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Abstract. We prove comparison theorems and uniqueness of viscosity so-
lutions for a class of nonlocal equations. This class of equations includes
Bellman–Isaacs equations containing operators of Lévy type with mea-
sures depending on x and control parameters, as well as elliptic nonlocal
equations that are not strictly monotone in the u variable. The proofs use
the knowledge about regularity of viscosity solutions of such equations.
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1. Introduction

In this paper, we study comparison principles and uniqueness of viscosity so-
lutions for nonlocal equations of the type

G(x, u, I[x, u]) = 0 in Ω, (1.1)

where Ω is a bounded domain in R
n and I[x, u] is an integro-differential op-

erator. The function u is real-valued. The nonlinearity G : Ω × R × R → R is
a continuous function which is degenerate elliptic, i.e., for any x ∈ Ω, r ∈ R,
l1, l2 ∈ R

G(x, r, l1) ≤ G(x, r, l2) if l1 ≥ l2, (1.2)

and coercive, i.e. there is a non-negative constant γ such that, for any x ∈ Ω,
r ≥ s, l ∈ R

γ(r − s) ≤ G(x, r, l) − G(x, s, l). (1.3)

The nonlocal operator I has the form

I[x, u] :=
∫
Rn

[u(x + z) − u(x) − 1B1(0)(z)Du(x) · z]μx(dz), (1.4)
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where 1B1(0) denotes the indicator function of the unit ball B1(0) and {μx : x ∈
Ω} is a family of Lévy measures, i.e. non-negative, Borel measures on R

n\{0}
such that ∫

Rn

min{|z|2, 1}μx(dz) < +∞ for all x ∈ Ω. (1.5)

We extend μx to measures on R
n by setting μx({0}) = 0. The operator I[x, u]

is thus well defined at least for functions u ∈ C2(Bδ(x)) ∩ BUC(Rn) for some
δ > 0. We point out that the solution u has to be given in the whole space R

n

even if (1.1) is satisfied only in Ω. We will also be interested in equations of
Bellman–Isaacs type

γu + sup
α∈A

inf
β∈B

{−Iαβ [x, u] + fα,β(x)} = 0, in Ω, (1.6)

where each Iαβ [x, u] is of the form (1.4).
Comparison principles and uniqueness results are well known for Eq. (1.1)

and classical Bellman–Isaacs equations when γ > 0 and the nonlocal operators
I and Iαβ have the form

Iαβ [x, u] =
∫
Rn

[u(x+γαβ(x, z))−u(x)−1B1(0)(z)Du(x)·γαβ(x, z)]μ(dz). (1.7)

In this case the Lévy measure is fixed which, in the stochastic control/
differential game interpretation of the Bellman–Isaacs equations, means that
we can only control the state through the diffusion coefficients γαβ of a sto-
chastic differential equation driven by a fixed Lévy process or a fixed random
measure. The first comparison and uniqueness results for such equations were
obtained in [24,26,27] and many other results can be found in the litera-
ture, including results for equations with second order PDE terms, see [1–4,6–
10,16,18,19].

The case when we have a family of measures μx depending on x is much
more difficult. Some comparison results for time dependent equation like (1.1)
were obtained in [2] however with restrictive assumptions. In particular the
measures μt,x, which depend on t and x there, are bounded. We prove several
comparison theorems for Eqs. (1.1) and (1.6). In Sect. 3 we first look at the
case when equations are strictly monotone in the u variable, i.e. when γ >
0 in (1.3) and in (1.6). Since standard comparison proofs do not work for
these equations, the idea is to try to prove comparison assuming that either a
viscosity subsolution or a supersolution is more regular. Of particular interest
is the case when one of them is in Cr

loc(Ω) for some r > 1. We adapt to the
nonlocal case the technique from [11, Section 5.6] (see also [20]). There are
many recent Cr

loc(Ω) regularity results [6,8,12–14,21,23,25] for Eqs. (1.1) and
(1.6) and we show in Sect. 7 that comparison theorems obtained in this paper
can be applied to various classes of problems.

Another largely open problem considered in this manuscript is compari-
son results for Eqs. (1.1) and (1.6) when they are not strictly monotone in the
u variable, i.e. when γ = 0. The only result in this direction in [12, Section 5], is
for equations corresponding to the case when the measures μx are independent
of x. There is also a remark made in [15, Theorem 9.2], about comparison for
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a class of equations being a consequence of an Aleksandrov–Bakelman–Pucci
estimate for nonlocal equations, however it is not supported by any proof and
it is probably false without additional assumptions about the nonlocal oper-
ator. Our small contribution here in Sect. 4 is in showing how comparison
results of Sect. 3 can be extended to the case γ = 0 when equations are elliptic
with respect to a good enough class of linear nonlocal operators. We follow a
typical strategy of perturbing viscosity sub/supersolutions to strict viscosity
sub/supersolutions (see [11,17]). The reader can consult [5,11,17,20] for com-
parison results for fully nonlinear elliptic PDE which are not strictly monotone
in the u variable.

In Sect. 5 we show how viscosity sub/supersolutions of Eqs. (1.1) and
(1.6) can be regularized by special sup- and inf-convolutions that depend on
a family of smooth functions. We also show how to use these special sup/inf-
convolutions to prove that the difference of a viscosity subsolution and a vis-
cosity supersolution of the same elliptic equation is a viscosity subsolution of a
nonlocal Pucci extremal equation. Knowing this one can use an Aleksandrov–
Bakelman–Pucci estimate of [15] to prove a comparison principle but this part
appears to be missing in [15].

2. Definitions and assumptions

We will write Bδ(x) for the open ball centered at x with radius δ > 0 and
BUC(Rn) for the space of bounded and uniformly continuous functions in
R

n. If Ω′ is an open set, r = k + α, k = 1, 2, . . . , 0 < α < 1, we will write
Cr(Ω′) to denote the standard Hölder space Ck,α(Ω′) equipped with the usual
norm which we will denote by ‖ · ‖Cr(Ω′). We will use this notation instead of
the standard notation Ck,α(Ω′) or Ck+α(Ω′) to simplify the statements. The
space of Lipschitz continuous functions will be denoted by C0,1(Ω′). We will
denote by Cr

loc(Ω
′) [respectively, C0,1

loc (Ω′)] the space of all functions which are
in Cr(Ω′′) [respectively, C0,1(Ω′′)] for every open set Ω′′ ⊂⊂ Ω′. If 0 < α < 1
we will use the standard notation

[u]Cα(Ω′) := sup
x,y∈Ω′

|u(x) − u(y)|
|x − y|α .

Suppose that G is continuous and (1.2), (1.3), and (1.5) hold. We recall
two equivalent definitions of a viscosity solution of (1.1). In order to do it, we
introduce two associated operators I1,δ and I2,δ,

I1,δ[x, p, u] =
∫

|z|<δ

[u(x + z) − u(x) − 1B1(0)(z)p · z]μx(dz),

I2,δ[x, p, u] =
∫

|z|≥δ

[u(x + z) − u(x) − 1B1(0)(z)p · z]μx(dz).

Definition 2.1. A function u ∈ BUC(Rn) is a viscosity subsolution of (1.1)
if whenever u − ϕ has a maximum over R

n at x ∈ Ω for some test function
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ϕ ∈ C2(Rn) ∩ BUC(Rn), then

G(x, u(x), I[x, ϕ]) ≤ 0.

A function u ∈ BUC(Rn) is a viscosity supersolution of (1.1) if whenever u−ϕ
has a minimum over R

n at x ∈ Ω for a test function ϕ ∈ C2(Rn) ∩ BUC(Rn),
then

G(x, u(x), I[x, ϕ]) ≥ 0.

A function u ∈ BUC(Rn) is a viscosity solution of (1.1) if it is both a viscosity
subsolution and viscosity supersolution of (1.1).

It is easy to see that Definition 2.1 is equivalent to the definition in which
the requirement that ϕ ∈ C2(Rn) ∩ BUC(Rn) is replaced by the requirement
that ϕ ∈ C2(Bδ(x))∩BUC(Rn) for some δ > 0. The equivalence of Definitions
2.1 and 2.2 is also standard.

Definition 2.2. A function u ∈ BUC(Rn) is a viscosity subsolution of (1.1)
if whenever u − ϕ has a maximum over Bδ(x) at x ∈ Ω for a test function
ϕ ∈ C2(Bδ(x)), δ > 0, then

G
(
x, u(x), I1,δ[x,Dϕ(x), ϕ] + I2,δ[x,Dϕ(x), u]

) ≤ 0.

A function u ∈ BUC(Rn) is a viscosity supersolution of (1.1) if whenever u−ϕ
has a minimum over Bδ(x) at x ∈ Ω for a test function ϕ ∈ C2(Bδ(x)), δ > 0,
then

G
(
x, u(x), I1,δ[x,Dϕ(x), ϕ] + I2,δ[x,Dϕ(x), u]

) ≥ 0.

A function u ∈ BUC(Rn) is a viscosity solution of (1.1) if it is both a viscosity
subsolution and viscosity supersolution of (1.1).

We make the following assumptions on the nonlinearity G and the family
of Lévy measures {μx}.
(H1) For each Ω′ ⊂⊂ Ω, there is a nondecreasing continuous function wΩ′

satisfying wΩ′(0) = 0 and a non-negative constant ΛΩ′ such that

G(y, r, l2) − G(x, r, l1) ≤ ΛΩ′(l1 − l2) + wΩ′(|x − y|)
for any x, y ∈ Ω′ and r, l1, l2 ∈ R.

(H2) For every x ∈ Ω the measure μx is absolutely continuous with respect to
the Lebesgue measure on R

n, i.e. μx(dz) = a(x, z)dz, where a(x, ·) ≥ 0
is measurable, and there exist two constants 0 < θ ≤ 1, 0 < σ < 2 and
a positive constant C such that, for any x, y ∈ Ω, we have

|a(x, z) − a(y, z)| ≤ C
|x − y|θ
|z|n+σ

in B1(0),

a(x, z) ≤ C

|z|n+σ
in B1(0),

∫
Rn\B1(0)

|a(x, z) − a(y, z)|dz ≤ C|x − y|θ,
∫
Rn\B1(0)

μx(dz) ≤ C.
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3. Uniqueness of viscosity solutions of (1.1) for γ > 0

In this section we prove the main comparison theorem which will be a basis
for other comparison results.

Theorem 3.1. Let Ω be a bounded domain. Suppose that the nonlinearity G
in (1.1) is continuous and satisfies (1.3) with γ > 0 and (H1). Suppose that
the family of Lévy measures {μx} satisfies assumption (H2). Then, for any
0 < σ < 2, there exists a constant 0 ≤ r0 < σ (r0 ≥ 1 if σ > 1) such that
if r0 < r < 2, θ > max{0, 1 − r}, u is a viscosity subsolution of (1.1), v is a
viscosity supersolution of (1.1), u ≤ v in Ωc, and either u or v is in Cr

loc(Ω),
we have u ≤ v in R

n.

Proof. Without loss of generality we assume that u ∈ Cr
loc(Ω). The proof is

divided into two cases.
Case 1 0 < σ ≤ 1.

Without loss of generality we can assume in this case that 0 < r < 1.
Suppose that maxΩ(u − v) = ν > 0. Let K ⊂ Ω be a compact neighborhood
of the set of maximum points of u− v in Ω. Then (see Proposition 3.7 of [11]),
for ε sufficiently small, there are x̂, ŷ ∈ K such that

u(x̂) − v(ŷ) − 1
2ε

|x̂ − ŷ|2 = sup
x,y

{
u(x) − v(y) − 1

2ε
|x − y|2

}
≥ ν.

Moreover, we can assume that there is 0 < c < 1 such that B2c(x̂)∪B2c(ŷ) ⊂ Ω.
Since

u(x) − v(y) − 1
2ε

|x − y|2 ≤ u(x̂) − v(ŷ) − 1
2ε

|x̂ − ŷ|2,
for any x, y ∈ R

n, putting x = y = ŷ, we thus have
1
2ε

|x̂ − ŷ|2 ≤ u(x̂) − u(ŷ) ≤ C|x̂ − ŷ|r

for some C > 0 independent of ε, which gives us

|x̂ − ŷ|2−r

2ε
≤ C. (3.1)

By the definition of viscosity subsoltions and supersolutions, we have for 0 <
δ < c,

G

(
x̂, u(x̂), I1,δ

[
x̂,

x̂ − ŷ

ε
,
| · −ŷ|2

2ε

]
+ I2,δ

[
x̂,

x̂ − ŷ

ε
, u(·)

])
≤ 0,

G

(
ŷ, v(ŷ), I1,δ

[
ŷ,

x̂ − ŷ

ε
,−|x̂ − ·|2

2ε

]
+ I2,δ

[
ŷ,

x̂ − ŷ

ε
, v(·)

])
≥ 0.

Therefore, by (1.3) and assumption (H1), we have

γ(u(x̂) − v(ŷ))

≤ G

(
ŷ, v(ŷ), I1,δ

[
ŷ,

x̂ − ŷ

ε
,−|x̂ − ·|2

2ε

]
+ I2,δ

[
ŷ,

x̂ − ŷ

ε
, v(·)

])

−G

(
x̂, v(ŷ), I1,δ

[
x̂,

x̂ − ŷ

ε
,
| · −ŷ|2

2ε

]
+ I2,δ

[
x̂,

x̂ − ŷ

ε
, u(·)

])
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≤ ΛK

{
I1,δ

[
x̂,

x̂ − ŷ

ε
,
| · −ŷ|2

2ε

]
+ I2,δ

[
x̂,

x̂ − ŷ

ε
, u(·)

]

−
(

I1,δ

[
ŷ,

x̂ − ŷ

ε
,−|x̂ − ·|2

2ε

]
+ I2,δ

[
ŷ,

x̂ − ŷ

ε
, v(·)

])}
+ wK(|x̂ − ŷ|)

≤ ΛK

{∫
|z|<δ

[
1
2ε

|x̂ − ŷ + z|2 − 1
2ε

|x̂ − ŷ|2 − 1
ε
(x̂ − ŷ) · z

]
μx̂(dz)

+
∫

|z|<δ

[
1
2ε

|x̂ − ŷ − z|2 − 1
2ε

|x̂ − ŷ|2 +
1
ε
(x̂ − ŷ) · z

]
μŷ(dz)

+
∫

|z|≥δ

[
u(x̂ + z) − u(x̂) − 1B1(0)(z)

1
ε
(x̂ − ŷ) · z

]
μx̂(dz)

−
∫

|z|≥δ

[
v(ŷ + z) − v(ŷ) − 1B1(0)(z)

1
ε
(x̂ − ŷ) · z

]
μŷ(dz)

}
+ wK(|x̂ − ŷ|)

= ΛK

{∫
|z|<δ

|z|2
2ε

μx̂(dz) +
∫

|z|<δ

|z|2
2ε

μŷ(dz)

+
∫

|z|≥δ

[
u(x̂ + z) − u(x̂) − 1B1(0)(z)

1
ε
(x̂ − ŷ) · z

]
(μx̂(dz) − μŷ(dz))

+
∫

|z|≥δ

[u(x̂ + z) − u(x̂) − v(ŷ + z) + v(ŷ)]μŷ(dz)

}
+ wK(|x̂ − ŷ|).

Since u(x) − v(y) − 1
2ε |x − y|2 attains a global maximum at (x̂, ŷ), we have

u(x̂ + z) − u(x̂) ≤ v(ŷ + z) − v(ŷ), for any z ∈ R
n.

Moreover, by assumption (H2) and the boundedness of u, we have

∫
|z|≥δ

[
u(x̂ + z) − u(x̂) − 1B1(0)(z)

1
ε
(x̂ − ŷ) · z

]
(μx̂(dz) − μŷ(dz))

≤
∫

|z|≥1

[u(x̂ + z) − u(x̂)](μx̂(dz) − μŷ(dz))

+
∫

1>|z|≥c

[
u(x̂ + z) − u(x̂) − 1

ε
(x̂ − ŷ) · z

]
(μx̂(dz) − μŷ(dz))

+
∫

c>|z|≥δ

[
u(x̂ + z) − u(x̂) − 1

ε
(x̂ − ŷ) · z

]
(μx̂(dz) − μŷ(dz))

≤
∫

c>|z|≥δ

[
u(x̂ + z) − u(x̂) − 1

ε
(x̂ − ŷ) · z

]
(μx̂(dz) − μŷ(dz))

+C|x̂ − ŷ|θ + C
|x̂ − ŷ|1+θ

ε
.
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Therefore,

γ
(
u(x̂) − v(ŷ)

) ≤ ΛK

{ ∫
|z|<δ

|z|2
2ε

μx̂(dz) +

∫
|z|<δ

|z|2
2ε

μŷ(dz)

+

∫
c>|z|≥δ

[
u(x̂ + z) − u(x̂) − 1

ε
(x̂ − ŷ) · z

]
(μx̂(dz) − μŷ(dz))

+C|x̂ − ŷ|θ + C
|x̂ − ŷ|1+θ

ε

}
+ wK(|x̂ − ŷ|). (3.2)

Now by assumption (H2), we have for some C > 0∫
|z|<δ

|z|2
2ε

μx̂(dz) +
∫

|z|<δ

|z|2
2ε

μŷ(dz) ≤ C
δ2−σ

ε
, (3.3)

∫
c>|z|≥δ

[
u(x̂ + z) − u(x̂) − 1

ε
(x̂ − ŷ) · z

]
(μx̂(dz) − μŷ(dz))

≤
∫

c>|z|≥δ

C
(|z|r|x̂ − ŷ|θ + 1

ε |x̂ − ŷ|1+θ|z|)
|z|n+σ

dz

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C|x̂ − ŷ|θδr−1 − C 1
ε |x̂ − ŷ|1+θ ln δ if r < σ = 1,

C|x̂ − ŷ|θδr−σ + C 1
ε |x̂ − ŷ|1+θ if r < σ < 1,

−C|x̂ − ŷ|θ ln δ + C 1
ε |x̂ − ŷ|1+θ if r = σ < 1,

C|x̂ − ŷ|θ + C 1
ε |x̂ − ŷ|1+θ if σ < r < 1.

In the rest of the proof we will only consider the case r < σ. The case
σ ≤ r < 1 is easier and can be handled similarly. Let δ = n−α and ε = n−β .
By (3.1), we have

|x̂ − ŷ| ≤ Cn− β
2−r .

If r < σ < 1, we have

C
δ2−σ

ε
= Cnα(σ−2)+β ,

C|x̂ − ŷ|θδr−σ ≤ Cn− θβ
2−r +α(σ−r),

C
1
ε
|x̂ − ŷ|1+θ ≤ Cn

β
2−r (1−r−θ).

Thus, if

β < (2 − σ)α, (3.4)

α(σ − r) <
θβ

2 − r
, (3.5)

θ > 1 − r, (3.6)

it follows

C
δ2−σ

ε
→ 0, (3.7)

C|x̂ − ŷ|θδr−σ → 0, (3.8)
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C
1
ε
|x̂ − ŷ|1+θ → 0. (3.9)

It remains to find proper α > 0, β > 0, and 0 < r0 < σ so that (3.4) and (3.5)
hold. We set β = 1 and α > 1/(2−σ) so that (3.4) is satisfied. Then obviously
there exists a positive constant r0 < σ such that (3.5) is satisfied if r0 < r < σ.

If r < σ = 1, we have

C
δ2−σ

ε
= Cnβ−α,

C|x̂ − ŷ|θδr−σ ≤ Cn− θβ
2−r +α(1−r),

C
1
ε
|x̂ − ŷ|1+θ(− ln δ) ≤ Cn

β
2−r (1−r−θ) ln(n).

Thus, if

β < α, (3.10)

α(1 − r) <
θβ

2 − r
, (3.11)

θ > 1 − r, (3.12)

we have

C
δ2−σ

ε
→ 0, (3.13)

C|x̂ − ŷ|θδr−σ → 0, (3.14)

C
1
ε
|x̂ − ŷ|1+θ(− ln δ) → 0. (3.15)

Using the same strategy as before, for any θ > 0, we set β = 1, α > 1, and
then choose 0 < r0 < σ such that (3.11) is satisfied if r0 < r < 1.

Therefore, using (3.7)–(3.9) and (3.13)–(3.15) in (3.2), we conclude

γν ≤ lim sup
n→+∞

γ
(
u(x̂) − v(ŷ)

) ≤ 0

if r0 < r < σ. This contradiction thus implies that we must have u ≤ v in R
n.

Case 2 1 < σ < 2.
We assume that r > 1. Suppose that maxΩ(u − v) = ν > 0. Let K ⊂ Ω

be a compact neighborhood of the set of maximum points of u−v in Ω. There
is a sequence of C2(Rn) ∩ BUC(Rn) functions {ψn}n such that

u − ψn → 0 as n → +∞ uniformly on R
n, (3.16)

and ⎧⎨
⎩

|Du − Dψn| ≤ Cn1−r on K,
|D2ψn| ≤ Cn2−r on K,
|D2ψn(x) − D2ψn(y)| ≤ Cn3−r|x − y| on K,

(3.17)

where C is a positive constant (see [11]). Let ρ be a modulus of continuity of
u and v.

Let (x̂, ŷ) ∈ R
n × R

n be a maximum point of

(u(x) − ψn(x)) − (v(y) − ψn(y)) − 1
2ε

|x − y|2
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over R
n ×R

n. Again it is standard to notice (see Proposition 3.7 of [11]) that

lim
ε→0

(u(x̂) − v(ŷ)) = max
Ω

(u − v), (3.18)

and there must exist 0 < c < 1 such that Bc(x̂) ∪ Bc(ŷ) ⊂ K if ε is sufficiently
small. Moreover, since u(·) − ψn(·) − (

v(ŷ) − ψn(ŷ)
) − 1

2ε | · −ŷ|2 has a global
maximum at x̂, we have

Du(x̂) − Dψn(x̂) =
x̂ − ŷ

ε
.

Thus, we get
|x̂ − ŷ|

ε
≤ Cn1−r. (3.19)

By the definition of viscosity subsolutions and supersolutions, we have, for any
0 < δ < c,

G

(
x̂, u(x̂), I1,δ

[
x̂,

x̂ − ŷ

ε
+ Dψn(x̂),

| · −ŷ|2
2ε

+ ψn(·)
]

+ I2,δ

[
x̂,

x̂ − ŷ

ε
+ Dψn(x̂), u(·)

])
≤ 0,

G

(
ŷ, v(ŷ), I1,δ

[
ŷ,

x̂ − ŷ

ε
+ Dψn(ŷ), ψn(·) − |x̂ − ·|2

2ε

]

+ I2,δ

[
ŷ,

x̂ − ŷ

ε
+ Dψn(ŷ), v(·)

])
≥ 0.

Therefore, by (1.3) and assumption (H1), we have

γ(u(x̂) − v(ŷ))

≤ G

(
ŷ, v(ŷ), I1,δ

[
ŷ,

x̂ − ŷ

ε
+ Dψn(ŷ), ψn(·) − |x̂ − ·|2

2ε

]

+I2,δ

[
ŷ,

x̂ − ŷ

ε
+ Dψn(ŷ), v(·)

])

−G

(
x̂, v(ŷ), I1,δ

[
x̂,

x̂ − ŷ

ε
+ Dψn(x̂),

| · −ŷ|2
2ε

+ ψn(·)
]

+I2,δ

[
x̂,

x̂ − ŷ

ε
+ Dψn(x̂), u(·)

])

≤ ΛK

{
I1,δ

[
x̂,

x̂ − ŷ

ε
+ Dψn(x̂),

| · −ŷ|2
2ε

+ ψn(·)
]

+I2,δ

[
x̂,

x̂ − ŷ

ε
+ Dψn(x̂), u(·)

]
−

(
I1,δ

[
ŷ,

x̂ − ŷ

ε
+ Dψn(ŷ), ψn(·) − |x̂ − ·|2

2ε

]

+I2,δ

[
ŷ,

x̂ − ŷ

ε
+ Dψn(ŷ), v(·)

]) }
+ wK(|x̂ − ŷ|)

≤ ΛK

{ ∫
|z|<δ

[
ψn(x̂ + z) +

1

2ε
|x̂ − ŷ + z|2 −

(
ψn(x̂) +

1

2ε
|x̂ − ŷ|2

)

−
(

1

ε
(x̂ − ŷ) + Dψn(x̂)

)
· z

]
μx̂(dz)
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−
∫

|z|<δ

[
ψn(ŷ + z) − 1

2ε
|x̂ − ŷ − z|2 −

(
ψn(ŷ) − 1

2ε
|x̂ − ŷ|2

)

−
(

1

ε
(x̂ − ŷ) + Dψn(ŷ)

)
· z

]
μŷ(dz)

+

∫
|z|≥δ

[
u(x̂ + z) − u(x̂) − 1B1(0)(z)

(
1

ε
(x̂ − ŷ) + Dψn(x̂)

)
· z

]
μx̂(dz)

−
∫

|z|≥δ

[
v(ŷ + z) − v(ŷ) − 1B1(0)(z)

(
1

ε
(x̂ − ŷ) + Dψn(ŷ)

)
· z

]
μŷ(dz)

}

+wK(|x̂ − ŷ|)

≤ ΛK

{ ∫
|z|<δ

[
1

2ε
|z|2 + ψn(x̂ + z) − ψn(x̂) − Dψn(x̂) · z

]
μx̂(dz)

−
∫

|z|<δ

[
− 1

2ε
|z|2 + ψn(ŷ + z) − ψn(ŷ) − Dψn(ŷ) · z

]
μŷ(dz)

+

∫
|z|≥δ

[
u(x̂ + z) − u(x̂) − 1B1(0)(z)

(
1

ε
(x̂ − ŷ) + Dψn(x̂)

)
· z

]

×(μx̂(dz) − μŷ(dz)) +

∫
|z|≥δ

[u(x̂ + z) − u(x̂) − v(ŷ + z) + v(ŷ)

−1B1(0)(z) (Dψn(x̂) − Dψn(ŷ)) · z]μŷ(dz)

}
+ wK(|x̂ − ŷ|).

Since (x̂, ŷ) is a global maximum point of (u(x) − ψn(x)) − (v(y) − ψn(y)) −
1
2ε |x − y|2, we have

u(x̂ + z) − u(x̂) − v(ŷ + z) + v(ŷ) ≤ ψn(x̂ + z) − ψn(x̂) − ψn(ŷ + z) + ψn(ŷ),
for all z ∈ R

n.

Thus, by (3.17) and the uniform continuity of u, v, we have
∫

|z|≥δ

[
u(x̂+z)−u(x̂)−v(ŷ+z)+v(ŷ)−1B1(0)(z)(Dψn(x̂)−Dψn(ŷ)) · z

]
μŷ(dz)

≤
∫

c≥|z|≥δ

[(ψn(x̂ + z) − ψn(x̂) − Dψn(x̂) · z)

− (ψn(ŷ + z) − ψn(ŷ) − Dψn(ŷ) · z)] μŷ(dz) + C|x̂ − ŷ|r−1 + Cρ(|x̂ − ŷ|).

Moreover, by assumption (H2), the boundedness of u and Du(x̂) = 1
ε (x̂− ŷ)+

Dψn(x̂) (in n and ε), we have
∫

|z|≥δ

[
u(x̂ + z) − u(x̂) − 1B1(0)(z)

(
1

ε
(x̂ − ŷ) + Dψn(x̂)

)
· z

]
(μx̂(dz) − μŷ(dz))

≤
∫

c≥|z|≥δ

+

∫
|z|≥c

≤
∫

c≥|z|≥δ

[
u(x̂ + z) − u(x̂) −

(
1

ε
(x̂ − ŷ) + Dψn(x̂)

)
· z

]

× (μx̂(dz) − μŷ(dz)) + C|x̂ − ŷ|θ.
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Therefore, we have

γ
(
u(x̂) − v(ŷ)

)

≤ ΛK

{∫
|z|<δ

[
1
2ε

|z|2 + ψn(x̂ + z) − ψn(x̂) − Dψn(x̂) · z

]
μx̂(dz)

−
∫

|z|<δ

[
− 1

2ε
|z|2 + ψn(ŷ + z) − ψn(ŷ) − Dψn(ŷ) · z

]
μŷ(dz)

+
∫

c≥|z|≥δ

[
u(x̂ + z) − u(x̂) −

(
1
ε
(x̂ − ŷ) + Dψn(x̂)

)
· z

]

×(
μx̂(dz) − μŷ(dz)

)

+
∫

c≥|z|≥δ

[(
ψn(x̂ + z) − ψn(x̂) − Dψn(x̂) · z

)

−(
ψn(ŷ + z) − ψn(ŷ) − Dψn(ŷ) · z

)]
μŷ(dz)

}

+Cρ(|x̂ − ŷ|) + C|x̂ − ŷ|r−1 + C|x̂ − ŷ|θ + wK(|x̂ − ŷ|). (3.20)

Estimate (3.3) holds. Moreover, by (H2) and (3.17), we have∣∣∣∣∣
∫

|z|<δ

[ψn(x̂ + z) − ψn(x̂) − Dψn(x̂) · z]μx̂(dz)

∣∣∣∣∣ ≤ Cn2−rδ2−σ,

∣∣∣∣∣
∫

|z|<δ

[ψn(ŷ + z) − ψn(ŷ) − Dψn(ŷ) · z]μŷ(dz)

∣∣∣∣∣ ≤ Cn2−rδ2−σ,

∫
c≥|z|≥δ

[
u(x̂ + z) − u(x̂) −

(
1
ε
(x̂ − ŷ) + Dψn(x̂)

)
· z

] (
μx̂(dz) − μŷ(dz)

)

≤ C

∫
c≥|z|≥δ

|z|r|x̂ − ŷ|θ
|z|n+σ

dz ≤
⎧⎨
⎩

Cδr−σ|x̂ − ŷ|θ if r < σ,
−C|x̂ − ŷ|θ ln δ if r = σ,
C|x̂ − ŷ|θ if σ < r < 2.

We recall a simple identity. If f ∈ C2(Rn) then for every x, z ∈ R
n

f(x + z) = f(x) + Df(x) · z +
∫ 1

0

∫ 1

0

D2f(x + stz)z · z tdsdt.

Using it, (H2), and recalling that Bc(x̂) ∪ Bc(ŷ) ⊂ K, we obtain∫
c≥|z|≥δ

[(ψn(x̂ + z) − ψn(x̂) − Dψn(x̂) · z)

−(ψn(ŷ + z) − ψn(ŷ) − Dψn(ŷ) · z)]μŷ(dz)

=
∫

c≥|z|≥δ

∫ 1

0

∫ 1

0

[D2ψn(x̂ + stz) − D2ψn(ŷ + stz)]z · z tdsdtμŷ(dz)

≤ C

∫
c≥|z|≥δ

n3−r|x̂ − ŷ| |z|2
|z|n+σ

dz ≤ Cn3−r|x̂ − ŷ|.
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In the remainder of the proof we will only consider the case r < σ. The case
σ ≤ r < 2 is easier and can be done similarly (see also Remark 3.2). Assume
then that 1 < r < σ. Let again δ = n−α and ε = n−β . By (3.19), we have

C
δ2−σ

ε
= Cnα(σ−2)+β ,

Cn2−rδ2−σ = Cn2−r+α(σ−2),

C|x̂ − ŷ|θδr−σ ≤ Cn−θ[(r−1)+β]−α(r−σ),

Cn3−r|x̂ − ŷ| ≤ Cn−(r−1)−β+(3−r).

Thus, if

β < (2 − σ)α, (3.21)
2 − r < α(2 − σ), (3.22)

α(σ − r) < θ(r − 1 + β), (3.23)
(4 − 2r) < β, (3.24)

we have

C
δ2−σ

ε
→ 0, (3.25)

Cn2−rδ2−σ → 0, (3.26)

C|x̂ − ŷ|θδr−σ → 0, (3.27)

Cn3−r|x̂ − ŷ| → 0. (3.28)

We need to find α > 0, β > 0, and 1 ≤ r0 < σ so that (3.21)–(3.24) are
satisfied if r0 < r < σ. First fix β such that (3.24) is satisfied. Then, fix α such
that (3.21) and (3.22) are satisfied. It is then clear that there exists a positive
constant 1 ≤ r0 < σ such that (3.23) is satisfied if r0 < r < σ.

Thus, letting n → +∞ in (3.20) and using (3.18) and (3.25)–(3.28), we
obtain γν ≤ 0 which is a contradiction. Therefore, u ≤ v in R

n. �

Remark 3.1. It follows from the proof of Theorem 3.1 that if the kernel func-
tions a(x, ·) are symmetric, the requirement θ > max{0, 1−r} can be replaced
by a weaker requirement θ > 0. The same remark applies to Theorems 3.2,
4.1, 4.2, 5.1, Lemmas 5.1, 5.2, and Corollaries 3.1, 3.2, 4.1, 4.2.

Corollary 3.1. Let the assumptions of Theorem 3.1 be satisfied, 0 < σ < 2, θ >
max{0, 1 − r}, 0 < r < 2. If u is a viscosity subsolution, v is a viscosity
supersolution of (1.1), u ≤ v in Ωc, and either u or v is in Cr

loc(Ω), then:

(i) For 0 < σ ≤ 1, if σ < θ(2−r)
2−r+θ + r, we have u ≤ v in R

n.

(ii) For 1 < σ < 2 and r > 1, if σ < 2 − 2 (2−r)2

θ(3−r)+(4−2r) , we have u ≤ v in
R

n.

Proof. (i) Let β = 1 and α = 1/(2 − σ) + η, where η > 0. Then (3.4) and
(3.6) hold and (3.5) will be satisfied if(

1
2 − σ

+ η

)
(σ − r) <

θ

2 − r
.
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An easy calculation shows that the above will be true for some η > 0 if

σ <
θ(2 − r)
2 − r + θ

+ r.

(ii) Set

β = 4 − 2r + η1, α =
4 − 2r + η1

2 − σ
+ η2,

where η1, η2 > 0. Then (3.21), (3.22) and (3.24) are satisfied, and (3.23)
will be satisfied if(

4 − 2r + η1

2 − σ
+ η2

)
(σ − r) < θ (r − 1 + 4 − 2r + η1)

for some η1, η2 > 0. Again a simple calculation yields that this inequality
will be satisfied for some η1, η2 > 0 if

σ < 2 − 2
(2 − r)2

θ(3 − r) + (4 − 2r)
.

�

Let us consider another important fully nonlinear integro-PDE appearing
in the study of stochastic optimal control and stochastic differential games for
processes with jumps, namely the Bellman–Isaacs equation (1.6)

γu + sup
α∈A

inf
β∈B

{−Iαβ [x, u] + fα,β(x)} = 0, in Ω,

where Iαβ [x, u] =
∫
Rn [u(x+z)−u(x)−1B1(0)(z)Du(z)·z]μαβ

x (dz) and {μαβ
x } is

a family of Lévy measures with indices α and β ranging in some sets A and B.
Equation (1.6) is not of the same form as (1.1), which means that the following
theorem and corollary are not corollaries of Theorem 3.1 and Corollary 3.1,
however the proofs follow the same arguments. Similar results would be true
if we included other typical purely local first and second order terms in (1.6).

Theorem 3.2. Let Ω be a bounded domain. Suppose that γ > 0, the family of
Lévy measures {μαβ

x } satisfies assumption (H2) uniformly in α ∈ A, β ∈ B, and
fα,β are uniformly bounded in Ω and uniformly continuous in every compact
subset K ⊂ Ω, uniformly in α ∈ A, β ∈ B. Then, for any 0 < σ < 2, there
exists a constant 0 ≤ r0 < σ (r0 ≥ 1 if σ > 1) such that if r0 < r < 2, θ >
max{0, 1−r}, u is a viscosity subsolution of (1.6), v is a viscosity supersolution
of (1.6), u ≤ v in Ωc, and either u or v is in Cr

loc(Ω), we have u ≤ v in R
n.

Corollary 3.2. Let the assumptions of Theorem 3.2 be satisfied, 0 < σ < 2, θ >
max{0, 1−r}, 0 < r < 2. If u is a viscosity subsolution of (1.6), v is a viscosity
supersolution of (1.6), u ≤ v in Ωc, and either u or v is in Cr

loc(Ω), then:

(i) For 0 < σ ≤ 1, if σ < θ(2−r)
2−r+θ + r, we have u ≤ v in R

n.

(ii) For 1 < σ < 2 and r > 1, if σ < 2 − 2 (2−r)2

θ(3−r)+(4−2r) , we have u ≤ v in
R

n.
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Remark 3.2. Suppose that the kernel function a(x, z) satisfies the second condi-
tion of (H2). If r > max(σ, 1), or if r > σ and the kernels a(x, ·) are symmetric,
then a viscosity subsolution/supersolution of (1.1) which is in Cr

loc(Ω) can be
considered to be a classical subsolution/supersolution of (1.1). In such a case
comparison theorem is standard and we do not need the full assumptions of
Theorem 3.1. The same remark applies to Theorem 3.2, and Theorems 4.1 and
4.2 if condition (H3) is satisfied.

4. Uniqueness of viscosity solutions of (1.1) for γ = 0

In this section we investigate uniqueness of viscosity solutions of (1.1) when
γ = 0 in (1.3). As always we assume that G is continuous and (1.2), (1.3), and
(1.5) hold. To compensate for the fact that γ = 0, we will assume that the
nonlinearity G is uniformly elliptic with respect to a class of linear nonlocal
operators L. A class L is a set of linear nonlocal operators L of the form

Lu(x) =
∫
Rn

[u(x + z) − u(x) − 1B1(0)(z)Du(x) · z]μL(dz),

where the Lévy measures μL are symmetric and satisfy supL∈L
∫
Rn min{1, |z|2}

μL(dz) < +∞. We say that the nonlinearity G in (1.1) is uniformly elliptic with
respect to L if for every ϕ,ψ ∈ C2(Bδ(x)) ∩ BUC(Rn), x ∈ Ω, r ∈ R, δ > 0,

M−
L (ϕ − ψ)(x) ≤ G (x, r, I[x, ϕ]) − G (x, r, I[x, ψ]) ≤ M+

L (ϕ − ψ)(x),

where

M+
L ϕ(x) = sup

L∈L
−Lϕ(x),

M−
L ϕ(x) = inf

L∈L
−Lϕ(x).

In order to have a comparison principle for the case γ = 0, we need
to impose an additional minimal ellipticity condition on the class L. We will
assume that the following condition holds.
(H3) There exist a non-negative function ϕ ∈ C2(Ω) ∩ BUC(Rn) and δ0 > 0,

such that Lϕ > δ0 in Ω for every L ∈ L.

Theorem 4.1. Let Ω be a bounded domain and let a class L satisfy (H3).
Suppose that the nonlinearity G in (1.1) is continuous and uniformly elliptic
with respect to L, and satisfies (1.3) with γ = 0 and (H1). Suppose that the
family of Lévy measures {μx} satisfies assumption (H2). Then, for any 0 <
σ < 2, there exists a constant 0 ≤ r0 < σ (r0 ≥ 1 if σ > 1) such that if
r0 < r < 2, θ > max{0, 1 − r}, u is a viscosity subsolution of (1.1), v is a
viscosity supersolution of (1.1), u ≤ v in Ωc, and either u or v is in Cr

loc(Ω),
we have u ≤ v in R

n.

Proof. By (H3), there is a positive constant M > 0 such that ϕ ≤ M in R
n.

For any ε > 0, let ϕε = ε(1 − 1
M ϕ) in R

n. Obviously, we have 0 ≤ ϕε ≤ ε in
R

n and M−
L (ϕε) ≥ εδ0

M in Ω.
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We claim that v+ϕε is a viscosity supersolution of G = εδ0
M in Ω. Suppose

that x ∈ Ω, δ > 0 and ψ ∈ C2(Bδ(x)) ∩ BUC(Rn) are such that v + ϕε − ψ
has a minimum over R

n at x. Since v is a viscosity supersolution of (1.1), we
have G(x, v(x), I[x, ψ − ϕε]) ≥ 0. By (1.3) and the uniform ellipticity, we get

G(x, v(x) + ϕε(x), I[x, ψ])
≥ G(x, v(x) + ϕε(x), I[x, ψ]) − G(x, v(x), I[x, ψ − ϕε])
≥ G(x, v(x), I[x, ψ]) − G(x, v(x), I[x, ψ − ϕε])

≥ M−
L (ϕε) ≥ εδ0

M
.

Therefore, the proof of the claim is complete.
We notice that u ≤ v+ϕε in Ωc. We can now repeat the proof of Theorem

3.1 to obtain u ≤ v + ϕε ≤ v + ε in R
n. (Instead of the contradiction γν ≤ 0

we will now get a contradiction εδ0
M ≤ 0.) Letting ε → 0+, we thus conclude

that u ≤ v in R
n. �

Combining the proofs of Corollary 3.1 and Theorem 4.1, we have the
following corollary.

Corollary 4.1. Let the assumptions of Theorem 4.1 be satisfied, 0 < σ < 2, θ >
max{0, 1 − r}, 0 < r < 2. If u is a viscosity subsolution, v is a viscosity
supersolution of (1.1), u ≤ v in Ωc, and either u or v is in Cr

loc(Ω), then:

(i) For 0 < σ ≤ 1, if σ < θ(2−r)
2−r+θ + r, we have u ≤ v in R

n.

(ii) For 1 < σ < 2 and r > 1, if σ < 2 − 2 (2−r)2

θ(3−r)+(4−2r) , we have u ≤ v in
R

n.

The same techniques also produce the following two results for Eq. (1.6).

Theorem 4.2. Let Ω be a bounded domain. Suppose that γ = 0, the family of
Lévy measures {μαβ

x } satisfies assumption (H2) uniformly in α ∈ A, β ∈ B, and
fα,β are uniformly bounded in Ω and uniformly continuous in every compact
subset K ⊂ Ω, uniformly in α ∈ A, β ∈ B, and the class {Iαβ} satisfies (H3).
Then, for any 0 < σ < 2, there exists a constant 0 ≤ r0 < σ (r0 ≥ 1 if σ > 1)
such that if r0 < r < 2, θ > max{0, 1−r}, u is a viscosity subsolution of (1.6),
v is a viscosity supersolution of (1.6), u ≤ v in Ωc, and either u or v is in
Cr

loc(Ω), we have u ≤ v in R
n.

Corollary 4.2. Let the assumptions of Theorem 4.2 be true, 0 < σ < 2, θ >
max{0, 1 − r} and 0 < r < 2. If u is a viscosity subsolution of (1.6), v is a
viscosity supersolution of (1.6), u ≤ v in Ωc, and either u or v is in Cr

loc(Ω),
then:

(i) For 0 < σ ≤ 1, if σ < θ(2−r)
2−r+θ + r, we have u ≤ v in R

n.

(ii) For 1 < σ < 2 and r > 1, if σ < 2 − 2 (2−r)2

θ(3−r)+(4−2r) , we have u ≤ v in
R

n.
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5. Regularization by sup/inf-convolutions

In this section we show how techniques of Sect. 3 can be adapted to regu-
larize viscosity sub/supersolutions by sup/inf-convolutions. It is a generally
expected principle in the theory of viscosity solutions of PDE that whenever
one is able to prove a comparison principle then one should be able to prove
that a sup-convolution of a viscosity subsolution (respectively, inf-convolution
of a viscosity supersolution) is a viscosity subsolution (respectively, supersolu-
tion) of a slightly perturbed equation. The same principle also seems to work
for viscosity sub/supersolutions of integro-PDE under standard assumptions,
see e.g. [22] for a proof for a standard Bellman–Isaacs equation. Here the
situation is a bit more complicated. Since in our case the proof of compar-
ison principle uses auxiliary functions ψn, we have to introduce a notion of
sup/inf-convolution that depends on a parameter ε > 0 and on a function ψ.
Such sup/inf convolutions have been used in [20]. We will also show that if G
is uniformly elliptic with respect to a class L of linear nonlocal operators, u is
a viscosity subsolution of (1.1) and v is a viscosity supersolution of (1.1), then
u − v satisfies M−

L (u − v) ≤ 0 in the viscosity sense. Similar results can also
be proved for Eq. (1.6).

We will always assume that G is continuous and satisfies (1.2), (1.3), and
(1.5). We first give yet another equivalent definition of viscosity solutions of
(1.1).

Definition 5.1. A function ϕ is said to be C1,1 at the point x, and we write
u ∈ C1,1(x), if there are a vector p ∈ R

n, a constant M > 0 and a neighborhood
Nx of x such that

|ϕ(y) − ϕ(x) − p · (y − x)| ≤ M |y − x|2 for y ∈ Nx.

The definition implies that Dϕ(x) = p.

Definition 5.2. A function u ∈ BUC(Rn) is a viscosity subsolution of (1.1)
if for any test function ϕ(x) ∈ C1,1(x) ∩ BUC(Bδ(x)) such that u − ϕ has a
maximum over Bδ(x) at x ∈ Ω,

G(x, u(x), I1,δ[x,Dϕ(x), ϕ] + I2,δ[x,Dϕ(x), u]) ≤ 0.

A function u ∈ BUC(Rn) is a viscosity supersolution of (1.1) if for any test
function ϕ ∈ C1,1(x) ∩ BUC(Bδ(x)) such that u − ϕ has a minimum over
Bδ(x) at x ∈ Ω,

G(x, u(x), I1,δ[x,Dϕ(x), ϕ] + I2,δ[x,Dϕ(x), u]) ≥ 0.

A function u ∈ BUC(Rn) is a viscosity solution of (1.1) if it is both a viscosity
subsolution and viscosity supersolution of (1.1).

Proposition 5.1. Let G be continuous and (1.2), (1.3), and (1.5) hold. Then
Definition 2.2 is equivalent to Definition 5.2.

Proof. Obviously if u is a viscosity sub/supersolution in the sense of Definition
5.2, it is a viscosity sub/supersolution in the sense of Definition 2.2. Assume
now that u is a viscosity subsolution in the sense of Definition 2.2. Let ϕ ∈
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C1,1(x) ∩ BUC(Bδ(x)) and u − ϕ have a maximum over Bδ(x) at x. Then
I1,δ[x,Dϕ(x), ϕ], I2,δ[x,Dϕ(x), u]) are well defined. Also because ϕ is C1,1(x),
there exist a sequence of C2(Bδ(x)) functions {ϕn}n and a positive constant
C such that ϕ − ϕn has a maximum point at x over Bδ(x), ϕn ≥ ϕ,ϕn → ϕ
uniformly in Bδ(x) and |ϕn(x+z)−ϕn(x)−Dϕn(x)·z| ≤ C|z|2. Thus u−ϕn has
a maximum at x over Bδ(x) and Dϕ(x) = Dϕn(x). Therefore, by Definition
2.2,

G(x, u(x), I1,δ[x,Dϕ(x), ϕn] + I2,δ[x,Dϕ(x), u]) ≤ 0.

Letting n → +∞ and using the Lebesgue dominated convergence theorem we
thus conclude

G(x, u(x), I1,δ[x,Dϕ(x), ϕ] + I2,δ[x,Dϕ(x), u]) ≤ 0.

�
Definition 5.3. (See [20]) Given u, ψ ∈ BUC(Rn), ε > 0, the ψ-sup-convolution
uψ,ε of u is defined by

uψ,ε(x) := (u − ψ)ε(x) + ψ(x) = sup
y∈Rn

{
u(y) − ψ(y) − |x − y|2

2ε

}
+ ψ(x),

and the ψ-inf-convolution uψ,ε of u is defined by

uψ,ε(x) := (u − ψ)ε(x) + ψ(x) = inf
y∈Rn

{
u(y) − ψ(y) +

|x − y|2
2ε

}
+ ψ(x).

Remark 5.1. The functions u0,ε and u0,ε are the usual sup- and inf-convolutions
of u respectively, and we will denote them by uε and uε (see [11]).

Remark 5.2. uψα,ε(x), uψα,ε(x) → u(x) uniformly for x ∈ R
n and α ∈ A as

ε → 0 if the functions {ψα}α∈A ⊂ BUC(Rn) have a uniform modulus of
continuity.

Lemma 5.1. Let Ω be a bounded domain. Suppose that the nonlinearity G
in (1.1) is continuous and G(x, ·, l) is uniformly continuous, uniformly for
x ∈ Ω, l ∈ R. Assume moreover that G satisfies (1.3) with γ = 0 and (H1),
and the family of Lévy measures {μx} satisfies assumption (H2). Then, for
any 0 < σ < 2, there exists a constant 0 ≤ r0 < σ (r0 ≥ 1 if σ > 1) such that
if r0 < r < 2, θ > max{0, 1 − r}, Ω′ ⊂⊂ Ω is an open set, u ∈ Cr

loc(Ω) is a
viscosity subsolution of (1.1), then there are a sequence of C2(Rn)∩BUC(Rn)
functions {ψn}n with a uniform modulus of continuity, a sequence of positive
numbers {εn}n with εn → 0, and a modulus ρ such that uψn,εn is a viscosity
subsolution of

G(x, uψn,εn , I[x, uψn,εn ]) = ρ

(
1
n

)
in Ω′. (5.1)

Proof. Case 1 0 < σ ≤ 1.
As in the proof of Theorem 3.1, without loss of generality, we can assume

that 0 < r < 1. For any x̂ ∈ Ω′ and Bδ̂(x̂) ⊂ Ω′, suppose that there is a
test function ϕ ∈ C2(Bδ̂(x̂)) such that uε − ϕ has a maximum (equal 0) at
x̂ over Bδ̂(x̂). Since u ∈ BUC(Rn), there exists a point ŷ ∈ Ω′ such that
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uε(x̂) = u(ŷ)− |x̂−ŷ|2
2ε if ε is sufficiently small. Thus u(y)− 1

2ε |x−y|2 −ϕ(x) has
a maximum at (ŷ, x̂) over R

n × Bδ̂(x̂) and u(ŷ) ≥ uε(x̂). Therefore, we have

|x̂ − ŷ|2−r

2ε
≤ C (5.2)

for some C > 0 independent of ε. Notice that uε is semi-convex, which implies
that there is a paraboloid touching its graph from below at x̂. Since ϕ ∈
C2(Bδ̂(x̂)) touches the graph of uε from above at x̂, we get uε ∈ C1,1(x̂) ∩
BUC(Rn). For any 0 < δ < min{δ̂, 1} and small ε > 0, we have by (1.3) and
(H1),

G
(
x̂, uε(x̂), I1,δ[x̂,Duε(x̂), uε] + I2,δ[x̂,Duε(x̂), uε]

)

−G

(
ŷ, u(ŷ), I1,δ

[
ŷ,

ŷ − x̂

ε
,
|x̂ − ·|2

2ε

]
+ I2,δ

[
ŷ,

ŷ − x̂

ε
, u

])

≤ G
(
x̂, u(ŷ), I1,δ[x̂,Duε(x̂), uε] + I2,δ[x̂,Duε(x̂), uε]

)

−G

(
ŷ, u(ŷ), I1,δ

[
ŷ,

ŷ − x̂

ε
,
|x̂ − ·|2

2ε

]
+ I2,δ

[
ŷ,

ŷ − x̂

ε
, u

])

≤ ΛΩ′

{
I1,δ

[
ŷ,

ŷ − x̂

ε
,
|x̂ − ·|2

2ε

]
+ I2,δ

[
ŷ,

ŷ − x̂

ε
, u

]

− (
I1,δ [x̂,Duε(x̂), uε] + I2,δ [x̂,Duε(x̂), uε]

) }
+ wΩ′(|x̂ − ŷ|)

≤ ΛΩ′

{∫
|z|<δ

[
1
2ε

|x̂ − ŷ − z|2 − 1
2ε

|x̂ − ŷ|2 − 1
ε
(ŷ − x̂) · z

]
μŷ(dz)

−
∫

|z|<δ

[
uε(x̂ + z) − uε(x̂) − 1

ε
(ŷ − x̂) · z

]
μx̂(dz)

+
∫

|z|≥δ

[
u(ŷ + z) − u(ŷ) − 1B1(0)(z)

1
ε
(ŷ − x̂) · z

]
μŷ(dz)

−
∫

|z|≥δ

[
uε(x̂ + z) − uε(x̂) − 1B1(0)(z)

1
ε
(ŷ − x̂) · z

]
μx̂(dz)

}

+wΩ′(|x̂ − ŷ|). (5.3)

Since ŷ−x̂
ε = Duε(x̂) and uε(z) + |z|2

2ε is convex, we have

− |z|2
2ε

≤ uε(x̂ + z) − uε(x̂) − 1
ε
(ŷ − x̂) · z. (5.4)

Thus, by (5.3) and (5.4),

G
(
x̂, uε(x̂), I1,δ[x̂,Duε(x̂), uε] + I2,δ[x̂,Duε(x̂), uε]

)

−G

(
ŷ, u(ŷ), I1,δ

[
ŷ,

ŷ − x̂

ε
,
|x̂ − ·|2

2ε

]
+ I2,δ

[
ŷ,

ŷ − x̂

ε
, u

])
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≤ ΛΩ′

{∫
|z|<δ

1
2ε

|z|2(μŷ(dz) + μx̂(dz)
)

+
∫

|z|≥δ

[
u(ŷ + z) − u(ŷ) − 1B1(0)(z)

1
ε
(ŷ − x̂) · z

] (
μŷ(dz) − μx̂(dz)

)

+
∫

|z|≥δ

[
u(ŷ + z) − u(ŷ) − (

uε(x̂ + z) − uε(x̂)
)]

μx̂(dz)

}
+ wΩ′(|x̂−ŷ|).

(5.5)

By the definition of uε, we have

uε(x̂ + z) ≥ u(ŷ + z) − |x̂ − ŷ|2
2ε

,

which implies
uε(x̂ + z) − uε(x̂) ≥ u(ŷ + z) − u(ŷ). (5.6)

Thus, by (5.5) and (5.6), it follows

G
(
x̂, uε(x̂), I1,δ[x̂,Duε(x̂), uε] + I2,δ[x̂,Duε(x̂), uε]

)

−G

(
ŷ, u(ŷ), I1,δ

[
ŷ,

ŷ − x̂

ε
,
|x̂ − ·|2

2ε

]
+ I2,δ

[
ŷ,

ŷ − x̂

ε
, u

])

≤ ΛΩ′

{∫
|z|<δ

1
2ε

|z|2(μŷ(dz) + μx̂(dz)
)

+
∫

|z|≥δ

[
u(ŷ + z) − u(ŷ) − 1B1(0)(z)

1
ε
(ŷ − x̂) · z

] (
μŷ(dz) − μx̂(dz)

)}

+wΩ′(|x̂ − ŷ|).
We now let δn = n−α and εn = n−β , and use the same estimates as in Case
1 of the proof of Theorem 3.1 to show that, we can find α > 0, β > 0, and
0 < r0 < σ such that, if r0 < r < 1 and θ > 1 − r, then

G
(
x̂, uεn(x̂), I1,δn [x̂,Duεn(x̂), uεn ] + I2,δn [x̂,Duεn(x̂), uεn ]

)

−G

(
ŷ, u(ŷ), I1,δn

[
ŷ,

ŷ − x̂

εn
,
|x̂ − ·|2

2εn

]
+ I2,δn

[
ŷ,

ŷ − x̂

εn
, u

])
≤ ρ

(
1
n

)

for some modulus ρ. Since u is a viscosity subsolution of (1.1), this implies

G(x̂, uεn(x̂), I[x̂, uεn ])

= G
(
x̂, uεn(x̂), I1,δn [x̂,Duεn(x̂), uεn ] + I2,δn [x̂,Duεn(x̂), uεn ]

) ≤ ρ

(
1
n

)
.

Case 2 1 < σ < 2.
We take r > 1. Let {ψn}n be a sequence of C2(Rn)∩BUC(Rn) functions

which are uniformly bounded and have a uniform (in n) modulus of continuity
h, which satisfy (3.16) and (3.17) with K replaced by Ω′.

Let x̂ ∈ Ω′, Bδ̂(x̂) ⊂ Ω′, and suppose that there is a test function ϕ ∈
C2(Bδ̂(x̂)) such that uψn,ε − ϕ has a maximum (equal 0) at x̂ over Bδ̂(x̂).
Since u ∈ BUC(Rn) and ψn ∈ BUC(Rn), there exists a point ŷ ∈ Ω′ such
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that uψn,ε(x̂) = u(ŷ) − ψn(ŷ) + ψn(x̂) − |x̂−ŷ|2
2ε if ε is sufficiently small. Thus

u(y)−ψn(y)+ψn(x)− |x−y|2
2ε −ϕ(x) has a maximum at (ŷ, x̂) over Rn ×Bδ̂(x̂)

and u(ŷ)−ψn(ŷ)+ψn(x̂) ≥ uψn,ε(x̂). Since u(·)−ψn(·)− |x̂−·|2
2ε has a maximum

at ŷ over R
n, we have

Du(ŷ) − Dψn(ŷ) =
ŷ − x̂

ε
.

Thus, by (3.17),
|ŷ − x̂|

ε
≤ Cn1−r. (5.7)

Since uψn,ε is semi-convex, there is a paraboloid touching its graph from below
at x̂. Since ϕ ∈ C2(Bδ̂(x̂)) touches the graph of uψn,ε from above at x̂, we
obtain that uψn,ε ∈ C1,1(x̂) ∩ BUC(Rn). Thus, for any 0 < δ < min{δ̂, 1} and
small ε > 0, we have, by (1.3), (H1), (3.17) and (5.7), uniform continuity of
the ψn and the continuity properties of G,

G(x̂, uψn,ε(x̂), I1,δ[x̂, Duψn,ε(x̂), uψn,ε] + I2,δ[x̂, Duψn,ε(x̂), uψn,ε])

−G

(
ŷ, u(ŷ), I1,δ

[
ŷ,

ŷ − x̂

ε
+ Dψn(ŷ),

|x̂ − ·|2
2ε

+ ψn

]

+I2,δ

[
ŷ,

ŷ − x̂

ε
+ Dψn(ŷ), u

])

≤ G(x̂, u(ŷ) − ψn(ŷ) + ψn(x̂), I1,δ[x̂, Duψn,ε(x̂), uψn,ε]

+I2,δ[x̂, Duψn,ε(x̂), uψn,ε])

−G

(
ŷ, u(ŷ), I1,δ

[
ŷ,

ŷ − x̂

ε
+ Dψn(ŷ),

|x̂ − ·|2
2ε

+ ψn

]

+I2,δ

[
ŷ,

ŷ − x̂

ε
+ Dψn(ŷ), u

])

≤ G
(
x̂, u(ŷ), I1,δ[x̂, Duψn,ε(x̂), uψn,ε] + I2,δ[x̂, Duψn,ε(x̂), uψn,ε]

)
+ ρ1

(
1

n

)

−G

(
ŷ, u(ŷ), I1,δ

[
ŷ,

ŷ − x̂

ε
+ Dψn(ŷ),

|x̂ − ·|2
2ε

+ ψn

]

+I2,δ

[
ŷ,

ŷ − x̂

ε
+ Dψn(ŷ), u

])

≤ ΛΩ′

{
I1,δ

[
ŷ,

ŷ − x̂

ε
+ Dψn(ŷ),

|x̂ − ·|2
2ε

+ ψn

]
+ I2,δ

[
ŷ,

ŷ − x̂

ε
+ Dψn(ŷ), u

]

−
(
I1,δ[x̂, Duψn,ε(x̂), uψn,ε] + I2,δ[x̂, Duψn,ε(x̂), uψn,ε]

) }
+ ρ1

(
1

n

)

≤ ΛΩ′

{ ∫
|z|<δ

[(
1

2ε
|x̂ − ŷ − z|2 + ψn(ŷ + z)

)
−

(
1

2ε
|x̂ − ŷ|2 + ψn(ŷ)

)

−
(

1

ε
(ŷ − x̂) + Dψn(ŷ)

)
· z

]
μŷ(dz)

−
∫

|z|<δ

[
uψn,ε(x̂ + z) − uψn,ε(x̂) −

(
1

ε
(ŷ − x̂) + Dψn(x̂)

)
· z

]
μx̂(dz)
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+

∫
|z|≥δ

[
u(ŷ + z) − u(ŷ) − 1B1(0)(z)

(
1

ε
(ŷ − x̂) + Dψn(ŷ)

)
· z

]
μŷ(dz)

−
∫

|z|≥δ

[
uψn,ε(x̂ + z) − uψn,ε(x̂) − 1B1(0)(z)

(
1

ε
(ŷ − x̂) + Dψn(x̂)

)
· z

]
μx̂(dz)

}

+ρ1

(
1

n

)
(5.8)

for some modulus ρ1 independent of δ, ε.
Since ŷ−x̂

ε +Dψn(x̂) = Duψn,ε(x̂) and uψn,ε(z)+ |z|2
2ε +(supΩ′ |D2ψn|)|z|2

is convex on Bδ̂(x̂), we have for |z| < δ̂

− |z|2
2ε

−
(

sup
Ω′

|D2ψn|
)

|z|2 ≤ uψn,ε(x̂+z)−uψn,ε(x̂)−
(

ŷ − x̂

ε
+ Dψn(x̂)

)
·z.

(5.9)
Moreover, by the definition of uψn,ε,

uψn,ε(x̂ + z) ≥ u(ŷ + z) − ψn(ŷ + z) + ψn(x̂ + z) − |x̂ − ŷ|2
2ε

,

which gives

u(ŷ+z)−u(ŷ)−(uψn,ε(x̂+z)−uψn,ε(x̂)) ≤ ψn(ŷ+z)−ψn(ŷ)−(ψn(x̂+z)−ψn(x̂)).
(5.10)

Thus, by (5.8)–(5.10), we have

G
(
x̂, uψn,ε(x̂), I1,δ[x̂,Duψn,ε(x̂), uψn,ε] + I2,δ[x̂,Duψn,ε(x̂), uψn,ε]

)

−G

(
ŷ, u(ŷ), I1,δ

[
ŷ,

ŷ − x̂

ε
+ Dψn(ŷ),

|x̂ − ·|2
2ε

+ ψn

]

+I2,δ

[
ŷ,

ŷ − x̂

ε
+ Dψn(ŷ), u

])

≤ ΛΩ′

{∫
|z|<δ

[
1
2ε

|z|2 +
(
ψn(ŷ + z) − ψn(ŷ) − Dψn(ŷ) · z

)]
μŷ(dz)

+
∫

|z|<δ

[
1
2ε

|z|2 +
(

sup
Ω′

|D2ψn|
)

|z|2
]

μx̂(dz)

+
∫

|z|≥δ

[
u(ŷ + z) − u(ŷ) − 1B1(0)(z)

(
1
ε
(ŷ − x̂) + Dψn(ŷ)

)
· z

]

×(μŷ(dz) − μx̂(dz))

+
∫

|z|≥δ

[ψn(ŷ + z) − ψn(ŷ) − 1B1(0)(z)Dψn(ŷ) · z

−(ψn(x̂ + z) − ψn(x̂) − 1B1(0)(z)Dψn(x̂) · z)]μx̂(dz)

}
+ ρ1

(
1
n

)
.

We now again set δn = n−α and εn = n−β and use the same estimates as these
in Case 2 of the proof of Theorem 3.1, to obtain that for any θ > 0, we can
find α > 0, β > 0, and 1 ≤ r0 < σ such that, if r0 < r < 2, then
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G(x̂, uψn,εn(x̂), I1,δn [x̂,Duψn,εn(x̂), uψn,εn ] + I2,δn [x̂,Duψn,εn(x̂), uψn,εn ])

−G

(
ŷ, u(ŷ), I1,δn

[
ŷ,

ŷ − x̂

εn
+ Dψn(ŷ),

|x̂ − ·|2
2εn

+ ψn

]

+I2,δn

[
ŷ,

ŷ − x̂

εn
+ Dψn(ŷ), u

])

≤ ρ

(
1
n

)

for some modulus ρ. Since u is a viscosity subsolution of (1.1), this implies

G(x̂, uψn,εn(x̂), I[x̂, uψn,εn ])

= G
(
x̂, uψn,εn(x̂), I1,δn [x̂,Duψn,ε(x̂), uψn,εn ] + I2,δn [x̂,Duψn,εn(x̂), uψn,εn ]

)

≤ ρ

(
1
n

)
.

�
The same proof gives the following result for viscosity supersolutions.

Lemma 5.2. Suppose that the assumptions of Lemma 5.1 are true. Then, for
any 0 < σ < 2, there exists a constant 0 ≤ r0 < σ (r0 ≥ 1 if σ > 1) such that
if r0 < r < 2, θ > max{0, 1 − r}, Ω′ ⊂⊂ Ω is an open set, u ∈ Cr

loc(Ω) is a
viscosity supersolution of (1.1), then there are a sequence of C2(Rn)∩BUC(Rn)
functions {ψ̃n}n with a uniform modulus of continuity, a sequence of positive
numbers {ε̃n}n with ε̃n → 0, and a modulus ρ̃ such that uψ̃n,ε̃n is a viscosity
supersolution of

G(x, uψ̃n,ε̃n , I[x, uψ̃n,ε̃n ]) = −ρ̃

(
1
n

)
in Ω′. (5.11)

We remark that it is clear from the proofs of Lemmas 5.1 and 5.2 that
we can always have εn = ε̃n.

The next lemma is standard and can be deduced from Lemmas 4.2 and
4.5 of [12].

Lemma 5.3. Let {un}n be a sequence of bounded and uniformly continuous
functions on R

n such that:
(i) un is a viscosity subsolution of M−

L (un) = fn in Ω.
(ii) The sequence {un} converges to u uniformly in R

n for some u ∈
BUC(Rn).

(iii) The sequence {fn} converges to f uniformly in Ω for some f ∈ C(Ω).
Then u is a viscosity subsolution of M−

L (u) = f in Ω.

Theorem 5.1. Let the assumptions of Lemma 5.1 be satisfied and let G be
uniformly elliptic with respect to L. Then, for any 0 < σ < 2, there exists
a constant 0 ≤ r0 < σ (r0 ≥ 1 if σ > 1) such that if r0 < r < 2, θ >
max{0, 1 − r}, u ∈ Cr

loc(Ω) is a viscosity subsolution of (1.1) and v ∈ Cr
loc(Ω)

is a viscosity supersolution of (1.1), then u − v is a viscosity subsolution of

M−
L (u − v) = 0 (5.12)
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in Ω ∩ {u − v > 0}. If G(x, r, l) is independent of the second variable r, then
(5.12) holds in Ω.

Proof. For any Ω′ ⊂⊂ Ω, let x ∈ Ω′, uψn,εn(x) > vψ̃n,εn
(x), and let ϕ be

a C2(Rn) ∩ BUC(Rn) test function whose graph is touching the graph of
uψn,εn − vψ̃n,εn

from above at x. Since uψn,εn and −vψ̃n,εn
are semi-convex in

a neighborhood of x, each of them has a paraboloid touching its graph from
below at x. Therefore, uψn,εn and −vψ̃n,εn

must be in C1,1(x) ∩ BUC(Rn).
Thus, by Proposition 5.1 and Lemmas 5.1 and 5.2, we have

G(x, uψn,εn(x), I[x, uψn,εn ]) ≤ ρ

(
1
n

)

and

G(x, vψ̃n,εn
(x), I[x, vψ̃n,εn

]) ≥ −ρ

(
1
n

)

for some modulus ρ. Thus, by (1.3) and the uniform ellipticity, we obtain

M−
L (uψn,εn − vψ̃n,εn

)(x) ≤ 2ρ

(
1
n

)
.

Thus, we have

M−
L ϕ(x) ≤ 2ρ

(
1
n

)
.

Therefore, we have proved that uψn,εn − vψ̃n,εn
is a viscosity subsolution of

M−
L (uψn,εn − vψ̃n,εn

) = 2ρ

(
1
n

)

in Ω′ ∩ {uψn,εn − vψ̃n,εn
> 0}.

By Remark 5.2, we have that uψn,εn − vψ̃n,εn
converges uniformly to

u − v in R
n. Thus, for any ε > 0, there exists a sufficiently large nε such

that Ω′ ∩ {u − v > ε} ⊂ Ω′ ∩ {uψn,εn − vψ̃n,εn
> 0} if n > nε. Therefore,

uψn,εn − vψ̃n,εn
is a viscosity subsolution of M−

L (uψn,εn − vψ̃n,εn
) = 2ρ( 1

n ) in
Ω′ ∩ {u − v > ε} if n > nε, and hence, by Lemma 5.3, u − v is a viscosity
subsolution of M−

L (u − v) = 0 in Ω′ ∩ {u − v > ε}. Since Ω′ ⊂⊂ Ω and
ε > 0 are arbitrary, u − v is a viscosity subsolution of M−

L (u − v) = 0 in
Ω ∩ {u − v > 0}. �

Remark 5.3. Theorem 5.1, combined with an Aleksandrov–Bakelman–Pucci
estimate of [15], can be used as an alternative way to prove comparison theorem
when γ = 0, at least for some class of equations which are independent of the
u variable.
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6. Regularity

In this section we recall some regularity results for nonlocal equations. We first
recall regularity results proved in [6,8]. Here, we only state their simplified
versions applicable for our equations, which can be deduced from the results
and techniques of [6,8]. The full theorems of [6,8] are much more general. An
equivalent of Theorem 6.2 has not been stated in [6,8] but it can be deduced
easily from the proofs there. We impose here an additional requirement θ >
max{0, 1 − σ}. It is possible that Theorems 6.1 and 6.2 are true without this
assumption but it would require some more substantial changes in the proofs
of [6,8].

Theorem 6.1. Let Ω be a bounded domain. Suppose that the nonlinearity G
in (1.1) is continuous and satisfies (1.3) with γ = 0 and (H1) with ΛΩ′ > 0
for each Ω′ ⊂⊂ Ω. Suppose that the family of Lévy measures {μx} satisfies
assumption (H2) with θ > max{0, 1 − σ} and, there exists a constant C > 0
such that, for any x ∈ Ω, d ∈ Sn−1, η ∈ (0, 1), δ ∈ (0, 1),∫

{z:|z|≤δ,|d·z|≥(1−η)|z|}
|z|2μx(dz) ≥ Cη

n−1
2 δ2−σ. (6.1)

Then, we have:

(1) If 0 < σ ≤ 1, any viscosity solution u of (1.1) is Cr
loc(Ω) for any r < σ.

(2) If 1 < σ, any viscosity solution u of (1.1) is C0,1
loc (Ω).

Theorem 6.2. Let Ω be a bounded domain. Suppose that γ ≥ 0 in (1.6), the
family of Lévy measures {μαβ

x } satisfies assumption (H2) with θ > max{0, 1−
σ}, uniformly in α ∈ A, β ∈ B, and fα,β are uniformly continuous in Ω,
uniformly in α ∈ A, β ∈ B. Suppose that there exists a constant C > 0 such
that, for any x ∈ Ω, d ∈ S

n−1, η ∈ (0, 1), δ ∈ (0, 1), α ∈ A, β ∈ B,∫
{z:|z|≤δ,|d·z|≥(1−η)|z|}

|z|2μαβ
x (dz) ≥ Cη

n−1
2 δ2−σ.

Then, we have:

(1) If 0 < σ ≤ 1, any viscosity solution u of (1.6) is Cr
loc(Ω) for any r < σ.

(2) If 1 < σ, any viscosity solution u of (1.6) is C0,1
loc (Ω).

Let us now introduce some definitions and regularity theorems from [13,
23,25]. Consider the following nonlocal equations

γu − I[x, u] = f(x) in Ω, (6.2)

where γ ≥ 0, Ω is a bounded domain, f is bounded and continuous in Ω, and
I[x, u] is a nonlocal operator of the form

I[x, u] = inf
α∈A

sup
β∈B

Iαβ [x, u]

:= inf
α∈A

sup
β∈B

∫
Rn

[u(x + z) − u(x) − 1B1(0)(z)Du(x) · z]Kαβ(x, z)dz.
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We will denote

Iαβ,x0 [x, u] :=
∫
Rn

[u(x + z) − u(x) − 1B1(0)(z)Du(x) · z]Kαβ(x0, z)dz.

Remark 6.1. It is easy to see that if Kαβ(x, z) = aαβ(x,z)
|z|n+σ , λ ≤ aαβ(x, z) ≤

Λ and |aαβ(x1, z) − aαβ(x2, z)| ≤ h(|x1 − x2|) for some modulus h for any
x, x1, x2 ∈ Ω, z ∈ R

n, α ∈ A, β ∈ B, then the nonlocal operator I[x, u] satisfies
the following properties:

(1) I[x, u] is well defined as long as u ∈ C1,1(x) and u ∈ L1
(
R

n, 1
1+|z|n+σ

)
.

(2) If u ∈ C2(Ω) ∩ L1
(
R

n, 1
1+|z|n+σ

)
, then I(x, u) is continuous in Ω as a

function of x.

Thus I[x, u] falls into the class of nonlocal operators considered in [13,23,
25] which was a little more general. Moreover the definition of viscosity sub/
supersolutions in [13,23,25] was slightly different from Definition 2.2 as they
allowed viscosity sub/supersolutions to be unbounded (as long as they are in
the domain of definition of the nonlocal operator I) and they did not require
them to be uniformly continuous.

We say that the nonlocal operator I above is uniformly elliptic with
respect to a class L of linear nonlocal operators if

M−
L (u − v)(x) ≤ I[x, v] − I[x, u] ≤ M+

L (u − v)(x).

The norm ‖I‖ of a nonlocal operator I is defined in the following way.

Definition 6.1.

‖I‖ : = sup

{
|I[x, u]|
1 + M

: x ∈ Ω, u ∈ C1,1(x), ‖u‖L1(Rn, 1
1+|z|n+σ ) ≤ M,

|u(x + z) − u(x) − Du(x) · z| ≤ M |z|2 for any z ∈ B1(0)

}
.

The following classes of linear nonlocal operators L0(σ) and Lκ(σ), 0 <
κ < 1 were introduced in [13,25]. Let 0 < λ ≤ Λ be fixed constants. A linear
nonlocal operator L ∈ L0(σ) if

Lu =
∫
Rn

[u(x + z) − u(x) − 1B1(0)(z)Du(x) · z]K(z)dz, (6.3)

where the kernel K is symmetric and satisfies for all z ∈ R
n\{0}

(2 − σ)
λ

|z|n+σ
≤ K(z) ≤ (2 − σ)

Λ
|z|n+σ

. (6.4)

Since K is symmetric, we have

Lu =
∫
Rn

[u(x + z) + u(x − z) − 2u(x)]K(z)dz.

Lemma 6.1. The class L0(σ) satisfies (H3) for any 0 < σ < 2.
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Proof. We will be using the form of L in (6.3). Let R be such that R
3
2 >

max{3R, 1 + R} and Ω ⊂ BR(0). We define ϕ(x) = min(R3, |x|2) (see As-
sumption 5.1 in [12]). By the definition of R, the fact that K is symmetric, we
now have for every x ∈ Ω(⊂ BR(0))

Lϕ(x) ≥
∫

B1(0)

|z|2K(z)dz +
∫

1≤|z|<R
3
2 −R

(|z|2 + 2x · z)K(z)dz

+
∫

{ϕ(x+z)<R3}∩{|z|≥R
3
2 −R}

(|z|2 − 2|x||z|)K(z)dz

+
∫

{ϕ(x+z)=R3}∩{|z|≥R
3
2 −R}

(R3 − R2)K(z)dz

≥ (2 − σ)λ
∫

B1(0)

|z|−n−σ+2dz.

�

The class Lκ(σ) is a subclass with L0(σ) with kernels K such that

[K]Cκ(Bρ) ≤ Λ(2 − σ)ρ−n−σ−κ if B2ρ ⊂ R
n\{0}

for any concentric balls Bρ, B2ρ of radii ρ, 2ρ > 0. We will sometimes write
K ∈ Lk(σ). We notice that the classes L0(σ) and Lκ(σ) have scale σ. A class
L ⊂ L0(σ) has scale σ if whenever a nonlocal operator with kernel K(z) is
in L, then the one with kernel νn+σK(νz) is also in L for any ν < 1. The
following definition of a distance between two nonlocal operators takes scaling
of order σ into account.

Definition 6.2. For any 0 < σ < 2 and any nonlocal operator I, we define the
rescaled operator

Iμ,ν [x, u] = νσμI[νx, μ−1u(ν−1·)].
The norm of scale σ is defined as

‖I(1) − I(2)‖σ = sup
ν<1

‖I
(1)
1,ν − I

(2)
1,ν‖.

The following regularity theorems for nonlocal equations were proved in
[13,23,25]. We only state their simplified versions which are suitable for our
purposes.

Theorem 6.3. (Theorem 2.6 of [13]) Assume that 0 < σ0 < σ < 2. Let u solve

M+
L0

u ≥ −C0 in B1(0),

M−
L0

u ≤ C0 in B1(0)

in the viscosity sense for some C0 ≥ 0. Then there exists a constant 0 < r < 1,
depending only on λ, Λ, n and σ0, such that u ∈ Cr(B 1

2
(0)) and

‖u‖Cr(B 1
2
(0)) ≤ C

(
‖u‖L∞(B1(0)) + ‖u‖

L1

(
Rn, 1

1+|z|n+σ0

) + C0

)

for some constant C > 0 which depends on σ0, λ, Λ and n.
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Theorem 6.4. (Theorem 4.1 of [23]) Assume 1 < σ0 < σ < 2. Let I =
infα∈A supβ∈B Iαβ be a nonlocal operator such that {Iαβ,x0 : α ∈ A, β ∈ B, x0 ∈
B1(0)} ⊂ L0(σ). Denote Ix0 = infα∈A supβ∈B Iαβ,x0 . There exist constants
r > 1, η > 0 such that if for every x0 ∈ B 1

2
(0),

‖I − Ix0‖σ < η,

and u is a viscosity solution of

−I[x, u] = f(x) in B1(0)

for a bounded continuous function f , then u ∈ Cr(B 1
2
(0)) and

‖u‖Cr(B 1
2
(0)) ≤ C

(
‖u‖L∞(B1(0)) + ‖u‖

L1

(
Rn, 1

1+|z|n+σ0

) + ‖f‖L∞(B1(0))

)

for some absolute constant C > 0.

Theorem 6.5. (Theorem 1.2 and Remark 1.3 of [25]) Let {Iα}α∈A be a class
of linear nonlocal operators

Iα[x, u] =
∫
Rn

[u(x + z) − u(x) − 1B1(0)(z)Du(x) · z]Kα(x, z)dz

such that {Iα,x0 : α ∈ A, x0 ∈ B1(0)} ⊂ Lκ(σ) for some κ > 0 and 0 < σ < 2.
Suppose that for all x1, x2 ∈ B1(0), z ∈ R

n\{0}, α ∈ A,

|Kα(x1, z) − Kα(x2, z)| ≤ |x1 − x2|θ Λ(2 − σ)
|z|n+σ

.

Then there exists r̄ > 0 such that if κ ∈ (0, r̄], θ ∈ (0, κ) and u is a viscosity
solution of

−I[x, u] = − inf
α∈A

Iα[x, u] = 0 in B1(0),

then u ∈ Cσ+θ(B 1
2
(0)) and

‖u‖Cσ+θ(B 1
2
(0)) ≤ C‖u‖L∞(Rn)

for some absolute constant C > 0.

Theorem 6.6. (Theorem 5.2 of [13]) Assume 1 < σ0 < σ < 2. Let I0 =
infα∈A supβ∈B I0

αβ be a nonlocal operator such that {I0
αβ}α∈A,β∈B ⊂ L, where

L ⊂ L0(σ) has scale σ and interior C r̄ estimates for some r̄ > 1. Let I =
infα∈A supβ∈B Iαβ be a nonlocal operator uniformly elliptic with respect to
L0(σ). Then for every r < min{r, σ0} there is η > 0 such that if

‖I0 − I‖σ < η

and u is a viscosity solution of

−I[x, u] = f(x) in B1(0)

for a bounded and continuous function f , then u ∈ Cr(B 1
2
(0)) and

‖u‖Cr(B 1
2
(0)) ≤ C(‖u‖L∞(Rn) + ‖f‖L∞(B1(0)))

for some absolute constant C > 0.
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Corollary 6.1. Let 0 < σ < 2 and let u be a viscosity solution of (6.2) in
B1(0), where γ ≥ 0, f ∈ C(B1(0)) and I[x, u] = infα∈A(2 − σ)

∫
Rn [u(x +

z) − u(x) − 1B1(0)(z)Du(x) · z]aα(x,z)
|z|n+σ dz. Assume that aα(x, ·) is symmetric,

λ ≤ aα(x, z) ≤ Λ, aα(x,·)
|·|n+σ ∈ Lκ(σ) and |aα(x1, z) − aα(x2, z)| ≤ C|x1 − x2|θ

for any α ∈ A, x, x1, x2 ∈ B1(0), z ∈ R
n\{0}, and some constants κ > 0, θ >

max{0, 1 − σ}. Then, for any r < σ, u ∈ Cr(B 1
2
(0)).

Proof. For 0 < σ ≤ 1, since λ ≤ aα(x, z) ≤ Λ for any x ∈ B1(0) and z ∈ R
n,

it follows that the family of Lévy measures {aα(x,z)
|z|n+σ dz}x,α satisfies (6.1) (see

Example 1 in [6]). Thus, by Theorem 6.2, the proof is complete for the case
0 < σ ≤ 1.

For σ > 1, if we fix x0 ∈ B 1
2
(0), then the operator Iα,x0u = (2 −

σ)
∫
Rn [u(x + z) − u(x) − 1B1(0)(z)Du(x) · z]aα(x0,z)

|z|n+σ dz is in Lκ(σ). Thus, by
Theorem 6.5, it has interior Cr estimates for some r > σ. By the Hölder con-
tinuity of aα(·, z) for fixed z ∈ R

n\{0}, we can find a small ball Br0(x0) such
that |aα(x, z) − aα(x0, z)| < η. Thus, by a simple calculation (see the proof of
Theorem 6.1 in [13]), we can derive that ‖I − Ix0‖σ < Cη in Br0(x0) where C
is a positive constant and Ix0 = infα∈A Iα,xo

. Finally, we apply Theorem 6.6
with I0 = Ix0 and f := f − γu, scaled in Br0(x0). �

Corollary 6.2. Let 0 < σ < 2. Let u be a viscosity solution of

γu − inf
α∈A

sup
β∈B

{Iαβ [x, u]} = f(x) in B1(0),

where γ ≥ 0, f ∈ C(B1(0)) and Iαβ [x, u] = (2 − σ)
∫
Rn [u(x + z) − u(x) −

1B1(0)(z)Du(x)·z]aαβ(x,z)
|z|n+σ dz. Assume that aαβ(x, ·) is symmetric, λ≤aαβ(x, z)

≤ Λ, and |aαβ(x1, z)−aαβ(x2, z)| ≤ |x1−x2|θ for any α ∈ A, β ∈ B, x, x1, x2 ∈
B1(0), z ∈ R

n\{0} and some constant θ > max{0, 1 − σ}. Then, if σ > 1,
u ∈ Cr(B 1

2
(0)), where r is from Theorem 6.4, and if σ ≤ 1, u ∈ Cr(B 1

2
(0))

for every r < σ.

Proof. For 0 < σ ≤ 1, the proof is the same as for Corollary 6.1. For σ > 1,
by the Hölder continuity of aαβ(·, z) for fixed z ∈ R

n\{0}, we can find a small
ball Br0(x0) such that |aαβ(x, z) − aαβ(x0, z)| < η. Thus, like in the proof of
Corollary 6.1, we can obtain ‖I − Ix0‖σ < Cη in Br0(x0) for some constant
C > 0. We then apply Theorem 6.4 with f := f − γu, scaled in Br0(x0). �

7. Applications

In this section, we provide several concrete applications when we have unique-
ness of viscosity solutions.
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7.1. Nonlinear convex equations with variable coefficients

Theorem 7.1. Let Ω be a bounded domain. Consider the following nonlinear
nonlocal equations

γu + sup
α∈A

{−Iα[x, u]} = f(x) in Ω, (7.1)

where γ ≥ 0, 0 < σ < 2, f ∈ C(Ω) and Iα[x, u] = (2 − σ)
∫
Rn [u(x + z) −

u(x) − 1B1(0)(z)Du(x) · z]aα(x,z)
|z|n+σ dz. Assume that aα(x, ·) is symmetric, λ ≤

aα(x, z) ≤ Λ, aα(x,·)
|·|n+σ ∈ Lκ(σ) and |aα(x1, z) − aα(x2, z)| ≤ C|x1 − x2|θ for

any α ∈ A, x, x1, x2 ∈ Ω, z ∈ R
n\{0} and some κ > 0, θ > 0. Suppose that

θ > max{0, 1 − σ}. Then, if u is a viscosity solution of (7.1), v is a viscosity
supersolution (respectively, subsolution) of (7.1) and u ≤ v (respectively, u ≥ v)
in Ωc, we have u ≤ v (respectively, u ≥ v) in R

n.

Proof. The theorem follows from Theorem 4.2, Corollary 6.1, and Lemma 6.1
since we can take r arbitrarily close to σ. �

7.2. Nonlinear non-convex equations with variable coefficients

Theorem 7.2. Let Ω be a bounded domain. Consider the following nonlinear
nonlocal equations

γu + sup
α∈A

inf
β∈B

{−Iαβ [x, u]} = f(x) in Ω, (7.2)

where γ ≥ 0, 0 < σ < 2, f ∈ C(Ω) and Iαβ [x, u] = (2 − σ)
∫
Rn [u(x + z) −

u(x) − 1B1(0)(z)Du(x) · z]aαβ(x,z)
|z|n+σ dz. Assume that aαβ(x, ·) is symmetric, λ ≤

aαβ(x, z) ≤ Λ and |aαβ(x1, z) − aαβ(x2, z)| ≤ C|x1 − x2|θ for any α ∈ A,
β ∈ B, x, x1, x2 ∈ Ω and z ∈ R

n\{0}. Then, if u is a viscosity solution
of (7.2), v is a viscosity supersolution (respectively, subsolution) of (7.2) and
u ≤ v (respectively, u ≥ v) in Ωc, we have:

(i) For 0 < σ ≤ 1, if θ > 1 − σ, we have u ≤ v (respectively, u ≥ v) in R
n.

(ii) For 1 < σ < 2, if σ < 2 − 2 (2−r)2

θ(3−r)+(4−2r) , where r < 2 is given by
Corollary 6.2, we have u ≤ v (respectively, u ≥ v) in R

n.

Proof. The theorem follows from Theorem 4.2, Corollory 4.2, Lemma 6.1, and
Corollary 6.2. �

7.3. General nonlocal uniformly elliptic equations with respect to L0

Theorem 7.3. Let Ω be a bounded domain and 1 ≥ σ > 0. Suppose that the
nonlinearity G in (1.1) is continuous and uniformly elliptic with respect to
L0, and satisfies (1.3) with γ ≥ 0 and (H1). Suppose that the family of Lévy
measures {μx} satisfies assumption (H2). Suppose that u is a viscosity solution
of (1.1), v is a viscosity supersolution (respectively, subsolution) of (1.1) and
u ≤ v (respectively, u ≥ v) in Ωc. Then, if σ < θ(2−r)

2−r+θ + r and θ > 1− r, where
r < 1 is given by Theorem 6.3, we have u ≤ v (respectively, u ≥ v) in R

n.

Proof. The theorem follows from Corollary 4.1(i), Theorem 6.3, and Lemma
6.1. �
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7.4. General nonlocal equations with a family of Lévy measures satisfying
(6.1)

Theorem 7.4. Let Ω be a bounded domain. Suppose that the nonlinearity G
in (1.1) is continuous and satisfies (1.3) with γ > 0 and (H1) with ΛΩ′ > 0
for each Ω′ ⊂⊂ Ω. Suppose that the family of Lévy measures {μx} satisfies
assumption (H2), and there exists a constant C > 0 such that, for any x ∈ Ω,
d ∈ Sn−1, η, δ ∈ (0, 1), we have (6.1). If u is a viscosity solution of (1.1),
v is a viscosity supersolution (respectively, subsolution) of (1.1) and u ≤ v
(respectively, u ≥ v) in Ωc, then:

(i) For 0 < σ ≤ 1, if θ > 1 − σ, we have u ≤ v (respectively, u ≥ v) in R
n.

(ii) For 1 < σ < 2, if 0 < θ ≤ 1 and σ < 2− 1
1+θ , we have u ≤ v (respectively,

u ≥ v) in R
n.

Proof. The theorem follows from Theorems 3.1, 6.1 and Corollary 3.1. �

Theorem 7.5. Let Ω be a bounded domain. Suppose that the nonlinearity G in
(1.1) is continuous and uniformly elliptic with respect to L0, and satisfies (1.3)
with γ = 0 and (H1) with ΛΩ′ > 0 for each Ω′ ⊂⊂ Ω. Suppose that the family
of Lévy measures {μx} satisfies assumption (H2) and, there exists a constant
C > 0 such that, for any x ∈ Ω, d ∈ Sn−1, η, δ ∈ (0, 1), we have (6.1). If
u is a viscosity solution of (1.1), v is a viscosity supersolution (respectively,
subsolution) of (1.1) and u ≤ v (respectively, u ≥ v) in Ωc, then:

(i) For 0 < σ ≤ 1, if θ > 1 − σ, we have u ≤ v (respectively, u ≥ v) in R
n.

(ii) For 1 < σ < 2, if 0 < θ ≤ 1 and σ < 2− 1
1+θ , we have u ≤ v (respectively,

u ≥ v) in R
n.

Proof. This theorem follows from Theorems 4.1, 6.1, Corollary 4.1, and Lemma
6.1. �
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[24] Sayah, A.: Équations d’Hamilton–Jacobi du premier ordre avec termes intgro-
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