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Abstract. We obtain nontrivial solutions of a critical (p, ¢)-Laplacian prob-
lem in a bounded domain. In addition to the usual difficulty of the loss
of compactness associated with problems involving critical Sobolev expo-
nents, this problem lacks a direct sum decomposition suitable for applying
the classical linking theorem. We show that every Palais—Smale sequence
at a level below a certain energy threshold admits a subsequence that con-
verges weakly to a nontrivial critical point of the variational functional.
Then we prove an abstract critical point theorem based on a cohomolog-
ical index and use it to construct a minimax level below this threshold.
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1. Introduction and main results

The (p, ¢)-Laplacian operator
Apu+ Agu=div [(|[VuP~ + |Vul|?"?) Vu]

appears in a wide range of applications that include biophysics [12], plasma
physics [25], reaction—diffusion equations [1,5], and models of elementary par-
ticles [2,4,9]. Consequently, quasilinear elliptic boundary value problems in-
volving this operator have been widely studied in the literature (see, e.g., [3,16,
17,24] and the references therein). In particular, the critical (p, ¢)-Laplacian
problem

—Apu—Agu=plul"2u+uf 2y inQ

u=0 on 01,
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where € is a bounded domain in RN, N > p > ¢ > 1, p > 0, and p* =
Np/(N —p) is the critical Sobolev exponent, has been studied by Li and Zhang
[14] in the case 1 < r < ¢ and by Yin and Yang [26] in the case p < r < p*. In
the present paper we consider the question of existence of nontrivial solutions
in the borderline case

—Apu—Agu=plulT?u+ Nul2u+ [uff 2w inQ

(1.1)
u=20 on 0f2

with 4 € R and A > 0. In addition to the usual difficulty of the lack of com-
pactness associated with problems involving critical exponents, this problem
is further complicated by the absence of a direct sum decomposition suitable
for applying the linking theorem when g is above the second eigenvalue of the
eigenvalue problem

~Ayu=pluT?u inQ
(1.2)
u=0 on 0f).

To overcome this difficulty, we will first prove an abstract critical point theorem
based on a cohomological index that generalizes the classical linking theorem
of Rabinowitz [23].

Weak solutions of problem (1.1) coincide with critical points of the C1-
functional

1 1 A 1 «
o) = [ (194 219l = 2 gt =2 fup - Ll ) a,
Q \P q q p p
ue WyP(), (1.3)
where W, ”(2) is the usual Sobolev space with the norm [ju| = [Vull, and

|||, denotes the norm in LP(£2). Recall that ® satisfies the Palais-Smale com-
pactness condition at the level ¢ € R, or (PS), for short, if every sequence
(u;) C WyP(€) such that ®(u;) — ¢ and &' (u;) — 0, called a (PS). sequence,
has a convergent subsequence. Let

IVull,

S = inf R ) (1.4)
wewg P@\{o} v

p
p*

be the best constant for the Sobolev imbedding W, *(Q) — L? (). Our
existence results will be based on the following proposition.

Proposition 1.1. If ¢ < SN/P/N and ¢ # 0, then every (PS). sequence has a
subsequence that converges weakly to a nontrivial critical point of ®.

Let
[Vull?

wewr@\{op  lullg

(1.5)

=



Vol. 22 (2015) On a class of critical (p,q)-Laplacian problems 1961

be the first eigenvalue of the eigenvalue problem (1.2). First we seek a nonneg-
ative nontrivial solution of problem (1.1) when p < pq. Let

VullP
[Vall, -

A =
wewg P (@0} llully

(1.6)

be the first eigenvalue of the eigenvalue problem

~Apu=AuP?u in Q

u=20 on 0f.
Our first main result is the following theorem.

Theorem 1.2. Assume that 1 < q¢ < p and p> < N. If0 < X\ < A\ and
w < uy, then problem (1.1) has a nonnegative nontrivial solution in each of
the following cases:

(i) Np—1)/(N—p) <qg<(N-p)p/N,

(i) N(p—1)/(N —1) <g<min{N(p—1)/(N —p),(N —p)p/N},
(iii) (l—l/N)p +p<Nandq*N( - 1)/(N —1),

(iv) (p—1)p*/(N=p) <g<N(p-1)/(N-1).

Now we assume that p < ¢*, where ¢* = Nq/(N — q) is the critical
exponent for the imbedding I/VO1 Q) — LP(Q). Then we have the following
theorem.

Theorem 1.3. Assume that 1 < ¢ < p < min{N,q¢*}. If p < p1, then there

exists \*(u) > 0 such that problem (1.1) has a nonnegative nontrivial solution
for all X > X*(w).

Let u*(x) = max{#u(z),0} be the positive and negative parts of u,
respectively, and set

1 1 " A 1 .
<I>+u=/<Vup+qu—u+q—u+p— u+p>daj,
()= | 5 IVulr + 5 Vel = 2 )T =2 h)r =5 ()

u e WyP(Q).

If u is a critical point of ®T, then
ot (u)u” = / ([Vu™ [P+ |[Vu~|9) dz =0
Q
and hence v~ = 0, so u = u™ is a critical point of ® and therefore a nonnegative
solution of problem (1.1). Moreover, if ;> 0 then «w > 0 in . Indeed, due
to the critical growth of the nonlinearity, we can guarantee that v is bounded
by Cianchi [6, Theorem 2], hence we apply Lieberman [15, Theorem 1.7], and
Pucci and Serrin [22, Theorem 1.1.1] to get u > 0. Proofs of Theorems 1.2 and
1.3 will be based on constructing minimax levels of mountain pass type for ®+
below the threshold level given in Proposition 1.1.
Next we seek a (possibly nodal) nontrivial solution of problem (1.1) when
> 1. We have the following theorem.
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Theorem 1.4. Assume that 1 < ¢ < p < min{N,¢*}. If u > w1, then there
exists A*(u) > 0 such that problem (1.1) has a nontrivial solution for all A >

A" ().

This extension of Theorem 1.3 is nontrivial. Indeed, the functional ®
does not have the mountain pass geometry when p > p; since the origin is
no longer a local minimizer, and a linking type argument is needed. However,
the classical linking theorem cannot be used since the nonlinear operator —A,
does not have linear eigenspaces. We will use a more general construction
based on sublevel sets as in Perera and Szulkin [21] (see also Perera et al. [20,
Proposition 3.23]). Moreover, the standard sequence of eigenvalues of —A,
based on the genus does not give enough information about the structure of
the sublevel sets to carry out this linking construction. Therefore we will use
a different sequence of eigenvalues introduced in Perera [19] that is based on
a cohomological index.

The Zs-cohomological index of Fadell and Rabinowitz [11] is defined as
follows. Let W be a Banach space and let A denote the class of symmetric
subsets of W\ {0}. For A € A, let A = A/Z5 be the quotient space of A with
each v and —u identified, let f : A — RP* be the classifying map of A, and

let f*: H*(RP*) — H*(A) be the induced homomorphism of the Alexander—
Spanier cohomology rings. The cohomological index of A is defined by

sup{m >1: f*(w™ 1) #0}, A#0

A —
i(4) 0. 4_p,

where w € H'(RP®) is the generator of the polynomial ring H*(RP>) =
Zs|w]. For example, the classifying map of the unit sphere S™~% in R™, m >
1 is the inclusion RP™ ' ¢ RP*, which induces isomorphisms on HY for
g <m—1,s0i(S™ 1) = m. The following proposition summarizes the basic
properties of this index.

Proposition 1.5. (Fadell and Rabinowitz [11]) The index i: A — N U {0, 00}

has the following properties:

(i1) Definiteness: i(A) = 0 if and only if A = 0;

(i2) Monotonicity: if there is an odd continuous map from A to B (in partic-
ular, if A C B), then i(A) < i(B). Thus, equality holds when the map is
an odd homeomorphism,

(i3) Dimension: i(A) < dim W

(i4) Continuity: if A is closed, then there is a closed neighborhood N € A of
A such that i(N) = i(A). When A is compact, N may be chosen to be a
0-neighborhood Ns(A) = {u € W: dist(u, A) < d};

(i5) Subadditivity: if A and B are closed, then i(AU B) < i(A) + i(B);

(i¢) Stability: if SA is the suspension of A # 0, obtained as the quotient space
of A x [=1,1] with A x {1} and A x {—1} collapsed to different points,
then i(SA) = i(A) + 1,

(i7) Piercing property: if A, Ag and Ay are closed, and p: Ax[0,1] — AgUA;
is a continuous map such that p(—u,t) = —p(u,t) for all (u,t) € A x
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[0,1], p(Ax[0,1]) is closed, p(Ax{0}) C Ay and p(Ax {1}) C Ay, then
i(p(Ax[0,1]) N Ag N Ay) > i(A);

(ig) Neighborhood of zero: if U is a bounded closed symmetric neighborhood
of 0, then i(OU) = dim W

The Dirichlet spectrum of —A, in {2 consists of those 1 € R for which
problem (1.2) has a nontrivial solution. Although a complete description of
the spectrum is not yet known when N > 2, we can define an increasing
and unbounded sequence of eigenvalues via a suitable minimax scheme. The
standard scheme based on the genus does not give the index information nec-
essary to prove Theorem 1.4, so we will use the following scheme based on the
cohomological index as in Perera [19]. Let

1
U(u) = ———, uw€S; = {u e Wy(Q): / |Vu|? dz = 1}.
/\u|qu Q
Q

Then eigenvalues of problem (1.2) on S, coincide with critical values of ¥. We
use the standard notation

U ={ueS;: U(u)<a}, V,={ueS:¥(u)>a}, acR

for the sublevel sets and superlevel sets, respectively. Let F denote the class
of symmetric subsets of S, and set

= inf sup ¥(u), keN.
Hi MeF, i(M)>k uel\% ()

Then 0 < p1 < pg < pg < -+ — +00 is a sequence of eigenvalues of problem
(1.2) and

Pe < fk+1 = i(\I/Mk) = i(Sq\\Ijuk-H) =k (17)
(see Perera et al. [20, Propositions 3.52 and 3.53]).
Proof of Theorem 1.4 will make essential use of (1.7) and will be based on

the following abstract critical point theorem, which is of independent interest.
Let W be a Banach space, let

S={ueW: ||u| =1}
be the unit sphere in W, and let
m WA\{0} = S, ue— H%H

be the radial projection onto S.

Theorem 1.6. Let ® be a C'-functional on W and let Ay, By be disjoint non-
empty closed symmetric subsets of S such that

Z(Ao) = Z(S\Bo) < Q. (18)
Assume that there exist R > r >0 and v € S\ Ao such that
sup®(A) <inf ®(B), supP(X) < oo,
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where
A={tu:u€ Ay, 0<t < R}U{R7((1—t)u+tv): u€ Ay, 0 <t <1},
B ={ru:ue€ By},
X={tuw:ueA, ||u|=R 0<t<1}.

LetT'={y € C(X,W): v(X) is closed andy|, =ida} and set

c:=inf sup P(u).
VEL uey(X)

Then
inf ®(B) < ¢ < sup ®(X)
and @ has a (PS). sequence.

Remark 1.7. Theorem 1.6, which does not require a direct sum decomposition,
generalizes the linking theorem of Rabinowitz [23].

2. Preliminaries
In this preliminary section we prove Proposition 1.1 and Theorem 1.6.
Proof of Proposition 1.1. Let (u;) be a (PS). sequence. Then
1 1 " A 1 .
D (u; :/ ( V[P + = |[Vuy|? — = |u [T — = [u|P — — u»p>da:
(u;) Qp\ I+ 5 IVl = et = sl = )
=c+o(l) (2.1)

and

(I)I(’U,j)u]' = /Q <|VUj|p + |V’LLj|q - U |7.Lj‘q - A |Uj|p — ‘Uj

p’“) dz = o(1) [|u | -

(2.2)
So

/Q [((11 - ;) (V[ = pfug|) + (; - pl) |uj|p*] dz = o(1) [lu; | + O(1),

and since g < p < p*, this and the Holder and Young inequalities yield
[ sl da < o) a1 +0(0).

Since p > 1, it follows from this and (2.1) that (u;) is bounded in Wy (Q).
So a renamed subsequence converges to some u weakly in WO1 P(Q), strongly
in L5(Q) for all 1 < s < p*, and a.e. in 2. Then u is a critical point of ® by
the weak continuity of @’.

Suppose u = 0. Since (u;) is bounded in Wy?(€2) and converges to 0 in
LP(Q), (2.2) gives

o(1) = [ (IVusl? + Vsl ~ fusl?" ) e > s y sl 7
Q ’ / J =1 Sp*/p
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by (1.4). If ||u;|| — 0, then ®(u;) — 0, contradicting ¢ # 0, so this implies
s |[” > SNP + o(1)
for a renamed subsequence. Then (2.1) and (2.2) yield

11 11 SN/p
c= - — — Vu-p—l—(—) Vu'q]dac—i—olz +o(1),
LG5 ) v+ (G- ) 9w (1) = 2~ +o(1)

contradicting ¢ < SN/P/N. O

Proof of Theorem 1.6. First we show that A (homotopically) links B with re-
spect to X in the sense that

VX)NB#£0 Vyel. (2.3)

If (2.3) does not hold, then there is a map v € C(X, W\B) such that v(X) is
closed and 7|, =id4. Let

A={Rr((1—|thu+tv): ue Ay, -1 <t <1}

and note that A is closed since Ay is closed (here (1 — [t|)u + tv # 0 since v is
not in the symmetric set Agp). Since

SAg— A, (u,t) — Rr((1— |t])u+tv)

is an odd continuous map,

i(A) > i(SAg) =i(Ag) + 1 (2.4)
by (i2) and (ig) of Proposition 1.5. Consider the map
~(tu), ueAnA

0: Ax[0,1] = W\B, o(u,t)= N
—y(—tu), ue A\A,

which is continuous since 7 is the identity on the symmetric set {tu: u € Ay,
0 <t < R}. We have p(—u,t) = —p(u,t) for all (u,t) € A x [0,1], (A x
[0,1]) = (X)) U (=7(X)) is closed, and (A x {0}) = {0} and p(A x {1}) = A
since 7|, = ida. Applying (i7) with Ay = {ueW: |ju]| <r} and 4, =
{u e W: |ju| > r} gives

i(A) <i(p(Ax[0,1]) N AN Ay) < i(W\B)NS,) =i(S.\B) =i(S\By),
(2.5)

where S, = {u € W: |ju| =r}. By (2.4) and (2.5), i(Ap) < i(S\By), contra-
dicting (1.8). Hence (2.3) holds.

It follows from (2.3) that ¢ > inf ®(B), and ¢ < sup ®(X) since idx €
I'. By a standard argument, ® has a (PS). sequence (see, e.g., Ghoussoub
[13]). O

Remark 2.1. The linking construction in the above proof was used in Perera
and Szulkin [21] to obtain nontrivial solutions of p-Laplacian problems with
nonlinearities that interact with the spectrum. A similar construction based
on the notion of cohomological linking was given in Degiovanni and Lancelotti
[7]. See also Perera et al. [20, Proposition 3.23].
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3. Proofs of Theorems 1.2 and 1.3
Fix ug > 0 in W,"”(2) such that [jug

p+ = 1. Since ¢ <p < p~,
tP t? t? AP tP
ST (tug) = / ( |Vugl? + — [Vugl? — 'u—ug — ug) dr — — — —o0
Q\P q q p p
as t — +o0. Take tg > 0 so large that ®T (tgug) < 0, let

I = {y € C([0, 1], W37 (€): 7(0) = 0, (1) = touo |
be the class of paths joining 0 and tgug, and set

c:=inf max & (u).
vl uev([0,1])

Lemma 3.1. If 0 < ¢ < SN/?/N, then problem (1.1) has a nonnegative non-
trivial solution.

Proof. By the mountain pass theorem, ®* has a (PS), sequence (u;). An argu-
ment similar to that in the proof of Proposition 1.1 shows that a subsequence
of (uj) converges weakly to a nontrivial critical point u of ®¥. O

We have the following upper bounds for c.

Lemma 3.2. Let A = \/2.
Q) If [, |Vuel? de > XfQ uf dz, then

1 -
N {/ﬂ (IVuol? — Auf) da

{1 [/Q (|Vuol|? — pud) dz
+ U —
q p . q/(p—q)
()\/ u@dw)
Q

(i) If f;,|Vuol? dz < X [, ubda, then

N/p
c< }

} p/(p—q)

p/(p—q)
(|Vuo|? — pud) dx}

- q/(p—q)
()\/ up dac)
Q

Proof. Since ~(s) = stoug is a path in T,

el

q p

P ~ P
c < max ®T(stoup) < max &1 (tug) < max [/ (IVuol? — Aubj) dz — }
s€[0,1] >0 >0 | p Jo p*

+ ma " (|Vuol? — uq)d:sfE Pdx
0 q Jo ’ Fro p Quo .
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Proof of Theorem 1.2. Without loss of generality we may assume that 0 € €.
Let > 0 be so small that Ba,.(0) C Q, take a function ¢ € C§°(B2,(0), [0,1])
such that ¥ =1 on B,(0), and set

P(w Ue (T
wele) = (e + |x|p/<p(—1)>)<N—p>/p’ vele) = IIue(Ilp)*
for € > 0. Then |[|v.[[,. =1 and
/Q V.| de = S + O(eN-P/p), (3.1)
KeP~t 4 O(eWN-n/r) p2 < N
/ vPdr = KeP~!|loge| + O(eP71), p?=N (3.2)
N O(eWN-p)/p), p?>N
for some constant K > 0,
O(eNe-DE-0)/p*), q> %
/Q |Voe|da = O(EN(N_Z’)(1’_1)/(1\’_1)p2 |logel), q= % (3.3)
O(eW-r)a/p*), q< %7
and
O(eP—DINp=(N=p) al/p*) ¢ > N]gp:pl)
/Qvg dz = { O(eNP=D/7" |logel), q= N]E,p:pl) (3.4)
O(eN-») q/pz)’ q< N]E[P:pl)

ase — 0 (see, e.g., Drabek and Huang [10]). Consider the critical level ¢ defined
at the beginning of this section with ug = v.. Our aim is to apply Lemma 3.1.
Since p < pq, by (1.5), (1.6), and (1.4) one has

1 A 1 . .

072 3 (1= )l = 25 e W)
P AL p*

Since A < A1 and p* > p, it follows from this that 0 is a strict local minimizer

of ®F, so ¢ > 0. We will verify that in each case ¢ < SM/P/N for ¢ > 0

sufficiently small by using Lemma 3.2 (i), with ug = v, and (3.1)—(3.4).

(i) Since p? < N and ¢ > N(p—1)/(N —p) > N(p—1)/(N — 1), we have

1 ~ N/p
< - _ p—1 (N=p)/p
¢S+ {S KXeP™" +O(e )}

+ O(elP=DIN/p=a/=a)ly (3 5)
(N =p)/p>p—1since p> <N, and (p — )[N/p—q/(p—q)] > p -1
since ¢ < (N — p) p/N, so the desired conclusion follows.

(ii) Since N(p—1)/(N —1) < ¢ < N(p—1)/(N — p), (3.5) still holds, and
(p—1V[N/p—aq/(p—q)] > p— 1since ¢ < (N —p)p/N.
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(iii) Since ¢ =N(p—1)/(N —1) < N(p—1)/(N — p), we have

1 - N/
¢ <[5 Kier 4 0N nn) :

+O(ENN=P) =1/ (N=D)P | gg o N=1)p/(N=D)),
and N(N —p?)(p—1)/(N —p)p >p—1since (1-1/N)p?> +p < N.
(iv) Since g < N(p—1)/(N —=1) < N(p—1)/(N — p), we have

N/p

1 ~ 5
< p—1 (N-p)/p (N—p*)q/p(p—q)
c N [S Ke +0(e ) +0(e ),

and (N —p?)q/p(p—q) > p—1since ¢ > (p — 1) p*/(N — p).
0

Proof of Theorem 1.3. We apply Lemma 3.1. Since ¢ < p < ¢*, Wol’p(Q) —

Wol 1(Q) — LP(Q) by the Holder inequality and the Sobolev imbedding, so
IVullg N . IVullg

wewdr@nfoy lully ~ wewdr@ngor llull}

By (1.4), (1.5), and (3.6),

T= > 0. (3.6)

1 1 . -1 ut
Ot (u) > — ul|’ — = S7F /P Jul” + = (1 - ) [[Vallg
p p q 111

A A
- TP\ Vul? Yu e WyP(9Q),

where pt = max {p,0}. Since u™ < py and p* > p > ¢, it follows from this
that 0 is a strict local minimizer of ®T, so ¢ > 0. It is clear from Lemma 3.2
(ii) that ¢ < SN/P/N for A > 0 sufficiently large. O

4. Proof of Theorem 1.4

Proof of Theorem 1.4. Since q¢ < p, Wol’p(Q) — Wol’q(Q) by the Holder in-
equality. Let S, denote the unit sphere of I/VO1 P(Q) and let

ue WP\ {0}, my(u) u e Wy '()\ {0}

(u) u u
Uy = ; = y
! [Vl [Vaull,

be the radial projections onto .S}, and Sy, respectively. Since p > p1, pp < pp <
ti+1 for some k > 1. Then

iy (W) =iy (S \ Wy iy)) = K (4.1)

by (1.7). Set M = {u € Wy9(Q) : ull, = 1}. By Degiovanni and Lancelotti
8, Theorem 2.3], the set 7, ' (W**) U {0} contains a symmetric cone C' such
that C' N M is compact in C*(Q) and

i(C\ {0}) = k. (4.2)
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Since WyP(Q) is a dense linear subspace of Wy '%(2), the inclusion
T S\ W pyy) N WeP(Q) 7, (S¢\ ¥y, ) is a homotopy equivalence by
Palais [18, Theorem 17], so

iy (S \ W) VWP () = (43)
by (4.1). We apply Theorem 1.6 to our functional ® defined in (1.3) with
Ao = mp(C\{0}) = mp(C N M), Bo = Sp\(m  (S\ Wy yy) N Wy (),

noting that Ay is compact since C'N M is compact and 7, is continuous. We
have

HE+1

i(Ao) = i(C\ {0}) = k
by (4.2), and
i(Sp\BO) = i(ﬂ'q_l(sq\\pukﬂ) N WOLP(Q)) =k

by (4.3), so (1.8) holds.
For uw € Sp and t > 0,

t AP ([~
(tu) < — [ (|Vul! = plu|?)de — — [ |ufPde—— (X[ |uffdz—1),
q.Ja P Ja p Q
(4.4)

where \ = A/2. Pick any v € Sp\Ayp. Since A is compact, so is the set
Xo={mp((l—t)u+tv):ue Ay, 0 <t <1}

and hence

a = inf /\u|pdm>0, B = sup / (IVul? = plu|?) dz < oc.
ueXo Jo ueXog JQ

Let A > 2/a, so that o > 1. Then for u € Ay C Xy and ¢ > 0, (4.4) gives
14
B(tu) < — (1t — pux) 7/ luf? dz < 0 (4.5)
q Jo

since p > py. For u € Xg and t > 0, (4.4) gives

<W_W§(1_1)W/“’—q>

P(tu — , 4.6
(tw) < q D q p) (Aa)i/(p=a) (4.6)

where 37 = max {3,0}. Fix ) so large that the last expression is < SN/? /N,

take positive R > (p 8™ /q on)l/(p_‘”, and let A and X be as in Theorem 1.6.
Then it follows from (4.5) and (4.6) that

SN/p

N
Since p < ¢*, Wy'%(Q) — LP(2) by the Sobolev imbedding, so
IVullg : IVullg

wewdrnoy llulll = wewra@ngoy  ull?

sup®P(A) <0, sup®P(X)<

T =

> 0. (4.7)
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By (1.4) and (4.7),

1 1 - « 1 o
B 2 3 fl? = L5+ (1) 9l
b p q Hi+1
A
p
Since p < pry1 and p* > p > q, it follows from this that if 0 < r < R is
sufficiently small and B is as in Theorem 1.6, then
inf &(B) > 0.

Then 0 < ¢ < SN/?/N and ® has a (PS). sequence by Theorem 1.6, a subse-
quence of which converges weakly to a nontrivial critical point of ® by Propo-
sition 1.1. g

TP/ VullP Vu € m, (By).
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