t↓0

∣∣∣∣du(z + t	n(z))
dt

∣∣∣∣
p−2

du(z + t	n(z))
dt

tα(p−1)

= − lim
t↓0

∣∣∣∣du(z + t	n(z))
dt

tα
∣∣∣∣
p−2

du(z + t	n(z))
dt

tα, (3.1)

provided that the limit exists.

The operator N α
p u is linear in u if and only if p = 2 and N α

2 in one
dimension has been introduced by Guan and Ma [18, Definition 7.1]. The
extension to the N -dimensional case has been given by Guan in [17, Definition
2.1]. Let 0 < s := 1 − α

2 ≤ 1 so that α = 2 − 2s. We call the function N α
p u the

(s, p)-normal derivative of u.

Remark 3.2. If α = 0, that is, if s = 1, then it follows from (3.1) that for every
p ∈ (1,∞), u ∈ C1(Ω) and z ∈ ∂Ω,

N 0
p u(z) = −|∇u|p−2∇u · 	n(z) = |∇u|p−2 ∂u

∂ν
(z), (3.2)

where ∂u
∂ν (z) is the normal derivative of u at the point z. We have shown

that the (1, p)-normal derivative of u coincides with the p-normal derivative
mentioned in the introduction. Moreover, it follows from (3.1) that if u ∈
C1(Ω), then N α

p u(z) = 0 for every 0 < α < 2, z ∈ ∂Ω and p ∈ (1,∞).

Let β > 0 be a real number. It follows from Lemma 2.1 (see also [17])
that, there exist a constant δ > 0 (depending on Ω) and a function hβ ∈ C2(Ω)
(depending on Ω and β) such that

hβ(x) =

{
ρ(x)β−1 ∀ x ∈ Ω�

δ , β ∈ (0, 1) ∪ (1,∞),
ln(ρ(x)) ∀ x ∈ Ω�

δ , β = 1.
(3.3)

Next, for k = 1 or k = 2, we define the space

Ck
β(Ω) := {u : u(x) = f(x)hβ(x) + g(x), ∀ x ∈ Ω, for some f, g ∈ Ck(Ω)},

where hβ ∈ C2(Ω) has been given in (3.3). When β ∈ (1,∞), we assume that
the function u ∈ Ck

β(Ω) is defined on Ω by continuous extension. Since Ω is
smooth, we have that C1

β(Ω) = C1(Ω) when β ≥ 2.
We have the following explicit representation of N α

p for functions in
C1

β(Ω).

Lemma 3.3. Let 0 < β < 2, p ∈ (1,∞) and u ∈ C1
β(Ω). Then for every z ∈ ∂Ω,

N 2−β
p u(z) = −(β − 1)|β − 1|p−2|f(z)|p−2f(z), β ∈ (0, 1) ∪ (1, 2); (3.4)
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and

N 1
p u(z) = −|f(z)|p−2f(z). (3.5)

Proof. Let 0 < β < 2, u := fhβ + g ∈ C1
β(Ω) and δ > 0 small enough. Let

z ∈ ∂Ω, 0 < t < δ and x = z + t	n(z). Then x ∈ Ω�
δ and x → z if and only if

t ↓ 0.
First, let β ∈ (0, 1) ∪ (1, 2). By definition, u(x) = f(x)ρ(x)β−1 + g(x) for

some f, g ∈ C1(Ω). Then

u(x) = u(z + t	n(z)) = f(z + t	n(z))|z + t	n(z) − z|β−1 + g(z + t	n(z))

= f(z + t	n(z))tβ−1 + g(z + t	n(z)).

A simple calculation gives

du(z + t	n(z))
dt

=
df(z + t	n(z))

dt
tβ−1+(β − 1)f(z + t	n(z))tβ−2 +

dg(z + t	n(z))
dt

.

(3.6)

Note that ∣∣∣∣du(z + t	n(z))
dt

∣∣∣∣
p−2

du(z + t	n(z))
dt

t(2−β)(p−1)

=
∣∣∣∣du(z + t	n(z))

dt
t2−β

∣∣∣∣
p−2

du(z + t	n(z))
dt

t(2−β). (3.7)

It follows from (3.6) that

du(z + t	n(z))
dt

t2−β =
df(z + t	n(z))

dt
t+(β − 1)f(z + t	n(z))+

dg(z + t	n(z))
dt

t2−β .

Since f, g ∈ C1(Ω), we have that

− lim
t↓0

du(z + t	n(z))
dt

t2−β = − lim
t↓0

[
df(z + t	n(z))

dt
t + (β − 1)f(z + t	n(z))

+
dg(z + t	n(z))

dt
t2−β

]
(3.8)

= − lim
t↓0

(β − 1)f(z + t	n(z)) = −(β − 1)f(z). (3.9)

It follows from (3.7) and (3.8) that

N 2−β
p u(z) = (1 − β)|β − 1|p−2|f(z)|p−2f(z),

and we have shown (3.4).
Now, let β = 1 and u ∈ C1

1 (Ω). Then

u(x) = u(z + t	n(z)) = f(z + t	n(z)) ln(|z + t	n(z) − z|) + g(z + t	n(z))

= f(z + t	n(z)) ln(t) + g(z + t	n(z)).

Proceeding as above we get the identity (3.5) and the proof is finished. �

The following result gives a second characterization of N 2−β
p .
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Lemma 3.4. Let 0 < β < 2, p ∈ (1,∞) and u := fhβ + g ∈ C1
β(Ω). Let

u0 := fhβ so that u = u0 + g. Then for every z ∈ ∂Ω,

N 2−β
p u(z) = −(β − 1)|β − 1|p−2 lim

Ω�x→z

∣∣∣∣ u0(x)
ρ(x)β−1

∣∣∣∣
p−2

u0(x)
ρ(x)β−1

, β ∈ (0, 1) ∪ (1, 2), (3.10)

and if β = 1, then for every z ∈ ∂Ω,

N 1
p u(z) = − lim

Ω�x→z

∣∣∣∣ u0(x)
ln ρ(x)

∣∣∣∣
p−2

u0(x)
ln ρ(x)

. (3.11)

Proof. Let 0 < β < 2, p ∈ (1,∞) and u := fhβ + g = u0 + g ∈ C1
β(Ω). Since

g ∈ C1(Ω), it follows from Remark 3.2 that

lim
t↓0

dg(z + t	n(z))
dt

t2−β = 0.

Therefore,

lim
t↓0

du(z + t	n(z))
dt

t2−β = lim
t↓0

du0(z + t	n(z))
dt

t2−β + lim
t↓0

dg(z + t	n(z))
dt

t2−β

= lim
t↓0

du0(z + t	n(z))
dt

t2−β .

Let δ > 0 be small enough, z ∈ ∂Ω, 0 < t < δ and let x = z + t	n(z). Then
x ∈ Ω�

δ and t ↓ 0 if and only if x → z. Using Lemma 3.3, we get that if
β ∈ (0, 1) ∪ (1, 2), then

lim
t↓0

du0(z + t	n(z))
dt

t2−β =(β − 1) lim
t↓0

f(z+t	n(z)) = (β − 1) lim
t↓0

u0(z + t	n(z))
ρ(z + t	n(z))β−1

= (β − 1) lim
Ω�x→z

u0(x)
ρ(x)β−1

.

Similarly we get that

lim
t↓0

du0(z + t	n(z))
dt

t = lim
Ω�x→z

u0(x)
ln ρ(x)

.

We have shown (3.10) and (3.11). The proof of lemma is finished. �

Next, we give a third characterization of N 2−β
p .

Lemma 3.5. Let 1 < β ≤ 2, p ∈ (1,∞) and u := fhβ + g ∈ C1
β(Ω). Then for

every z ∈ ∂Ω,

N 2−β
p u(z) = −|β − 1|p−1 lim

Ω�x→z

(∣∣∣∣u(x) − u(z)
ρ(x)β−1

∣∣∣∣
p−2

u(x) − u(z)
ρ(x)β−1

)
. (3.12)
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Proof. Let p ∈ (1,∞). First, let β ∈ (1, 2) and u := fhβ + g ∈ C1
β(Ω). Let

δ > 0 be small enough, z ∈ ∂Ω, 0 < t < δ and x = z + t	n(z). By (3.3),
u(x) = f(x)ρ(x)β−1 + g(x). Using (3.4), we get that

N 2−β
p u(z) = − |β − 1|p−1|f(z)|p−2f(z)

= − |β − 1|p−1 lim
Ω�x→z

(∣∣∣∣u(x) − g(x)
ρ(x)β−1

∣∣∣∣
p−2

u(x) − g(x)
ρ(x)β−1

)
.

Since g ∈ C1(Ω), u ∈ C(Ω), u(z) = g(z) and g(x) − g(z) = ∇g(η)(x − z) for
some η in the line segment from x to z (by using the generalized mean value
theorem), we have that

u(x) − g(x)
ρ(x)β−1

=
u(x) − u(z)

ρ(x)β−1
− g(x) − u(z)

ρ(x)β−1
=

u(x) − u(z)
ρ(x)β−1

− g(x) − g(z)
ρ(x)β−1

=
u(x) − u(z)

ρ(x)β−1
− ∇g(η) · (x − z)

ρ(x)β−1
. (3.13)

Since g ∈ C1(Ω) and 2 − β > 0, we have that

lim
Ω�x→z

∣∣∣∣∇g(η) · (x − z)
ρ(x)β−1

∣∣∣∣ = lim
x→z

|∇g(η)||x − z|2−β = 0. (3.14)

It follows from (3.13) and (3.14) that

lim
Ω�x→z

u(x) − g(x)
ρ(x)β−1

= lim
Ω�x→z

u(x) − u(z)
ρ(x)β−1

,

and we have shown (3.12) for 1 < β < 2.
Now, let β = 2 and u ∈ C1(Ω). By (3.2),

N 0
p u = |∇u|p−2∇u · ν = |∇u|p−2 ∂u

∂ν
.

We have to prove that

− lim
x→z

u(x) − u(z)
ρ(x)

= ∇u · ν(z).

Let z ∈ ∂Ω and x ∈ Ω. Note that u(x) − u(z) = ∇u(ξ) · (x − z) for some point
ξ in the line segment from x to z. Hence,

− lim
Ω�x→z

u(x) − u(z)
ρ(x)

= − lim
x→z

∇u(ξ) · x − z

|x − z| = −∇u · 	n(z) = ∇u · ν(z).

We have shown (3.12) for β = 2 and this completes the proof of the lemma. �

Remark 3.6. It follows also from (3.12) that, if 1 < β < 2 and u ∈ C1(Ω),
then N 2−β

p u(z) = 0 for every p ∈ (1,∞) and z ∈ ∂Ω. Indeed,

lim
Ω�x→z

u(x) − u(z)
ρ(x)β−1

= lim
t↓0

u(z + t	n) − u(z)
t

t2−β = 0.

We conclude this subsection with the following useful result.
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Lemma 3.7. Let 1 < β < 2, p ∈ (1,∞), u := fhβ + g ∈ C1
β(Ω) and z ∈ ∂Ω.

Then for any unit vector 	θ such that 〈	n(z), 	θ〉 > 0, we have

lim
t↓0

∣∣∣∣∣
du(z + t	θ)

dt
t2−β

∣∣∣∣∣
p−2

du(z + t	θ)
dt

t2−β

= (β − 1)p−1|f(z)|p−2f(z)〈	n(z), 	θ〉(p−1)(β−1). (3.15)

Proof. By [17, Lemma 2.7],

lim
t↓0

du(z + t	θ)
dt

t2−β = (β − 1)f(z)〈	n(z), 	θ〉β−1. (3.16)

Now (3.15) follows from (3.16) by using (3.7). �

3.2. The integration by parts formula

Throughout this subsection without any mention, Ω ⊂ R
N denotes a bounded

open set of class C1,1 with boundary ∂Ω. We have the first integration by parts
formula which is valid for smooth functions.

Theorem 3.8. Let p ∈ (1,∞) and max{p−1
p , 1

p} < s < 1. Then for every
u ∈ C2(Ω) and v ∈ W s,p(Ω),∫

Ω

v(−Δ)s
Ω,pu dx

=
CN,p,s

2

∫
Ω

∫
Ω

|u(x) − u(y)|p−2 (u(x) − u(y))(v(x) − v(y))
|x − y|N+ps

dxdy. (3.17)

The fractional Green formula associated with the operator (−Δ)s
Ω,p is

given in the following theorem.

Theorem 3.9. Let p ∈ (1,∞), max{ 1
p , p−1

p } < s < 1 and β := ps−1
p−1 + 1. Then,

for every u ∈ C2
β(Ω) and v ∈ W s,p(Ω),∫

Ω

v(−Δ)s
Ω,pu dx

=
CN,p,s

2

∫
Ω

∫
Ω

|u(x) − u(y)|p−2 (u(x) − u(y))(v(x) − v(y))
|x − y|N+ps

dx dy

− BN,p,s

∫
∂Ω

vN 2−β
p u dσ, (3.18)

where N 2−β
p is the boundary operator defined in (3.1), the constant BN,p,s is

such that
C1,p,s

CN,p,s
BN,p,s := Cp,s

∫
{|x|=1,xN >0,x∈RN }

x
β(p−1)
N dσ, (3.19)

and the constant Cp,s is given by

Cp,s =
(p−1)C1,p,s

(ps−(p − 2))(ps − (p − 2)−1)

∫ ∞

0

(1 ∨ s)p−ps−1 − |1 − s|(p+2)+1−ps

sp−ps
ds.

(3.20)
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Remark 3.10. If N = 1, then∫
{|x|=1,xN >0,x∈RN }

x
β(p−1)
N dσ = 1.

If N ≥ 2, then using polar coordinates and a change of variable, we get that
∫

{|x|=1,xN >0,x∈RN }
x

β(p−1)
N dσ =

2π
N−1

2

Γ(N−1
2 )

∫ π
2

0

cosβ(p−1)(θ) sinN−2(θ) dθ

=
2π

N−1
2

Γ(N−1
2 )

1
2

∫ 1

0

t
β(p−1)+1

2 −1(1 − t)
N−1

2 −1 dt

=
π

N−1
2

Γ(N−1
2 )

B

(
β(p − 1) + 1

2
,
N − 1

2

)

=
π

N−1
2

Γ(N−1
2 )

Γ
(

β(p−1)+1
2

)
Γ

(
N−1

2

)

Γ
(

β(p−1)+N
2

)

=
π

N−1
2

Γ(N−1
2 )

Γ
(

ps+p−1
2

)
Γ

(
N−1

2

)
Γ

(
ps+p+N−2

2

) . (3.21)

Replacing (3.21) into (3.19) and using the expressions of C1,p,s and CN,p,s

given in (1.2), we get that BN,p,s = Cp,s given in (3.20) and hence, it does not
depend on N . We think that a careful calculation of Cp,s will give a constant
that does not depend on p and depends only on s. Since this is not the main
concern of the present paper, we will not go into details. We also mention that
we have chosen our constant CN,p,s in (1.2) in a way such that

CN,p,s

C1,p,s

∫
{|x|=1,xN >0,x∈RN }

x
β(p−1)
N dσ = 1,

and CN,2,s coincides with the known constant in the linear case p = 2 included
in any reference on this topic.

Corollary 3.11. Let p, s and β be as in the statement of Theorem 3.9. Then,
for every u := fhβ + g = u0 + g ∈ C2

β(Ω) and v ∈ W s,p(Ω),
∫

Ω

v(−Δ)s
Ω,pu dx =

CN,p,s

2

∫
Ω

∫
Ω

|u(x)−u(y)|p−2 (u(x)−u(y))(v(x)−v(y))

|x−y|N+ps
dx dy

+ Cp,s|β − 1|p−1

∫
∂Ω

v

∣∣∣∣ u0

ρβ−1

∣∣∣∣
p−2 (

u0

ρβ−1

)
dσ, (3.22)

where for every z ∈ ∂Ω,
∣∣∣∣ u0

ρβ−1

∣∣∣∣
p−2 (

u0

ρβ−1

)
(z) := lim

Ω�x→z

(∣∣∣∣ u0(x)
ρ(x)β−1

∣∣∣∣
p−2

u0(x)
ρ(x)β−1

)
.

Corollary 3.12. Let p, s and β be as in the statement of Theorem 3.9. Then,
for every u ∈ C2

β(Ω) and v ∈ W s,p(Ω),
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∫
Ω

v(−Δ)s
Ω,pu dx=

CN,p,s

2

∫
Ω

∫
Ω

|u(x)−u(y)|p−2 (u(x)−u(y))(v(x)−v(y))

|x−y|N+ps
dx dy

+ Cp,s|β − 1|p−1

∫
∂Ω

v(z) lim
Ω�x→z

(∣∣∣∣u(x) − u(z)

ρ(x)β−1

∣∣∣∣
p−2

u(x) − u(z)

ρ(x)β−1

)
dσz. (3.23)

Remark 3.13. We make some comments about the Green formula given in
Theorem 3.9.

(a) The identity (3.18) for the case p = 2 has been proved in [17, Theorem 3.3]
under the assumption that v also belongs to C2

β(Ω). The case v ∈ W s,2(Ω)
is obtained by a simple density argument (see e.g. [27]). The identities
(3.22) and (3.23) in the case p = 2 are contained in [27]. We notice that
the left-hand side integral in (3.18) makes sense since v ∈ W s,p(Ω), and
(−Δ)s

Ω,pu ∈ Lq(Ω) for every q ∈ [1,∞) (by Proposition 4.1 below), and
the right hand-side integrals also make sense since u, v ∈ W s,p(Ω) (by
Proposition 5.2 below) and N 2−β

p u(z) = |β − 1|p−1|f(z)|p−2f(z), where
f ∈ C2(Ω) is the function from the definition of C2

β(Ω).
(b) We have assumed that max{p−1

p , 1
p} < s < 1. This is not a restriction

since by [27, Corollary 4.9], if 0 < s ≤ 1
p then W s,p(Ω) = W s,p

0 (Ω), and
hence, there will be no boundary integral in the right hand side of (3.18).
Moreover, in that case, it is easy to show that for every u ∈ W s,p

0 (Ω) such
that (−Δ)s

Ω,pu ∈ L
p

p−1 (Ω) and for every v ∈ W s,p
0 (Ω), we have

∫
Ω

v(−Δ)s
Ω,pu dx

=
CN,p,s

2

∫
Ω

∫
Ω

|u(x) − u(y)|p−2 (u(x) − u(y))(v(x) − v(y))
|x − y|N+ps

dx dy.

(c) Since N 2−β
p u = 0 for every u ∈ C1(Ω) and p ∈ (1,∞), we have that in

(3.18) there will be no boundary term when the function u is smooth.
This is surprising if one compares with the classical Green formula for
the p-Laplace operator given in (1.1) where the boundary terms exist and
are well defined for smooth functions. But there is an explanation. Since
the operator (−Δ)s

Ω,p is non-local, then the values of (−Δ)s
Ω,pu(x), no

matter how far dist(x, ∂Ω) is, is always effected by the values of u and
its first order derivatives near the boundary. Consequently if u and its
first order derivatives are uniformly bounded on Ω (which is the case for
functions in C1(Ω)), then the integrals

∫
Ω

v(−Δ)s
Ω,pu dx and

∫
Ω

∫
Ω

|u(x)−
u(y)|p−2 (u(x)−u(y))(v(x)−v(y))

|x−y|Np2s dxdy have accumulated enough the effect of
the values near the boundary and hence, there is no extra boundary
term appearing in (3.18). However, if the first order derivatives of u are
not uniformly bounded, then either (−Δ)s

Ω,pu does not exist, or in the
integration by parts formula we must add a term reflecting the singularity
of the first order derivatives near the boundary.
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(d) Let 1 < p < ∞, 0 < s < 1, Φ : R → R continuous, satisfying Φ(0) = 0
and the monotonicity property

C1|t|p ≤ Φ(t)t ≤ C2|t|p, ∀ t ∈ R and some constants 0 < C1 ≤ C2.

Let K : Ω × Ω → R be measurable, symmetric and there are two
constants 0 < λ ≤ Λ such that

λ ≤ K(x, y)|x − y|N+sp ≤ Λ, ∀ x, y ∈ Ω, x �= y.

Let the operator LΦ,Ω be formally given by

LΦ,Ωu(x) = P.V.
∫

Ω

K(x, y)Φ(u(x) − u(y)) dy, x ∈ Ω.

We think that our method can be used to find the corresponding result
in Theorem 3.9 for the operator LΦ,Ω. Such a result cannot be deduced
directly from our theorem and needs a careful study. This will be done
in a forthcoming investigation. Finally we mention that elliptic problems
associated with LΦ,RN and satisfying the Dirichlet boundary condition
on R

N\Ω have been recently studied in [10,11,22].

4. Existence and some estimates of (−Δ)sΩ,pu

Let Ω ⊂ R
N be an arbitrary open set, p ∈ (1,∞) and 0 < s < 1. Recall that

for u ∈ Lp−1(Ω) and x ∈ Ω,

(−Δ)s
Ω,pu(x) = lim

ε↓0
(−Δ)s

Ω,p,εu(x)

= CN,p,s lim
ε↓0

∫
{y∈Ω, |x−y|>ε}

|u(x) − u(y)|p−2 u(x) − u(y)
|x − y|N+ps

dy,

provided that the limit exists. The main concern here is to prove the following
theorem which is the main result of this section.

Theorem 4.1. Let Ω ⊂ R
N be a bounded open set of class C1,1, p ∈ (1,∞),

max{p−1
p , 1

p} < s < 1, β := ps−1
p−1 +1 and u ∈ C2

β(Ω). Then (−Δ)s
p,Ωu ∈ Lq(Ω)

for every q ∈ [1,∞).

To prove the theorem, we need some preparation.

Remark 4.2. Let Ω ⊂ R
N be an open set and K ⊂ Ω a compact set. It is

well-known that there exists a constant RK > 0 such that

ΩK := {x ∈ R
N : dist(x,K) ≤ RK} ⊂ Ω.

In that case for x ∈ K, B(x,RK) is the so-called Lebesgue ball.

Next, we give some existence results and some estimates.

Lemma 4.3. Let Ω ⊂ R
N be an open set, p ∈ (1,∞), α ∈ [0, 1], u ∈ C1,α(Ω)

and K ⊂ Ω a compact set. Then the following assertions hold.



1 Page 16 of 46 M. Warma NoDEA

(a) If p ≥ 2, then there exist two constants C = C(K,u) > 0 and RK > 0
such that for every x ∈ K and z ∈ B(x,RK), we have∣∣∣∣|u(x)−u(x+z)|p−2(u(x)−u(x+z))+(|u(x)−u(x−z)|p−2(u(x)−u(x−z))

∣∣∣∣
≤ C|z|α+p−1. (4.1)

(b) If 1 < p < 2, then there exist two constants C = C(K,u) > 0 and RK > 0
such that for every x ∈ K and z ∈ B(x,RK), we have

||u(x) − u(x + z)|p−2(u(x) − u(x + z)) + (|u(x) − u(x − z)|p−2(u(x)

− u(x − z))| ≤ C|z|(α+1)(p−1). (4.2)

Proof. Let ΩK and RK > 0 be given by Remark 4.2, α ∈ [0, 1] and u ∈
C1,α(Ω).

(a) Let p ≥ 2. Since u ∈ C1,α(ΩK), using the mean value theorem, we have
that for x ∈ K, z ∈ B(x,RK), there exist ξ ∈ ΩK in the line segment
from x to x+ z and η ∈ ΩK in the line segment from x to x− z such that

u(x) − u(x + z) = ∇u(ξ) · z and u(x) − u(x − z) = −∇u(η) · z.

Using these identities and (2.5) we get that

||u(x)−u(x+z)|p−2(u(x)−u(x+z))+(|u(x)−u(x−z)|p−2(u(x) − u(x − z))|
= ||∇u(ξ) · z|p−2∇u(ξ) · z − |∇u(η) · z|p−2∇u(η) · z|
≤ (p − 1) sup

B(x,RK)

|∇u|p−2|z|p−2|(∇u(ξ) − ∇u(η)) · z|

≤ C‖∇u‖p−1
C0,α(ΩK)|z|α+p−1,

and we have shown (4.1).
(b) Let 1 < p < 2. Since the function t �→ |t|p−2t is globally (p − 1)-Hölder

continuous, then with the same notation as in part (a), we get that

||u(x)−u(x+z)|p−2(u(x)−u(x+z))+(|u(x)−u(x − z)|p−2(u(x)−u(x − z))|
≤ C|(∇u(ξ) − ∇u(η)) · z|
≤ C‖∇u‖p−1

C0,α(ΩK)|z|α(p−1)|z|p−1.

We have shown (4.2) and the proof of lemma is finished.

�

Proposition 4.4. Let Ω ⊂ R
N be an open set, p ∈ (1,∞), s ∈ (0, 1) and

u ∈ Lp−1(Ω). Then the following assertions hold.

(a) Let 0 < s < p−1
p . If u ∈ C0,α(Ω) for some α satisfying α(p − 1) > ps,

then (−Δ)s
Ω,pu(x) exists for every x ∈ Ω. In addition, if u ∈ C0,α(Ω),

then (−Δ)s
Ω,pu is continuous on Ω and (−Δ)s

Ω,p,εu converges to (−Δ)s
Ω,pu

locally uniformly as ε ↓ 0.
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(b) Let p ≥ 2 and p−1
p ≤ s < 1. If u ∈ C1,α(Ω) for some α satisfying α >

ps− (p− 1), then (−Δ)s
Ω,pu(x) exists for every x ∈ Ω. In addition, if u ∈

C1,α(Ω), then (−Δ)s
Ω,pu is continuous on Ω and (−Δ)s

Ω,p,εu converges to
(−Δ)s

Ω,pu locally uniformly as ε ↓ 0.
(c) Let 1 < p < 2 and 1

p ≤ s < 1. If u ∈ C1,α(Ω) for some α satisfying α >
ps−(p−1)

p−1 , then (−Δ)s
Ω,pu(x) exists for every x ∈ Ω. In addition, if u ∈

C1,α(Ω), then (−Δ)s
Ω,pu is continuous on Ω and (−Δ)s

Ω,p,εu converges to
(−Δ)s

Ω,pu locally uniformly as ε ↓ 0.

Proof. By definition, if u ∈ Lp−1(Ω) and ε > 0, then (−Δ)s
Ω,p,εu is well defined

on Ω and (−Δ)s
Ω,p,εu is continuous where u is continuous.

(a) Let 0 < s < p−1
p and assume that u ∈ C0,α(Ω) for some α satisfying

α(p − 1) > ps. Then for x ∈ Ω, we can take t > 0 such that

Mα := sup
y∈Ω,|x−y|<t

|u(x) − u(y)|
|x − y|α < ∞. (4.3)

Let 0 < ε < δ < t and x ∈ Ω. Using polar coordinates, we get that∣∣(−Δ)s
Ω,p,δu(x) − (−Δ)s

Ω,p,εu(x)
∣∣

= CN,p,s

∣∣∣∣∣
∫

{y∈Ω: ε<|x−y|≤δ}
|u(x) − u(y)|p−2 u(x) − u(y)

|x − y|N+ps
dy

∣∣∣∣∣
≤ CN,p,s

∫
{y∈Ω: ε<|x−y|≤δ}

|u(x) − u(y)|p−1

|x − y|N+ps
dy

≤ CN,p,sM
p−1
α

∫
{ε<|x−y|≤δ}

1
|x − y|N+ps−α(p−1)

dy

= CN,p,s(2π)NMp−1
α

∫ δ

ε

rα(p−1)−ps−1 dr

=
CN,p,sM

p−1
α (2π)N

α(p − 1) − ps
(δα(p−1)−ps − εα(p−1)−ps). (4.4)

We have shown that (−Δ)s
Ω,pu(x) exists. Now, if u ∈ C0,α(Ω), then for

every compact set K ⊂ Ω, there exist t > 0 and Mα > 0 such that (4.3)
holds for all x ∈ K. In this case, it follows from (4.4) that (−Δ)s

Ω,p,εu

converges to (−Δ)s
Ω,pu uniformly on K as ε ↓ 0. The proof of part (a) is

finished.
(b) Let p ≥ 2, p−1

p ≤ s < 1 and u ∈ C1,α(Ω) for some α satisfying α >

ps−(p−1). Since the first derivatives of u are locally α-Hölder continuous,
then for x ∈ Ωt we can find 0 < τ < t such that

Gα := sup
y∈Ω,|x−y|<τ

|∇u(x) − ∇u(y)|
|x − y|α < ∞. (4.5)

If u ∈ C1,α(Ω), then for every compact set K ⊂ Ωt, we can find 0 < τ < t
and Gα > 0 such that (4.5) holds for all x ∈ K. Next let 0 < ε < δ < τ



1 Page 18 of 46 M. Warma NoDEA

and let K ⊂ Ω be an arbitrary compact set. Let ΩK and RK > 0 be
given by Remark 4.2. For x ∈ K and z ∈ B(x,RK) we set

F (x, z, u(x), u(z))

:=
|u(x) − u(x + z)|p−2(u(x) − u(x + z)) + |u(x) − u(x − z)|p−2(u(x) − u(x − z))

|x − y|N+sp
.

(4.6)

Using a change of variable, (4.1) and polar coordinates, we get that for
x ∈ K,

∣∣(−Δ)s
Ω,p,δu(x) − (−Δ)s

Ω,p,εu(x)
∣∣

= CN,p,s

∣∣∣∣∣
∫

{y∈Ω: ε<|x−y|≤δ}
|u(x) − u(y)|p−2 u(x) − u(y)

|x − y|N+ps
dy

∣∣∣∣∣
≤ CN,p,s

2

∫
{z∈B(x,RK), ε<|z|≤δ}

∣∣∣∣F (x, z, u(x), u(z))
|z|N+ps

∣∣∣∣ dz

≤ CN,p,s

2
Gp−1

α

∫
{z∈B(x,RK), ε<|z|≤δ}

1
|z|N−1+ps−α−(p−2)

dz

≤ CN,p,sG
p−1
α

∫ δ

ε

rα−ps+(p−2) dr

=
CN,p,sG

p−1
α

α + (p − 1) − ps
(δα+(p−1)−ps − εα+(p−1)−ps).

Since the compact K was arbitrary we get the same conclusion as in the
assertion (a).

(c) The proof of this part follows the lines of the proof of part (b) by using
(4.2) in Lemma 4.3. The proof of proposition is finished. �

Next, we give some estimates for (−Δ)s
Ω,pu.

Lemma 4.5. Let Ω ⊂ R
N be a bounded open set, p ∈ (1,∞) and 0 < s < 1.

Then the following assertions hold.

(a) If p ≥ 2, p−1
p < s < 1 and u ∈ C1,α(Ω) for some α > sp + 1 − p, then for

every x ∈ Ω,

|(−Δ)s
Ω,pu(x)| ≤CN,p,s(2π)N Mp−1

1

sp − p + 1

(
ρ(x)p−sp−1 − dp−sp−1

Ω

)

+ CN,p,s(2π)N Gp−1
α

α + p − sp − 1
ρ(x)α+p−sp−1. (4.7)

Moreover, (−Δ)s
Ω,pu is bounded on Ω�

δ for every δ > 0.
(b) If 1 < p < 2, 1

p < s < 1 and u ∈ C1,α(Ω) for some α > sp+1−p
p−1 , then for

every x ∈ Ω,
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|(−Δ)s
Ω,pu(x)| ≤CN,p,s(2π)N Mp−1

1

sp − p + 1

(
ρ(x)p−sp−1 − dp−sp−1

Ω

)

+ CN,p,s(2π)N Gp−1
α

α + p − sp − 1
ρ(x)(α+1)(p−1)−sp. (4.8)

Moreover, (−Δ)s
Ω,p is bounded in Ω�

δ for every δ > 0.
In (4.7) and (4.8), we have set

M1 := sup
x,y∈Ω

|u(x) − u(y)|
|x − y| and Gα := sup

x,y∈Ω

|∇u(x) − ∇u(y)|
|x − y|α .

Proof. Let α ∈ [0, 1]. Since Ω is compact, it follows from the definition of
C1,α(Ω) and Remark 4.2 that there exists an open set U such that Ω ⊂ U ,
and for every x ∈ Ω there exists a radius RΩ > 0 such that UΩ := {x ∈ R

N :
dist(x,Ω) ≤ RΩ} ⊂ U . Next, let p ∈ (1,∞) and 0 < s < 1.
(a) Let p ≥ 2 and p−1

p < s < 1. Let u ∈ C1,α(Ω) for some α > sp + 1 − p.
Let x ∈ Ω, RΩ, U and UΩ be as above. For x ∈ Ω, z ∈ B(x,RΩ) and u ∈
C1,α(Ω), let F (x, z, u(x), u(z)) be as in (4.6). Using a change of variable,
(4.1) in Lemma 4.3 and the fact that |u(x)−u(y)|p−1 ≤ Mp−1

1 |x− y|p−1,
we get that

|(−Δ)s
Ω,pu(x)|

≤ lim
ε↓0

CN,p,s

∫
Ω∩B(x,ε)c

∣∣∣∣ |u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+sp

∣∣∣∣ dy

≤ 1

2
lim
ε↓0

CN,p,s

∫
B(x,RΩ)∩B(x,ρ(x))c

∣∣∣∣F (x, z, u(x), u(z))

|z|N+sp

∣∣∣∣ dz

+
1

2
lim
ε↓0

CN,p,s

∫
B(x,RΩ)∩B(x,ρ(x))∩B(x,ε)c

∣∣∣∣F (x, z, u(x), u(z))

|z|N+sp

∣∣∣∣ dz

≤ 1

2
Mp−1

1 lim
ε↓0

CN,p,s

∫
B(x,RΩ)∩B(x,ρ(x))c

|z|p−1

|z|N+sp
dz

+
1

2
Gp−1

α lim
ε↓0

CN,p,s

∫
B(x,RΩ)∩B(x,ρ(x))∩B(x,ε)c

|z|α+p−1

|z|N+sp
dz

≤ lim
ε↓0

CN,p,s

[∫ RΩ

ρ(x)

Mp−1
1

rsp−p+2
dr +

∫ ρ(x)

ε

Gp−1
α

rsp−p+2−α
dr

]

= CN,p,s(2π)N

[
Mp−1

1

sp − p + 1

(
ρ(x)p−sp−1 − Rp−sp−1

Ω

)

+
Gp−1

α

α + p − sp − 1
ρ(x)α+p−sp−1

]
.

We have shown (4.7). It follows from (4.7) that (−Δ)s
Ω,pu is bounded on

Ω�
δ for every δ > 0.

(b) Let 1 < p < 2, 1
p < s < 1 and u ∈ C1,α(Ω) for some α > sp+1−p

p−1 .
Proceeding exactly as in part (a) by using here (4.2) in Lemma 4.3, we
get that
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|(−Δ)s
Ω,pu(x)|

= lim
ε↓0

CN,p,s

∣∣∣∣∣
∫

Ω∩B(x,ε)c

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+sp

dy

∣∣∣∣∣
≤ 1

2
lim
ε↓0

CN,p,s

∫
B(x,RΩ)∩B(x,ρ(x))c

∣∣∣∣F (x, z, u(x), u(z))
|z|N+sp

∣∣∣∣ dz

+
1
2

lim
ε↓0

CN,p,s

∫
B(x,RΩ)∩B(x,ρ(x))∩B(x,ε)c

∣∣∣∣F (x, z, u(x), u(z))
|z|N+sp

∣∣∣∣ dz

≤ 1
2
Mp−1

1 lim
ε↓0

CN,p,s

∫
B(x,RΩ)∩B(x,ρ(x))c

|z|p−1

|z|N+sp
dz

+
1
2
Gp−1

α lim
ε↓0

CN,p,s

∫
B(x,RΩ)∩B(x,ρ(x))∩B(x,ε)c

|z|(α+1)(p−1)

|z|N+sp
dz

≤ lim
ε↓0

CN,p,s

[∫ R

ρ(x)

Mp−1
1

rsp−p+2
dr +

∫ ρ(x)

ε

Gp−1
α

rsp+1−(α+1)(p−1)
dr

]

= CN,p,s(2π)N

[
Mp−1

1

sp − p + 1

(
ρ(x)p−sp−1 − Rp−sp−1

Ω

)

+
Gp−1

α

(α + 1)(p − 1) − sp
ρ(x)(α+1)(p−1)−sp

]
,

and we have shown (4.8). It follows also from (4.8) that (−Δ)s
Ω,pu is

bounded on Ω�
δ for every δ > 0. The proof of lemma is finished.

�

Lemma 4.6. Let RN
+ := {(x1, . . . , xN )∈R

N , xN > 0}, p∈(1,∞), max{p−1
p , 1

p}
< s < 1, β := ps−1

p−1 + 1 and wβ(x) := ρ(x)β−1 where we recall that ρ(x) =
dist(x, ∂RN

+ ), x ∈ R
N
+ . Then

(−Δ)s
R

N
+ ,pwβ(x) = 0, ∀ x ∈ R

N
+ . (4.9)

Proof. For x = (x1, x2, . . . , xN ) ∈ R
N we write x = (x̃, xN ), where x̃ =

(x1, . . . , xN−1) ∈ R
N−1. Let x ∈ R

N
+ and wβ(x) := ρ(x)β−1. Then

wβ(x) =

{
xβ−1

N xN > 0
0 xN ≤ 0,

and

(−Δ)s
R

N
+ ,pwβ(x) = CN,p,s lim

ε↓0+

∫
R

N
+ \B(x,ε)

|xβ−1
N − yβ−1

N |p−2(xβ−1
N − yβ−1

N )
|x − y|N+sp

dy.

Since wβ is of class C2 in a neighborhood of x and wβ ∈ Lp−1(RN ), it follows
from Proposition 4.4 that the limit exists. Let eN = (0, . . . , 0, 1) ∈ R

N . Using
the change of variable xNz = y − (x̃, 0) we get that
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∫
R

N
+ \B(x,ε)

|xβ−1
N − yβ−1

N |p−2(xβ−1
N − yβ−1

N )
|x − y|N+sp

dy

= x
(β−1)(p−1)−ps
N

∫
R

N
+ \B(x,ε)

|1 − zβ−1
N |p−2(1 − zβ−1

N )
|z − eN |N+sp

dz.

Hence,

(−Δ)s
R

N
+ ,pu(x) = CN,p,sx

(β−1)(p−1)−ps
N W with

W = P.V.

∫
R

N
+

|1 − zβ−1
N |p−2(1 − zβ−1

N )
|z − eN |N+sp

dz.

Using a changing of variable, we get that

W := P.V.

∫
R

N
+

|1 − zβ−1
N |p−2(1 − zβ−1

N )
|z − eN |N+sp

dz

= P.V.

∫
RN−1

∫ ∞

0

|1 − tβ−1|p−2(1 − tβ−1)

||ξ|2 + (t − 1)2|N+sp
2

dtdξ

= P.V.

∫
RN−1

(|ξ|2 + 1)− N+sp
2

∫ ∞

0

|1 − tβ−1|p−2(1 − tβ−1)
|t − 1|sp+1

dtdξ.

Thus

W =
∫
RN−1

(|ξ|2 + 1)− N+sp
2 dξ P.V.

∫ ∞

0

|1 − tβ−1|p−2(1 − tβ−1)
|t − 1|sp+1

dt.

Using polar coordinates and the change of variable τ = r2/(r2 +1) we get that∫
RN−1

(|ξ|2 + 1)− N+sp
2 dξ = ωN−1

∫ ∞

0

rN−2(r2 + 1)− N+sp
2 dr

=
ωN−1

2

∫ 1

0

τ
N−1

2 −1(1 − τ)
sp+1

2 −1 dτ

=
ωN−1

2
B

(
N − 1

2
,
ps + 1

2

)
,

where we recall that B denotes the usual Beta function and ωN−1 is the (N−2)-
dimensional Lebesgue measure of the unit sphere in R

N−1.
Let ε ∈ (0, 1). Calculating and using a changing a variable we get that∫

(0,∞)\(1−ε,1+ε)

|1 − tβ−1|p−2(1 − tβ−1)
|t − 1|sp+1

dt

=
∫ 1−ε

0

|1 − tβ−1|p−2(1 − tβ−1)
|t − 1|sp+1

dt +
∫ ∞

1+ε

|1 − tβ−1|p−2(1 − tβ−1)
|t − 1|sp+1

dt

=
∫ 1−ε

0

|1 − tβ−1|p−2(1 − tβ−1)
|t − 1|sp+1

dt +
∫ 1/(1+ε)

0

|1 − t1−β |p−2(1 − t1−β)t−2

|1/t − 1|sp+1
dt

=
∫ 1−ε

0

|1 − tβ−1|p−2(1 − tβ−1)
|t − 1|sp+1

[
1 − tsp−(β−1)(p−1)−1

]
dt + Rε
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with

Rε :=
∫ 1/(1+ε)

1−ε

|tβ−1 − 1|p−2(1 − tβ−1)(1 − t)−sp−1tsp−(β−1)(p−1)−1 dt.

Since β = ps−1
p−1 +1, we have that sp− (β − 1)(p− 1)− 1 = sp− sp+1− 1 = 0.

Therefore,

Rε =
∫ 1/(1+ε)

1−ε

|tβ−1 − 1|p−2(1 − tβ−1)(1 − t)−sp−1 dt.

Since 1 − ε ≤ 1
1 + ε

< 1 − ε + ε2 < 1, it follows that

|Rε| ≤
∫ 1/(1+ε)

1−ε

|1 − tβ−1|p−1(1 − t)−sp−1 dt

≤ ε2 |1 − (1 − ε)β−1|p−1

(1 − (1 − ε + ε2))sp+1
≤ ε2 |1 − (1 − ε)β−1|p−1

εsp+1
(1 + ε)sp+1

≤ ε2− sp
p−1

|1 − (1 − ε)β−1|p−1

εsp+1− sp
p1

≤ ε2− sp
p−1

∣∣∣∣1 − (1 − ε)β−1

ε

∣∣∣∣
p−1

εp+ sp
p−1 −sp−2

≤ εp−sp

∣∣∣∣1 − (1 − ε)β−1

ε

∣∣∣∣
p−1

. (4.10)

Since p − sp > 0 and

lim
ε→0

∣∣∣∣1 − (1 − ε)β−1

ε

∣∣∣∣ = β − 1,

then taking the limit of both sides of (4.10) as ε → 0, we get that

lim
ε→0

|Rε| ≤ (β − 1)p−1 lim
ε→0

εp−sp = 0.

This implies that lim
ε→0

|Rε| = 0 and hence,

P.V.

∫ ∞

0

|1 − tβ−1|p−2(1 − tβ−1)
|t − 1|sp+1

dt

=
∫ 1

0

|1 − tβ−1|p−2(1 − tβ−1)
|t − 1|sp+1

[
1 − tsp−(β−1)(p−1)−1

]
dt.

Since sp − (β − 1)(p − 1) − 1 = 0, the preceding identity implies that

P.V.

∫ ∞

0

|1 − tβ−1|p−2(1 − tβ−1)
|t − 1|sp+1

dt = 0.

We have shown that (−Δ)s
R

N
+ ,p

wβ(x) = 0 for every x ∈ R
N
+ , that is, (4.9) holds.

The proof of lemma is finished. �

We mention that Lemma 4.6 in the case p = 2 has been proved in [5,
Lemma 5.1].
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Lemma 4.7. Let Ω ⊂ R
N be a bounded open set of class C1,1. Let p ∈ (1,∞),

max{p−1
p , 1

p} < s < 1, β := ps−1
p−1 + 1 and uβ(x) = ρ(x)β−1. Let δ0 > 0 be

the constant given in Lemma 2.1. Then there exist two constants C1, C2 ≥ 0
(depending only on s, p,N and Ω) such that

|(−Δ)s
Ω,puβ(x)| ≤ C1| ln(ρ(x))| + C2, ∀ x ∈ Ω�

δ0
. (4.11)

Proof. Let p ∈ (1,∞), max{p−1
p , 1

p} < s < 1, β := ps−1
p−1 + 1 and uβ(x) =

ρ(x)β−1. Let δ0 > 0 be the constant given in Lemma 2.1. Since (−Δ)s
Ω,puβ is

continuous on Ω�
δ0

, it suffices to consider the case when x = (x1, . . . , xN ) ∈
Ω�

δ0
2 ∧δ2

0
. By Lemma 2.1 there is a unique point z0 ∈ ∂Ω such that |x − z0| =

ρ(x). By rotating the coordinate system, we can assume that z0 = 0 and
x = (0, . . . , 0, ρ(x)). Set

Uz0 = {y = (y1, . . . , yN ) : y ∈ Ω�
δ0

, |(y1, . . . , yN−1)| < δ0}. (4.12)

Let Γz0 be the function defined on ∂Ω near the point z0 given in (2.1). Since
∂Ω is of class C1,1, it follows that there exists a constant k1 > 0 such that

|Γz0(y1, . . . , yN−1)| < k1|(y1, . . . , yN−1)|2 and |yn| < k1δ0, ∀ y ∈ Uz0 .
(4.13)

By Lemma 2.1, ∂Ωδ is tangent to the plane {x = (x1, . . . , xN ), xN = δ} at
the point (0, . . . , 0, δ) for 0 < δ < δ0. So there exists a constant k2 > 0 such
that

|yN − ρ(y)| < k2|(y1, . . . , yN−1)|2, ∀ y ∈ Uz0 . (4.14)

Let ε > 0. Since ρ(x) = xN , we have the following estimates:∣∣∣∣∣
∫

{y∈Uz0 ,|y−x|>ε}
|ρ(x)β−1 − ρ(y)β−1|p−2 ρ(x)β−1 − ρ(y)β−1

|x − y|N+ps
dy

∣∣∣∣∣
≤

∫
{y∈Uz0 ,|y−x|>ε}

|ρ(x)β−1 − ρ(y)β−1|p−1

|x − y|N+ps
dy

=
∫

{y∈Uz0 ,|y−x|>ε}

|xβ−1
N − ρ(y)β−1|p−1

|x − y|N+ps
dy

≤ 2p−1

∫
{y∈Uz0 ,|y−x|>ε}

|xβ−1
N − |yN |β−1|p−1

|x − y|N+ps
dy

+ 2p−1

∫
{y∈Uz0 ,|y−x|>ε}

||yN |β−1 − ρ(y)β−1|p−1

|x − y|N+ps
dy. (4.15)

Let

A := {y : Γz0(y1, . . . , yN−1) < yN < 0 or 0 < yN

< Γz0(y1, . . . , yN−1), |(y1, . . . , yN−1)| < δ0}.

As x ∈ Ω�
δ0
2 ∧δ2

0
, then using (4.9) in Lemma 4.6, the first inequality in (4.13)

and the fact that the function t �→ |t|β−1 is globally (β −1)-Hölder continuous,
we get that
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lim
ε↓0

∫
{y∈Uz0 ,|y−x|>ε}

|xβ−1
N − |yN |β−1|p−1

|x − y|N+ps
dy

≤
∫

A

|xβ−1
N − |yN |β−1|p−1

|x − y|N+ps
dy +

∫
{|y−x|> δ0

2 }

|xβ−1
N − |yN |β−1|p−1

|x − y|N+ps
dy

≤
∫ δ0

0

dr

∫
{|(y1,...,yN−1|=1}

χA(y)
|xβ−1

N − |yN |β−1|p−1

|x − y|N+ps
dσy

+
∫

{|y−x|> δ0
2 }

1
|x − y|N+ps−(β−1)(p−1)

dy

=
∫ δ0

0

dr

∫
{|(y1,...,yN−1|=1}

χA(y)
|xβ−1

N − |yN |β−1|p−1

|x − y|N+ps
dσy

+
∫

{|y−x|> δ0
2 }

1
|x − y|N+1

dy

≤ (2π)Nk1(1 + kps−1
1 )

[∫ √
ρ(x)

0

ρ(x)(β−1)(p−1)

( r+ρ(x)
2 )ps

dr +
∫ δ0

√
ρ(x)

r2(ps−1)

( r+ρ(x)
2 )ps

dr

]

+ (2π)N 2
δ0

= (2π)Nk1(1 + kps−1
1 )

2ps

ps − 1
+ (2π)Nk1(1 + kps−1

1 )
2psδps−1

0

ps − 1
+ (2π)N 2

δ0
,

(4.16)

where we have also used that |x − y| ≥ ρ(x) + r

2
, y ∈ A which follows from

the fact that |x − y| ≥ r and |x − y| ≥ ρ(x) for y ∈ A. Now we estimate
the second term in the right hand-side of (4.15). Using (4.14), (2.4) and the
second inequality in (4.13), we get that
∫

{y∈Uz0 ,|y−x|>ε}

||yN |β−1 − ρ(y)β−1|p−1

|x − y|N+ps
dy

≤
∫

{y∈Uz0 ,|y−x|>ε}

kp−1
2 |yN |(β−2)(p−1)

|x − y|N+ps−2
dy

≤
∫ k1δ0

−k1δ0

dr

∫
{yN=r}

χ{y∈Uz0 ,|y−x|>ε}
kp−1
2 rps−p

|x − y|N+ps−2
dσy

≤ 2
∫ k1δ0

0

dr

∫
{yN=r,|(y1,...,yN−1|<δ0}

kp−1
2 rps−1

|x − y|N+ps−2
dσy

≤ 2ps+1kp−1
2 (2π)N

ps − 1

∫ k1δ0

0

rps−p

|r − ρ(x)|ps−1
dr
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=
2ps+1kp−1

2 (2π)N

ps − 1

(∫ 2ρ(x)

0

1
r−ps+p|r − ρ(x)|ps−1

dr +
∫ k1δ0

2ρ(x)

1
r − ρ(x)

dr

)

≤ 2ps+1kp−1
2 (2π)N

ps − 1

(∫ 2

0

rps−p

|r − 1|ps−1
dr + ln(k1δ0) − ln(ρ(x))

)
. (4.17)

Combining (4.15), (4.16) and (4.17) we get the estimate (4.11) and the proof
is finished. �

We have the following result.

Lemma 4.8. Let Ω ⊂ R
N be a bounded open set of class C1,1, p ∈ (1,∞),

max{p−1
p , 1

p} < s < 1, β := ps−1
p−1 + 1 and uβ(x) = f(x)ρ(x)β−1 for some

f ∈ C2(Ω). Then uβ satisfies the estimate (4.11).

Proof. We first mention the following fact. Let p ∈ (1,∞), 0 < s < 1 and let
u, v be two functions such (−Δ)s

Ω,pu and (−Δ)s
Ω,pv exist. Then

∣∣∣∣
∫
Ω

|u(x)v(x) − u(y)v(y)|p−2 u(x)v(x) − u(y)v(y)

|x − y|N+ps
dy

∣∣∣∣
≤

∫
Ω

|u(x)v(x) − u(y)v(y)|p−1

|x − y|N+ps
dy

≤ 2p−1|u(x)|p−1

∫
Ω

|v(x) − v(y)|p−1

|x − y|N+ps
dy + 2p−1

∫
Ω

|v(y)(u(x) − u(y))|p−1

|x − y|N+ps
dy

≤ 2p−1|u(x)|p−1

∫
Ω

|v(x) − v(y)|p−1

|x − y|N+ps
dy + 2p−1|v(x)|p−1

∫
Ω

|u(x) − u(y)|p−1

|x − y|N+ps
dy

+ 2p−1

∫
Ω

|(v(y) − v(x))(u(x) − u(y))|p−1

|x − y|N+ps
dy. (4.18)

Using (4.18) we obtain that

∣∣(−Δ)s
Ω,p(u(x)v(x))

∣∣ ≤ 2p−1|u(x)|p−1 lim
ε↓0

∫
{y∈Ω,|x−y|>ε}

|v(x) − v(y)|p−1

|x − y|N+ps
dy

+ 2p−1|v(x)|p−1 lim
ε↓0

∫
{y∈Ω,|x−y|>ε}

|u(x) − u(y)|p−1

|x − y|N+ps
dy

+ 2p−1

∫
Ω

|(v(y) − v(x))(u(x) − u(y))|p−1

|x − y|N+ps
dy. (4.19)

Next, let p ∈ (1,∞), max{p−1
p , 1

p} < s < 1, β := ps−1
p−1 + 1 and uβ(x) =

f(x)ρ(x)β−1 for some f ∈ C2(Ω). Since (−Δ)s
Ω,pf and (−Δ)s

Ω,pρ
β−1 exist and

satisfy the estimate (4.11), then by (4.19), it suffices to show that the function∫
Ω

|(f(y) − f(x))(ρ(x)β−1 − ρ(y)β−1)|p−1

|x − y|N+ps
dy satisfies the estimate (4.11). We

omit the proof since it follows the lines of the proof of Lemma 4.7. �

Now, we are ready to give the proof of the main result of this section.
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Proof of Theorem 4.1. Let t ≥ 0 be small enough. By [18, Lemma 3.1], there
exist two constants a1, a2 > 0 such that∫

Ωτ \Ωt

dy ≤ a1(t − τ), 0 < τ < t < a2. (4.20)

Let p ∈ (1,∞), max{p−1
p , 1

p} < s < 1, β := ps−1
p−1 +1 and u = fhβ +g ∈ C2

β(Ω).
We have to show that (−Δ)s

Ω,pu ∈ Lq(Ω) for every q ∈ [1,∞). Let δ > 0 be
small enough. Since g ∈ C2(Ω) and fhβ ∈ C2(Ω

�

δ) (hence u = fhβ + g ∈
C2(Ω

�

δ)), it follows from (4.7) that |(−Δ)s
Ω,pu| is bounded on Ω�

δ . It also follows
from Lemma 4.8 that (−Δ)s

Ω,pu satisfies the estimate (4.11). Let a1, a2 be as
in (4.20). Let m ∈ N be such that 1

m ≤ a2 and set

Bk :=
{

x ∈ Ω :
1

k + 1
< ρ(x) ≤ 1

k

}
, k ≥ m, k ∈ N.

Using (4.20) and (4.11) we get that∫
Ω�

1
m

|(−Δ)s
Ω,pu|q dx =

∫
Ω\Ω

1
m

|(−Δ)s
Ω,pu|q dx

≤
∑
k≥m

∫
Bk

|(−Δ)s
Ω,pu|q dx

≤
∑
k≥m

a1

k(k + 1)
(C1 ln(k + 1) + C2)

q
< ∞. (4.21)

Now (4.21) together with the fact that |(−Δ)s
Ω,pu| is bounded on Ω

1
m imply

that (−Δ)s
Ω,pu ∈ Lq(Ω) for every q ∈ [1,∞). The proof is finished. �

In Theorem 4.1 we notice that in general (−Δ)s
Ω,pu does not belong to

L∞(Ω).

5. Proofs of the main results

In this section we give the proofs of the main results stated in Sect. 3.

Proof of Theorem 3.8. Let p ∈ (1,∞), max{p−1
p , 1

p} < s < 1 and u ∈ C2(Ω).

It follows from Theorem 4.1 that (−Δ)s
Ω,pu ∈ L

p
p−1 (Ω). Let v ∈ W s,p(Ω) and

ε > 0. Since
∫
Ω

v(−Δ)s
Ω,p,εu dx

= CN,p,s

∫
Ω

v(x)

∫
{y∈Ω: |x−y|>ε}

|u(x) − u(y)|p−2 u(x) − u(y)

|x − y|N+ps
dydx

=
CN,p,s

2

∫
Ω

∫
Ω

χ{y∈Ω: |x−y|>ε}|u(x)−u(y)|p−2 (u(x) − u(y))(v(x) − v(y)

|x − y|N+ps
dydx

and (−Δ)s
Ω,p,εu satisfies the estimates (4.7)–(4.8) in Lemma 4.5, we get (3.17)

by applying the Lebesgue Dominated Convergence Theorem. �



NoDEA The fractional p-Laplace operator Page 27 of 46 1

To prove Theorem 3.9, we need a preliminary lemma and a density result.

Lemma 5.1. Let p ∈ (1,∞), max{p−1
p , 1

p} < s < 1, β := ps−1
p−1 + 1 and T > 0.

Let u ∈ C[0, T ] ∩ C1(0, T ] and v ∈ C[0, T ]. If N 2−β
p u(0) exists, then

lim
δ↓0

C1,p,s

∫ δ

0

∫ T

δ

|u(x)−u(y)|p−2 (u(x) − u(y))v(x)
|x − y|1+ps

dxdy=Cp,sv(0)N 2−β
p u(0),

(5.1)

where the constant Cp,s is given by (3.9).

Proof. To prove the lemma, we follow the ideas of the proof of the linear
version (p = 2) contained in [17, Lemma 3.2] (see also [18, Theorem 7.5]). Let
p ∈ (1,∞), max{p−1

p , 1
p} < s < 1 and β := ps−1

p−1 + 1. Since max{p−1
p , 1

p} <

s < 1, we have that

1 < ps − (p − 2) < 2, 0 < ps − (p − 2) − 1 < 1 and (2 − β)(p − 1) = p − ps.

Let T > 0, u ∈ C1(0, T ], v ∈ C[0, T ] and assume that N 2−β
p u(0) exists.

Without any restriction we may assume that T = 1 and N 2−β
p u(0) = −1. Let

w ∈ C[0, 1]∩C1(0, 1] be such that w(x)−w(y) = |u(x)−u(y)|p−2(u(x)−u(y))
for all x, y ∈ [0, 1]. Let y ∈ [0, 1] be fixed. We would like to have an expression of
the derivative w′(x) for x ∈ (0, 1]. Calculating we get that for every x ∈ (0, 1],

w′(x) = (p − 2)|u(x) − u(y)|p−3u′(x)sgn(u(x) − u(y))(u(x) − u(y))

+ |u(x) − u(u)|p−2u′(x)

= (p − 2)|u(x) − u(y)|p−2u′(x) + |u(x) − u(u)|p−2u′(x)

= (p − 1)|u(x) − u(y)|p−2u′(x). (5.2)

Using the function w and (5.2) we get that

|u(x) − u(y)|p−2(u(x) − u(y)) = w(x) − w(y) =
∫ x

y

w′(s) ds

= (p − 1)
∫ x

y

|u(s) − u(y)|p−2u′(s) ds.

Using Fubini’s Theorem, we get that,∫ δ

0

∫ 1

δ

|u(x) − u(y)|p−2 (u(x) − u(y))v(y)
|x − y|1+ps

dxdy

=
∫ δ

0

∫ 1

δ

(w(x) − w(y))v(y)
|x − y|1+ps

dxdy

=
∫ δ

0

∫ 1

δ

v(y)
|x − y|1+ps

∫ x

y

w′(s) ds dxdy

= (p − 1)
∫ δ

0

dy

∫ 1

δ

v(y)
|x − y|1+ps

dx

∫ x

y

|u(s) − u(x)|p−2u′(s)ds

= (p − 1)
∫ δ

0

dy

∫ δ

y

ds

∫ 1

δ

v(y)
|x − y|1+ps

|u(s) − u(x)|p−2u′(s)dx
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+ (p − 1)
∫ δ

0

dy

∫ 1

δ

ds

∫ 1

s

v(y)
|x − y|1+ps

|u(s) − u(x)|p−2u′(s)dx

= (p − 1)
∫ δ

0

dy

∫ δ

y

ds

∫ 1

δ

v(y)
|x − y|1+ps−(p−2)

|u′(s)|p−2u′(s)dx

+ (p − 1)
∫ δ

0

dy

∫ 1

δ

ds

∫ 1

s

v(y)
|x − y|1+ps−(p−2)

|u′(s)|p−2u′(s)dx + J

=
p − 1

ps − (p − 2)

∫ δ

0

dy

∫ δ

y

[
v(y)|u′(s)|p−2u′(s)

|δ − y|ps−(p−2)
− v(y)|u′(s)|p−2u′(s)

|1 − y|ps−(p−2)

]
ds

+
p − 1

ps − (p − 2)

∫ δ

0

dy

∫ 1

δ

[
v(y)|u′(s)|p−2u′(s)

|s − y|ps−(p−2)
− v(y)|u′(s)|p−2u′(s)

|1 − y|ps−(p−2)

]

× ds + J, (5.3)

where

J = (p − 1)
∫ δ

0

dy

∫ δ

y

ds

∫ 1

δ

× v(y)|u(s) − u(x)|p−2u′(s) − v(y)|u′(s)|p−2|x − y|p−2u′(s)
|x − y|1+ps

dx

+ (p − 1)
∫ δ

0

dy

∫ 1

δ

ds

∫ 1

s

× v(y)|u(s) − u(x)|p−2u′(s) − v(y)|u′(s)|p−2|x − y|p−2u′(s)
|x − y|1+ps

dx. (5.4)

It follows from (5.3) that

∫ δ

0

∫ 1

δ

|u(x) − u(y)|p−2 (u(x) − u(y))v(y)
|x − y|1+ps

dxdy

=
p − 1

ps − (p − 2)

∫ δ

0

ds

∫ s

0

v(y)|u′(s)|p−2u′(s)
|δ − y|ps−(p−2)

dy

+
p − 1

ps − (p − 2)

∫ 1

δ

ds

∫ δ

0

v(y)|u′(s)|p−2u′(s)
|s − y|ps−(p−2)

dy + J + I1 (5.5)

where

I1 = − p − 1
ps − (p − 2)

[∫ δ

0

dy

∫ δ

y

v(y)|u′(s)|p−2u′(s)
|1 − y|ps−(p−2)

ds

+
∫ δ

0

dy

∫ 1

δ

v(y)|u′(s)|p−2u′(s)
|1 − y|ps−(p−2)

ds

]
. (5.6)

Let

Cp :=
p − 1

(ps − (p − 2))(ps − (p − 2) − 1)
=

p − 1
(ps − p + 2)(ps − p + 1)

.
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By (5.5) we have that

∫ δ

0

∫ 1

δ

|u(x) − u(y)|p−2 (u(x) − u(y))v(y)
|x − y|1+ps

dxdy

=
p − 1

ps − (p − 2)

∫ δ

0

ds

∫ s

0

(v(y) − v(0) + v(0))|u′(s)|p−2u′(s)
|δ − y|ps−(p−2)

dy

+
p − 1

ps − (p − 2)

∫ 1

δ

ds

∫ δ

0

(v(y) − v(0) + v(0))|u′(s)|p−2u′(s)
|s − y|ps−(p−2)

dy + J + I1

=
p − 1

ps − (p − 2)

∫ δ

0

ds

∫ s

0

v(0)|u′(s)|p−2u′(s)
|δ − y|ps−(p−2)

dy

+
p − 1

ps − (p − 2)

∫ 1

δ

ds

∫ δ

0

v(0)|u′(s)|p−2u′(s)
|s − y|ps−(p−2)

dy + J + I1 + I2

= Cp

∫ δ

0

[
v(0)|u′(s)|p−2u′(s)

δps−(p−2)−1
− v(0)|u′(s)|p−2u′(s)

|δ − s|ps−(p−2)−1

]
ds

+ Cp

∫ 1

δ

[
v(0)|u′(s)|p−2u′(s)

sps−(p−2)−1
− v(0)|u′(s)|p−2u′(s)

|s − δ|ps−(p−2)−1

]
ds + J + I1 + I2,

(5.7)

where

I2 =
p − 1

ps − (p − 2)

[∫ δ

0

ds

∫ s

0

(v(y) − v(0))|u′(s)|p−2u′(s)
|δ − y|ps−(p−2)

dy

+

∫ 1

δ

ds

∫ δ

0

(v(y) − v(0))|u′(s)|p−2u′(s)
|s − y|ps−(p−2)

dy

]
. (5.8)

It follows from (5.7) that

∫ δ

0

∫ 1

δ

|u(x) − u(y)|p−2 (u(x) − u(y))v(y)
|x − y|1+ps

dxdy

= Cpv(0)
∫ δ

0

[
1

s(2−β)(p−1)δps−(p−2)−1
− 1

s(2−β)(p−1)|δ − s|ps−(p−2)−1

]
ds

+ Cpv(0)
∫ 1

δ

[
1

s(β−2)(p−1)sps−(p−2)−1
− 1

s(2−β)(p−1)|s − δ|ps−(p−2)−1

]
ds

+ J + I1 + I2 + I3

= Cpv(0)
∫ δ

0

[
1

s(2−β)(p−1)δps−(p−2)−1
− 1

s(2−β)(p−1)|δ − s|ps−(p−2)−1

]
ds

+ Cpv(0)
∫ 1

δ

[
1
s

− 1
s(2−β)(p−1)|s − δ|ps−(p−2)−1

]
ds

+ J + I1 + I2 + I3, (5.9)

where
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I3 = Cp

∫ δ

0

[
v(0)

δps−(p−2)−1
− v(0)

|δ − s|ps−(p−2)−1

] [
|u′(s)|p−2u′(s) − 1

s(2−β)(p−1)

]
ds

+ Cp

∫ 1

δ

[
v(0)

sps−(p−2)−1
− v(0)

|s − δ|ps−(p−2)−1

] [
|u′(s)|p−2u′(s) − 1

s(2−β)(p−1)

]
ds.

(5.10)

Using (5.9) we obtain that
∫ δ

0

∫ 1

δ

|u(x) − u(y)|p−2 (u(x) − u(y))v(y)
|x − y|1+ps

dxdy

=Cpv(0)

[∫ 1

0

1 − |1 − s|(p+2)+1−ps

sp−ps
ds+

∫ 1
δ

1

sp−ps−1 − |1 − s|(p+2)+1−ps

sp−ps
ds

]

+ J + I1 + I2 + I3

= Cpv(0)
∫ 1

δ

0

(1 ∨ s)p−ps−1 − |1 − s|(p+2)+1−ps

sp−ps
ds + J + I1 + I2 + I3.

(5.11)

Next, let J be given by (5.4). Since u(s) − u(x) = u′(ξ)(s − x), (s, x) ∈
[y, δ]× [δ, 1], or (s, x) ∈ [δ, 1]× [s, 1] for some ξ on the line segment from s to x,
and since 2 < 1+ps−(p−2) < 3, we have that the two integrals exist. Using the
Dominated Convergence Theorem, we obtain that limδ↓0 J = 0. It is also an
easy task to show that I1 given by (5.6) exists and limδ↓0 I1 = 0 by the Domi-
nated Convergence Theorem. Now, since v is continuous on [0, 1] we have that
limy↓0(v(y)−v(0)) = 0. The existence of (5.8) is also easy to verify and apply-
ing the Dominated Convergence Theorem, we get that limδ↓0 I2 = 0. Finally,
since limt↓0 |u′(t)|p−2u′(t)t(2−β)(p−1) = limt↓0 |u′(t)t2−β |p−2u′(t)t2−β = −1,
we have that |u′(t)|p−2u′(t) = o

(
1

t(2−β)(p−1)

)
. Hence, we can verify that I3 ex-

ists and limδ↓0 I3 = 0. We have shown that J , I1, I2 and I3 are finite and
that

lim
δ↓0

J = lim
δ↓0

I1 = lim
δ↓0

I2 = lim
δ↓0

I3 = 0. (5.12)

Taking the limit of (5.11) as δ ↓ 0 and using (5.12) we get that

lim
δ↓0

C1,p,s

∫ δ

0

∫ 1

δ

|u(x) − u(y)|p−2 (u(x) − u(y))v(y)
|x − y|1+ps

dxdy

= C1,p,sCpv(0)
∫ ∞

0

(1 ∨ s)p−ps−1 − |1 − s|(p+2)+1−ps

sp−ps
ds

= −C1,p,sCpv(0)
∫ ∞

0

|1 − s|(p+2)+1−ps − (1 ∨ s)p−ps−1

sp−ps
ds

= Cp,sv(0)N 2−β
p u(0),

where we recall that Cp,s is given in (3.20). We have shown (5.1) and the proof
is finished. �

Next, we give a density result.
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Proposition 5.2. Let Ω ⊂ R
N be a bounded open set of class C1,1, p ∈ (1,∞),

max{p−1
p , 1

p} < s < 1 and β := ps−1
p−1 + 1. Then C1

β(Ω) is a dense subspace of
W s,p(Ω).

Proof. We show first that C1
β(Ω) is a subspace of W s,p(Ω). Let u ∈ C1

β(Ω). It
is clear that u ∈ Lp(Ω). We have to prove that

∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|N+ps

dxdy < ∞. (5.13)

Since C1(Ω) ⊂ W s,p(Ω) we have that (5.13) holds for every u ∈ C1(Ω).
Therefore we have to prove (5.13) for functions u of the form u = fhβ with
f ∈ C1(Ω). Let then u = fhβ for some f ∈ C1(Ω). Then

∫
Ω

∫
Ω

|f((x)hβ(x) − f(y)hβ(y)|p
|x − y|N+ps

dxdy

=
∫

Ω

∫
Ω

|f(x)hβ(x) − f(x)hβ(y) + f(x)hβ(y) − f(y)hβ(y)|p
|x − y|N+ps

dxdy

≤ 2p−1‖f‖p
L∞(Ω)

∫
Ω

∫
Ω

|hβ(x) − hβ(y)|p
|x − y|N+ps

dxdy

+ 2p−1‖hβ‖p
L∞(Ω)

∫
Ω

∫
Ω

|f(x) − f(y)|p
|x − y|N+ps

dxdy.

Since

‖hβ‖p
L∞(Ω)

∫
Ω

∫
Ω

|f(x) − f(y)|p
|x − y|N+ps

dxdy < ∞,

it suffices to show that∫
Ω

∫
Ω

|hβ(x) − hβ(y)|p
|x − y|N+ps

dxdy < ∞.

It follows from (3.17) in Theorem 3.8 that

CN,p,s

2

∫
Ωδ

∫
Ωδ

|hβ(x) − hβ(y)|p
|x − y|N+ps

dxdy

=
∫

Ωδ

hβ(−Δ)s
p,Ωδhβ dx

=
∫

Ωδ

∫
Ω�

δ

|hβ(x) − hβ(y)|p−2(hβ(x) − hβ(y))hβ(x)
|x − y|N+ps

dxdy

+
∫

Ωδ

hβ(−Δ)s
p,Ωhβ dx. (5.14)

It follows from (2.4) and the fact that ρ is Lipschitz continuous, that there is
a constant C > 0 such that

|hβ(x) − hβ(y)| ≤ ρ(x)β−2|ρ(x) − ρ(y)| ≤ Cρ(x)β−2|x − y|, ∀ x∈Ω�
δ , y∈Ωδ.
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Letting M := ‖hβ‖L∞(Ω) and using a changing of variable, we get that,
∫

Ωδ

∫
Ω�

δ

|hβ(x) − hβ(y)|p−1|hβ(x)|
|x − y|N+ps

dxdy≤M

∫
Ωδ

∫
Ω�

δ

|hβ(x) − hβ(y)|p−1

|x − y|N+ps
dxdy

≤ C

∫
Ω�

δ

ρ(x)(β−2)(p−1)

∫
Ωδ

1

|x − y|N−1+p(s−1)+2
dydx

≤ C

∫
Ω�

δ

ρ(x)ps−p

∫ dΩ

δ−ρ(x)

1

rp(s−1)+2
drdx

≤ C

∫
Ω�

δ

ρ(x)ps−p(δ − ρ(x))p(1−s)−1 dx

≤ C

∫ δ

0

rps−p(δ − r)p(1−s)−1 dr

= C

∫ 1

0

rps−p(1 − r)p(1−s)−1 dr

= CB (ps − p + 1, p(1 − s)) < ∞. (5.15)

Combining (5.14), (5.15) and noticing that (−Δ)s
Ω,phβ ∈ L1(Ω) (by Theorem

4.1), we obtain the estimate (5.13). Hence, C1
β(Ω) ⊂ W s,p(Ω). Finally, since

C1(Ω) ⊂ C1
β(Ω) and is dense in W s,p(Ω), we also have that C1

β(Ω) is dense in
W s,p(Ω) and the proof is finished. �

Some density results for some spaces similar to W s,p(Ω) (but different)
have been obtained in [15]. We give a simple version of their spaces that are
comparable to the one defined in the present paper. Let Ω ⊂ R

N be an arbi-
trary open set. For 1 < p < ∞ and 0 < s < 1, let

W̃ s,p
0 (Ω) := {u ∈ W s,p(RN ) : u = 0 a.e. on R

N\Ω}.

By definition, W̃ s,p
0 (Ω) is always a subspace of W s,p(Ω) but in general there

is no obvious inclusion between W̃ s,p
0 (Ω) and W s,p

0 (Ω). It has been shown
in [15, Theorem 6] that if Ω is an open set with continuous boundary, then
D(Ω) is dense in W̃ s,p

0 (Ω). This has been also previously obtained in [20,
Theorem 1.4.2.2]. But we mention that in [15] the defined spaces are more
general than W̃ s,p

0 (Ω). In fact we have the following. If Ω is a bounded open
set with Lipschitz continuous boundary, then when s �= 1

p , we have W̃ s,p
0 (Ω) =

W s,p
0 (Ω) and furthermore, when 0 < s < 1

p , then W̃ s,p
0 (Ω) = W s,p

0 (Ω) =
W s,p(Ω). We refer to [20, Chapter 1] for a further details on this topic.

Before we give the proof of Theorem 3.9 , we introduce some notation
and give some useful properties of open sets of class C1,1.

Let δ > 0 be small enough. Let (θi)N−1
i=1 ⊂ R be such that 0 ≤ θi ≤ π,

i = 1, 2, . . . , N − 2, and 0 < θN−1 < 2π. We shall write

Φ(θ1, . . . , θN−2) := sinN−2(θ1) sinN−3(θ2) · · · sin(θN−2),
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and set

	θ :=
(

sin(θ1) sin(θ2) · · · sin(θN−1), . . . , sin(θ1) cos(θ2), cos(θ1)
)

.

Since Ω�
δ is an open set, for any direction 	θ and x ∈ Ω, the set

Kδ,�θ
x := {y : y = x + t	θ ∈ Ω�

δ for some t ∈ R}
is a one dimensional open set. Moreover Kδ,�θ

x is the union of finite one dimen-
sional open intervals. For each open interval U of Kδ,�θ

x , denote a1 := x + t1	θ,
a2 := x + t2	θ, where t1 := inf{t : y = x + t	θ ∈ U} and t2 := sup{t : y =
x + t	θ ∈ U}. We call a1 and a2 the left end point and the right hand point of
the interval U , respectively. Then, a1, a2 ∈ ∂Ω ∪ ∂Ωδ. So we have four types
of open intervals:

(1) a1 ∈ ∂Ω, a2 ∈ ∂Ωδ; (2) a1 ∈ ∂Ω, a2 ∈ ∂Ω;

(3) a1 ∈ ∂Ωδ, a2 ∈ ∂Ω; (4) a1 ∈ ∂Ωδ, a2 ∈ ∂Ωδ.

According to these four types of intervals, Ω�
δ can be divided into four parts.

Ωδ,�θ
i :=

⋃
x∈Ω

{(a1, a2) : (a1, a2) is a type i open interval of Kδ,�θ
x }, i=1, 2, 3, 4.

Define
⎧⎨
⎩

Γδ,�θ
1 := {z ∈ ∂Ω : z is the left end point of a type 1 open interval of Kδ,�θ

z }
Γδ,�θ

2 := {z ∈ ∂Ω : z is the left end point of a type 4 open interval of Kδ,�θ
z }.

(5.16)

For z ∈ Γδ,�θ
1 ∪ Γδ,�θ

2 , we denote

Lδ,�θ
z := {(a1, a2) : (a1, a2) is the open interval of Kδ,�θ

z taking z as the left end point}.

For z ∈ Γδ,�θ
1 , we denote

Hδ,�θ
z :=

⋃
t>0

{ξ ∈ Kδ,�θ
z : ξ = z − t	θ, ξ �∈ Gδ,�θ

4

and {y : y = z − s	θ, s ∈ (0, t)} ∩ Γδ,�θ
1 = ∅}.

The proof of the following result is contained in [17, Lemma 3.4].

Lemma 5.3. Let Ω ⊂ R
N be a bounded open set of class C1,1. Then the follow-

ing assertions hold.

(a) For all z ∈ Γδ,�θ
1 we have that 〈	n(z), 	θ〉 ≥ 0.

(b) There exists a constant k1 > 0 such that for every unit vector 	θ,

ρ(z + t	θ) ≥ t

4
〈	n(z), 	θ〉, ∀ z ∈ ∂Ω, 0 < t < k1〈	n(z), 	θ〉.

(c) Let ρδ(y) = dist(y, ∂Ω�
δ). Then there exists a constant k2 > 0 such that

for every unit vector 	θ,

ρδ(z − t	θ) ≥ t

4
〈	nδ(z), 	θ〉, ∀ z ∈ ∂Ω�

δ , 0 < t < k2〈	nδ(z), 	θ〉.
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Here, 	nδ(z) is the inner normal vector to ∂Ωδ at the point z.

The properties of open sets of class C1,1 given here have been clarified
in [17,24]. We have included it here for the convenience of the reader and to
make the paper as self-contained as possible.
Proof of Theorem 3.9 Let p ∈ (1,∞), max{ 1

p , p−1
p } < s < 1, β := ps−1

p−1 +1 and
(−Δ)s

Ω,p the (quasi-linear) nonlocal operator defined in (1.4). Throughout the

proof, we use the notation of sets Ωδ,�θ
i , Γδ,�θ

i , Lδ,�θ
x , Hδ,�θ

x , function Φ, and vectors
	θ, 	n(x) introduced above. Let u ∈ C2

β(Ω). First we assume that v ∈ C1
β(Ω).

Using Theorem 3.8 and Lemma 4.8 we get that

CN,p,s

2

∫
Ω

∫
Ω

|u(x) − u(y)|p−2 (u(x) − u(y))(v(x) − v(y))
|x − y|N+2s

dx dy

= lim
δ↓0

∫
Ωδ

v(−Δ)s
Ωδ,pu dx

= lim
δ↓0

CN,p,s

∫
Ωδ

dx

∫
Ω�

δ

v(x)|u(x) − u(y)|p−2 u(x) − u(y)
|x − y|N+ps

dy

+ lim
δ↓0

∫
Ωδ

v(−Δ)s
Ω,pu dx

= lim
δ↓0

CN,p,s

∫
Ωδ

dx

∫
Ω�

δ

v(y)|u(x) − u(y)|p−2 u(x) − u(y)
|x − y|N+ps

dy

+ lim
δ↓0

CN,p,s

∫
Ωδ

∫
Ω�

δ

|u(x) − u(y)|p−2 (u(x) − u(y))(v(x) − v(y))
|x − y|N+ps

dx dy

+ lim
δ↓0

∫
Ω

v(−Δ)s
Ωδ,pu dx

= lim
δ↓0

CN,p,s

∫
Ω�

δ

∫
Ωδ

v(x)|u(x) − u(y)|p−2 u(x) − u(y)
|x − y|N+ps

dx dy

+ lim
δ↓0

∫
Ω

v(−Δ)s
Ωδ,pu dx. (5.17)

Calculating the first term in the right hand-side of (5.17) by using polar coor-
dinates we get that

CN,p,s

∫
Ω�

δ

∫
Ωδ

v(x)|u(x) − u(y)|p−2 u(x) − u(y)

|x − y|N+ps
dx dy

= CN,p,s

∫
Ω�

δ

v(x) dx

∫ π

0
dθ1 · · ·

∫ π

0
dθN−2

∫ 2π

0
Φ(θ1, . . . , θN−2)dθN−1

×
∫

{x+r�θ∈Ωδ,r>0}
|u(x) − u(x + r�θ)|p−2 u(x) − u(x + r�θ)

r1+ps
dr

= CN,p,s

∫ π

0
dθ1 · · ·

∫ π

0
dθN−2

∫ 2π

0
Φ(θ1, . . . , θN−2)dθN−1

×
4∑

i=1

∫
Ωδ,�θ

i

v(x) dx

∫
{x+r�θ∈Ωδ,r>0}

|u(x) − u(x + r�θ)|p−2 u(x) − u(x + r�θ)

r1+ps
dr.

(5.18)



NoDEA The fractional p-Laplace operator Page 35 of 46 1

Calculating the integral in the right-hand side of (5.18) along the vector 	θ we
get that

∫
Ωδ,�θ

1

v(x) dx

∫ ∞

0
χ{x+r�θ∈Ωδ}|u(x) − u(x + r�θ)|p−2 u(x) − u(x + r�θ)

r1+ps
dr

=

∫
Γδ,�θ

1

〈�n(x), �θ〉 dσx

∫ ∞

0
χ{x+t�θ∈Lδ,�θ

x
}v(x + t�θ) dt

×
∫ ∞

0
χ{x+(t+r)�θ∈Ωδ}|u(x+t�θ)−u(x+(r+t)�θ)|p−2 u(x + t�θ) − u(x + (r + t)�θ)

r1+ps
dr.

(5.19)

If x ∈ Ωδ,�θ
i (i = 2, 3) and {z : z = x + t	θ ∈ Ωδ for some t > 0} �= ∅, then

{z : z = x + t	θ for some t > 0} ∩ Γδ,�θ
1 �= ∅.

So, as in (5.19), we have

3∑
i=2

∫
Ωδ,�θ

i

v(x) dx

∫ ∞

0

χ{x+r�θ∈Ωδ}|u(x) − u(x + r	θ)|p−2 u(x) − u(x + r	θ)
r1+ps

dr

=
∫

Γδ,�θ
1

〈	n(x), 	θ〉 dσx

∫ ∞

0

χ{x−t�θ∈Hδ,�θ
x }v(x + t	θ) dt

×
∫ ∞

0

χ{x+r�θ∈Ωδ}|u(x − t	θ) − u(x + r	θ)|p−2 u(x − t	θ) − u(x + r	θ)
(t + r)1+ps

dr.

(5.20)

For the integral over the set Ωδ,�θ
4 we have

∫
Ωδ,�θ

4

v(x) dx

∫ ∞

0

χ{x+r�θ∈Ωδ}|u(x) − u(x + r	θ)|p−2 u(x) − u(x + r	θ)
r1+ps

dr

=
∫

Γδ,�θ
2

v(x)〈	nδ(x),−	θ〉 dσx

∫ ∞

0

χ{x+t�θ∈Lδ,�θ
x }v(x + t	θ) dt

×
∫ ∞

0

χ{x+(t+r)�θ∈Ωδ}|u(x + t	θ)

− u(x + (r + t)	θ)|p−2 u(x + t	θ) − u(x + (r + t)	θ)
r1+ps

dr. (5.21)

In (5.21), 	nδ(x) is the inner normal vector of ∂Ωδ at the point x.
Next we claim that

〈	n(x), 	θ〉
∫ ∞

0

χ{x+t�θ∈Lδ,�θ
x } dt

×
∫ ∞

0

χ{x+(t+r)�θ∈Ωδ}|u(x + t	θ)

− u(x + (r + t)	θ)|p−2 u(x + t	θ) − u(x + (r + t)	θ)
r1+ps

dr, x ∈ Γδ,�θ
1 , (5.22)
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and

〈	n(x), 	θ〉
∫ ∞

0

χ{x−t�θ∈Hδ,�θ
x } dt

×
∫ ∞

0

χ{x+r�θ∈Ωδ}|u(x − t	θ) − u(x + r	θ)|p−2

u(x − t	θ) − u(x + r	θ)
(t + r)1+ps

dr, x ∈ Γδ,�θ
1 , (5.23)

and

〈	nδ(x),−	θ〉
∫ ∞

0

χ{x+t�θ∈Lδ,�θ
x } dt

×
∫ ∞

0

χ{x+(t+r)�θ∈Ωδ}|u(x + t	θ) − u(x + (r + t)	θ)|p−2

u(x + t	θ) − u(x + (r + t)	θ)
r1+ps

dr, x ∈ Γδ,�θ
2 , (5.24)

are all uniformly bounded for δ > 0, 	θ and the corresponding x. The 	n(x) in
(5.22) and (5.23) and the 	nδ(x) in (5.24) are the inner normal vector to ∂Ω
and ∂Ωδ at the point x, respectively. Indeed, let

T := sup{t : x + t	θ ∈ Lδ,�θ
x }, (5.25)

and assume first that u ∈ C2(Ω). Consider the expression in (5.22). Using
the mean value theorem and a change of variable we get that there exists a
constant C > 0 such that for x ∈ Γδ,�θ

1 ,

〈	n(x), 	θ〉
∫ ∞

0

χ{x+t�θ∈Lδ,�θ
x } dt

×
∫ ∞

0

χ{x+(t+r)�θ∈Ωδ}
|u(x + t	θ) − u(x + (r + t)	θ)|p−1

r1+ps
dr

≤ C‖∇u‖p−1
L∞(Ω)

∫ T

0

dt

∫ ∞

0

1
r1+ps−(p−1)

dr

= C‖∇u‖p−1
∞

∫ T

0

dt

∫ ∞

T−t

1
r1+ps−(p−1)

dr

≤ C1‖∇u‖p−1
L∞(Ω)T

p−ps,

which is uniformly bounded for δ > 0, 	θ, the corresponding x and we have
shown (5.22) for u ∈ C2(Ω). Similarly, it is easy to verify that (5.23) and
(5.24) hold for a function u ∈ C2(Ω). Hence, we can assume that u = fhβ .
Written

f(y)hβ(y) − f(x)hβ(x) = (f(y) − f(x))hβ(y) + (hβ(y) − hβ(x))f(x)

and applying (5.22), (5.23) and (5.24), the proof of the claims (5.22), (5.23)
and (5.24) can be also reduced to the case where u = hβ = ρ(x)β−1. Therefore,
to prove the claims we assume that u(x) = ρ(x)β−1.
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Next, we prove the claim (5.22). Recall that by Lemma 5.3, 〈	n(x), 	θ〉 ≥ 0
and there exists a constant k1 > 0 such that ρ(x + t	θ) ≥ t

4 for all x ∈ ∂Ω and
0 < t < k1〈	n(x), 	θ〉.

Assume first that 〈	n(x), 	θ〉 ≥ 3
√

δ√
k1

and let T be given by (5.25). It follows

from Lemma 5.3(b) that the length of Lδ,�θ
x is less than or equal to 3

√
δk1 and

hence, ρ(x + t	θ) ≥ t
4 〈	n(x), 	θ〉 for t ∈ (0, T ). Therefore, using an addition a

change of variable, we get that for every x ∈ Γδ,�θ
1 ,

〈	n(x), 	θ〉
∫ ∞

0

χ{x+t�θ∈Lδ,�θ
x } dt

∫ ∞

0

χ{x+(t+r)�θ∈Ωδ}

|u(x + t	θ) − u(x + (r + t)	θ)|p−1

r1+ps
dr

≤ (β − 1)p−1〈	n(x), 	θ〉
∫ T

0

dt

∫ ∞

0

χx+(t+r)�θ∈Ωδ

(
t
4

)(β−2)(p−1) 〈	n(x), 	θ〉(β−2)(p−1)

r2+ps−p
dr

≤ 4〈	n(x), 	θ〉(β−2)(p−1)+1

∫ T

0

t(β−2)(p−1)dt

∫ ∞

0

1
(T − t + r)2−ps−p

dr

= 4〈	n(x), 	θ〉(β−2)(p−1)+1

∫ T

0

t(β−2)(p−1)(T − t)p−ps−1 dt

≤ 4
∫ 1

0

t(β−2)(p−1)(1 − t)p−ps−1 dt

= 4B ((β − 2)(p − 1) + 1, p − ps) = 4B (ps − p + 1, p − ps) .

Next, assume that 0 < 〈	n(x), 	θ〉 < 3
√

δ√
k1

. Using a change of variable, we

get that for every x ∈ Γδ,�θ
1 ,

〈
n(x), 
θ〉
∫ ∞

0

χ{x+t�θ∈L
δ,�θ
x } dt

∫ ∞

0

χ{x+(t+r)�θ∈Ωδ}
|u(x + t
θ) − u(x + (r + t)
θ)|p−1

r1+ps
dr

≤ 〈
n(x), 
θ〉
∫ T

T−δ

dt

∫ ∞

0

χ{x+(T+r)�θ∈Ωδ}
|u(x + t
θ) − u(x + (r + T )
θ)|p−1

(T − t + r)1+ps
dr

+ 〈
n(x), 
θ〉
∫ T−δ

0

dt

∫ ∞

0

χ{x+(T+r)�θ∈Ωδ}
|u(x + t
θ) − u(x + (r + T )
θ)|p−1

(T − t + r)1+ps
dr.

(5.26)

If T − δ < t < T , then ρ(x + t	θ) ≥ δ − (T − t). Recall that u(x) = ρ(x)β−1.
Using the inequality (2.4) and the fact that (β − 2)(p − 1) < 0, we get that

|u(x + t	θ) − u(x + (r + T )	θ)| = |ρ(x + t	θ)β−1 − ρ(x + (r + T )	θ)β−1|
≤ρ(x + t	θ)β−2|r + T − t|

≤ [δ − (T − t)](β−2)(p−1)|r + T − t|. (5.27)
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Using (5.27) we get that there exists a constant C > 0 (depending only on
N, s and p) such that

≤ 〈	n(x), 	θ〉
∫ T

T−δ

dt

∫ ∞

0

χ{x+(T+r)�θ∈Ωδ}
|u(x + t	θ) − u(x + (r + T )	θ)|p−1

(T − t + r)1+ps
dr

≤ C

∫ T

T−δ

dt

∫ ∞

0

(δ − (T − t))(β−2)(p−1)

(T − t + r)ps−p+2
dr

=
C

p − ps + 1

∫ T

T−δ

(δ − (T − t))(β−2)(p−1)(T − t)−ps+p−1 dt

≤ C

p − ps + 1

∫ 1

0

t(β−2)(p−1)(1 − t)p−ps−1 dt

=
C

p − ps + 1
B ((β − 2)(p − 1) + 1, p − ps)

=
C

p − ps + 1
B (ps − p + 1, p − ps) . (5.28)

For the second term in the right-hand side of (5.26), noticing that ρ(x + (r +
T )	θ) ≥ T − t + r and proceeding as in (5.27), we get that

|u(x + t	θ) − u(x + (r + T )	θ)| =|ρ(x + t	θ)β−1 − ρ(x + (r + T )	θ)β−1|
≤ρ(x + (r + T )	θ)β−2|r+T −t| ≤ |r+T − t|β−1.

(5.29)

Using (5.29), we get that

〈	n(x), 	θ〉
∫ T−δ

0

dt

∫ ∞

0

χ{x+(T+r)�θ∈Ωδ}
|u(x + t	θ) − u(x + (r + T )	θ)|p−1

(T − t + r)1+ps
dr

≤ 3
√

δ√
k1

∫ T−δ

0

dt

∫ ∞

0

χ{x+(T+r)�θ∈Ωδ}
1

(T − t + r)1+ps−(β−1)(p−1)
dr

=
3
√

δ√
k1

∫ T−δ

0

dt

∫ ∞

0

χ{x+(T+r)�θ∈Ωδ}
1

(T − t + r)2
dr

≤ 3
√

δ√
k1

∫ T−δ

0

1
T − t

dt =
3
√

δ√
k1

(ln(T ) − ln(δ)) ≤ 3
√

δ√
k1

(ln(dΩ) − ln(δ)) .

(5.30)

Combining (5.26), (5.28) and (5.30) we obtain the claim (5.22).
Next, we prove (5.23). Since ∂Ω is of class C1,1, we have that there is a

constant k3 > 0 such that

|y − x| ≥ k3〈	n(x), 	θ〉, y ∈ Hδ,�θ
x , x ∈ Γδ,�θ

1 .

Proceeding as in (5.29) we get that

|u(x − t	θ) − u(x + r	θ)| ≤ |r + t|β−1. (5.31)
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Using (5.31) we get that

〈	n(x), 	θ〉
∫ ∞

0

χ{x−t�θ∈Hδ,�θ
x } dt

∫ ∞

0

χ{x+r�θ∈Ωδ}
|u(x − t	θ) − u(x + r	θ)|p−1

(t + r)1+ps
dr

≤ 〈	n(x), 	θ〉
∫ ∞

0

χ{x−t�θ∈Hδ,�θ
x } dt

∫ ∞

0

χ{x+r�θ∈Ωδ}
1

(t + r)1+ps−(β−1)(p−1)
dr

= 〈	n(x), 	θ〉
∫ ∞

0

χ{x−t�θ∈Hδ,�θ
x } dt

∫ ∞

0

χ{x+r�θ∈Ωδ}
1

(t + r)2
dr

= 〈	n(x), 	θ〉
∫ ∞

0

χ{x−t�θ∈Hδ,�θ
x }

1
t

dt

≤ 〈	n(x), 	θ〉
∫ dΩ

k3〈�n(x),�θ〉

dt

t
= 〈	n(x), 	θ〉

(
ln(dΩ) − ln(k3〈	n(x), 	θ〉)

)
,

which is bounded for all 〈	n(x), 	θ〉 and we have proved the claim (5.23).
Next, we show (5.24). It follows from Lemma 5.3(c) that there is a con-

stant k2 > 0 such that

0 < 〈	nδ(x),−	θ〉 ≤ 3
√

δ√
k2

, x ∈ Γδ,�θ
2 , (5.32)

where 	nδ(x) is the inner normal vector of ∂Ωδ at the point x. Proceeding as
in (5.26) we have that for every x ∈ Γδ,�θ

2 ,

〈	nδ(x),−	θ〉
∫ ∞

0

χ{x+t�θ∈Lδ,�θ
x } dt

×
∫ ∞

0

χ{x+(t+r)�θ∈Ωδ}|u(x + t	θ) − u(x + (r + t)	θ)|p−2

u(x + t	θ)−u(x+(r+t)	θ)
r1+ps

dr

≤ 〈	nδ(x),−	θ〉
∫ T

T−δ

dt

∫ ∞

0

χ{x+(T+r)�θ∈Ωδ}
|u(x+t	θ)−u(x+(r + T )	θ)|p−1

(T − t + r)1+ps
dr

+ 〈	nδ(x),−	θ〉
∫ T−δ

0

dt

∫ ∞

0

χ{x+(T+r)�θ∈Ωδ}
|u(x + t	θ) − u(x + (r + T )	θ)|p−1

(T − t + r)1+ps
dr. (5.33)

Using (5.32) and (5.27) and proceeding as in (5.28) we obtain that there exists
a constant C > 0 (depending only on N, s, p, δ and k2) such that

〈	nδ(x),−	θ〉
∫ T

T−δ

dt

∫ ∞

0

χ{x+(T+r)�θ∈Ωδ}
|u(x + t	θ) − u(x + (r + T )	θ)|p−

(T − t + r)1+ps
dr

≤ CB(ps − p + 1, p − ps).

For the second term in (5.33), using (5.32) and (5.29) and proceeding as in
(5.30), we get that there exists a constant C > 0 (depending only on N, s, p, δ
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and k2) such that

〈	nδ(x),−	θ〉
∫ T−δ

0

dt

∫ ∞

0

χ{x+(T+r)�θ∈Ωδ}
|u(x + t	θ) − u(x + (r + T )	θ)|p−1

(T − t + r)1+ps
dr

≤ C (ln(dΩ) − ln(δ)) .

The proof of the claims (5.22), (5.23) and (5.24) is finished.
Now, in the rest of the proof, the function u = fhβ + g is in his general

form. It is easy to check that the term in (5.23) goes to zero as δ ↓ 0. Hence,
using (5.20) and the Dominated Convergence Theorem, we get that

lim
δ↓0

∫ π

0

dθ1 · · ·
∫ π

0

dθN−2

∫ 2π

0

Φ(θ1, . . . , θN−2)dθN−1

×
3∑

i=2

∫
Ωδ,�θ

i

v(x) dx

∫
{x+r�θ∈Ω�

δ ,r>0}
|u(x) − u(x + r	θ)|p−2 u(x) − u(x + r	θ)

r1+ps

dr = 0.

Let M1 be the bound of (5.24) and M := ‖v‖∞,Ω. It follows from Lemma 2.1
that

M2 := sup
0<δ<δ1

∫
∂Ω�

δ

dσ < ∞. (5.34)

Using (5.34), (5.21) and (5.32), we get that

lim
δ↓0

∫ π

0

dθ1 · · ·
∫ π

0

dθN−2

∫ 2π

0

Φ(θ1, . . . , θN−2)dθN−1

×
∫

Ωδ,�θ
4

|v(x)| dx

∫
{x+r�θ∈Ω�

δ ,r>0}

|u(x) − u(x + r	θ)|p−1

r1+ps
dr

≤ M1M lim
δ↓0

∫
Γδ,�θ

4

dσ

∫ π

0

dθ1 · · ·
∫ π

0

dθN−2

∫ 2π

0

Φ(θ1, . . . , θN−2)dθN−1

≤ M1M lim
δ↓0

∫
∂Ω�

δ

dσ

∫ π

0

dθ1 · · ·
∫ π

0

dθN−2

∫ 2π

0

Φ(θ1, . . . , θN−2)

χ{0 < 〈	n(x),−	θ〉 ≤ 3
√

δ√
k1

}dθN−1

≤ M1M2M(2π)N lim
δ↓0

3
√

δ√
k1

= 0. (5.35)

We note that for every x ∈ ∂Ω,

{	θ : 〈	n(x), 	θ〉 > 0} ⊆
∞⋃

n=1

∞⋂
m=n

{	θ : x ∈ Γ
1
m ,�θ
1 } ⊆ {	θ : 〈	n(x), 	θ〉 ≥ 0}.
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Hence, using Lemma 3.7 and (5.19), we get that

lim
δ↓0

∫ π

0

dθ1 · · ·
∫ π

0

dθN−2

∫ 2π

0

Φ(θ1, . . . , θN−2)dθN−1

×
∫

Ωδ,�θ
1

v(x) dx

∫
{x+r�θ∈Ωδ,r>0}

|u(x) − u(x + r	θ)|p−2 u(x) − u(x + r	θ)
r1+ps

dr

= lim
δ↓0

∫
Γδ,�θ

1

dσ

∫ π

0

dθ1 · · ·
∫ π

0

dθN−2

∫ 2π

0

Φ(θ1, . . . , θN−2)dθN−1

× 〈	n(x), 	θ〉
∫ ∞

0

χ{x+t�θ∈Lδ,�θ
x }v(x + t	θ) dt

×
∫ ∞

0

χ{x+(t+r)�θ∈Ωδ}|u(x + t	θ)

− u(x + (t + r)	θ)|p−2 u(x + t	θ) − u(x + (t + r)	θ)
r1+ps

dr. (5.36)

Let ũ(t) = u(x + t	θ) and ṽ(t) = v(x + t	θ). Then ũ ∈ C[0, T ] ∩ C1(0, T ],
ṽ ∈ C[0, T ], where we recall that T is given in (5.25). Since ũ(t) = f(x +
t	θ)ρ(x+t	θ)β−1+g(x+t	θ) for some f, g ∈ C2(Ω) we have that N 2−β

p ũ(0) exists
and is given by N 2−β

p ũ(0) = −|β − 1|p−1|f(x)|p−2f(x). Applying Lemma 5.1
to the functions ũ and ṽ we get from (5.36) that

CN,p,s lim
δ↓0

∫
Γδ,�θ

1

dσ

∫ π

0

dθ1 · · ·
∫ π

0

dθN−2

∫ 2π

0

Φ(θ1, . . . , θN−2)dθN−1

× 〈	n(x), 	θ〉
∫ ∞

0

χ{x+t�θ∈Lδ,�θ
x }v(x + t	θ) dt

×
∫ ∞

0

χ{x+(t+r)�θ∈Ωδ}|u(x + t	θ)

− u(x + (t + r)	θ)|p−2 u(x + t	θ) − u(x + (t + r)	θ)
r1+ps

dr

=
(β − 1)p−1CN,p,sCp,s

C1,p,s

∫
∂Ω

v(x)|f(x)|p−2f(x)dσ

×
∫ π

2

0

dθ1 · · ·
∫ π

0

dθN−2

∫ 2π

0

Φ(θ1, . . . , θN−2)〈	n(x), 	θ〉β(p−1)

χ{〈�n(x),�θ〉>0}dθN−1

=
(β − 1)p−1CN,p,sCp,s

C1,p,s

∫
∂Ω

v(x)|f(x)|p−2f(x)dσ

×
∫ π

2

0

dθ1 · · ·
∫ π

0

dθN−2

∫ 2π

0

Φ(θ1, . . . , θN−2) cos(θ1)β(p−1)dθN−1

=
CN,p,sCp,s

C1,p,s

∫
{|x|=1,xN >0,x∈RN }

x
β(p−1)
N dσ

∫
∂Ω

v(β − 1)p−1|f |p−2fdσ

= −Cp,s

∫
∂Ω

vN 2−β
p u dσ. (5.37)
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We have shown that the first term in (5.17) is given by (5.37) for every u ∈
C2

β(Ω) and v ∈ C1
β(Ω). It is easy to see that the second term in (5.17) is given

by
∫
Ω

v(−Δ)s
Ω,pu dx for every u ∈ C2

β(Ω) and v ∈ C1
β(Ω). Combining these

two results we get (3.18) for u ∈ C2
β(Ω) and v ∈ C1

β(Ω). Finally, since C1
β(Ω)

is dense in W s,p(Ω) (by Proposition 5.2), we obtain (3.18) for u ∈ C2
β(Ω) and

v ∈ W s,p(Ω) by density. The proof of theorem is finished.

Proof of Corollaries 3.11 and 3.12 The identity (3.22) follows directly from
(3.18) and the expression (3.10) of N 2−β

p u given in Lemma 3.4. The identity
(3.23) also follows from (3.18) and the expression (3.12) of N 2−β

p u given in
Lemma 3.5.

6. The fractional Neumann and Robin boundary conditions

In this section we use the results obtained in Sect. 3 to define a realization of the
regional fractional p-Laplacian (−Δ)s

Ω,p with fractional Neumann and Robin
type boundary conditions. Let Ω ⊂ R

N be a bounded open set with Lipschitz
continuous boundary ∂Ω. Let p ∈ (1,∞), 0 < s < 1 and γ a non-negative
measurable function in L∞(∂Ω). Let Φγ be the functional with effective domain
D(Φγ) = W s,p(Ω) ∩ L2(Ω) and defined on L2(Ω) by

Φγ(u) :=

⎧⎨
⎩

CN,p,s

2p

∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|N+ps

dxdy +
1

p

∫
∂Ω

γ|u|p dσ, u ∈ W s,p(Ω),

∞, u ∈ L2(Ω)\W s,p(Ω).

(6.1)

We have the following result.

Theorem 6.1. Let p ∈ (1,∞) and 0 < s < 1. Let Φγ be the functional defined in
(6.1). Then Φγ is proper, convex and lower semi-continuous. Let f ∈ L2(Ω),
u ∈ W s,p(Ω) ∩ L2(Ω) and ∂Φγ the single-valued subgradient of Φγ . Then the
following assertions hold.

(a) If 1
p < s < 1, then f = ∂Φγ(u) if and only if for every v ∈ W s,p(Ω) ∩

L2(Ω),

CN,p,s

2

∫
Ω

∫
Ω

|u(x) − u(y)|p−2 (u(x) − u(y))(v(x) − v(y))
|x − y|N+ps

dxdy

+
∫

∂Ω

γ|u|p−2u(x)v(x) dσ =
∫

Ω

fv dx. (6.2)

(b) If 0 < s ≤ 1
p , then u ∈ W s,p

0 (Ω) ∩ L2(Ω) and f = ∂Φγ(u) if and only if
for every v ∈ W s,p

0 (Ω) ∩ L2(Ω),

CN,p,s

2

∫
Ω

∫
Ω

|u(x) − u(y)|p−2 (u(x) − u(y))(v(x) − v(y))
|x − y|N+ps

dxdy =
∫

Ω

fv dx.

(6.3)
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Moreover, if Ω is of class C1,1, p ∈ (1,∞), max{ 1
p , p−1

p } < s < 1 and β :=
ps−1
p−1 + 1, then⎧⎪⎨

⎪⎩
D(∂Φγ) ∩ C2

β(Ω) = {u ∈ C2
β(Ω), (−Δ)s

Ω,pu ∈ L2(Ω), Cp,sN 2−β
p u

+γ|u|p−2u = 0 on ∂Ω}
∂Φγ(u) = (−Δ)s

Ω,pu.

(6.4)

Proof. Let p ∈ (1,∞), 0 < s < 1 and Φγ the functional defined in (6.1). It is
clear that Φγ is proper and convex. It is also easy to show that Φγ is lower
semi-continuous. Let ∂Φγ be the subgradient of Φγ . It is clear that ∂Φγ is
single valued. Let f ∈ L2(Ω), 1

p < s < 1 and u ∈ W s,p(Ω) ∩ L2(Ω). It is
straightforward (this follows as the case of the classical p-Laplacian) to show
that f = ∂Φγ(u) if and only if (6.2) holds for every v ∈ W s,p(Ω) ∩ L2(Ω). If
0 < s ≤ 1

p , then the identity (6.3) is obtained similarly by observing that in this
case W s,p(Ω) = W s,p

0 (Ω). It remains to show (6.4). Let max{ 1
p , p−1

p } < s < 1,
β := ps−1

p−1 + 1 and assume that Ω is of class C1,1. Set

Wγ := {u ∈ C2
β(Ω), (−Δ)s

Ω,pu ∈ L2(Ω), Cp,sN 2−β
p u + γ|u|p−2u = 0 on ∂Ω}.

Let u ∈ D(∂Φγ) ∩ C2
β(Ω) and f := ∂Φγ(u). Then by definition, f ∈ L2(Ω)

and (6.2) holds for every v ∈ W s,p(Ω) ∩ L2(Ω). Using the integration by parts
formula (3.18), we get from (6.2) that, for every v ∈ W s,p(Ω) ∩ L2(Ω),∫

Ω

v(−Δ)s
Ω,pu dx +

∫
∂Ω

v
[
Cp,sN 2−β

p u + γ|u|p−2u
]

dσ =
∫

Ω

fv dx. (6.5)

In particular, it follows from (6.5) that for every v ∈ D(Ω),∫
Ω

v(−Δ)s
Ω,pu dx =

∫
Ω

fv dx.

Hence, ∂Φγ(u) = (−Δ)s
Ω,pu = f . Since f ∈ L2(Ω), we have that ∂Φγ(u) =

(−Δ)s
Ω,pu ∈ L2(Ω). From this equality and (6.5) we also get that Cp,sN 2−β

p u+
γ|u|p−2u = 0 on ∂Ω. We have shown that u ∈ Wγ and ∂Φγ(u) = (−Δ)s

Ω,pu.
To prove the converse inclusion, let u ∈ Wγ . Then it follows from Theorem 3.9
again that (6.2) holds for every v ∈ W s,p(Ω) ∩ L2(Ω) with f = (−Δ)s

Ω,pu =
∂Φγ(u). Hence, u ∈ D(∂Φγ) ∩ C2

β(Ω) and this completes the proof of the
theorem. �

In fact, using Theorem 4.1, we have that

D(∂Φγ) ∩ C2
β(Ω) = {u ∈ C2

β(Ω), Cp,sN 2−β
p u + γ|u|p−2u = 0 on ∂Ω}.

We conclude the paper with the following remark.

Remark 6.2. If γ ≡ 0 and 1
p < s < 1, then ∂Φ0 is a realization in L2(Ω) of

(−Δ)s
Ω,p with fractional Neumann boundary conditions N 2−β

p u = 0 on ∂Ω,
if γ �≡ 0 and 1

p < s < 1, then ∂Φγ is a realization in L2(Ω) of (−Δ)s
Ω,p

with Robin boundary conditions Cp,sN 2−β
p u + γ|u|p−2u = 0 on ∂Ω. The case

0 < s ≤ 1
p corresponds to a realization in L2(Ω) of (−Δ)s

Ω,p with Dirichlet
boundary condition u = 0 on ∂Ω.
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