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Existence for stationary mean-field games
with congestion and quadratic Hamiltonians
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Abstract. Here, we investigate the existence of solutions to a stationary
mean-field game model introduced by J.-M. Lasry and P.-L. Lions. This
model features a quadratic Hamiltonian and congestion effects. The fun-
damental difficulty of potential singular behavior is caused by congestion.
Thanks to a new class of a priori bounds, combined with the continuation
method, we prove the existence of smooth solutions in arbitrary dimen-
sions.
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1. Introduction

The seminal papers [14–19] on mean-field games have inspired research efforts
in the field (for instance, see the recent surveys [2,3,11,20] and the references
therein). Nevertheless, several fundamental questions remain unanswered. Here,
we address one of these questions by proving the existence of smooth solutions
for stationary mean-field games with congestion and quadratic Hamiltonians.

Mean-field games model large populations of rational agents that move
according to certain stochastic optimal control goals. To simplify the presen-
tation, we will work in the periodic setting, that is in the d dimensional stan-
dard torus, Td, d ≥ 1. We consider a large stationary population of agents,
whose statistical information is encoded in an unknown probability density,
m : Td × [0,+∞) → R. Fix μ > 0. Each individual agent seeks to minimize an
infinite-horizon discounted cost given by
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u(x) = inf
{
E

[∫ +∞

0

e−μs

(
m(X(s), s)α|v(s) + b(X(s))|2

2

+V (X(s),m(X(s), s))
)

ds

]}
, (1.1)

where the infimum is taken over all progressively measurable controls v,

dX = vdt +
√

2dWt with X(0) = x, (1.2)

where Wt and E denote a standard d-dimensional Brownian motion and the
expected value, respectively. For convenience, we set the discount rate μ = 1.
The constant 0 < α < 1 determines the strength of congestion effects in the
term mα|v − b(x)|2 and makes it costly to move in areas of high density with
a drift v substantially different from a reference vector field b : Td → R

d. The
function V : Td × R

+ → R accounts for additional spatial preferences of the
agents. We assume that b and V are smooth functions.

Suppose the value function u given by (1.1) is C2(Td). Then, it is a
solution to the Hamilton–Jacobi equation

u − Δu +
|Du|2
2mα

+ b(x) · Du = V (x,m).

Moreover, the optimal control, v, in (1.2) is determined in feedback form
as

v(t) = −b(X(t)) − Du(X(t))
mα(X(t))

.

If the agents are rational, they will use this feedback control. Here, we
suppose that the discount rate, μ, in (1.1) is also the death rate of the agents.
That is, in (1.1), agents minimize the average lifetime cost. Finally, we suppose
also that agents are born into the system randomly at a unit rate. These three
assumptions (rationality, death rate and constant birth rate) determine the
density m as a solution to the Fokker–Planck equation

m − Δm − div
(
m1−αDu

) − div (mb) = 1.

The assumption that the death and discount rates are equal is not critical
for our methods. For instance, the key estimate in Proposition 2.2 holds for
distinct discount rates in the Hamilton–Jacobi equation and the Fokker–Planck
equation.

According to the previous discussion, for u,m : T
d → R, m > 0, our

model is given by the system

Our focus here is to prove the existence of solutions for the station-
ary problem. We are interested in classical solutions for (1.3)–(1.4), that is,
(u,m) ∈ C∞(Td) × C∞(Td) with m > 0. Previous work by Lions [21] proved
the uniqueness of classical solutions. The fundamental difficulty of potential
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singular behavior is caused by congestion. The dependence on m in the optimal
control problem causes the singularity in the Eq. (1.3), for which we had to
develop a new class of estimates. Thanks to those, we obtained our main result:

Theorem 1.1. Assume the following

(A1) 0 ≤ α < 1;
(A2) V : Td × R

+ → R, V (x,m) ∈ C∞(Td × R
+) is globally bounded with

bounded derivatives and nondecreasing with respect to m;
(A3) b : Td → R

d, b ∈ C∞(Td).

Then, there exists a solution (u,m) ∈ C∞(Td) × C∞(Td) to (1.3)–(1.4)
with m > 0. Furthermore, if V is strictly increasing with respect to m, then a
solution is unique.

Numerous a-priori bounds for mean-field games have been proved by
various authors (for instance, see [4,6–10,12,16–18,22,23]). However, these
bounds were designed to address a different coupling, namely mean-field games,
where the local dependence on m is not singular when m = 0. A typical
example is the following system:

⎧⎨
⎩

u − Δu +
|Du|2

2
= mα inT

d

m − Δm − div (mDu) = 1 inT
d.

(1.5)

In (1.5), the main difficulties are caused by the growth of the nonlinearity
m, especially for large α > 0, rather than singularities caused by m vanishing.
Furthermore, (1.5) can be regarded as an Euler–Lagrange equation of a suitable
integral functional, whereas (1.3)–(1.4) do not have this structure.

In Sect. 2, we start by exploring the special form of (1.3)–(1.4) to obtain
a bound for ‖m−1‖L∞(Tn). This estimate, combined with the techniques from
[1], yields a priori regularity in W 2,p(Td) for any p ≥ 1. From this, a sim-
ple argument shows that any solution to (1.3)–(1.4) is bounded a priori in
any Sobolev space, W k,p(Td). The estimates from Sect. 2 are only a priori
estimates, and there is no general existence theory of weak solutions for mean-
field games that can be applied immediately. Thus, we need to address the
existence question separately. This is done in Sect. 3, where we prove the exis-
tence of solutions to (1.3)–(1.4) by using the continuation method together
with the aforementioned a priori estimates. For completeness, Appendix A
presents the uniqueness proof for solutions to (1.3)–(1.4), following the ideas
in [21] ( also see [13]).

2. A priori estimates

In this section, we obtain a priori bounds for solutions of (1.3)–(1.4). In partic-
ular, we prove an L∞ bound for m−1. From this, we derive estimates for u,m
in W 2,p(Td) for any p ≥ 1. Then, by a bootstrapping argument, we establish
smoothness of solutions.
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Proposition 2.1. There exists a constant C := C(‖V ‖∞) ≥ 0 such that for any
classical solution (u,m) of (1.3)–(1.4) we have ‖u‖L∞(Td) ≤ C. Furthermore,
m ≥ 0 on T

d and ‖m‖L1(Td) = 1.

Proof. The L∞ bound is obtained by evaluating the equation at points of
maximum of u (resp., minimum) and using the fact that at those points Du =
0, Δu ≤ 0 (resp., ≥ 0) and V is bounded on T

d × [0,∞). We then observe that
m is nonnegative by the maximum principle. Moreover, it has a total mass of
1 by integrating (1.4). �

Proposition 2.2. There exists a constant C := C(‖b‖∞, ‖V ‖∞) ≥ 0 such that
for any classical solution (u,m) of (1.3)–(1.4) we have∥∥∥∥ 1

m

∥∥∥∥
L∞(Td)

≤ C.

We point out that the above a priori estimate is valid for mean-field
games without congestion, i.e., α = 0 in (1.3).

Proof. Let r > α. Subtract Eq. (1.4) divided by (r + 1 − α)mr+1−α from
Eq. (1.3) divided by rmr. Then,

∫
Td

[
u − Δu +

|Du|2
2mα

+ b · Du − V

]
· 1
rmr

dx

−
∫
Td

[
m − Δm − div

(
m1−αDu

) − div (mb)
] · 1

(r + 1 − α)mr+1−α
dx

= −
∫
Td

1
(r + 1 − α)mr+1−α

dx. (2.1)

Next, observe that∫
Td

Δu

rmr
dx =

∫
Td

Du · Dm

mr+1
dx,

and ∫
Td

div
(
m1−αDu

)
(r + 1 − α)mr+1−α

dx =
∫
Td

Du · Dm

mr+1
dx.

Hence ∫
Td

Δu

rmr
dx −

∫
Td

div
(
m1−αDu

)
(r + 1 − α)mr+1−α

dx = 0. (2.2)

Also, note the identity
∫

div (bm)
m−r−1+α

r + 1 − α
=

∫
m−r−1+αb · Dm

= −
∫

b · D

(
m−r+α

r − α

)
=

1
r − α

∫
div (b)m−r+α.
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Then (2.1) is reduced to∫
Td

1
(r + 1 − α)mr+1−α

dx +
∫
Td

|Du|2
2rmr+α

dx +
∫
Td

|Dm|2
mr+2−α

dx

=
∫
Td

[
− V

rmr
− u

rmr
+

1
(r + 1 − α)mr−α

− b · Du

rmr
− 1

r − α
div (b)m−r+α

]
dx

≤
∫
Td

C

rmr
dx +

∫
Td

C

(r − α)mr−α
dx +

∫
Td

|b|2
rmr−α

+
|Du|2

4rmr+α
dx

in view of Proposition 2.1. Consequently,∫
Td

1
(r + 1 − α)mr+1−α

dx +
∫
Td

|Du|2
4rmr+α

dx +
∫
Td

|Dm|2
mr+2−α

dx

≤
∫
Td

C

rmr
dx +

∫
Td

C

(r − α)mr−α
dx.

By Young’s inequality for α ∈ [0, 1), we have

C

rmr
≤ 1

4(r + 1 − α)mr+1−α
+ C1

r

and
C

(r − α)mr−α
≤ 1

4(r − α)mr+1−α
+ C2

r

with

C1
r :=

(1 − α)4
r

1−α C
r+1−α
1−α

r(r + 1 − α)
, C2

r :=
4r−αCr+1−α(r − α)r−α−1

(r + 1 − α)r+1−α
.

Therefore,

1
r + 1 − α

∫
Td

1
mr−α+1

≤ 2
(
C1

r + C2
r

)
.

Thus, we get∥∥∥∥ 1
m

∥∥∥∥
Lr+1−α(Td)

≤ [
2(r + 1 − α)(C1

r + C2
r )

] 1
r+1−α =: Cα(r).

We can easily check that, for any r0 > α there exists Cα for which

Cα(r) ≤ Cα for all r ∈ [r0,∞).

�

Proposition 2.3. For any p ≥ 1 there exists a constant C := Cp(‖b‖∞, ‖V ‖∞) >
0 such that, for any classical solution (u,m) of (1.3)–(1.4), we have ‖u‖W 2,p(Td)

+ ‖m‖W 2,p(Td) ≤ C.

Proof. Let (u,m) be a classical solution (u,m) to (1.3)–(1.4). In view of Lemma
[1, Lemma4], combined with Proposition 2.2 we conclude that for all p ∈ [1,∞)
there exists C = C(‖V ‖∞, ‖b‖∞, p) such that

‖u‖W 2,p(Td) ≤ C.
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In light of the Sobolev embedding theorem, we get

‖u‖C1,γ(Td) ≤ C‖u‖W 2,p(Td) ≤ C. (2.3)

Then, multiplying (1.4) by mp and using Young’s inequality yield∫
Td

mp+1 dx + p

∫
Td

mp−1|Dm|2 dx =
∫
Td

mp dx − p

∫
Td

mp(g + b) · Dmdx

≤
[
1
2

∫
Td

mp+1 dx+C

]
+

[
p

2

∫
Td

mp−1|Dm|2 dx+Cp

∫
Td

(|g|2+|b|2)mp+1 dx

]
,

where g := Du/mα. Noting that |g| ≤ C in view of (2.3) and mp−1|Dm|2 =
Cp|Dm(p+1)/2|2, we get∫

Td

mp+1 dx + Cp

∫
Td

|Dm(p+1)/2|2 dx ≤ C + C
′
p

∫
Td

mp+1 dx. (2.4)

Using Hölder’s inequality, we have
(∫

Td

mp+1

)1/(p+1)

≤
(∫

Td

m

)2/(2+dp) (∫
Td

m2∗(p+1)/2

) dp/(2+dp)
2∗(p+1)/2

.

Moreover, using the Sobolev embedding theorem, we get
∫
Td

mp+1 ≤
(∫

Td

m2∗(p+1)/2

) dp/(2+dp)
2∗/2

≤ C

(∫
Td

mp+1 dx +
∫
Td

|Dm(p+1)/2|2 dx

)dp/(2+dp)

.

Then, using the previous estimate and the fact that dp/(2 + dp) < 1 on
the right-hand side of (2.4), we conclude that∫

Td

mp+1 dx +
∫
Td

|Dm(p+1)/2|2 dx ≤ C. (2.5)

Note now that if m ∈ W 1,q(Td), we have

m − Δm = m1−αΔu + (1 − α)m−αDu · Dm + div (mb) + 1 ∈ Lq(Td). (2.6)

Thus, by standard elliptic regularity m ∈ W 2,q(Td) and consequently
m ∈ W 1,q∗

(Td). In light of (2.5) for p = 1 we have m ∈ W 1,2(Td). So we
obtain m ∈ W 2,2(Td) and m ∈ W 1,2∗

(Td). By iterating this argument, we
finally get m ∈ W 2,q(Td) for any q < ∞. �

Proposition 2.4. For any integer k ≥ 0 there exists a constant C := C(‖b‖∞,
‖V ‖∞, k) > 0 such that any classical solution (u,m) of (1.3)–(1.4) satisfies
‖u‖W k,∞(Td) + ‖m‖W k,∞(Td) ≤ C.

Proof. Note that D(m−α) = m−(1+α)Dm ∈ Lp(Td) for large p > 1 in view
of Propositions 2.2, 2.3. This implies m−α ∈ W 1,p(Td). Hence, according to
Morrey’s theorem, we have m−α ∈ Cγ(Td) for some γ ∈ (0, 1). Also, note that
|Du|2 ∈ Cγ(Td).
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Therefore, going back to Eq. (1.3) we have

u − Δu = −|Du|2
2mα

− b · Du + V ∈ Cγ(Td). (2.7)

Then, in view of the elliptic regularity theory, we get u ∈ C2,γ(Td). Note
that the norm in Cγ(Td) of the right-hand side of (2.7) is estimated by a
constant, which only depends on ‖b‖∞, ‖V ‖∞. Thus, u ≤ C(‖b‖∞, ‖V ‖∞).
Next, returning to Eq. (2.6) for m and noting that the right-hand side is
Cγ(Td), we get m ∈ C2,γ(Td) with m ≤ C(‖b‖∞, ‖V ‖∞).

Once we know that u,m ∈ C2,γ(Td)—(2.7) and (2.6) imply u,m ∈
C3,γ(Td). By continuing this so-called “bootstrap” argument, we reach our
conclusion. �

3. Existence by continuation method

In this section, we prove the existence of a unique classical solution to (1.3)–
(1.4) by using the continuation method. We work under the assumptions of
Theorem 1.1. For 0 ≤ λ ≤ 1, we consider the problem⎧⎨
⎩

uλ−Δuλ+
|Duλ|2
2mα

λ

+λb(x) · Duλ − λV (x,m)−(1 − λ)V0(m)=0 in T
d,

mλ − Δmλ − div
(
m1−α

λ Duλ

) − λdiv (bmλ) = 1 in T
d,

(3.1)

where V0(m) := arctan(m). Let Ek := Hk(Td) × Hk(Td) for k ∈ N and
E0 := L2(Td) × L2(Td).

For any k0 ∈ N with k0 > d/2, we define the map F : [0, 1]×Ek0+2 → Ek0

by

F (λ, u,m) :=

⎛
⎝u − Δu +

|Du|2
2mα

+ λb(x) · Du − λV (x,m) − (1 − λ)V0(m)

m − Δm − div
(
m1−αDu

) − λdiv (bm) − 1.

⎞
⎠ .

Then, we can rewrite (3.1) as

F (λ, uλ,mλ) = 0.

Note that for any γ > 0, the map F is C∞ in the set {(u,m) ∈ Ek0+2(Td),
m > γ}. This is because for k0 > d/2, the Sobolev space Hk0(Td) is an algebra.
Moreover, if k0 is large enough, then any solution (uλ,mλ) in Ek0+2 is, in fact,
in Ek+2 for all k ∈ N, by the a priori bounds in Sect. 2.

We define the set Λ by

Λ :=
{
λ ∈ [0, 1] | (3.1) has a classical solution (u,m) ∈ Ek0+2

}
.

When λ = 0 we have an explicit solution, namely (u0,m0) = (π/4, 1); there-
fore, Λ 	= ∅. The main goal of this section is to prove

Λ = [0, 1].

To prove this, we show that Λ is relatively closed and open on [0, 1].
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The closeness of Λ is a straightforward consequence of the estimates in
Sect. 2:

Proposition 3.1. The set Λ is closed.

Proof. To prove that Λ is closed, we need to check that for any sequence
λn ∈ Λ such that λn → λ0 as n → ∞, gives λ0 ∈ Λ. Next, we must fix such a
sequence and corresponding solutions (uλn

,mλn
) to (3.1) with λ = λn. Since

the a-priori bound in Proposition 2.4 is independent of n ∈ N, by taking a
subsequence, if necessary, we may assume that (uλn

,mλn
) → (u,m) in Ek0+2.

Moreover, m−1
λn

→ m−1 in C(Td). Therefore, if we take the limit in (3.1), we
get that (u,m) is the solution to (3.1) with λ = λ0. This implies λ0 ∈ Λ. �

To prove that Λ is relatively open in [0, 1], we need to check that for
any λ0 ∈ Λ there exists a neighborhood of λ0 contained in Λ. To do so, we
will use the implicit function theorem (for example, see [5], chapter X). For
a fixed λ0 ∈ Λ, we consider the Fréchet derivative Lλ0 : Ek0+2 → Ek0 of
(u,m) �→ F (λ0, u,m) at the point (uλ0 ,mλ0), which is given byLλ0(v, f)

=

⎛
⎝ v−Δv+

Duλ0 · Dv

mα
λ0

−α|Duλ0 |2f
2mα+1

λ0

+λ0b · Dv − (λ0DmV +(1−λ0)DmV0) f

f−Δf−div
(
m1−α

λ0
Dv

) −(1−α)div
(
m−α

λ0
fDuλ0

) −λ0div (bf)

⎞
⎠ .

(3.2)

Because of the a priori bounds for u and m in Sect. 2, we can extend the
domain of Lλ0 by continuity to Ek+2 for any k ≤ k0. We will prove that Lλ0

is an isomorphism from Ek+2 to Ek for any k ≥ 0.
Define the bilinear mapping Bλ0 [w1, w2] : E1 → R by

Bλ0 [w1, w2] :=
∫
Td

[
v1 + −α|Duλ0 |2f1

2mα+1
λ0

+ λ0b

·Dv1 − (λ0DmV + (1 − λ0)DmV0) f1

]
f2

+ Dv1 · Df2 − m1−α
λ0

Dv1Dv2

+
[
f1 − (1 − α)div

(
m−α

λ0
f1Duλ0

) − λ0div (bf1)
]
(−v2)

− Df1 · Dv2 dx.

We set Pw := (f,−v) for w = (v, f) and observe that if w1 ∈ Ek with
k ≥ 2, then

Bλ0 [w1, w2] =
∫
Td

Lλ0(w1) · Pw2 dx.

The boundedness of Bλ0 is a straightforward result of Proposition 2.4:

Lemma 3.2. There exists a constant C > 0 such that

|Bλ0 [w1, w2]| ≤ C‖w1‖E1‖w2‖E1

for any w1, w2 ∈ E1.
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Thus, in view of the Riesz representation theorem for Hilbert spaces,
there exists a linear mapping A : E1 → E1 such that

Bλ0 [w1, w2] = (Aw1, w2)E1 .

Lemma 3.3. The operator A is injective.

Proof. Let w = (v, f). By Young’s inequality we have

Bλ0 [w,w] =
∫
Td

αDuλ0 · Dv

mα
λ0

f − α|Duλ0 |2
2mα+1

λ0

f2

− (λ0DmV + (1 − λ0)DmV0) f2 − m1−α
λ0

|Dv|2 dx

≤
∫
Td

− (λ0DmV + (1 − λ0)DmV0) f2 +
(α − 2)m1−α

λ0
|Dv|2

2
≤ −Cλ0(‖Dv‖2L2(Td) + ‖f‖2L2(Td))

for a constant Cλ0 , which depends on bounds for mλ0 and Duλ0 , but is strictly
positive for any solution to (3.1) since 0 ≤ α < 1. We have used Assumption
(A1) and the strict monotonicity of V on m. This implies that if Aw = 0 then
we have w = (μ, 0) for some constant μ. Next, by computing

0 = (Aw, (0, μ)) = B[(μ, 0), (0, μ)] = μ2,

we conclude that μ = 0. �

Remark 1. Note that the injectivity of the operator A holds for all 0 ≤ α < 2.
However, the a priori estimates of the previous section are only valid for 0 ≤
α < 1.

Lemma 3.4. The range R(A) is closed and R(A) = E1.

Proof. Take a Cauchy sequence, zn, in the range of A, that is zn = Awn, for
some sequence wn = (vn, fn). We claim that wn is a Cauchy sequence. We
have

(zn − zm, wn − wm)E1 = (A(wn − wm), wn − wm)E1

≤ −Cλ0(‖D(vn − vm)‖2L2(Td) + ‖fn − fm‖2L2(Td)).

Note that

|(zn − zm, wn − wm)E1 |
≤ ‖zn − zm‖E0‖wn − wm‖E0 + ‖D(zn − zm)‖E0‖D(wn − wm)‖E0

≤ ‖zn − zm‖E0

(‖vn − vm‖L2(Td) + ‖fn − fm‖L2(Td)

)
+ ‖D(zn − zm)‖E0

(‖D(vn − vm)‖L2(Td) + ‖D(fn − fm)‖L2(Td)

)
≤ ε

(
‖fn − fm‖2L2(Td) + ‖D(vn − vm)‖2L2(Td)

)
+ Cε‖zn − zm‖2E1

+ ‖zn − zm‖E1

(‖vn − vm‖L2(Td) + ‖D(fn − fm)‖L2(Td)

)
for ε > 0.
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If we fix a suitable small ε and combine the inequalities above, then we
obtain

‖D(vn − vm)‖2L2(Td) + ‖fn − fm‖2L2(Td)

≤ C‖zn − zm‖2E1 + C‖zn−zm‖E1(‖vn−vm‖L2(Td) + ‖D(fn − fm)‖L2(Td))

≤ C‖zn − zm‖2E1 + C‖zn − zm‖E1‖wn − wm‖E1 . (3.3)

We have

B[wn − wm, (−fn + fm, vn − vm, )] = ‖wn − wm‖2E1 + Enm,

where, using (3.3), Enm satisfies

|Enm|≤C‖vn−vm‖L2(Td)‖D(vn−vm)‖L2(Td)+C‖fn−fm‖L2(Td)‖vn−vm‖L2(Td)

+ C‖D(fn − fm)‖L2(Td)‖D(vn − vm)‖L2(Td)

+ C‖fn − fm‖L2(Td)‖D(fn − fm)‖L2(Td)

≤ C‖wn − wm‖E1

(‖zn − zm‖2E1 + ‖zn − zm‖E1‖wn − wm‖E1

)1/2
.
(3.4)

On the other hand, by Lemma 3.2 we have

B[wn − wm, (−fn + fm, vn − vm, )] ≤ C‖zn − zm‖E1‖wn − wm‖E1 . (3.5)

Combining (3.4) and (3.5) we deduce

‖wn − wm‖2E1

≤ C‖zn − zm‖E1‖wn − wm‖E1

+ C‖wn − wm‖E1

(‖zn − zm‖2E1 + ‖zn − zm‖E1‖wn − wm‖E1

)1/2
.

By using Young’s inequality we conclude

‖wn − wm‖2E1 ≤ C‖zn − zm‖2E1 .

From this we get convergence in E1.
Finally, we prove that R(A) = E1. Suppose that R(A) 	= E1. Since

R(A) is closed, if R(A) 	= E1 there exists z ∈ R(A)⊥ with z 	= 0 such that
Bλ0 [z, z] = 0. The argument in the proof of Lemma 3.3 implies z = 0, which
is a contradiction. �

Lemma 3.5. The operator Lλ0 : Ek+2 → Ek is an isomorphism for all k ∈ N

with k ≥ 2.

Proof. Since Lλ0 is injective, it suffices to prove that it is surjective. To do so,
fix w0 ∈ Ek with w0 = (v0, f0). We claim there exists a solution w1 ∈ Ek+2 to
Lλ0w1 = w0.

Consider the bounded linear functional w �→ (w0, w)E0 in E1. According
to the Riesz representation theorem, w̃ ∈ E1 exists such that (w0, w)E0 =
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(w̃, w)E1 for any w ∈ E1. In light of Lemmas 3.3 and 3.4, there exists the
inverse of A. We define w1 := A−1w̃ and write w1 = (v, f). Set(

g1[v, f ]
g2[v, f ]

)

:=

⎛
⎝ Duλ0 · Dv

mα
λ0

− α|Duλ0 |2f
2mα+1

λ0

+λ0b · Dv − (λ0DmV + (1 − λ0)DmV0) f

−div
(
m1−α

λ0
Dv

)−(1 − α)div
(
m−α

λ0
fDuλ0

) − λ0div (bf)

⎞
⎠ .

Then, the identity

(Aw1, w)E1 = (w̃, w)E1 = (w0, w)E0

for any w ∈ E1, means that v is a weak H1(Td) solution to

v − Δv = g1[v, f ] + v0

and that f ∈ H1(Td) is also a weak solution to

f − Δf = g2[v, f ] + f0.

Observe that if v, f ∈ Hj+1(Td) then g1, g2 ∈ Hj(Td). Additionally,
elliptic regularity yields, from gi[v, f ] ∈ Hj(Td), that v, j ∈ Hj+2(Td). Since
we have v, f ∈ H1(Td), we conclude by induction that v, f ∈ Hj+2(Td) holds
for all j ≤ k. �

A straightforward result from Lemma 3.5 and the implicit function the-
orem in Banach space is

Proposition 3.6. The set Λ is relatively open in [0, 1].

Finally, we address the existence of solutions to (1.3)–(1.4), and complete
the proof of Theorem 1.1.

Proof of Theorem 1.1. If V is strictly increasing on m, the existence of a classi-
cal solution to (1.3)–(1.4) is a straightforward result of Proposition 3.6. Unique-
ness of the solution is discussed in the Appendix, Proposition A.1.

If we only assume V to be nondecreasing on m, existence can be obtained
by using a perturbation argument similar to the one in (3.1). More precisely, we
add a small perturbation ε arctan(m) to V so that we make the potential term
strictly monotone. This problem admits a unique classical solution (uε,mε).
Because the a priori bounds in the previous section do not depend on the strict
monotonicity of V , (uε,mε) satisfy uniform bounds in any Sobolev space. Thus,
by compactness, we can extract a convergent subsequence to a limit (u,m),
which solves (1.3)–(1.4). �

Remark 2. In this paper, because our main focus is to achieve a lower bound
on m, we investigate the case where the potential V is bounded. In principle,
unbounded potentials can be studied by adapting the techniques in [4,7,9,18],
for instance.
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Appendix A. Uniqueness

Uniqueness of solutions of (1.3)–(1.4) is well understood (see [13,17] for a
related problem). However, to make this paper self-contained, we give a proof
based on Lions ideas in [21].

Proposition A.1. The system (1.3)–(1.4) admits at most one classical solution
(u,m).

Proof. Let (u0,m0) and (u1,m1) be classical solutions to (1.3)–(1.4). Subtract
(1.3) for (u1,m1) from (1.3) for (u0,m0) and (1.4) for (u1,m1) from (1.4) for
(u0,m0), respectively, and then

u0 − u1 = Δ(u0 − u1) +
|Du1|2
2mα

1

− |Du0|2
2mα

0

+ b

· D(u1 − u0) + V (x,m0) − V (x,m1), (A.1)

m0 − m1 = Δ(m0 − m1) + div (m1−α
0 Du0)

− div (m1−α
1 Du1) + div (b(m0 − m1)). (A.2)

Subtract (A.2) multiplied by u0 − u1 from (A.1) multiplied by m0 − m1:
then ∫

Td

( |Du1|2
2mα

1

− |Du0|2
2mα

0

)
(m0 − m1) dx

+
∫
Td

(
m1−α

0 Du0 − m1−α
1 Du1

) · D(u0 − u1) dx

=
∫
Td

(V (x,m1) − V (x,m0))(m0 − m1) dx. (A.3)

We prove that the left-hand side of (A.3) is nonnegative if α ∈ [0, 2],
following the technique in [13]. Set uθ := u0 + θ(u1 − u0) and mθ := m0 +
θ(m1 − m0) for θ ∈ [0, 1]. Define

I(θ) :=
[
−

∫
Td

( |Duθ|2
2mα

θ

− |Du0|2
2mα

0

)
(m1 − m0)

+
∫
Td

(
m1−α

θ Duθ − m1−α
0 Du0

) · D(u1 − u0) dx

]
.

Then
d

dt
I(θ) = −α

∫
Td

Duθ · D(u1 − u0)(m1 − m0)
mα

θ

dx

+
α

2

∫
Td

|Duθ|2(m1 − m0)2

m1+α
θ

dx +
∫
Td

m1−α
θ |D(u1 − u0)|2 dx

≥
(
1 − α

2

) ∫
Td

m1−α
θ |D(u1 − u0)|2 dx ≥ 0
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for α ∈ [0, 2]. Noting that I(0) = 0, we conclude that I(1) ≥ 0, which proves
that the left-hand side of (A.3) is nonnegative as claimed. The proposition
follows using the assumption that V is strictly increasing on m. �
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