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Abstract. We obtain nontrivial solutions of a critical (p, q)-Laplacian prob-
lem in a bounded domain. In addition to the usual difficulty of the loss
of compactness associated with problems involving critical Sobolev expo-
nents, this problem lacks a direct sum decomposition suitable for applying
the classical linking theorem. We show that every Palais–Smale sequence
at a level below a certain energy threshold admits a subsequence that con-
verges weakly to a nontrivial critical point of the variational functional.
Then we prove an abstract critical point theorem based on a cohomolog-
ical index and use it to construct a minimax level below this threshold.
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1. Introduction and main results

The (p, q)-Laplacian operator
Δp u + Δq u = div

[(|∇u|p−2 + |∇u|q−2
) ∇u

]

appears in a wide range of applications that include biophysics [12], plasma
physics [25], reaction–diffusion equations [1,5], and models of elementary par-
ticles [2,4,9]. Consequently, quasilinear elliptic boundary value problems in-
volving this operator have been widely studied in the literature (see, e.g., [3,16,
17,24] and the references therein). In particular, the critical (p, q)-Laplacian
problem

⎧
⎨

⎩

−Δp u − Δq u = μ |u|r−2 u + |u|p∗−2 u in Ω

u = 0 on ∂Ω,
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where Ω is a bounded domain in R
N , N > p > q > 1, μ > 0, and p∗ =

Np/(N −p) is the critical Sobolev exponent, has been studied by Li and Zhang
[14] in the case 1 < r < q and by Yin and Yang [26] in the case p < r < p∗. In
the present paper we consider the question of existence of nontrivial solutions
in the borderline case

⎧
⎨

⎩

−Δp u − Δq u = μ |u|q−2 u + λ |u|p−2 u + |u|p∗−2 u in Ω

u = 0 on ∂Ω
(1.1)

with μ ∈ R and λ > 0. In addition to the usual difficulty of the lack of com-
pactness associated with problems involving critical exponents, this problem
is further complicated by the absence of a direct sum decomposition suitable
for applying the linking theorem when μ is above the second eigenvalue of the
eigenvalue problem

⎧
⎨

⎩

−Δq u = μ |u|q−2 u in Ω

u = 0 on ∂Ω.
(1.2)

To overcome this difficulty, we will first prove an abstract critical point theorem
based on a cohomological index that generalizes the classical linking theorem
of Rabinowitz [23].

Weak solutions of problem (1.1) coincide with critical points of the C1-
functional

Φ(u) =
∫

Ω

(
1
p

|∇u|p +
1
q

|∇u|q − μ

q
|u|q − λ

p
|u|p − 1

p∗ |u|p∗
)

dx,

u ∈ W 1,p
0 (Ω), (1.3)

where W 1,p
0 (Ω) is the usual Sobolev space with the norm ‖u‖ = ‖∇u‖p and

‖·‖p denotes the norm in Lp(Ω). Recall that Φ satisfies the Palais–Smale com-
pactness condition at the level c ∈ R, or (PS)c for short, if every sequence
(uj) ⊂ W 1,p

0 (Ω) such that Φ(uj) → c and Φ′(uj) → 0, called a (PS)c sequence,
has a convergent subsequence. Let

S = inf
u∈W 1,p

0 (Ω)\{0}

‖∇u‖p
p

‖u‖p
p∗

> 0 (1.4)

be the best constant for the Sobolev imbedding W 1,p
0 (Ω) ↪→ Lp∗

(Ω). Our
existence results will be based on the following proposition.

Proposition 1.1. If c < SN/p/N and c �= 0, then every (PS)c sequence has a
subsequence that converges weakly to a nontrivial critical point of Φ.

Let

μ1 = inf
u∈W 1,q

0 (Ω)\{0}

‖∇u‖q
q

‖u‖q
q

> 0 (1.5)
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be the first eigenvalue of the eigenvalue problem (1.2). First we seek a nonneg-
ative nontrivial solution of problem (1.1) when μ ≤ μ1. Let

λ1 = inf
u∈W 1,p

0 (Ω)\{0}

‖∇u‖p
p

‖u‖p
p

> 0 (1.6)

be the first eigenvalue of the eigenvalue problem
⎧
⎨

⎩

−Δp u = λ |u|p−2 u in Ω

u = 0 on ∂Ω.

Our first main result is the following theorem.

Theorem 1.2. Assume that 1 < q < p and p2 < N . If 0 < λ < λ1 and
μ ≤ μ1, then problem (1.1) has a nonnegative nontrivial solution in each of
the following cases:

(i) N(p − 1)/(N − p) ≤ q < (N − p) p/N ,
(ii) N(p − 1)/(N − 1) < q < min {N(p − 1)/(N − p), (N − p) p/N},
(iii) (1 − 1/N) p2 + p < N and q = N(p − 1)/(N − 1),
(iv) (p − 1) p2/(N − p) < q < N(p − 1)/(N − 1).

Now we assume that p < q∗, where q∗ = Nq/(N − q) is the critical
exponent for the imbedding W 1,q

0 (Ω) ↪→ Lp(Ω). Then we have the following
theorem.

Theorem 1.3. Assume that 1 < q < p < min {N, q∗}. If μ < μ1, then there
exists λ∗(μ) > 0 such that problem (1.1) has a nonnegative nontrivial solution
for all λ ≥ λ∗(μ).

Let u±(x) = max {±u(x), 0} be the positive and negative parts of u,
respectively, and set

Φ+(u) =
∫

Ω

(
1
p

|∇u|p +
1
q

|∇u|q − μ

q
(u+)q − λ

p
(u+)p − 1

p∗ (u+)p∗
)

dx,

u ∈ W 1,p
0 (Ω).

If u is a critical point of Φ+, then

Φ+′(u)u− =
∫

Ω

(|∇u−|p + |∇u−|q) dx = 0

and hence u− = 0, so u = u+ is a critical point of Φ and therefore a nonnegative
solution of problem (1.1). Moreover, if μ ≥ 0 then u > 0 in Ω. Indeed, due
to the critical growth of the nonlinearity, we can guarantee that u is bounded
by Cianchi [6, Theorem 2], hence we apply Lieberman [15, Theorem 1.7], and
Pucci and Serrin [22, Theorem 1.1.1] to get u > 0. Proofs of Theorems 1.2 and
1.3 will be based on constructing minimax levels of mountain pass type for Φ+

below the threshold level given in Proposition 1.1.
Next we seek a (possibly nodal) nontrivial solution of problem (1.1) when

μ ≥ μ1. We have the following theorem.
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Theorem 1.4. Assume that 1 < q < p < min {N, q∗}. If μ ≥ μ1, then there
exists λ∗(μ) > 0 such that problem (1.1) has a nontrivial solution for all λ ≥
λ∗(μ).

This extension of Theorem 1.3 is nontrivial. Indeed, the functional Φ
does not have the mountain pass geometry when μ ≥ μ1 since the origin is
no longer a local minimizer, and a linking type argument is needed. However,
the classical linking theorem cannot be used since the nonlinear operator −Δq

does not have linear eigenspaces. We will use a more general construction
based on sublevel sets as in Perera and Szulkin [21] (see also Perera et al. [20,
Proposition 3.23]). Moreover, the standard sequence of eigenvalues of −Δq

based on the genus does not give enough information about the structure of
the sublevel sets to carry out this linking construction. Therefore we will use
a different sequence of eigenvalues introduced in Perera [19] that is based on
a cohomological index.

The Z2-cohomological index of Fadell and Rabinowitz [11] is defined as
follows. Let W be a Banach space and let A denote the class of symmetric
subsets of W\ {0}. For A ∈ A, let A = A/Z2 be the quotient space of A with
each u and −u identified, let f : A → RP∞ be the classifying map of A, and
let f∗ : H∗(RP∞) → H∗(A) be the induced homomorphism of the Alexander–
Spanier cohomology rings. The cohomological index of A is defined by

i(A) =

⎧
⎨

⎩

sup
{
m ≥ 1: f∗(ωm−1) �= 0

}
, A �= ∅

0, A = ∅,

where ω ∈ H1(RP∞) is the generator of the polynomial ring H∗(RP∞) =
Z2[ω]. For example, the classifying map of the unit sphere Sm−1 in R

m, m ≥
1 is the inclusion RPm−1 ⊂ RP∞, which induces isomorphisms on Hq for
q ≤ m − 1, so i(Sm−1) = m. The following proposition summarizes the basic
properties of this index.

Proposition 1.5. (Fadell and Rabinowitz [11]) The index i : A → N ∪ {0,∞}
has the following properties:
(i1) Definiteness: i(A) = 0 if and only if A = ∅;
(i2) Monotonicity: if there is an odd continuous map from A to B (in partic-

ular, if A ⊂ B), then i(A) ≤ i(B). Thus, equality holds when the map is
an odd homeomorphism;

(i3) Dimension: i(A) ≤ dim W ;
(i4) Continuity: if A is closed, then there is a closed neighborhood N ∈ A of

A such that i(N) = i(A). When A is compact, N may be chosen to be a
δ-neighborhood Nδ(A) = {u ∈ W : dist (u,A) ≤ δ};

(i5) Subadditivity: if A and B are closed, then i(A ∪ B) ≤ i(A) + i(B);
(i6) Stability: if SA is the suspension of A �= ∅, obtained as the quotient space

of A × [−1, 1] with A × {1} and A × {−1} collapsed to different points,
then i(SA) = i(A) + 1;

(i7) Piercing property: if A, A0 and A1 are closed, and ϕ : A×[0, 1] → A0∪A1

is a continuous map such that ϕ(−u, t) = −ϕ(u, t) for all (u, t) ∈ A ×
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[0, 1], ϕ(A× [0, 1]) is closed, ϕ(A×{0}) ⊂ A0 and ϕ(A×{1}) ⊂ A1, then
i(ϕ(A × [0, 1]) ∩ A0 ∩ A1) ≥ i(A);

(i8) Neighborhood of zero: if U is a bounded closed symmetric neighborhood
of 0, then i(∂U) = dim W .

The Dirichlet spectrum of −Δq in Ω consists of those μ ∈ R for which
problem (1.2) has a nontrivial solution. Although a complete description of
the spectrum is not yet known when N ≥ 2, we can define an increasing
and unbounded sequence of eigenvalues via a suitable minimax scheme. The
standard scheme based on the genus does not give the index information nec-
essary to prove Theorem 1.4, so we will use the following scheme based on the
cohomological index as in Perera [19]. Let

Ψ(u) =
1∫

Ω

|u|q dx

, u ∈ Sq =
{

u ∈ W 1,q
0 (Ω):

∫

Ω

|∇u|q dx = 1
}

.

Then eigenvalues of problem (1.2) on Sq coincide with critical values of Ψ. We
use the standard notation

Ψa = {u ∈ Sq : Ψ(u) ≤ a} , Ψa = {u ∈ Sq : Ψ(u) ≥ a} , a ∈ R

for the sublevel sets and superlevel sets, respectively. Let F denote the class
of symmetric subsets of Sq and set

μk := inf
M∈F, i(M)≥k

sup
u∈M

Ψ(u), k ∈ N.

Then 0 < μ1 < μ2 ≤ μ3 ≤ · · · → +∞ is a sequence of eigenvalues of problem
(1.2) and

μk < μk+1 =⇒ i(Ψμk) = i(Sq\Ψμk+1) = k (1.7)

(see Perera et al. [20, Propositions 3.52 and 3.53]).
Proof of Theorem 1.4 will make essential use of (1.7) and will be based on

the following abstract critical point theorem, which is of independent interest.
Let W be a Banach space, let

S = {u ∈ W : ‖u‖ = 1}
be the unit sphere in W , and let

π : W\ {0} → S, u �→ u

‖u‖
be the radial projection onto S.

Theorem 1.6. Let Φ be a C1-functional on W and let A0, B0 be disjoint non-
empty closed symmetric subsets of S such that

i(A0) = i(S\B0) < ∞. (1.8)

Assume that there exist R > r > 0 and v ∈ S\A0 such that

sup Φ(A) ≤ inf Φ(B), sup Φ(X) < ∞,
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where

A = {tu : u ∈ A0, 0 ≤ t ≤ R} ∪ {R π((1 − t)u + tv) : u ∈ A0, 0 ≤ t ≤ 1} ,

B = {ru : u ∈ B0} ,

X = {tu : u ∈ A, ‖u‖ = R, 0 ≤ t ≤ 1} .

Let Γ = {γ ∈ C(X,W ) : γ(X) is closed and γ|A = idA} and set

c := inf
γ∈Γ

sup
u∈γ(X)

Φ(u).

Then

inf Φ(B) ≤ c ≤ sup Φ(X)

and Φ has a (PS)c sequence.

Remark 1.7. Theorem 1.6, which does not require a direct sum decomposition,
generalizes the linking theorem of Rabinowitz [23].

2. Preliminaries

In this preliminary section we prove Proposition 1.1 and Theorem 1.6.

Proof of Proposition 1.1. Let (uj) be a (PS)c sequence. Then

Φ(uj) =
∫

Ω

(
1
p

|∇uj |p +
1
q

|∇uj |q − μ

q
|uj |q − λ

p
|uj |p − 1

p∗ |uj |p∗
)

dx

= c + o(1) (2.1)

and

Φ′(uj)uj =
∫

Ω

(
|∇uj |p + |∇uj |q − μ |uj |q − λ |uj |p − |uj |p∗)

dx = o(1) ‖uj‖ .

(2.2)
So
∫

Ω

[(
1
q

− 1
p

)
(|∇uj |q − μ |uj |q) +

(
1
p

− 1
p∗

)
|uj |p∗

]
dx = o(1) ‖uj‖ + O(1),

and since q < p < p∗, this and the Hölder and Young inequalities yield
∫

Ω

|uj |p∗
dx ≤ o(1) ‖uj‖ + O(1).

Since p > 1, it follows from this and (2.1) that (uj) is bounded in W 1,p
0 (Ω).

So a renamed subsequence converges to some u weakly in W 1,p
0 (Ω), strongly

in Ls(Ω) for all 1 ≤ s < p∗, and a.e. in Ω. Then u is a critical point of Φ by
the weak continuity of Φ′.

Suppose u = 0. Since (uj) is bounded in W 1,p
0 (Ω) and converges to 0 in

Lp(Ω), (2.2) gives

o(1) =
∫

Ω

(
|∇uj |p + |∇uj |q − |uj |p∗)

dx ≥ ‖uj‖p

(

1 − ‖uj‖p∗−p

Sp∗/p

)
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by (1.4). If ‖uj‖ → 0, then Φ(uj) → 0, contradicting c �= 0, so this implies

‖uj‖p ≥ SN/p + o(1)

for a renamed subsequence. Then (2.1) and (2.2) yield

c =
∫

Ω

[(
1
p

− 1
p∗

)
|∇uj |p +

(
1
q

− 1
p∗

)
|∇uj |q

]
dx + o(1) ≥ SN/p

N
+ o(1),

contradicting c < SN/p/N . �
Proof of Theorem 1.6. First we show that A (homotopically) links B with re-
spect to X in the sense that

γ(X) ∩ B �= ∅ ∀γ ∈ Γ. (2.3)

If (2.3) does not hold, then there is a map γ ∈ C(X,W\B) such that γ(X) is
closed and γ|A = idA. Let

Ã = {R π((1 − |t|)u + tv) : u ∈ A0, −1 ≤ t ≤ 1}
and note that Ã is closed since A0 is closed (here (1 − |t|)u + tv �= 0 since v is
not in the symmetric set A0). Since

SA0 → Ã, (u, t) �→ R π((1 − |t|)u + tv)

is an odd continuous map,

i(Ã) ≥ i(SA0) = i(A0) + 1 (2.4)

by (i2) and (i6) of Proposition 1.5. Consider the map

ϕ : Ã × [0, 1] → W\B, ϕ(u, t) =

⎧
⎨

⎩

γ(tu), u ∈ Ã ∩ A

−γ(−tu), u ∈ Ã\A,

which is continuous since γ is the identity on the symmetric set {tu : u ∈ A0,

0 ≤ t ≤ R}. We have ϕ(−u, t) = −ϕ(u, t) for all (u, t) ∈ Ã × [0, 1], ϕ(Ã ×
[0, 1]) = γ(X)∪ (−γ(X)) is closed, and ϕ(Ã×{0}) = {0} and ϕ(Ã×{1}) = Ã

since γ|A = idA. Applying (i7) with Ã0 = {u ∈ W : ‖u‖ ≤ r} and Ã1 =
{u ∈ W : ‖u‖ ≥ r} gives

i(Ã) ≤ i(ϕ(Ã × [0, 1]) ∩ Ã0 ∩ Ã1) ≤ i((W\B) ∩ Sr) = i(Sr\B) = i(S\B0),
(2.5)

where Sr = {u ∈ W : ‖u‖ = r}. By (2.4) and (2.5), i(A0) < i(S\B0), contra-
dicting (1.8). Hence (2.3) holds.

It follows from (2.3) that c ≥ inf Φ(B), and c ≤ sup Φ(X) since idX ∈
Γ. By a standard argument, Φ has a (PS)c sequence (see, e.g., Ghoussoub
[13]). �
Remark 2.1. The linking construction in the above proof was used in Perera
and Szulkin [21] to obtain nontrivial solutions of p-Laplacian problems with
nonlinearities that interact with the spectrum. A similar construction based
on the notion of cohomological linking was given in Degiovanni and Lancelotti
[7]. See also Perera et al. [20, Proposition 3.23].
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3. Proofs of Theorems 1.2 and 1.3

Fix u0 > 0 in W 1,p
0 (Ω) such that ‖u0‖p∗ = 1. Since q < p < p∗,

Φ+(tu0) =
∫

Ω

(
tp

p
|∇u0|p +

tq

q
|∇u0|q − μ tq

q
uq

0 − λ tp

p
up

0

)
dx − tp

∗

p∗ → −∞

as t → +∞. Take t0 > 0 so large that Φ+(t0u0) ≤ 0, let

Γ =
{

γ ∈ C([0, 1],W 1,p
0 (Ω)) : γ(0) = 0, γ(1) = t0u0

}

be the class of paths joining 0 and t0u0, and set

c := inf
γ∈Γ

max
u∈γ([0,1])

Φ+(u).

Lemma 3.1. If 0 < c < SN/p/N , then problem (1.1) has a nonnegative non-
trivial solution.

Proof. By the mountain pass theorem, Φ+ has a (PS)c sequence (uj). An argu-
ment similar to that in the proof of Proposition 1.1 shows that a subsequence
of (uj) converges weakly to a nontrivial critical point u of Φ+. �

We have the following upper bounds for c.

Lemma 3.2. Let λ̃ = λ/2.

(i) If
∫
Ω

|∇u0|p dx > λ̃
∫
Ω

up
0 dx, then

c ≤ 1
N

[∫

Ω

(|∇u0|p − λ̃ up
0

)
dx

]N/p

+
(

1
q

− 1
p

)
[∫

Ω

(|∇u0|q − μ uq
0

)
dx

]p/(p−q)

(
λ̃

∫

Ω

up
0 dx

)q/(p−q)
.

(ii) If
∫
Ω

|∇u0|p dx ≤ λ̃
∫
Ω

up
0 dx, then

c ≤
(

1
q

− 1
p

)
[∫

Ω

(|∇u0|q − μ uq
0

)
dx

]p/(p−q)

(
λ̃

∫

Ω

up
0 dx

)q/(p−q)
.

Proof. Since γ(s) = st0u0 is a path in Γ,

c ≤ max
s∈[0,1]

Φ+(st0u0) ≤ max
t≥0

Φ+(tu0) ≤ max
t≥0

[
tp

p

∫

Ω

(|∇u0|p − λ̃ up
0

)
dx − tp

∗

p∗

]

+ max
t≥0

[
tq

q

∫

Ω

(|∇u0|q − μ uq
0

)
dx − λ̃ tp

p

∫

Ω

up
0 dx

]

.

�
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Proof of Theorem 1.2. Without loss of generality we may assume that 0 ∈ Ω.
Let r > 0 be so small that B2r(0) ⊂ Ω, take a function ψ ∈ C∞

0 (B2r(0), [0, 1])
such that ψ = 1 on Br(0), and set

uε(x) =
ψ(x)

(
ε + |x|p/(p−1)

)(N−p)/p
, vε(x) =

uε(x)
‖uε‖p∗

for ε > 0. Then ‖vε‖p∗ = 1 and
∫

Ω

|∇vε|p dx = S + O(ε(N−p)/p), (3.1)

∫

Ω

vp
ε dx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Kεp−1 + O(ε(N−p)/p), p2 < N

Kεp−1 | log ε| + O(εp−1), p2 = N

O(ε(N−p)/p), p2 > N

(3.2)

for some constant K > 0,

∫

Ω

|∇vε|q dx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

O(εN(p−1)(p−q)/p2
), q > N(p−1)

N−1

O(εN(N−p)(p−1)/(N−1) p2 | log ε|), q = N(p−1)
N−1

O(ε(N−p) q/p2
), q < N(p−1)

N−1 ,

(3.3)

and

∫

Ω

vq
ε dx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

O(ε(p−1)[Np−(N−p) q]/p2
), q > N(p−1)

N−p

O(εN(p−1)/p2 | log ε|), q = N(p−1)
N−p

O(ε(N−p) q/p2
), q < N(p−1)

N−p

(3.4)

as ε → 0 (see, e.g., Drábek and Huang [10]). Consider the critical level c defined
at the beginning of this section with u0 = vε. Our aim is to apply Lemma 3.1.
Since μ ≤ μ1, by (1.5), (1.6), and (1.4) one has

Φ+(u) ≥ 1
p

(
1 − λ

λ1

)
‖u‖p − 1

p∗ S−p∗/p ‖u‖p∗ ∀u ∈ W 1,p
0 (Ω).

Since λ < λ1 and p∗ > p, it follows from this that 0 is a strict local minimizer
of Φ+, so c > 0. We will verify that in each case c < SN/p/N for ε > 0
sufficiently small by using Lemma 3.2 (i), with u0 = vε, and (3.1)–(3.4).

(i) Since p2 < N and q ≥ N(p − 1)/(N − p) > N(p − 1)/(N − 1), we have

c ≤ 1
N

[
S − Kλ̃εp−1 + O(ε(N−p)/p)

]N/p

+ O(ε(p−1)[N/p−q/(p−q)]). (3.5)

(N − p)/p > p − 1 since p2 < N , and (p − 1)[N/p − q/(p − q)] > p − 1
since q < (N − p) p/N , so the desired conclusion follows.

(ii) Since N(p − 1)/(N − 1) < q < N(p − 1)/(N − p), (3.5) still holds, and
(p − 1)[N/p − q/(p − q)] > p − 1 since q < (N − p) p/N .
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(iii) Since q = N(p − 1)/(N − 1) < N(p − 1)/(N − p), we have

c ≤ 1
N

[
S − Kλ̃εp−1 + O(ε(N−p)/p)

]N/p

+O(εN(N−p2)(p−1)/(N−p) p | log ε|(N−1) p/(N−p)),

and N(N − p2)(p − 1)/(N − p) p > p − 1 since (1 − 1/N) p2 + p < N .
(iv) Since q < N(p − 1)/(N − 1) < N(p − 1)/(N − p), we have

c ≤ 1
N

[
S − Kλ̃εp−1 + O(ε(N−p)/p)

]N/p

+ O(ε(N−p2) q/p (p−q)),

and (N − p2) q/p (p − q) > p − 1 since q > (p − 1) p2/(N − p).

�

Proof of Theorem 1.3. We apply Lemma 3.1. Since q < p < q∗, W 1,p
0 (Ω) ↪→

W 1,q
0 (Ω) ↪→ Lp(Ω) by the Hölder inequality and the Sobolev imbedding, so

T = inf
u∈W 1,p

0 (Ω)\{0}

‖∇u‖q
q

‖u‖q
p

≥ inf
u∈W 1,q

0 (Ω)\{0}

‖∇u‖q
q

‖u‖q
p

> 0. (3.6)

By (1.4), (1.5), and (3.6),

Φ+(u) ≥ 1
p

‖u‖p − 1
p∗ S−p∗/p ‖u‖p∗

+
1
q

(
1 − μ+

μ1

)
‖∇u‖q

q

− λ

p
T−p/q ‖∇u‖p

q ∀u ∈ W 1,p
0 (Ω),

where μ+ = max {μ, 0}. Since μ+ < μ1 and p∗ > p > q, it follows from this
that 0 is a strict local minimizer of Φ+, so c > 0. It is clear from Lemma 3.2
(ii) that c < SN/p/N for λ > 0 sufficiently large. �

4. Proof of Theorem 1.4

Proof of Theorem 1.4. Since q < p, W 1,p
0 (Ω) ↪→ W 1,q

0 (Ω) by the Hölder in-
equality. Let Sp denote the unit sphere of W 1,p

0 (Ω) and let

πp(u) =
u

‖∇u‖p

, u ∈ W 1,p
0 (Ω)\ {0} , πq(u) =

u

‖∇u‖q

, u ∈ W 1,q
0 (Ω)\ {0}

be the radial projections onto Sp and Sq, respectively. Since μ ≥ μ1, μk ≤ μ <
μk+1 for some k ≥ 1. Then

i(π−1
q (Ψμk)) = i(π−1

q (Sq\Ψμk+1)) = k (4.1)

by (1.7). Set M =
{
u ∈ W 1,q

0 (Ω) : ‖u‖q = 1
}
. By Degiovanni and Lancelotti

[8, Theorem 2.3], the set π−1
q (Ψμk) ∪ {0} contains a symmetric cone C such

that C ∩ M is compact in C1(Ω) and

i(C\ {0}) = k. (4.2)
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Since W 1,p
0 (Ω) is a dense linear subspace of W 1,q

0 (Ω), the inclusion
π−1

q (Sq\Ψμk+1) ∩ W 1,p
0 (Ω) ⊂ π−1

q (Sq\Ψμk+1) is a homotopy equivalence by
Palais [18, Theorem 17], so

i(π−1
q (Sq\Ψμk+1) ∩ W 1,p

0 (Ω)) = k (4.3)

by (4.1). We apply Theorem 1.6 to our functional Φ defined in (1.3) with

A0 = πp(C\ {0}) = πp(C ∩ M), B0 = Sp\(π−1
q (Sq\Ψμk+1) ∩ W 1,p

0 (Ω)),

noting that A0 is compact since C ∩ M is compact and πp is continuous. We
have

i(A0) = i(C\ {0}) = k

by (4.2), and

i(Sp\B0) = i(π−1
q (Sq\Ψμk+1) ∩ W 1,p

0 (Ω)) = k

by (4.3), so (1.8) holds.
For u ∈ Sp and t ≥ 0,

Φ(tu) ≤ tq

q

∫

Ω

(|∇u|q − μ |u|q) dx − λ̃ tp

p

∫

Ω

|u|p dx − tp

p

(
λ̃

∫

Ω

|u|p dx − 1
)

,

(4.4)
where λ̃ = λ/2. Pick any v ∈ Sp\A0. Since A0 is compact, so is the set

X0 = {πp((1 − t)u + tv) : u ∈ A0, 0 ≤ t ≤ 1}
and hence

α = inf
u∈X0

∫

Ω

|u|p dx > 0, β = sup
u∈X0

∫

Ω

(|∇u|q − μ |u|q) dx < ∞.

Let λ ≥ 2/α, so that λ̃α ≥ 1. Then for u ∈ A0 ⊂ X0 and t ≥ 0, (4.4) gives

Φ(tu) ≤ −(μ − μk)
tq

q

∫

Ω

|u|q dx ≤ 0 (4.5)

since μ ≥ μk. For u ∈ X0 and t ≥ 0, (4.4) gives

Φ(tu) ≤ β tq

q
− λ̃α tp

p
≤

(
1
q

− 1
p

)
(β+)p/(p−q)

(λ̃α)q/(p−q)
, (4.6)

where β+ = max {β, 0}. Fix λ so large that the last expression is < SN/p/N ,
take positive R ≥ (p β+/q λ̃α)1/(p−q), and let A and X be as in Theorem 1.6.
Then it follows from (4.5) and (4.6) that

sup Φ(A) ≤ 0, sup Φ(X) <
SN/p

N
.

Since p < q∗, W 1,q
0 (Ω) ↪→ Lp(Ω) by the Sobolev imbedding, so

T = inf
u∈W 1,p

0 (Ω)\{0}

‖∇u‖q
q

‖u‖q
p

≥ inf
u∈W 1,q

0 (Ω)\{0}

‖∇u‖q
q

‖u‖q
p

> 0. (4.7)
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By (1.4) and (4.7),

Φ(u) ≥ 1
p

‖u‖p − 1
p∗ S−p∗/p ‖u‖p∗

+
1
q

(
1 − μ

μk+1

)
‖∇u‖q

q

− λ

p
T−p/q ‖∇u‖p

q ∀u ∈ π−1
p (B0).

Since μ < μk+1 and p∗ > p > q, it follows from this that if 0 < r < R is
sufficiently small and B is as in Theorem 1.6, then

inf Φ(B) > 0.

Then 0 < c < SN/p/N and Φ has a (PS)c sequence by Theorem 1.6, a subse-
quence of which converges weakly to a nontrivial critical point of Φ by Propo-
sition 1.1. �
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Università degli Studi di Reggio Calabria
89100 Reggio Calabria
Italy
e-mail: pasquale.candito@unirc.it

Salvatore A. Marano
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