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Abstract. In this paper we show existence and uniqueness of the solu-
tion in viscosity sense for a system of nonlinear m variational integral-
partial differential equations with interconnected obstacles whose coeffi-
cients (f;)i=1,....,m depend on (u;);=1,...,m. From the probabilistic point
of view, this system is related to optimal stochastic switching problem
when the noise is driven by a Lévy process. The switching costs depend
n (t,x). As a by-product of the main result we obtain that the value
function of the switching problem is continuous and unique solution of
its associated Hamilton—Jacobi-Bellman system of equations. The main
tool we used is the notion of systems of reflected BSDEs with oblique
reflection driven by a Lévy process.
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1. Introduction

In this paper, we study the existence and uniqueness of a solution to the system
of integro-partial differential equations (IPDEs in short) of the following form:
Vi=1,...,m,

min{(t,7) = max(us (t,2) — s (t,2))

—Opu;(t, @) — Lui(t, ) — fi(t,x, (ur,ug, ..., um)(t,2))} =0, (1.1)
(t,x) €[0,T) x R,

ui (T, x) = hi(x)

where L is a generator associated with a stochastic differential equation whose
noise is driven by a Lévy process L := (L;);<7 defined on a filtered probability
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space (Q,F, (F)i<r,P) and then £ is a non local operator [see (3.22) for its
definition).
This system is related to a stochastic optimal switching problem since a
particular case is actually its associated Hamilton—-Jacobi-Bellman system.
Let us describe briefly the stochastic optimal switching problem. Let
(t,z) € [0,T] x R and (X5 *)s<r be the solution of the following standard
stochastic differential equation:

dX5 = b(s, X\®)ds+o(s, X0")dLs, Vs € [t,T] and X *=gz fors<t.

Next let (as)seo,r7 be the following pure jump process:
as = aglyg,y(s) + Zaj_lll]gjfl’gj](s), Vs < T,
j=1

where {6;};>0 is an increasing sequence of stopping times with values in [0, T
and (a;);>0 are random variables with values in A := {1,...,m} (the set
of modes to which the controller can switch) such that for any j > 0, «;
is Fp, —measurable. The pair T = ((6;);>0, (oj);>0) is called a strategy of
switching and when it satisfies P[f,, < T,Vn > 0] = 0 it is moreover said
admissible. Finally we denote by Al the set of admissible strategies such that
ag =1 and 6y = t.

Assume next that for any ¢ = 1,...,m, fi(t,x, (¥i)i=1,..m) = [fi(t,2),
i.e., f; does not depend on (y;)i=1m. Let T be an admissible strategy of A}
with which one associates a payoff given by:

T
J“(t,x):J(T)(t,x) =E / fa(s)(sa Xi’m)ds - Zga]‘—laa]’ (ej: X5;1)1{0j<T}
t

Jj=1

+har (Xctp’w)] (1.2)

where fa(s)(s,XZ:*z) = ica fi(s,Xﬁ’I)l[a(s):i], s € [t,T), (resp. haT(Xf,zx) =
Dica hi(X}’I)l[aT:i]) is the instantaneous (resp. terminal) payoff when the
strategy a (or T) is implemented while g;, is the switching cost function when
moving from mode ¢ to mode ¢ (i,£ € A, i # £). Next let us define the optimal
payoff when starting from mode i € A at time t by

w;(t,x) : Tlgfl;' J(T)(t, x) (1.3)
As a by-product of our general result we obtain that the value functions
(u;i(t,x))ica (or optimal payoffs) of this switching problem is continuous and
of polynomial growth and is the unique solution in viscosity sense of system
(1.1). A similar problem has been already considered by Biswas et al. [6], how-
ever one should emphazise that in that work, the switching costs are constant
and do not depend on (¢,z). This latter feature makes the problem easier to
handle since one can directly work with the functions w; defined in (1.2)—(1.3).
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Optimal switching problems are well documented in the literature (see
e.g. [3,6-8,11,12,14,17,18,20,24,27] etc. and the references therein), especially
in connection with mathematical finance, energy market, etc.

The main objective and novelty of this paper is to study system (1.1) in
the general case, i.e., to allow for f; to depend on (u;);=1,m, and the switching
costs g;; to depend on (¢,z) and to show that (1.1) has a unique solution.
Our method is based on the link of (1.1) with systems of reflected BSDEs
with inter-connected obstacles driven by a Lévy process, i.e., systems of the
following form: Vj =1,...,m, Vs < T,

. T T T T j,t, i
Y = hy(X3") + [1 fi(r, X0 (Y0 e, (UPH1) 21 )dr
_ ;fST Ug’t’m’idHﬁi) _|_K%7t»$ _ Kg,t,m

}/Sj,t,a; > rilgx{y'sk,t,z _ gjk(&X;’w)} (14)
J

and Ysj7t,a: _ rili‘;({ygk,t@ _ gjk(stg’w)} ng‘,t,a: =0

where ((Hﬁl))ng)izl are the Teugels martingales associated with the Lévy
process L. Under appropriate assumptions on the data (f;)i=1....m, (Ri)i=1,....m
and (gi;)i,j=1,...,m We show existence and uniqueness of Fs-adapted processes
(Ybe (U352, KI9PP)s<7)jea which satisfy (1.4). Additionally there
exist deterministic continuous functions (u;(t,x));je4 such that:

Vs € [t,T], Y75 = u;(s, X07), (1.5)

and we show that (u;(t,2))jea is the unique solution of (1.1).

In the Brownian framework of noise, the link between systems of PDEs
with interconnected obstacles and systems of reflected BSDEs with oblique
reflection has been already stated in several papers (see e.g. [15,18], etc.).
Therefore in this work we extend this link to the setting where the noise is
driven by a Lévy process.

This article is organized as follows. In Sect. 2 we collect the main results
on Teugels martingales. Section 3 is devoted to reflected BSDEs driven by
a Lévy process (existence and uniqueness of a solution and comparison) and
their connection with IPDEs with obstacle. We finally consider the system of
reflected BSDEs with inter-connected obstacles (1.4) and we show existence
and uniqueness of a solution of this system when, mainly, the functions (f;):ca
are Lipschitz in ((y;)ica, () and the switching costs verify the so-called non free
loop property. We construct a mapping which is a contraction in an appropriate
Banach space and which has a unique fixed point which provides the solution
of system (1.4). Section 4 is devoted to the study of system of IPDEs (1.1).
Contrarily to system of reflected BSDEs (1.4), we only consider the case when
the functions f;, i € A, do not depend on (. We first show that this system
has a solution in viscosity sense when for any i € A, the function f; is non-
decreasing w.r.t. to yi (k # ¢) when the other components are fixed. We then
give a comparison result of subsolutions and supersolutions of system (1.1)
based on Jensen—Ishii’s Lemma on PDEs with non-local term [5,6]. As usual
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this comparison result insures continuity and uniqueness of the solution of
system (1.1). Finally we provide another existence and uniqueness result of a
solution for system (1.1) in the case when for any i € A, f; is decreasing w.r.t.
yi for any k # ¢ when the other components are fixed. This result is deeply
based on the first existence and uniqueness of the solution of system (1.1) and,
on the other hand, the existence and uniqueness result of a solution of system
of reflected BSDEs (1.4). According to our knowledge it cannot be obtained
by using PDE techniques only. At the end of this paper we give an Appendix
where two complementary results are collected. The first one is related to the
representation of the Y of the solution of system (1.4) as a value function of a
switching problem. As for the second one, it provides an equivalent definition
of the viscosity solution of system (1.1) which is somehow of local type. O

2. Preliminaries

A Lévy process is an R-valued RCLL (for right continuous with left limits)
stochastic process L = {L;, ¢ > 0} defined on a probability space (2, F, P) with
stationary and independent increments (Ly = 0) and stochastically continuous.
For ¢t < T let us set F;y = G VN where G; := 0{Ls,0 < s <t} and N
is the P-null sets of F, therefore {F;}i<r is complete and right continuous.
Next by P we denote the o-algebra of predictable processes on [0,7] x Q
and finally for any RCLL process (I';);< we denote by I',— := lim, ~, I's; and
ATy ;=T — T',_ its jump at ¢, t € (0,T].
We now introduce the following spaces:
(a) 8% := {¢ = {¢1,0 < t < T} is an R-valued, F;-adapted RCLL process
st. B( sup |¢]°) < oo} ; A? is the subspace of 8% of non-decreasing
0<t<T
continuous processes null at ¢ = 0;

(b) H? :={p = (pi)i<r is an R-valued, F;-progressively measurable process
such that E(fOT o 2dt) < oo}

o0
(c) €2 :={z = (z4)n>1 is an R-valued sequence s.t. |z]? == 3 7?2 < oo);
i=1

(d) H2(0%) := {p = (¢t)t<r = (¢ )n>1)t<r such that ¥Yn > 1, ¢" is a P-
measurable process and

T o0 T
B (/0 ||§Dt|2dt> = ;E (/0 |ga;|2dt> < ool

(e) £2 = {¢, an R-valued and Fr-measurable random variable such that
E[[¢[2) < oo}

(f) II, is the space of deterministic functions v(¢,z) from [0,7] x R into R
of polynomial growth, i.e., such that for some positive constants p and C'
one has,

lu(t,x)| < C(1+ |=P), V(t,z)€[0,T] xR;
(g) €)% :==C"2([0,T] x R) N1I,.
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Let us now recall the Lévy-Khintchine formula of a Lévy process (L;)i<7
whose characteristic exponent is ¥, i.e.,

Vt<Tand § € R, E(eflt) =0
with

1 .
U () = iab — §w202 + /(e’e"” =1 =021z <1))Il(d)
R

1
= 'La9 — 5@292 +/

e — T e 1 —ifx T
)+ / (e — 1 — ifa)TI(dx)

0<|z|<1

where @ € R, w > 0 and II is a o-finite measure on R* := R — {0} (we set
I1({0}) = 0 and then the domain of integration is the whole space), called the
Lévy measure of L, verifying

/(1 A zH)TI(dx) < oco. (2.1)
R
Moreover we assume that II satisfies the following assumption:

Je > 0 and A > 0 such that / A (dz) < +oo. (2.2)
(_676)C

Conditions (2.1)—(2.2) imply that for any i > 2,

/ |z|'TI(dx) < oo (2.3)
R

and then the process (L;):<r have moments of any order.

Next following Nualart-Schoutens [23] we define, for every ¢ > 1, the
so-called power-jump processes L") and their compensated version Y (9, also
called Teugels martingales, as follows: V¢ < T,

LY =Ly and for i > 2, L{ =Y (ALY, Y = Li? —tE(LY).
s<t
Note that for any i > 2 and t < T, E(L{") = t [ #'TI(dx) exists, i.e., is defined
and belongs to R ([21], pp. 29).

An orthonormalization procedure can be applied to the martingales Y (9
in order to obtain a set of pairwise strongly orthonormal martingales (H").. |

such that each H® is a linear combination of (Y ());_; ;, i.e.,
HO = ¢, YO 4. e YD,
It has been shown in [23] that the coefficients ¢; j, correspond to the ortho-
normalization of the polynomials 1,z,x2,... with respect to the measure
v(dr) = 2*I1(dx) + w25 (dx) (o is the Dirac measure at 0). Specifically the
polynomials (g;);>o defined by, for any i > 1,
gi1(z) = ciia" et i+ e

and satisfying

/ G (2) @ (2)v(d2) = Sppm, Y, m > 0.
R
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Next let us set
pi(z) = 2qi—1(z) = ¢’ + ¢y’ + -+ 1w and
pi(7) = 2(gi-1(x) — ¢i-1(0)) = Ci,ixi + Cz',i—w“l + -+ Ci,2-732~
Then for any ¢ > 1 and t < T we have:
HY = 37 {eii(AL) + -+ + ci2(AL)?} + i1 Ly — tB[e; i(Ly)

0<s<t

+ o4 Ci’Q(Ll)(2)] - tci,lE(Ll)

= ¢ 1(0)Li+ Y pi(AL) —tE | Y pi(AL) | —tgi1(0)E(Ly).
0<s<t 0<s<1

As a consequence, for any ¢t < T and ¢ > 1, AHt(i) = pi(AL;) for each ¢ > 1.
In the particular case of i = 1, we obtain

Ht(l) = 6171(Lt — tE(Ll)) with 6171

_ [ /R xQH(dx)+w2} Cand B[l =a+ / oAl(dz).  (2.4)

|| =1

Finally note that for any 4,7 > 1 the predictable quadratic variation process
of H and HY) is (H® HW)Y, = §;;t, vt < T. O

Remark 2.1. If IT = 0, we are in the classical Brownian case and all non-zero
degree polynomials ¢;(x) will vanish, giving H() = 0, i > 2. On the other hand,
if IT only has mass at 1, we are in the Poisson case and once more H() = 0,
1 > 2. Both cases are degenerate ones in this Lévy process framework. O

The main result in the paper by Nualart-Schoutens [22] is the following
representation property which allows for developing the BSDE theory in this
Lévy framework.

Theorem 2.1. [22, pp. 118] Let & be a random variable of L, then there exists
a process Z = (Z%);>1 that belongs to H?(¢%) such that:

T . .
E=E@)+) /O ZidH®.

i>1

3. Systems of reflected BSDEs with oblique reflection driven
by a Lévy process

3.1. Reflected BSDE driven by a Lévy process and their relationship with
IPDEs

As a consequence of Theorem 2.1, and as in the framework of Brownian noise
only, one can study standard BSDEs or reflected ones. The result below related
to existence and uniqueness of a solution for a reflected BSDE driven by a Lévy
process, is proved in [26]. Indeed let us introduce a triple (£, &, S) that satisfies:
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Assumptions (A1):

(i) ¢ a random variable of £2 which stands for the terminal value;

(i) f: [0,7] x Q@ x R x £2 — R is a function such that the process
(f(t,0,0));<7 belongs to H? and there exists a constant £ > 0 verify-
ing

1f(ty, QO = f(ty O < klly =yl +1IC = ¢ llez), for every ¢, y,',¢ and (.

(iii) S := (St)o<i<r is a process of S? such that Sy < €, P — a.s., and whose
jump times are inaccessible stopping times. This in particular implies
that for any ¢t < T, ST = S;_, where S? is the predictable projection of
S (see e.g. [9, pp. 58]) for more details on those notions.

In [26], the authors have proved the following result related to existence
and uniqueness of the solution of one barrier reflected BSDEs whose noise is
driven by a Lévy process.

Theorem 3.1. Assume that the triple (f,§,S) satisfies Assumptions (Al). Then
there exists a unique triple of processes (YU, K) = ((Yz,Us, Ky))i<r with
values in R x (2 x Rt such that:

(Y,U,K) € 8% x H(£%) x A%
Yi =&+ [T f(s, Yo, U)ds + Ky — Ko — Y [TUGHD v < T: (3.1)
Y, > 8,V 0<t<T and [T(Y, - S)dK, = 0. P — as.

The triple (Y, U, K) is called the solution of the reflected BSDE associated with

(f,€.9). O
To proceed we need to compare solutions of reflected BSDESs of types
(3.1). So let us consider a stochastic process V. = (Vi)i<r = (V')i>1 =

((V¥)i<r)i>1 which belongs to H?(¢?) and let M := (M;);<r be the stochastic
integral defined by:

0o 4t
VEST, Mp=Y_ / VidH®.
i=170
We next denote by (M) := ((M)¢)i<7 the process that satisfies:
¢
VE<T, eM);=1 +/ e(M)s—dMs.
0

By Doléans-Dade’s formula we have (see e.g. [25]):

1
VE<T, e(M);=exp Mt—i[M,M]f— SoaM.p [ (1+4aM.).

0<s<t 0<s<t

Let us now introduce the following assumption on the process V.
Assumptions (A2): The process V = (V¥);>1 = ((V})i<r)i>1 verifies

P—as, Vt<T, Y Vipi(AL) > -1, (3.2)

i=1
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and there exists a constant C such that:
Y IViP<c, dPedi-ae. (3.3)
i=1

We then have:

Proposition 3.1. Assume that Assumption (A2) is fulfilled. Then, P-a.s., for
any t € [0,T], e(M); > 0 and (M) is a martingale of S>.

Proof. First note that for any ¢t < T,

AM, = 3" ViAHD =3 Vip(AL) > -1,
=1

i=1

therefore for any ¢t < T, e(M;) > 0. Next by using Doléans-Dade’s formula and
since d(H®, HU)), = dijds, we have: Vt < T,

e(M)? = ¢(2M + [M, M]),

= 22/ w’m&@ZZ/ VIVIdH®D, HW)],
i=170 0

i=1j=1
= <2Z/ X/’jdH§“+Z/ \Vi|2ds
i=170 i=1 70

+Zz/0 VIVId(HD, HO)], — (HD, HO),)

i=1 j=1

:e(N)texp{Z/O |Vsi|2d3}

t

where

[e%s} t oo 00 t
No=23 [Cviant + 303 [viviau®. o,
i=170 i=1j=1"0
_<]_[(i)7[_](j)>s)7 t<T,
is a local martingale. On the other hand, the quantity > .2, fOT |Vi2ds is
bounded and £(N) > 0, then

E[(s(M);)?] < CE[e(N)o] < C, Vt<T,

since €(N) is a supermartingale. It follows that e(M) is not only a local mar-
tingale but also a martingale and then by Doob’s maximal inequality it belongs
to S2. O

Remark 3.1. The result of Proposition 3.1 still holds true if instead of (3.3)
we only have
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o0 T
Z/ Vil2ds < C, P —a.s. (3.4)
i=170

O

Next for two processes U’ = (U} )k>1, i = 1,2, of H?(¢?) we define their
scalar product in H2(¢?) which we denote by (U*!, U2>” = (U, U?)i<r as:

Vi< T, (UL U? =Y UiULt

k>1

Proposition 3.2. Let £ € L2, p = (aps)s<T € H?, 6 := (6s)s<T a uniformly
bounded process, and finally let V- = (V');>1 € 'H2(€2) satisfying (A2). Let
(Y,U) := (Y2, Up)e<t € S x H?(€?) be the solution of the following BSDE:

T oo T
vt < T, Y;:§+/ (sas+5sYs+<MU>’;)dsz/ UdHY . (3.5)
t . t

Fort <T, let (X!)sep,1) be the process defined as follows:

t_ Jf 5.ar €(M)s
Vse[t,T], X,=e (D), (3.6)

Then for any t < T, Y; satisfies:
Y;

T
=E X%{—i—/ Xlpeds|F|, P—as.
¢

On the other hand, if (Y',U’) € 8% x H?({?) is the solution of the BSDE:

7§+/fsy’ dsz/ URIH®, vi<T  (3.7)

where
FY L U) > o + 6,V +(V,UYY, dP®@dt —a.s.
then for any t <T,

T
Y/ > E erpf—l—/ Xlpgds|F|, P—as.
¢

Proof. First note that the processes (Y,U) and (Y’,U’) exist thanks to Theo-
rem 3.1. Let us now fix ¢ € [0, 7. Since V satisfies (A2) then e(M) > 0 which
implies that (X! )sejt,r] is defined w by w. On the other hand it satisfies

Vs e[t T), dX!=X! (5,ds+ dM,)

and since § is uniformly bounded then as in Proposition 3.1, one can show
that E[sup,e(, 77 |X%?] < oo. Now by Itd’s formula, for any s € [t, T], we have

—d(Y,X!) = ~Y,_dX! — X!_dY, — d[Y, X"],
= X! Y, 6,ds— Y, X! dM, + X' p.ds+ X! 5,Y.ds
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~X! > UidH®
i>1
-Xt ZZVS"Uﬁd([H("),H”)}S _ <H(i)’H(j)>S)

i=1 j=1
= Xﬁapsds — dN

where for any s € [t, 7]

dN, =Y,_X!_ {Z V;’ngi>} + x> UidH
1=1

i>1

XD D VIULA(HY, H Y]y = (HY, H ),

i=1 j=1

Note that since X' is uniformly square integrable, Y € S?, U € H?(¢?) and
finally taking into account Assumption (A2) on V', we get that NV is a uniformly
integrable martingale on [t,T]. Therefore taking conditional expectation to
obtain:

T
Y, = E XfT§+/ Xlogds|Fi|, P —a.s.
t

which is the desired result.

We now focus on the second part of the claim. By It6’s formula we have:
Vs € [t, T,

—d(YX) = =Y dX{— X dY] —d[Y’, X'];

s—

—-X! {Z UldH® }
i=1

(o) o0
-Xxt Z Z VSZ'Us/jag[H(i)7 H(j)]s

i=1 j=1

= —X! Y/ b.ds— Y/ X!_ {Z V;'dHé“} + XL f(s,Y],Ul)ds
1=1

Next since X! > 0 and taking into account the inequality which f verifies to
obtain

—d(Y!X!) > Xlp.ds — dN, P — a.s.,

where for any s € [t, T,
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AN, =Y/ X!_ {Z V;'dHé”} —- X! {Z U:dHé“}
=1 =1

-Xt ZZV%U/Jd HO g, —(HD HOD),)

i=1 j=1

But once more N’ is a uniformly integrable martingale then by taking the
conditional expectation we obtain:

Y/ > E

T
X%£+/ ngﬁsd8|ft y P*&.S.
t

which completes the proof. O

We are now ready to give a comparison result of solutions of two BSDEs
of type (3.1).

Proposition 3.3. For i = 1,2, let (f;,&;) be a pair that satisfies Assumption
(A1)-(i),(ii) and let (Y',UY) € 8% x H2(£?) be the solution of the following
BSDE: vt <T,

T
=§i+/ fi(s, YE, UY ds—Z/ U dH),
t

Assume that:
(i) For any UY,U? € H2(I2), there exists a process VU V" = (Vle’Uz)jzl
(which may depend on U' and U?) satisfying (A2) such that fi verifies:
AYR UL = (Y2 UR) > (VOOU (U - U, dP @ dt — ae;
(3.8)
(ii)) P —a.s., & > & and
fEYEUR) > f2(6L,Y2UR), dP®dt —ae.. (3.9)
Then P-a.s., Y} > Y2, Vt € [0, 7).
Proof. Let usset Y = Y1 Y2 U =U!'-U? and £ = ¢! —¢2, then Vt € [0,T],

T oo T
Yt=£+/ {f1(87Y317U3)—fz(s,Yf,Uﬁ)}dS—Z/ TidHD.
t i’

Next let us set
Vs <T, ds= (fl(svyslaUsl) - f1<s7YSQ’Usl)) X (YS)_l]l{YS;éO} and
Ps :f1(57Y923U52)*f2(57Y:927U52)' (310)

Then by (3.9) we have, ¢, > 0, dP ® dt — a.e.. On the other hand (6s)sc(0, 1)
is bounded since f; is uniformly Lipschitz. Finally we have

(s, YE UL = fo(s, Y2, U2) > @y + 6,Y, + (VU U VP, dP @ ds — ae..
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Therefore thanks to Proposition 3.2 we get,
Vt<T, Y,>E

T
X%é—i—/ Xlpods|Fs| >0, P —a.s.
¢

where (X!)sep,r is defined in the same way as in (3.6) with the new processes
§ and ¢ defined in (3.10). As X, £ and ¢ are non-negative then for any ¢ < T,
Y, > 0 which implies that P — a.s.,Vt < T, Yt1 > Yf since Y! and Y2 are
RCLL. The proof of the claim is now complete. O

Remark 3.2. Conditions (3.8) and (3.9) can be replaced respectively with

FEYEUN = f2(t, Y2, U2) > (VUU (U —U?)?, dP @ dt — a.e.
(3.11)

and
AYLUD > (Y U)), dP @ dt - ae. (3.12)

In this case, with the other properties, one can show that we have P-a.s.,
Yl >v2 O

Remark 3.3. Point (i) of Proposition 3.3 is satisfied in the following cases:

(i) f does not depend on the component (;

(ii) If L reduces to a Poisson process, we have H®) = 0 for all i > 2, then
Assumption (A2) reads: (a) V = (V})iejo,7) is bounded; (b) for any stop-
ping time 7, such that AL, #£0, V., > -1, P —a.s..

(iii) The generator f satisfies

Fty,0) = ha(ty, Yy 0iC"), Y(t,y,¢) € [0,T] x R x £2
i>1
where the mapping 7 € R — hy(t,y,n) is non decreasing and uniformly
Lipschitz and ((9%)1‘21)th satisfies
S BP<C, dt@dP—ae and P—as,VE<T, Y 0ipi(AL;) > 0.
i>1 i>1
O

We finally provide a comparison result of solutions of reflected BSDEs of
type (3.1) which will be useful in the sequel.

Proposition 3.4. Fori = 1,2, let (f;,&;,S") be a triple which satisfies Assump-
tion (A1) and let (Y}, K},U})i<r be the solution of the RBSDE associated with
(fi, &, S%). Assume that:

(1) P - a.s, 51 > 52 and Vt € [OvT]v fl(tayvc) > f?(tvy7C) and Stl > Stz’

(ii) f1 verifies condition (3.8).

Then P-a.s. for any t < T, Y} > Y2
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Proof. For i = 1,2, let us consider the following sequence of processes (Y*",
Ubtny € 8% x H2(€%), n > 0, that satisfy:

T T
VI [ p iU ds n [ (v - sty ds
‘ t
_Z/ U;,n,]st(])7 vt<T
j=17"

and let us denote by
fi”(s,y,() = fi(sayaC) + n(y - S;)_

For any n > 0, f1* satisfies (3.8) and f{* > f3. Therefore using the comparison
result of Proposition 3.3, we deduce that: Vn > 0,

P—as., Vt<T,V;"">Y>™ (3.13)

But since f; verifies (3.8) then we can show that for i = 1,2, Y%" /Y% in &2
since the processes S° do not have predictable jumps (see e.g. [16], Theorem
1.2.a, pp. 5). Thus, inequality (3.13) implies that P-a.s., Y > V2. O

We are now going to make a connection between reflected BSDEs and
their associated IPDEs with obstacle. So let (¢,z) € [0, T]xR and let (X%%)s<r
be the solution of the following standard SDE driven by the Lévy process L,
ie.,

tVs tVs
X0t =g +/ b(r, XL )dr +/ o(r, X)L, Ys<T, (3.14)
t t

where we assume that the functions b and o are jointly continuous, Lipschitz
continuous w.r.t. z uniformly in ¢, i.e., there exists a constant C' > 0 such that
for any t € [0,T], z,2’ € R,

lo(t,x) —a(t,z")| + |b(t,x) — b(t,2")| < Clz — 2'|. (3.15)
As a consequence, the functions b(t,z) and o(t,x) are of linear growth. We

additionally assume that o is bounded, i.e., there exists a constant C, such
that

Y(t,z) € [0,T] x R, |o(t,2)] < Cy. (3.16)

Under the above conditions on b and o, the process X*® exists and is unique
(see e.g. [25], pp. 249), and satisfies:

Vp>1, E {sup Xﬁ’x|p] < C(1+ |zP). (3.17)
s<T
Next let us consider the following functions:

h:zeRw— h(z) eR;
f:(try, ) el0,T) x R x 2 f(t,z,y,() € R;
U: (t,z) € [0,T] xR — U(t,z) € R,

which we assume satisfying:
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Assumptions (A3):

(i) h, ¥ and f(t,2,0,0) are jointly continuous and belong to Il ;
(ii) the mapping (y,() — f(t,x,y,() is Lipschitz continuous uniformly in
(t, z);
(iii) For any x € R, h(z) > U(T, z);
(iv) The generator f has the following form:

by, Q) =h | £, 3 0 |Vt ,5,Q) €0, T] x R x 42
i>1

where the mapping 7 € R —— h(¢,z,y,n) is non decreasing, and there
exists a constant C' > 0, such that V¢ € [0, 7], z,y,n, 7 € R,

h(t,z,y,m) = h(t,z,y,7") < Clyp—1'|.
Moreover (67);>1 satisfies
Y0P <C, dt@dP —ae and P —a.s,Vt<T, Y 0ip;(AL;) > 0.
i>1 i>1

0
Next let (t,x2) € [0,7] x R be fixed and let us consider the following
reflected BSDE:

(Ybz Ute Kb®) € 82 x H(1?) x A?;
Ve = h(XE") + [ f(r XEo, Yo, Ubs)dr + K — K
_ Z fST Urt,z,deT(l)
=1
Vs <T, Y57 >W(s, X07) and [ (YI* — W(s, X07))dKD® = 0, P— a.s.

(3.18)

Under assumptions (A3)-(i),(ii),(iii), the reflected BSDE (3.18) is well-posed
and, thanks to Theorem 3.1, has a unique solution (Y%, U%* K®"*). Moreover
the following estimate holds true:

T
E | sup [Y27 + / S|yt

0=s<T U

2% ds

T
< CE |h(erp’w)|2+/ 1f(s,X57,0,0)|ds + sup (s, X07)[2|. (3.19)
0

0<s<T

On the other hand, the quantity
u(t,z) =Y, (3.20)
is deterministic, continuous and satisfies
V(t,z) € [0,T) x R,Vs € [t,T], YI" := u(s, X17).

Fore more details, one can see e.g. [26, pp. 1265]. Finally note that under
Assumptions (A3) and by (3.19) the function u belongs also to II,.
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We now introduce the following IPDE with obstacle:

min {u(t, ) — U(t,2); —pult, ) — Lult,z) — f(t, 2, ult,z), ®(u)(t, x))}
=0, (t,z) € [0,T) x R,

(3.21)

where L is the generator associated with the process X** of (3.14) which has
the following expression:

Lu(t,z) = (E[Li]o(t,x) + b(t, x))Opu(t, x) + %a(t,x)szagmu(t, x)
+ / [u(t,z +o(t,z)y) — u(t, ) — Opu(t, z)o(t, z)y|U(dy)  (3.22)
R

and

D(u)(t, )

= <18zu(t, x)o(t, x)lk=1

C1,1

+ / (u(t,z + o(t, 2)y) — u(t, x) = Orult, JL‘)y)pk(y)H(dy)>
R

k>1

where ¢ ;1 is defined in (2.4).

We are going to consider solutions of (3.21) in viscosity sense whose
definition is as follows:

Definition 3.1. A continuous function u : [0, T]xR — R is said to be a viscosity
subsolution (resp. supersolution) of (3.21) if:

(i) u(T,2) < h(z) (resp. u(T,z) > h(z));
(ii) for any (t,x) € (0,T) xR and for any ¢ € C}* such that o(t, z) = u(t, x)
and @ — u attains its global minimum (resp. mazimum) at (t,x),

min {u(t, 2) — W(t,z); —Op(t,z) — Lo(t,z)
—f(t,x,(p(t,x),fb((p)(t,x))} <0 (resp. >0).

The function u is said to be a viscosity solution of (3.21) if it is both its
viscosity subsolution and supersolution.

O
In [26], Ren-El Otmani (Theorem 5.8, pp. 1265) have shown that under

Assumption (A3), the function u defined in (3.20) is a viscosity solution for
(3.21).
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3.2. Systems of reflected BSDEs with inter-connected obstacles driven
by a Lévy process and multi-modes switching problem

We now introduce the following functions f;, h; and g5, 1,5 € A:

fi : (t,{L‘7 (yi)i:Lmuc) € [07T] X R x R™ x ZQ — fi(t,.’E, (yi)i:Lm7<) eR
Gij - (t,lL’) S [O,T] X R +— gij(t7l') S R,
hi:x € R— hi(z) €R (3.23)

which we assume satisfying:
Assumptions (A4):

(I) For any i € A:
(i) The mapping (t,x) — fi(t,z, ¥,¢) is continuous uniformly with
respect to (3, ¢) where ¥ = (y )l 1m;
(ii) The mapping (%/,¢) — fi(t,2, ¥ ,¢) is Lipschitz continuous uni-
formly w.r.t. (¢,2);
(iii) fi(t,2,0,0) is measurable and of polynomial growth;
(iv) For any U',U? € H%(I1?), X,Y € 8%, i € A, there exist yULUti o
1 2
(VU s1 (which may depend on U' and U?) that satisfy
Assumption (A2) and such that:

fi(t7Xta }/ta Utl) - fi(tthvna Ut2)
> (VUL (U — U, dP ®df — a.e. (3.24)

(v) For any ¢« € A and k € A; := A — {i}, the mapping yr —
filt, @, y1y e s Yk—1, Yk Yktls - - - Ym, ) is nondecreasing whenever
the other components (¢, 2, Y1, .-, Yk—1, Ykt+1, - - - Ym, ) are fixed.

(Il) Vi,j € A, gii = 0 and for k # j, g;x(t,z) is non-negative, continuous
with polynomial growth and satisfy the following non free loop property:
For any (¢,z) € [0,7] x R and for any sequence of indices i1, ...,k

such that i; = iy and card{iy,...,ix} =k — 1 we have

Giyio (t,l’) + giQis(tvx) Tt Gigiy (t,l’) > 0.

(ITI) Vi € A, h; is continuous with polynomial growth and satisfies the follow-
ing consistency condition:

hi(z) = ?éix(h (z) — 9i5(T,2)), VzeR

We now describe precisely the switching problem. Let Y = ((0;);>0, (e;);>0)
be an admissible strategy and let a = (as)se[o,7] be the process defined by

Vs <T, as:= aglyg,(s) —I—Zag 1hg,_,0,1(5),

where {6;};>0 is an increasing sequence of F;-stopping times with values in
[0,T] and for j > 0, «; is a random variable Fp, -measurable with values in

= {1,...,m}. If Pllim, 0, < T] = 0, then the pair {0;,a;};>0 (or the
process a) is called an admissible strategy of switching. Next we denote by
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(A%)s<r the switching cost process associated with an admissible strategy a,
which is defined as following;:

Vs <T, A=Y Ga; 10,05, Xy ) g,<q and  Af = lim A7 (3.25)

Jj=1
where X% is the process given in (3.14). For n <T and i € A, we denote by
,A; := {a admissible strategy such that «g =1, g =7 and E[(A%)?] < co}.

Assume momentarily that for i € A, the function f; of (3.23) does not depend
on 3 and ¢. For t < T and a given admissible strategy a € A}, we define the
payoff J&(¢,z) by:

T
Jf(t, 33) =E / fa(s)(s, Xﬁ’w)ds —+ ha(T) (X;—?x) — A%
t

where fuo)(...) = fr(...) (vesp. hary(.) = hi(.)) if at time s (vesp. T') a(s) =
k (vesp. a(T) = k) (k € A). Finally let us define

Ji(t,x) = sup Ji(t,x), i=1,...,m. (3.26)
acAl

As a by-product of our main result which is given in Theorem 4.1 below, we get
that the functions (J*(t,x))i=1,...m is the unique continuous viscosity solution
of the Hamilton—Jacobi—Bellman system associated with this switching prob-
lem. 0

Let (t,x) € [0,7] x R and let us consider the following system of reflected
BSDEs with oblique reflection: Vj =1,...,m

YieS&? U/eH*(P), KIeA?
Ysj = hJ(X%’m) + fsT fj(rr X7é7m’ le’ Y727 Y, Ug)dT
= (T i) i ped )
; [, UlrdH:" + K, — K1, Vs <T,; (3.27)
Vs < T, YJ>max{V}F—g(s,X\*)} and
keAj

T : k T ]
Jo (Y9 = max{Y® — gju(s, X;7)}}dK] = 0.

Note that the solution of this BSDE depends actually on (¢,2) which we will
omit for sake of simplicity, as far as there is no confusion. We then have the
following result related to existence and uniqueness of the solution of (3.27).

Theorem 3.2. Assume that Assumption (A4) (I) (ii)—(iv), (A4) (II) and (A4)
(IT1) are fulfilled. Then system of reflected BSDE with oblique reflection (3.27)
has a unique solution.

Proof. The proof follows the same lines as in [7] and [15]. It will be given in
two steps.

Step 1 We will first assume that the functions f;, i € A, verify (A4) (I) (ii)—(v).
The other assumptions remain fixed.
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Let us introduce the following standard BSDEs:

Y € 82, U € H?(¢?);

Y, = max hy (X5 + [T max f;(r, X0, Y, ..., Y., U,)dr
J=Lm Jj=1lm

(3.28)
-y [T UaH", vs<T,
=1

and

€S8?  UeH* (),
tl t,x
]r_mn hi (X7 -|—f mln f]( r, XY, .Y, U )dr (3.29)

- Z I Hidegl), Vs < T.
=1

Y
Y, =

Note that thanks to Theorem 1 in [23], each one of the above BSDEs has a

unique solution. Next for j € A and n > 1, let us define (Y7 U™ K7™) by:

yine&? UM e HA(1?), K e A%

Yio=Y

Y= hj (X”fllx) + fsT fj(r7 X7t‘7m7 le.,n—l’ R
}/ijl,nfl7 Yrj,n, }/errl,nfl7 . ,Ym,n717 Uﬂ’")dr
-y [Fupmida? + Ki" — KI", Vs <T; (3.30)

i=1

VP 2 ma(VR - g XET)), Vs < T

T
Y]n_ Ykn 1 _ th Kj,n: )
[ = e o X0 | AR = 0
By induction we can show that system (3.30) has a unique solution for any
fixed n > 1 since when n is fixed, (3.30) reduces to m decoupled reflected
BSDEs of the form (3.1). On the other hand it is easily seen that (Y,U,0) is
also a solution of:

Y, = @lax hy (X5 + [T max fi(r, X0* Y, .. Y, U,)dr

zf UidH" +KT—KS,V <T;
Y, > max( — gjk(s, XL™)), Vs <T;

Jo [Ye = ma(Ys = gje(s, X07)) | dE, =0

Next since for any i € A, f; verifies Assumption A4(I)(ii)-(v), by Proposi-
tion 3.4 and an induction argument, we get that P-a.s. for any j,n and s < T,
yin=t <YJm <Y, Then the sequence (Y7"),,>0, has a limit which we denote
by Y7, for any j € A. By the monotonic limit theorem in [13], Y7 € S? and
there exist U/ € H?(¢?) and K’ a non-decreasing process of S? such that:
Vs < T,
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S T

Vi = hy(XE5) + [T £, X0 Y, U )dr — S [T UBidHY + K~ K,
=1
Y > }gggj(iff — gjk(s, X0")),
(3.31)

where for any j € A, U7 is the weak limit of (U?"),,>1 in H?*(¢?) and for any
stopping time 7, K7 is the weak limit of K2" in L?(Q, F,,P). Finally note
that K7 is predictable since the processes K™ are so, for any n > 1.

Let us now consider the following RBSDE:

YVies? Ule H2(0%), KJ € 82, non-decreasing and Kg =0;
Y/s] = hJ(X%a:) + ng fj(T7X7€7w7}/r17 L a}/;j_17}>rjayrj+17 L 7Yrm7 Uﬂ)dr
S~ (T irigr® o fed g ,
- U2*dH;"’ + K3 — KI1,Vs < T;
. &t T (3.32)
¥4 2 max(YE — gjuls, X)), Vs <T:
€4,

T |xrj k t,x i
i |7 - (v = g x| akt o

According to Theorem 3.3 in [1], this equation has a unique solution. By
Tanaka-Meyer’s formula (see e.g.[25], Theorem 68, pp. 216), for all j € A:

. . PN . T A . .
(V=YY = (07 =YD+ [ Mgy Ly gdlB = 19)
+ D []1{93_4;)0}(173 YT Ly Ly (V- Yﬁ)*]
s<r<T

1 .
+§L?(YJ — YY)

where the process (LY(Y7 — Y7)),<r is the local time of the semi martingale
(Y7 — Y7 )o<s<r at 0 which is a nonnegative process. Then we have

T
(Y7 =Y2)" > (Y7 =Yt + / Liys _ys sqpd(¥7 = Y/)

T
= (Y7 =Y))" _/ ]1{1”/,9'_71/3_>0}

t,x 1 i—1 yrj +1 m 7rj
s | £ X0 Y YT YT Yty OF)

_'fj<r7X7€7x’YVrla---7YYrj?---aYvrvaZ) dr

T
*/ Liyi vi sqpd(B7 = K7)

T
2 / Lyi i oy (U7 = UF)AHD.
~ J
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First note that by (3.32), fST ]l{yjifyjim}d(f(ﬁ' — KJ) <0. Now by Assump-
tion (A4)(I)(iv), we obtain:

T
(Y;J —}/SJ)JF < / ]l{};rj_iyrj_>0}[fj(’l",Xf.’m,K,l,...,}/,rj,...,}/,rm,Uﬂ)

— £, XPE YL YL YU

) R IR T o

+fim XY Y Y UY)

? T

—fir, XEE Y Y Y U dr

yLpo

—Z/ Ligs yi o (U = UaHY

s/ Ligs ys Lo OV =Y )tar
D B R
=5 [ s v 0 0
i=17s
Next for ¢t < T, let us set M, = > .0 1f0 U dH(l) and 7, =

Y2 Jo Yys _ys s (U - Ug’i)dHﬁ” (M and Z depend on j but this is
irrelevant). By Proposition 3.1, e(M) € 82, e(M) > 0 and E[¢(M)r] = 1.
Then using Girsanov’s Theorem [25, pp. 136], under the probability measure
dP := ¢(M)pdP, we obtain that the process (Z, = Z,— < M,Z >;)i<r is a
martingale and then

oo T
Z/ Lo _ys 2oV 09 () (03 — U )dr
i=1"vS

oo T

- Z/ ]1{375;7Y57>0}<U7271 — U )dHY
i=1""%

= —Ep(Zr — Zs) =0.

Thus for any s < T,

Ep(Y7 —YI)" <Ep /C’ — Y tdr

and finally by Gronwall’s Lemma, Vj € A, Vs < T, (Y7 —Y/)* =0 P — a.s.
and then also P — a.s. since those probabilities are equivalent. It implies that
P-a.s., Y7 < Y7 for any j € A. On the other hand, since Vn > 1, Vj € A,
Yim=1 <YJ then we have

k,n—1 _ T _ tx
Vs <T, ,grggj(Y (s, X%)) < ,ggX(Y gik(s, XJ7)).
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Therefore by comparison, we obtain Y7 < Y , and then Y7 < Y7 which
implies Y7 = Y7, Vj € A.
Next by Itd’s formula applied to (Y7 — Y7)? we obtain: Vs € [0, T],

(V= V92 = (V) V3 2 [ (=¥ a7 - 57)
0

2

1 k=

o0

S
[t = st - oy, 1,
170

AsY? = Y7 and taking expectation in both-hand sides of the previous equality
to obtain

T
E / S (Ui -Uidr| =o.
0

i>1

It implies that U/ = U7, dt @ dP and finally K7 = KJ for any j € A, i.e.
(Y7,U7, K7) jea verify (3.32).

Next we will show that the predictable process K7 does not have jumps.
First note that since K7 is predictable then its jumping times are also pre-
dictable. So assume there exist j; € A and a predictable stopping time 7
such that AK7* = AKJ' > 0. As Y7 verifies (3.32) and since the mar-
tingale part in this latter equation has only inaccessible jump times then
AYJ/' = —AKJ' = —AKJ' < 0. By the second equality in (3.32) we have

le — Yk o Xt,r ) )
T— knélx%i( T— g]lk(T7 T—)) (3 33)
Now let jo € A;, be the optimal index in (3.33), i.e.,

Y2 — gj o (n XEY) = YL > VI 2 Y = gj, 4, (r X2).

Note that gj, j, (7, X0") = gj, j, (7, Xb¥) since the stopping time 7 is pre-
dictable, and the process (X*);<s<r does not have predictable jump times.
Thus AY?? < 0 and once more we have,

J2 k. t,x
YT— - krg.%i (Y‘rf ngk(T’ X‘r—))' (334)

We can now repeat the same argument as many times as necessary, to deduce
the existence of a loop #1,...,¢,_1,¢, = {1 (p > 2) and ¢3 # {1 such that

14 4 t,x Lp_1 £, t,x
Yri = YTE — geq0, (T’ X‘r—)’ tee 7Y7'i = Yri - gep—lep (T’ XT—)

which implies that
9oy e, (T7 X-zt—yf) et 9ep_10y (7—’ X?f) =0

which is contradictory with Assumption (A4) (II). It implies that AKJt = 0
and then K7 is continuous since it is predictable. As j is arbitrary in A, then
the processes K7 are continuous and taking into account (3.32), we deduce
that the triples (Y7,U7, K7),c 4, is a solution for system (3.27). O
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Step 2 We now deal with the general case i.e. we assume that f;, i € A, do no
longer satisfy the monotonicity assumption (A4) (I) (v) but (A4) (I) (ii)—(iv)
solely.

Let j € A and tg € [0,T] be fixed. We should stress here that we do not
need to take to = t since the result is valid for general stochastic process and
not only of Markovian type as X**. For a € A] and I' := ((T'})sej0,7))ica €
[H?]™ := H? x --- x H? (m times), we introduce the unique solution of the
switched BSDE which is defined by: Vs € [to, T,

T
Vsa = ha(T)(X;lx) +/ fa(r)(ra X:’m,ﬁ,Nf)dT
oo T ) ° )
=S / NOIAHD — A% + A (3.35)
=179

where V2 € 82 and N® € H?(¢?) (ITT> = (I'?);ea). First note that the solution of
this equation exists and is unique since in setting, for s € [tg, T, IN/S“ =Ver—A?
and B% = ha(7) (XtTm) — A% this equation becomes standard and has a unique
solution by Nualart et al.’s result (see [23], Theorem 1, pp. 765). Moreover
(see Appendix, Proposition 5.1) we have the following link between the BSDEs
(3.27) and (3.35),

Y} = esssup,, a, Vig = A3,) = Ve — AL (3.36)
for some a* € A{O. Next let us introduce the following mapping © defined on
[H?]™ by

O : [HY™ — [H?™
I'=(IY)jea = (Y)jea (3.37)
where (Y7,U7, K7)jc 4 is the unique solution of the following system of RBS-
DEs:
Y7 = hy(Xg") + f £ X0 T U
- i Jrviian? + Kj - K, Vs<T.

. 3.38
Y3 > max{VE - gia(s, X00)}, Vs < T (3:38)
kEA,

T : k T | —
Jo Y7 = max{Y ¥ = gju(s, Xo")}|dI] = 0.

By the result proved in Step 1, © is well-defined. Next for € H? let us define
2

- ll2s by
T
e = (B / HnaPds| |
0

which is a norm of H?2, equivalent to |.|| and (H?,| - ||2.,3) is a Banach
space. Let now I'' and I'? be two processes of [H?]™ and for k = 1,2, let
(YkI Uk K*I) ;e 4 = O(TF), ie., that satisfy: Vs < T,
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.
VI = by (X5 + [ f3 (0, X7 T, UR )

—Zf UkiidH® + Kk fk
Y > HelaX{Yk’q — gjq(8, Xg") s

ST Y9 — max (v — gjo(s, X0)}| dEE = o0,
qEA;
Next let us define (YJ) jea through the following system of reflected BSDEs
with oblique reflection: Vs < T,
O t,x T te 1 f7i ta T3 77
Ys = hj(XT ) + fs fj(r7 Xr’ 7Fr7 Ur) \ fj(T7 *Xr7 7Fr7 UT)dT;
< ST O an + R

Yi > max{Yq — gjq(s, X)) fo [YJ m%x{ﬁ? — gjq(s, X1} dKI = 0.
q€A;

S

Recall once more that a € Aio and let us define V¥ k = 1,2, and V“, via
BSDEs, by

— —
V *h'a(T) / fCL(T TXﬁ’zvr}ﬂNg)\/fa(r)(ant”xaF%aNg)dr
72/ N@dH® — A% + A® s<T,
and for k =1, 2,

—_—
VE® = hory (X / fary(r, XE7 TF NFYdr — AG + A2

*Z/ NF@IH®D | s <T.
=19
By Proposition 5.1 in Appendix, we have:
Ytlz,j = eSSSUD ¢ 47 (Vt’Z“ —A%), k=1,2and
17,5]0 = eSSSUD ¢ 47 (Vt‘; —AL) = Vt‘; - A?O*. (3.39)
In addition for s € [to,T], fu(s) verifies the inequality (3.24) of Assumption
&)
(A4) (I) (iv). Actually let us set as = aglyg,y(s) + Zl aj-1l, ,0,1(5), s €
J:
[to, T], and let U, U? € H2(I?), X,Y € S2. For any s € [tg, T| we have:
fa(s)(S,Xs,}/s,Usl) - fa(s)(87XS7YS7U32)
= [fao <S7 XS7 YS, Usl) - foco (87 XS7 )/Sa Uf)]ﬂ{eogsgel}

+ Z[faj,1(87XS?YS7 Usl) - faj,1(57Xs; YS7 Uf)]]]‘]Qj,l,ej](S>
j>2

> (VU0 (U — U)P1gg, <o,y
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+ Y (WY (U = U)) 0y, 0,(9)
j>2
= (Ve (@t - U?)e.
where for any s € [to, T,
VSUI,UQ,a — (VSUI,UQ,(L,Z')izl

UtUu?,a
=V 01{90§SS91}

1772
+ZVSU v 7%71][]9]'—1,9]‘](5)'

j>2
But on [tg, T] x €,
e 1 2 .
P {w, s < T, such that Y VY U4 (w)p;(ALy(w)) < _1}
=1

< ZP{w,ES < T, such that Z‘@Ul’Uz’j’i(w)pi(ALs(u})) <-1}=0
jEA i=1

which implies that
P —a.s., Vs € [ty, T], Z\/;Ul’Uz’a’i(w)pi(ALs(w)) > —1.
i=1

On the other hand, on [ty,T] X €,

oo oo
Z |VSU17U2,a,i|2 < Z Z ‘VSUl,UQ,Z,i

i=1 leAi=1

2<C, ds®dP — a.e.

Thus the process VU U%a verifies Assumption (A2) and f,,) satisfies Assump-
tion (A4) (I) (iv) on [to, T].

Consequently, by the comparison result of Proposition 3.3, for any strat-
egy a € A{o, P-a.s. for any s € [to, T], V* > Vb v V24, This combined with
(3.39) leads to Yt(ljj Y Yi] < }Aftjo = Vt‘g — A?O*. We then deduce

Vi = A <Y <V - AR and VR - AL <YRY <V - AL
which implies
1, 2,5 A% 1, * Ak 2, *
V! =Y I < IVig =V, [+ IVig = Vi " . (3.40)
Next we first estimate the quantity |‘A/;‘; — Vtia| For s € [to,T] let us set

AVS =V — Vb and AN = N* — N Applying Ité’s Formula to
the process €%*|AVS |2 we obtain: Vs € [to, T],

T
eﬁs|AVsa*|2+/ E'BTHAN:}* 24y

T o0 T
- / BePTIAVE Pdr — 2> / PTAVE AN CdHY
s i=1
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T * - ~ * 3 A *
+2 / AV [ for oy (1, XEZ D0 NEYVN fye (o (r, XE©, T2, N2
S N R )
7fa*(7‘)(7’5 Xﬁ’zvrvlﬂvN;’a )]d?"

co o0 T
-2 / AN AN A HD HY), — (HO, HO), ).
i=11=1""%
By the Lipschitz property of f;, j € A, and then of f,, and the fact that for
any z,y € R, |z Vy —y| < |z — y| we have: Vs € [tg, T,

— A * -3 A * — A *
|fa*(r)(rvXﬁ7waF}*aNg )\/fa*(r)(rvXﬁ’warzaNg )—fa*(r)(r,XﬁJ,F},,N,}’a )

7 A« 3 A« 7 A«
< |fa*(r)(raXf'7m7F71'7N7(-l )vfa*(r)(raX7t-@7FE7Ng )_fa*(r)(TaX:,z7F11'7Ng )
- A * — A *
+|fa*(r)(7"7 Xﬁwvri»Nﬁ ) - fa*(r)(rv X?wariaN?}’a )|

e Ga* 1a*
SL(|F?"_FT|+||NT' _Nr7 ) (341)

The inequality 2zy < %332 + By? (for any 3 > 0 and z,y € R) and (3.41) yield:
Vs € [to,T],

T T
eﬁs|AVsa*|2 < _/ GQTHAN;I*HQCZT—/ 6€ﬁT‘AVTa_*‘2dS
SOO " S | '
= / PTAVY ANY AdHD
i=1"%

T N — — *
+2L/ PTIAVE|(ITL = T2| + [|ANS"[|)dr

oo o0 T
SN [ ANy AN B, - (19, HO),)

i=11=1""%

IA

T * T *
—/ ePr|ANS ||2dr—/ BePT|AVY |2 ds
00 T
= / AT AV AN dHD
i=1"9%

)er

P " ) P S .
+ / 57| AVE s + / (01— T3] 4 |AN?
S S

[o <o o} T
-2 / AN AN A(HY, Y] — (HO, HY),)

i=11=1""%

2L (T 4 3 = [T . at i erd
<= [ &l —12Pdr — 22/ ATAVE NG AdHD
i=1"Y%

S

co o0 T
SN [ ANy AN a(m O, HO), - (10, HO),),
=11=1
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for 3 > 2L2%. We deduce, in taking expectation,

. 212 T el o3
Vs € [to,T], E[e’*|AV2 \2}§7E / ePrirt — 12 2adr | .

Similarly, we get also Vs € [to, T,

N X 212
E[e™ VY — V2 ?] < 7]3

S

T - =
/ 6'BT|F7{7FE|2dT .
Therefore by (3.40) we obtain:
Bto |y 1.J 2,52 8L” 1 22
E[e”|Y, 7 =Y, '[7] < 7HF — I 5. (3.42)
As tg is arbitrary in [0, 7] then by integration w.r.t. ty we get

o) — 6(*)|2,s < IT* = 2|25 (3.43)

Henceforth for [ large enough, © is contraction on the Banach space
([H?]™,]|.]l2,5), then it has a fixed point (Y7);c4 which has a version which is
the unique solution of system of RBSDE (3.27). O

Remark 3.4. As a consequence of (3.42), there exists a constant C' > 0, such
that Vj € A, s <T,

E[Y = Y2 P < ON(Y™)jea — (V) jealls 5. (3.44)
This estimate will be useful later. [l

Corollary 3.1. Under A;sumptions (A4), there exist deterministic lower semi-
continuous functions (v’ (t,x))jca of polynomial growth such that

Y(t,z) € [0,T] xR, Vse€[t,T], YI =ul(s,X\"), Vje A

Proof. This is a direct consequence of the construction by induction of the
solution (Y7,U7, K7)jc 4 given in Step 1. Actually by Ren et al.’s result [26],
there exist deterministic continuous functions of polynomial growth u(t,x),
u(t,z) and u?"(t,z),n > 0 and j € A, such that V(¢,z) € [0,T] xR, Vs € [t,T]
(a)
Y, =u(s,X") and Y, =u(s, X\").
(b)
YIm=ul"(s, X0), Ve A,
and
Y <ydn <ydntl Oy
This yields, for any n > 0 and (¢,2) € [0,7] x R,
u(t,z) <u"(t,z) <u" Tt ) < alt,z).

Thus u;(t,z) := lim, . w/"(t,z), j € A, verify the required properties
since (Y%"),, converges to Y7, j € A, in S?. O
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We now give a comparison result for solutions of systems (3.27). The
induction argument allows to compare the solution of the approximating
schemes, by Proposition 3.3, and then to deduce the same property for the
limiting processes.

Remark 3.5. Let (Y7,U7, K7);ea be a solution of the system of RBSDEs
(3.27) associated with ((f;)jeca, (Gjk)jkea, (hj)jea) which satisfy (A4). If for
any j, k € A,

fi < fiv hy <hj, gix > i
then for any j € A, Y7 < Y7, O

4. Existence and uniqueness of the solution for the system
of IPDEs with inter-connected obstacles

This section focuses on the main result of this paper which is the proof of
existence and uniqueness of a solution for the system of IPDEs introduced
in the beginning of this paper (1.1). For this objective we use its link with
the system of RBSDEs (3.27). However we are led to make, hereafter, the
following additional assumption because, basically, the hypothesis (A4)-(iv) is
either artificial in this deterministic setting or not easy to verify.

Assumption (A5): For any i € A, f; does not depend on the variable ¢ € /2.
O

So we are going to consider the following system of IPDEs: Vi € A,
main{w;(t, ) — max(u; (¢, x) — ¢;; (¢, z));
JEA;

—Owu;(t, ) — Lui(t,z) — fi(t, z,ur (8, ), ... um(t, )} (4.1)
=0, (t,2) € [0,T] x R;
ui (T, x) = h;i(x)
where
Lu(t,x) = Llu(t,x) + (L, z,u)
with
Llu(t,x) == (B[L1]o(t,x) + b(t, 2))Opu(t, x) + %J(t,x)zszimu(t,x) and

I(t,w,u) = /[u(u x+o(t,z)y) —ult,z) — dpu(t, z)o(t, )yll(dy).  (4.2)
R
Note that for any ¢ € C}? and (¢, ) € [0,T] x R, the non-local term
Z(t,2,0) = [ [o(t.2 +o(t2)y) — 6(t2) - Drolt,z)o(t. o)ldy) (43
R
is well-defined. Actually let § > 0 and let us define, for any ¢ € R,

Tt . ) = / [6(t, 2+ o(t, 2)y) — Bt ) — Bpb(t, )o(t, 2)yTI(dy),

ly|<d

(4.4)
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T29(t, 2, g, ) = /| b o) ) gy (45)

By Taylor’s expansion we have
o(t,x+o(t,x)y) — ot x) — 0:0(t, x)o(t, x)y
v
= / o(t,x)2D? o(t,x +o(t,z)r)(y — r)dr.
0

But there exists a constant Cj, such that for any |r| < 6, |D2,¢(t,x +
o(t,z)r)| < Cy, since ¢ belongs to C1'? and o is bounded. Therefore for |y| < 4§,

6tz + o(t,2)y) — d(t,x) — D d(t, x)o(t, 2)y| < Cralyl?

which implies that Z'9(t, 2, $) € R. Next for any (t,z), Z>%(t, z, D, ¢(t, ), $) €
R since II integrates any power function outside [—e, ¢]. Henceforth Z (¢, x, ¢)
is well-defined. O

We are now going to give the definition of a viscosity solution of (4.1).
First for a locally bounded function u: (¢t,x) € [0,T] x R — u(t,xz) € R, we
define its lower semi-continuous (lsc for short) envelope w, and upper semi-
continuous (usc for short) envelope u* as following:

us(t,z) = lim u(t' 2", ut(t,z) =

. !/ /
im u(t', z)
(t'a")—(t,x), t/<T (t'z")—(tz), v<T

Definition 4.1. A function (u1,. .., Un) : [0,T] Xx R — R™ which belongs to 11,
such that for anyi € A, u; is usc (resp. lsc), is said to be a viscosity subsolution

resp. supersolution) of (4.1) if for any i € A, ¢ € C}2, u;(T,z) < hy(z
P

(resp. w;(T,x) > h;(x)) and if (to,z0) € (0,T) xR is a global mazimum (resp.
minimum) point of u; — p,

min{ui(to, xg) — ;réf}f{uj(tm xo) — gij(to, z0)};s —0wp(to, zo) — Le(to, xo)
— fi(to, xo, u1(to, o), . . ., ui—1(to, Zo), ui(to, xo), - - - 7um(to,xo))}
< O(resp. > 0).

The function (u;)™, is called a wiscosity solution of (4.1) if (uix)™y and
(uf)™, are respectively viscosity supersolution and subsolution of (4.1).

The following result is needed later.

Lemma 4.1. Let (u;)[2, be a supersolution of (4.1) which belongs to I, i.e.
for some v >0 and C > 0,

lu;(t, )] < C(1+|x|7), Y(t,x) € [0,T] xR and i € A.

Then there exists \g > 0 such that for any X > Ao and 0 > 0, v (t,z) =
(u;(t, @) + 0= (1 + |2[27+2))™ | is supersolution of (4.1).

Proof. As usual wlog we assume that the functions (u;)i;=1,, are lsc and we
use Definition 4.1. Let i € A be fixed and ¢* € C}? such that ¢'(s,y) —
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(ui(s,y) +0e (1 +|y|>**?)) has a global maximum in (¢,z) € (0,7) x R and
O (t, ) = u;(t, z) + 0N (1 + |z|>7+2). By Definition 4.1 we have:

min{m(t, 2) + 07 (L+ o) — max(—gij (¢, 2) + (uy(t, @)
0N (1 + [2749)));
U () — 0N (1 + [a77) — ot )
@’ D3, (¢ (t,x) — 0N (1 + [2[*7+?)) — (o (t, 2) E(L1) + b(t, 2)) Do (9" (t, 7)
061+ o)~ [ it + oty
—0e M + o(t, )y - (@ (t, ) = e |z[>7F2)
~Da(' (b ) = 0 M a2 )0 (b, @)y T (dy) - filt, 2, W)} > 0.
Then
—Op' (t, ) — L' (t,x) — filt, 2, U (L, )
> Ore M (1 + [2272) — %ee*”a@:,x)2w2D§z|x|2V+2
—(o(t,2)E(Ly1) + b(t, 2)) Dy (0 |z|*72)
—/(ee**ﬂx + o (t, 2)y[P T2 —0e M 2|22 — e M Dy x| o (¢, 2)y) I (dy)
+f]f(t,x, U (t,x)) — filt,z, U (t,x))
> 0N+ [272) - Zo(t,2) w? D a7
—(o(t,x)E(L1) + b(t, x)) Dy |z|* 72
= [+ ot = o7 = Dafa ot 2))(ay)
+ Em: Crmon(l+ |m|2”+2)} (4.6)
k=1

where Cﬁ ’;79,/\ is bounded by the Lipschiz constant of f; with respect to
(4")i=1,....,m which is independent of . But, since ¢(y) = |y[*'™? € C}:*, then
the non-local term is well-defined. Now let us set ¢(p) := ¢(x + po(t, x)y), for
p,z,y € R. First note that for any ¢, z,y we have

|+ o (t, )y — |22 = Dofa 2o (t, 2)y| = [1(1) — $(0) — Dyip(0)]
1

/O (1- p)w@)(p)dp‘

< ClylP (a7 + [y*).

Therefore by (2.3) we have

/ |z + o (t,z)y|2 2 — |227+2 = D,|a|P 20 (t, x)y|TI(dy)
R
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<o / (2 + [y 2)TI(dy)
R
<CQ+ |x|27).

It follows that there exists a constant A9 € R™ which does not depend on
0 such that if A > Ao then the right-hand side of (4.6) is non-negative for
any i € A. Thus ¥ is a viscosity supersolution of (4.1), which is the desired
result. 0

Remark 4.1. In the same way one can show that if (u;), is a viscosity sub-
solution of (4.1) which belongs to I, i.e. for some v > 0 and C' > 0,

lu;(t, )] < C(1+|z|7), V(t,z) €[0,T] xR and i € A.
Then there exists A\g > 0 such that for any A\ > Ao and 0 > 0, U’ (t,z) =
(ui(t,x) — 0= (1 + |z|>7+2))™ | is subsolution of (4.1). a
4.1. Existence of the viscosity solution of system (4.1)

In this section we deal with the issue of existence of the viscosity solution
of (4.1). Recall that (Y7,U7, K7);c4 is the unique solution of (3.27) and let
(u;j(t,x))jca be the functions defined in Corollary 3.1.

Theorem 4.1. Assume Assumptions (A4) and (A5) and (3.15), (3.16) as well,
then (u;(t,x))jea is a viscosity solution of (4.1).

Proof. The proof will be divided into two steps.
Step 1 We first show that (u;)7., is a supersolution of (4.1). We will use
Definition 4.1. Note that for all j € A, as u; is Isc, we then have u;, = u;.
Next let us set u}(t,z) = Y/ where (YImbe Uinte imbty .y s the
unique solution of (3.30). As pointed out in Corollary 3.1, for any n > 0,
(t,z) € [0,T] x R and s € [t,T],

YJ MHhT — = uj (s, X5*)  and u;l(t,x)/uj(t,x).

Additionally by induction for any n > 0, (u;’) jea, are continuous, belong to
II, and by Ren et al.’s result ([26], Theorem 5.8) verify in viscosity sense the
following system (n > 1): Vj € A,

min{u?(t,x) max (u ;L 1(t,$)_gjk(t7$))§

keA;
_@ug< )-cw%tx) fxtx(u lw-w (4.7)

uj (T, x) = hj( x).
First note that for any j € A, u; verifies
uj(T,z) = hj(z) and u,(t,x)> inzzx{uk(t,x) —gi(t, )},
€4,

V(t,z) € [0,T] x R.

Now let j € A, (t,2) € (0,T) x R and ¢ a function which belongs to C,? such
that u; — ¢ has a global minimum in (¢,z) on [0,7] x R (wlog we assume it
strict and that u;(t,z) = ¢(t,x)). Next let 6 > 0 and for n > 0 let (¢, )
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be the global minimum of u} — ¢ on [0,7] x B'(x,26C,) (C, is the constant
of boundedness of the diffusion coeflicient o which appears in (3.16) and B’
stands for the closure of the ball B). Therefore
(tn, Tn) —n (tx)  and  uf(tn,zn) —n u(t, ).

Actually let us consider a convergent subsequence of (¢,,x,), which we still
denote by (ty,xy), and let set (¢*,2*) its limit. Then

u?(tn’ l'n) - ¢(tn7 xn) < U?(t, 1’) - ¢(t7 (E) (48)
Taking the limit wrt n and since u;, = u; is Isc to obtain

Uj(t*, .’IJ*) - (b(t*u .’E*) < uj(tu (E) - (b(ta (E)
As the minimum (¢, z) of u; — ¢ on [0,7] x R is strict then (t*,2*) = (¢, z).
It follows that the sequence ((¢y, 2, ))n converges to (¢,z). Going back now to

(4.8) and sending n to infinity to obtain

uj(t, x) = u;(t,x) < limninf uf (tn, zn) < limsup uf (tn, zn) < u;(t, )
n

which implies that uf (tn, Tn) —n u;(t, ).

Now for n large enough (t,,,x,) € (0,T) x B(z,2C,¢) and it is the global
minimum of u} — ¢ in [0,7] X B(z,,Cy6). As u} is a supersolution of (4.7),
then by Definition 5.1 in Appendix we have

_8t¢(tn7 .1'”) - £1¢(tn7 an) - Ilvé(tna L, ¢) Z 1276(tn; T, Dm¢(tna xn)a u?)
+fj(tm Tn, u?_l(tna xn)a s 7“?:11(tn7 xn)v u?(tm xn)’

u?;ll(tn, L)y (). (4.9)
But there exists a subsequence of {n} such that:

(i) forany k € Aj, (u}™" (tn,x,))n is convergent and then lim,, u} ™' (t,, z,,) >
U (tv :E) = uk(tv 1[,’);
(i) (Z"(tn,2n, @) —n IV (t 2, 0).
Next by Fatou’s Lemma and since uj, = u; and u; > ¢ we have

lim inf Z2° (t,,, 2, D d(tn, 2n),u”) > T30 (t, 2, Dpo(t, ), u;)

n— 00 T
> I%°(t, @, Dap(t, @), 9). (4.10)
Taking the liminf wrt to n (through the previous subsequence) in each hand-
side of (4.9), using the fact that f; is continuous and verifies (A4) (I) (v) and
finally by (4.10) to obtain:
—0u(t,3) = L1o(t, x) =T (t, 2, ¢)
> T20(t,x, Dpg(t, ), uj) + £tz ui(t, @), . . .,
uj—1(t, ), ui(t, @), ujp (8, ), . .., um(t, ).

As uj > ¢ and since Z(...) = Z%9(...) + Z%9(...) we then obtain from the
previous inequality,
_at¢(ta $) - £1¢(ta iL‘)

>I(t,x, @)+ fi(t,zui(t,z), ..., uj—1(t,x),ui(t, ), ujt1(t,x),. .., um(t, x))
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which means that u; is a viscosity supersolution of
min{u;(t, ) — max(ur(t, z) — gju(t, 2));
J
—0wu(t, x) — Lu;(t,z) — fi(t,z,ui(t, @), ..., un(t,z))} =0;
s (T, ) = hy ().
As j is arbitrary then (u;)jea is a viscosity supersolution of (4.1). O

Step 2 We will now show that (u});je4 is a subsolution of (4.1). As a first step
we are going to show that

vied, min{uj(T, ) —h;(z);  uj(T,2) — max(uy(T,z) — g;n(T, )} = 0.

By definition of u} and since u7 u;, we have

mindu; (T, z) = hy(z); - uj(T,2) — max(ui(T,z) = gjn(T,2))} 2 0

Next suppose that for some zg € R, 35 > 0, s.t.
min{u; (T, xo) — hj(wo); uj(T,x0) — Ireréax(uZ(T, z0) — gjk(T,z0))} = 2e.
j

We will show that leads to a contradiction. Let (t,zx)r>1 — (T, z0) and
wj(ty, xr) — uj(T,x0). We can find a sequence of functions (v"),>0 €
CH2([0,T] x R) of compact support such that v™ — u
some neighborhood B,, of (T, z¢) we have,

V(t,xz) € Bn,, min{v"(t,x)— hj(z);
o™ (t,x) — igzz(ui(t,x) —gi(t,x))} > e (4.11)

*

7+ since uj is usc. On

Let us denote by B} := [tg, T] x B(zy,dk), for some 6% €]0,1] small enough
such that B} C B,,. Since u] is of polynomial growth, there exists ¢ > 0, such
that |uj| < con B,. We can then assume v" > —2c on B,,. Define

4 _ 2
ViR (t, ) = o™ (t, ) + % VT ¢
k
Note that V;*(t,z) > v"(t,z) and
(u; = V" )(t,x) < —c V(L z) € [ty, T] x OB(wg, 6f;). (4.12)
On the other hand, an easy calculation yields

7{8tvkn(tax) + EVk”(t,x)}
= {0 (t0) + (T ~ )}) + {E(L1)o(t,2) + b(t, 2)}

X {@v"(t,m) + W}
1

8c
1 22 (2 n
—|—2a(t,x) w < 20"t x) + (52)2)

+ / [0 (t, x4+ o(t,x)y) — v™(t,x) — Oxv" (¢, x)o(t, z)y|I(dy)
R
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+/ de|lv — xp + o(t,x)y|?  dejlr — xi)? Sc(z—axi)
R (61)? (6)? (61)?

Note that ®(x) := %7)2"'2 € C?NIl, and v € C'? and of compact support,
then the two non-local terms are bounded and d;v™, d,v™, D2, o™ are so. Since

(VT —t) — —o0, when t — T, then we can choose t; large enough in front
of ¢, and the derivatives of v™ to ensure that

— (O VMt ) + LV (t,x)) >0, Y(t,x) € BE. (4.13)

olt, x)y] H(dy)}.

Consider now the stopping time 0F := inf{s > t;, (s, X!*%*) € BE} AT,
where BE® is the complement of BF and 0y := inf{s > ty,uj(s, Xio) =
{nix(ul(s, Xterr)y — g (s, X))} AT. Applying 1t6’s formula with V" (¢, z)
€4,

on [ty, 0F A 6] yields:
Vit (t, k) = V(O A 9k,)(§gfgk)

GkAOk

(1, XU )0V (r, XU0) 4 OV (1), X1 dr
GkAOk
/ X0V, X1 L,

0 /\61C
! / 02 (r, X1 Y202 Vi (r, X1 )i

2 /s,
- Z {an(T', Xﬁk@k) - an(rv Xﬁlywk)

L <r<60k Al
—o (r, X[H )0, Vit (r, XE"F )AL, }. (4.14)

Next let us deal with the last term of (4.14) and let us set
h(s,y) = Vi (s, X2 + o (s, X2 )y) = Vi(s, X2™)
78%‘/]?”(8, X;k—xk)a(sv leixk)y
By the mean value theorem we have
1 _
h(s,y) = 507,0" (s, X2 + Xo (s, X{E™)y) (0 (s, X )y)?

4c

*‘555(0(3’)(§5xk)y)2
k

where X is a stochastic processes which is valued in (0,1). As v" is of compact
support and ¢ is bounded then

elf T/R |h<s,y>|n<dy>ds] < o0,

It follows that
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Bl Y (W xe)

t <r<60k A0y

_an (Tv Xﬁi@k) - U(Tﬂ Xﬁiwk )aﬂkan (Tv Xﬁi’lk )ALT’}

[ i) <o

Next going back to (4.14), taking expectation and taking into account of (4.13),
(4.12) and (4.11) to obtain

=E

Vi (b i) = B V(05 A 0 Xgt75 )

N
- [ e X v Xﬁkvwdr}

t
> E[V;(0F, X;g’mk)]l{eggok} + an(ekngi’mk)]l{apek}]
= B[{V;"(0;, ng’xk)]l{05<T} + VT, X2 ) Aggn—y Mlgor <o,y
V0, X" ) L gr 50,1
> E[{(U§(957X;E’Ik)JrC)]l{egd}+(€+hj(XtTk’wk))]l{ong}}]l{aggek}
+{e+ ;n63§<u2(9k, Xgo™) = g0k, X" ) Mg 20,3

> Elu; (6 A b, Xghp )] +c e

N
=E uj(tk,xk)—/ Fi(ss X278 (ug (s, XE0%) )11 mds|+c A €
tr
since the processes (Y7 = w;(.,X.))jea stopped at time 6F A ) solves

an explicit RBSDE system with triple of data given by ((f;)jeca,(hj)jea,
(gij)ijea). In addition, dK7%® = 0 on [t),0k]. On the other hand, (u;);jca €
II, and then taking into account (3.17) and Assumption (A4) (I) (iii), we
deduce that

lim E

k—o0

0F NGy,
/ Fi(s, X070, (w(s, X3 ))i=1,m)ds | = 0.

ty

Taking the limit in the previous inequalities yields:

klirn Vit(tg, ) = klirn {v"(tg, i) + /T —tr} = v"™(T, x0)
> klirn wi(ty, o) +cANe=uj(T,m0) +c e
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As o™ — u; pointwisely, then we get a contradiction, when taking the limit in
the previous inequalities, and the result follows, i.e., Vo € R, Vj € A,

min {u;’f(T, x) — hj(z);  uj(T,r) — max(u; (T, x) — gj(T, x))} =0.

€A,

Finally the proof of u}(T,z) = h;(x),Vj € A, is obtained in the same way as
in [15, pp. 180] since the function (g;;); jea verify the non free loop property
(A4) (11). O

Now let us show (u})jea is a subsolution of (4.1). First note that since
u? /uj and u} is continuous, we have

uj(t, ) = limsup'uj (t, ) = lim uf (t', '),

n— o0 n—oo,t’ —t,x’ —x

Besides Vj € A and n > 0 we deduce from the construction of u? that
ul (t,x) > ]lqé%;(u?*(t, x) — gj(t, x))

and by taking the limit in n we obtain: Vj € A, Vz € R,

uj(t, @) 2 max(up (t, 2) = gju(t, z))-

Next fix j € A. Let (t,z) € (0,T) x R be such that

ui(t,z) — {Ielfj‘f(uf(t,x) —g(t,x)) > 0. (4.15)

We are going to use once more Definition 4.1. Let (t,2) € (0,T) x R* and ¢ be
a function of C;’Q such that u} — ¢ has a global maximum at (t,z) on [0, T] xR
which wlog we assume strict and verifying u}(t,z) = ¢(t, ). Then there exist

/

subsequences {ny} and ((¢/, , ] ))r such that

ng g

(¢, 2 Vg —k (t,x) and  ul*(t

ng g j ’nk7x’,ﬂk) —k u;(t,x).

Let now § > 0 and (t,,7y,) be the global maximum of u}* — ¢ on [0,77] x
B'(x,26C,). Therefore

(tngs Tny) =k (Bx)  and  uf* (tn,, Tn,) —k uj(t, 2).

Actually let us consider a convergent subsequent of (¢, ,xy, ), which we still
denote by (¢, , Tn, ), and let (¢, Z) be its limit. Then for some kg and for k& > kg
we have

Taking the limit wrt k& to obtain
uj(t,7) — ¢(t. z) > uj(t, ) — o(t, ).

As the maximum (¢, 2) of u} — ¢ on [0, 7] x R is strict then (¢,7) = (¢, ). It
follows that the sequence ((ty,,n,))r converges to (¢,x). Going back now to
(4.16) and taking the limit wrt & we obtain
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ui(t,z) > limksup Ut (b s Tny) > limkinf Ut (b s Tny, )

> limkinf uit(ty, vy, ) = uj(t,x)
which implies that u}/* (tn,, s, ) — uj(t,x) as k — oo.
Now for k large enough,
() (tny,Tny) € (0,T) x B(x,26C;) and is the global maximum of u}* — ¢ in
[07 T] X B(xnk I 00'5)7
(i) u;'lk (tny, Tny) > %%X(u?kil(tnwxnk) = gjt(tnys Tny))-
J

As u;“‘ is a subsolution of (4.7), then by Definition 5.1 in Appendix we have

_at(b(tnk ) xnk) - ’Cl(b(tnk ) x’ﬂk)
S 1-175 (tnk ) Jjnk ) ¢)
+Iz’5 (tnk ) x’nk ) Dz¢(tnk b xnk )3 u?k)

Jrfj(tnkvI"kvu?k_l(tnwxnk)v

o 7U;LEI1(tnkvx”k)v U?k (t”k’xnk)’u?j—Il(tnk’znk)’ ) u:lnkil(tnmaznk))'

(4.17)

But there exists a subsequence of {n;} (which we still denote by {ny}) such
that:

(i) for any 1 € Aj;, (u* '(tn,,Tn,))r is convergent and then

limy, uf’“fl(tnwxnk) < uj(t,z);
(ii) (IL(S(tnk?‘rnk’d)))nk —k Il’g(taxy(b)%

(i) limksupIQ"s(tnk,xnk,Dx¢(tnk7wnk)7u?k) < I*(t, 2, Dag(t, ), ).

Point (i) is due to the fact that u}* belongs uniformly to Ily; (ii) is just the
Lebesgue dominated convergence Theorem ; (iii) stems from an adapta-
tion of Fatou’s Lemma, definition of u} and finally monotonicity of 729,

Going back now to (4.17) and taking the limit superior wrt k (through
the previous subsequence), using the fact that f; is continuous and verifies
(A4)(I)(v) to obtain

—Oup(t,x) — L1p(t, x)
S ZL(S(TMJ:; d)) +‘,Z-276(t7xa Dz¢(t7x)au;k) + fj(tax7 uf(tﬂs), ceey

u;—l(ta z),u}f(t,x), U;+1(t,$), s ,U:n(t,.’lf))
<I(t,z,Dy0(t,x), 0) + f;(t, z,ui(t, x),...,
u;—l(ta z)7u;(tvx)a u;-&—l(t I)7 s 7u:n(ta I))

This last inequality is due to that fact that u; < ¢ and since IYW 4720 =T,

Finally combining it with (4.15) we obtain that w; is a viscosity subsolution
of
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minu;(t, x) = max(ui(t z) = gin(t 2));
—0Owuj(t,x) — Luj(t,z) — fi(t,z,ui(t,x),...,
wig (b ), uy (b @), ufyy (62), s ug, (8 2) ) = 0;
u;(T, ) = hj ().
As j is arbitrary then (u;);ca is a viscosity subsolution of (4.1). O

4.2. Uniqueness of the viscosity solution of system (4.1)
We now give a comparison result of subsolution and supersolution of system
(4.1), from which we get the continuity and uniqueness of its solution.

Proposition 4.1. Assume Assumptions (A4) fulfilled. Let (u;)jca (resp.
(wj)jea) be a subsolution (resp. supersolution) of (4.1) which belongs to II,.
Then for any j € A,

V(t,z) € [0,T] xR, wu;(t,z) < w;(t,x)
Proof. Let v be a real constant such that for any j € A and (¢,2) € [0,T] x R,
|uj(t,2)| + [w;(t, )| < C(1+|z]7).
To begin with we additionally assume the existence of a constant A such that
A< —m.maji{Cj} (C; is the Lipschitz constant of f; w.r.t 3) and for any
VIS
j € A and any t,x,y1, s Y1 Y51 Yms Y > yla
fj(tw%.aylw s Yi—1Y Y41, 7ym)
7fj(t7 TyY1y- -5 Yji—1, yla Yj+1--- ,ym) S A(y - y/) (418)
Thanks to Lemma 4.1 and Remark 4.1, we know there exists v large enough
such that for any 6 > 0, wjg,(t,x) = w;(t,z) + e (1 + |[x[*72) (resp.
wj0.(t, ) = uj(t,x)—0e " (1+|z|*7*2)) is a supersolution (resp. subsolution).
So it is enough to show that
Vie A, Y(t,z) €0, T] xR, wujg,(t,x) <w,jg.(t, x),
then taking limits as § — 0, the result follows. By the growth condition there
exists a constant C' > 0 such that
Vie AV(tx)€0,T] xR, st |z]>C, wujon(t,z) <0<wjg,(t, x).
(4.19)
Finally for the sake of simplicity we merely denote u;g, (resp. wjg,) by u;
(resp. wj).
To obtain the comparison result, we proceed by contradiction assuming
that

A(t1,z1) €[0,T] xR,  such that maﬁc(uj (t1,21) —w;(t1,z1)) > 0.
=
Taking into account the values of the subsolution and the supersolution at T,
there exist (¢,z) € [0,T[xB(0,C) (wlog we assume that ¢ > 0), such that :

0< “ I)rgn{%};]XRrjneaj((uj (t,x) —w;(t,x))

t (¢ = i(t,T) —w,(t,T)).
= e (1) — (7)) = max(y (.7) - wy (%))
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We now define the set A as follows:

A:={jeAutz)—witz= Iglea/)l((uk(f,s?:) —wi(t,7))}. (4.20)

By the assumption (A4)(II), using the same argument as in [15, pp. 171], we
can prove that there exists j € A such that,

u;(t,7) > max(uk(t, ) — g;(t, 7). (4.21)
Let us now take such a j € A. For ¢ > 0 and p > 0, let us define

oI — , |z —y? 712 7|4
e,p(taz7y) T U](t,I)—’LUj(t,y)— c _|t_t| —p‘$—1'| .

By (4.19) and since limy| o w;(t,y) = 00, lim|y—oo u;(t,2) = —o0, there
exists a constant C” such that for any ¢ € [0, T, u;(t,z) —w;(t,y) < 0 for any
|z] > C’ or |y| > C'. It follows that for any e > 0 and p > 0, there exists
(to, o, yo) such that

®! (to,x0,Y0) = Ol (t,z,y) = ®I (t,x,y).
210020, 50) = g oy T B BY) = (X e Pep(b T Y)

Note that the maximum exists since @g,p is usc and B’(0,C")? is the closure of
B(0,C")%. On the other hand let us point out that (to, zo, y0) depends actually
on ¢ and p which we omit for sake of simplicity. We then have,
®!,(t,7,7) = u;(£,7) —w;(£,7)

2
— — Xro — —
< ui(t, @) —w;(t, @) + L ] EyO‘ + [to — T + plzo — 7|*
< u;(to, xo) — wj(to, Yo)- (4.22)

The growth condition of u; and w; implies that
e zo — yol? + |to — t|2 + plro — Z|* is bounded and then lin%(azo — ) = 0.
E—
5),

Next by (4.22), for any subsequence (to,, T0,, Yo, ); which converges to (£, 7,
Uj(LT, .’f) - ’LUj(f, .f) < UJ‘<£, CE) — wj(f,,%),
since u; is usc and wj is Isc. By the definition of (¢, ) this last inequality is

an equality. Using both the definition of <I>g, , and (4.22), it implies that the
sequence

;i_%(to,mo,yo) = (t,7,7) (4.23)
and once more from (4.22) we deduce
lim e Hao —yo|> = 0. (4.24)
Finally classically (see e.g. [15, pp. 173]) we have also
tim (1 (0. 20). w5 (f0,0)) = (1 (7, 7)., (7. ). (425)

Next as the functions (uy)reca are usc and (gi;)i jea are continuous, and since
the index j satisfies (4.21), there exists r > 0 such that for (¢,z) € B((¢,Z),r)
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we have u;(t,z) > irl:}qx(uk(t,m) — gjx(t,z)). But by (4.25), (4.23) and once
€4
more since u; is usc then there exists ¢ such that for any 0 < € < g, we have:
uj(to, xo) > max(uk(to, xo) — gij(to, z0))-
kEA;

Now for € small enough, we are able to apply Jensen—Ishii’s lemma for non local
operators (see e.g. Barles et al. [5, pp. 583] or Biswas et al. [6], Lemma 4.1, pp.

2 —
64) with u;, w; and ¢(t, z,y) := @+|t—t|2+p|xo—f|4 at point (to, o, Yo)-
For any § € (0, 1) there are p2, ¢, p% | ¢%, M? and M? real constants such that:

1) p) =Y = hd(to,z0,y0)s  d = ud(to,T0.Y0),  qo = —Oyd(to, To, o)

(4.26)
and
MY 0 4 /1 -1 12p|lzg — | 0
(0 dw)=z(h )+ (P D) e
(i) —p, — {o(to, 20)E(L1) + b(to, w0) }ay — 50 (to, x0)*w> My
7fj (th o, (Uk(t(), xo))?:l) - Il’é(tov Xo, ¢(t07 ) yO)) (428)
—I2’6(t0,1}0,q2,u]') < 0;
(iii) —pY, — {o(to, yo)E(L1) + b(to, yo) }ab, — 30 (to, yo)*w> M)
— [ (to, Yo, (wi(to, yo))yy) — I (to, yo, —¢(to, o, -)) (4.29)

712’5(t07y03 QS;awj) Z 0.
We are now going to provide estimates for the non-local terms. First let us set
V,(t,z) == plw — z|* + [t — {|%. By definition of (o, zo, yo), for any d,d’ € R,
w;(to, o + d') — wj(to, yo +d) — e ao + d' — yo — d* — ¢, (to, w0 + d')
< Uj(to,l“o) - wj(tmyo) - 571@0 - yo|2 - 7//;)(150,900)-
Therefore for z € R, in taking d’ = o(to, x0)z and d = o(tg,y0)z, we obtain
Uy (to, o + O'(to, {)30)2) — Uj(t(), {Eo) — qgo(to, ,To)Z
< w;(to, yo + o (to, yo)z) — w;(to, vo)
0 -1
_Qwo.(t07y0)z+€ ‘0(t07$0> _a(thyO)
+1p,(to, xo + o (to, x0)z) — Yp(to, xo) — Datpp(to, x0)o(to, x0)2.
It implies that for any 6 > 0,

|2Z2

IQ’J(thanQ27uj) - 12’6@072/07(]2;77113‘)
S CY671|1'0 - y0|2 + 12’5(t07x07D$wﬂ(t05 zO)a 11[},0) (430)

since o(t,x) is uniformly Lipschitz w.r.t. . But it easy to check that we have

|12 (to, w0, Dathp(to, 20), )| < Cp/ ‘>5{|Z|2 + 2| }I(dz).
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On the other hand, since ¢ € C?

I (to, 20, d(to, - Yo)) = / {o(to, w0 + o (to, v0)z,y0) — ¢(to, To,Yo)
|z|<o

_Dz¢(t0a o, yO)U(t()? xO)Z}H(d’Z)

< o(ty, 20)” /| T O PP IER)

and

I (to, yo, —¢(to, To, ) :/<5{—¢(to,$o,y0+U(toyy0)z)+¢(to,$o,y0)

+Dy¢(to, o, Yo)o (to, yo)z H1I(dz)
= _6,10(%’%)2/ |2|2dTI(2).

216

Therefore we have
_Il7é(t07 Zo, ¢(t0a X} yO)) + Il’é(t07 Yo, _¢(t07 Zo, ))
> ~olto,0)? [ {7+ Cpl1+ )aPTI(:)
|z| <8

—5*10(t0,y0)2/ |z|2dII(2). (4.31)

|2|<é
Making now the difference between (4.28) and (4.29) yields

— (% — %) — [(o(to, 20)E(L1) + b(to, 20))qs — (o (to, yo)E(L1) + b(to, yo))ds]
1
- ng[o(to,xo)zMS — o(to, yo)* MY — [f;(to, o, (ur(to, x0))iy)
— fi(to, yo, (wi(to, yo)) 1)) — I*°(to, 20, d(tos - Yo))
+ 11?6(t07 Yo, _¢(t05 Zo, )) - 1276(t0a Zo, Q27 u]) + 1276({;0’ Yo, qg], w]) S 0.
Taking now into account (4.30) and (4.31) we get
— (P — pu) — l(o(to, m0)E(L1) + b(to, z0)) gy — (o (to, yo)E(L1) + b(to, yo))du)

— %wz[d(to,xo)2M3 - U(t07y0)2M3,] - [fj(t07x07 (uk(t07$0))1l;n:1)

= fito, yo. (wk(to, yo))i1)] = (to, o) /l |<5{€_1+CP(1 +12[*)}=[*11(dz)

— e Lo (to, o)’ / |2[2dTI(2)

[2] <8
- Cg_1|$0 - y0|2 - 12’6(75079307Dm1/}p(t0,xo)ﬂﬁp) <0.

Next by using the properties satisfied by p%,¢%,p% | ¢%, M? and M? and send-
ing d to 0 to obtain the existence of a constant C. , such that for any fixed p

we have limsup C¢ , < 0 and
e—0
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—{/fi(to, o, (ur(to, 0))i=1) — f5(to, yo, (wi(to, yo)) k1) }
< Cupt0C [ (1o + 214 11(d2). (1.32)
R
Next since f; is Lipschitz w.r.t. (yz);; and by condition (4.18) we have

—A(uj(to, m0) — w;(to,y0)) — > TLH(ur(to, x0) — wi(to, yo))
=y

<C,+Cp / {1212 + |21} T1(dz),
R

where Tg:’; stands for the increment rate of f; with respect to y;, (k # j), which,
by monotonicity condition (A4) (I) (v) on f;, is non-negative and bounded by
C;. Thus

—A(u;(to, wo) — wj(to, yo)) < Z Tg’,ﬁ(“k(to,fo) — wi(to,y0))" + Ce,p
kGAj

ey / {1212 + |2/ 4}11(d2)

<0y > (uk(to, m0) — wi(to, o))" + Ce p
k€A,

+Cp/R{|z\2 + |21 (d2).

Taking the limit superior in both hand-sides as ¢ — 0, once again uy (resp.
wy) is usc (resp. lsc) and j € A, we get

~Nuy(t,2) = w;(£,2)) < C; Y (wn(t, 7) — wi(t,8))"
kEA;

Cp / {1212 + |2} T(d2),

finally take p — 0 to obtain,

—Mu;(t,2) —w;(t,7)) < Cj p  (un(t,7) — wi(t,7))"

keA;
< (m — 1)C;(u;(1,7) — wy (7, 7).
But this is contradictory since u;(t,z) — w;(t,z) > 0 and —X > (m — 1)C;.
Henceforth for any j € A, u; < wj.

We now consider the general case. Let (uj)jea (resp. (wj)jea) be a
subsolution (resp. supersolution) of (4.1). Denote @;(t,z) = e*u;(t,x) and
w;(t,r) = eMw,;(t,z). Then it is easy to show that (i;)jea (resp. (W;)jea)
is a subsolution (resp. supersolution) of the following system of variational
inequalities which is similar to (4.1):

min{ii; (1, @) — max (@ (t, v) — e gji(t,2));
J

=0yt (t,x) — La;(t,x) + Ay (¢, z) — e fi(t 2, (e Mag) )} = 0; (4.33)
@;(T,z) = e’ h;(x).
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Next let us set

Fj (ta &€, 7) = _/\yj + e)\tfj (ta €, (eiAtyk);cn:l)
with A is chosen such that A > m(1 + max C) where Cj is the Lipschitz
€
constant of fi w.r.t. to (yx)i,. Then we can mimic the proof of Step 1 to

obtain that Vj € A,4; < w; which yields also u; < w; for any j € A. The
proof is now complete. O

As a by-product we have:

Theorem 4.2. Under Assumptions (A4), (A5), and (3.15), (3.16) as well, the
system of variational inequalities with inter-connected obstacles (4.1) has a
unique continuous viscosity solution with polynomial growth. O

In the case when the functions f;, j € A, do not depend on ¥, by the
characterization (3.35)—(3.36) (see also Remark 5.1), we deduce that the func-
tions (u;j(t,z));jea are nothing but (J7(¢,z));ca. Thus, as a by product of
Theorem 4.2, we have:

Corollary 4.1. Assume that:
(i) For anyi=1,...,m, f; is jointly continuous and of polynomial growth ;
(ii) For any i,j € A, gij (resp. hi) satisfy (A4) (II) (resp. (A4) (III)).

Then the value functions (J7(t,z))jea defined in (3.26) are continuous,

belong to Il,; and is the unique viscosity solution of the Hamilton—Jacobi-

Bellman system associated with the stochastic optimal switching problem
which is: Vj € A,

min{u;(t,%) — max(ue(t, 7) — gie(t, )

—Ouuj(t,x) — Luj(t,x) — f;(t,2)} =0, (o) € [0,T] xRy (434)
u; (T, x) = hj(x).
]

4.3. Second existence and uniqueness result
In this section we consider the issue of existence and uniqueness of a solution for

the systems of IPDEs (4.1) when the functions (—f;);ca verify (A4) (I). This
turns into assuming that (f;);eca verify, instead of (A4) (I) (v), the following:

(A4)(t): For any j € A, for any k # j, the mapping yr — f;(t, z,y1, ..., Yk—1,
Yks Yk+1, - - - » Ym ) 1s nonincreasing whenever the other components (¢, z, y1, . . .

Yk—1, Ykt1s - - -, Ym) are fixed.
The other assumptions on (—f;)jca remain the same.

Theorem 4.3. Assume that Assumptions (A4) (II)-(II1), (A5) are fulfilled and
(—fj)jea verify (A4) (I). Then the system of IPDEs (4.1) has a continuous
and of polynomial growth solution which is moreover unique.

)

Proof. We first focus on the issue of existence.
For any j € A and A € R let us define F}; by:

Fi(t,x,yt, . y™) =M fi(tz, e Myt e M y™) — Ayl
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Since f; is uniformly Lipschitz w.r.t. (yx)k=1,m then Fj is so and for X large
enough, F; satisfies:
For any k = 1,m, the mapping yx — Fj(t, 2, Y1, Yh—1, Yks Ykt 15 - - -
Ym) is nonincreasing whenever the other components (¢,2,y1,- -, Yk—1, Yk+1,
.+ Ym) are fixed.
Let us now consider the following iterative Picard sequence : Vj € A,
Y70 = 0 and for n > 1, define:

(Ytr oo ymmy =e((yhnTt L ymnTh)

where O is the mapping defined in (3.37)—(3.38) where f; is replaced with Fj.
By (3.43), the sequence (Y7"),c4 converges in ([H?]™,||.|[2,3) to the unique
solution (Y7);c of the system of RBSDEs associated with

(Fi(s, X%yt ™ )jear (Thiy(XE"))jear  (€Mgin(s, XE7))jken)-

So using an induction argument on n and Theorem 4.2, there exist determin-
istic continuous functions with polynomial growth (u?) jea such that: for any
n>0and j€ A,

V(t,z) €[0,T] xR, Vse[t,T], Y™ =ul(s, X0"). (4.35)

S

By (3.44), take s = ¢ we obtain
Vin,qt <T,x €R, |ul(t,x)—ul(t,z)| = B[/ — Y]
<OI(Y7" N jea — (Yj’qfl)jeAH%,ﬂ-

Thus for any j € A, (u})n>0 is of Cauchy type and converges pointwisely to

a deterministic function u;. But (Y7)jea = O((Y?)jea), then once more by
(3.44), we also have:

Vs € [0,7], E[Y! =Y < CI(Y)jea = (V" )jealld 5 (4.36)
By (4.35) we then obtain
Vi€ A, Vse[t,T], P—as., YI=usX"). (4.37)

Next as © is a contraction then, by induction on n we have

o o cn ,
Vn,g >0, [[(Y?"F)jea — (Y77 jeall2p < ﬁ”(w’l)jefxﬂw

where Cg €]0,1[ is the constant of contraction of ©. Since the norms ||| and
||.|l2,5 are equivalent, then there exists a constant C; such that:

Vn,qg >0, (Y7 ) e4 — (Y7 jeall < C1CE[(Y7h) jeall.

Take now the limit as ¢ goes to +00 and in the view of (4.36) and (4.37), if
we take s =t we deduce that :

V(t,2) € [0,T] xR, |u;(t, ) — uj(t,2)] < Col|(Y1) eall.

But it is easy to check that [[(Y71);cl/(t,2) is of polynomial growth (by
(3.28)(3.29) and since E[sup <, |X1*|"] is of polynomial growth for any v >
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0). Therefore for any j € A, u; is of polynomial growth, i.e., belongs to II,
since u is so. We will now show the continuity of u;. For any j € A, let us set

VIO =C+|X07P), s<T,
where C' and p are related to polynomial growth of (u;);eca, i.e.,
Vie A, |uj(t,z)] <CQA+|z|P), V(tzx)el0,T]xR.
Next for any n > 1 and j € A let us set
(Ytrn oo ymmy =e(yhntt L ymnTly),

As © is a contraction then once more the sequence ((Y?™);c4)n>0 converges
in ([H2]™,].]|2,8) to (Y75);c 4 the unique solution of the system of RBSDEs
associated with

(F5 (s, X570t y™))jeas (R (XET))jeas (€ gin(s, X)) jhea)-
By the definition of Y7, we have
P—as., YjcAscltT], Yt <yio
and taking into account of (A4)(f) we obtain
Vi€ A Vs € [t,T], Fi(s, X5, V0o o Ymbe)y > Fi(s, X0 V0 L0, v,
Next by the comparison result of Remark 3.5 and since (Yj’l)je A =
O((Y70)jea) . (Y7H7)jea = O((Y7)jea) we get
Vi€ A, selt,T), YI'<ylite

Now by an induction argument we obtain, for any n > 0 and j € A,

Vse[t,T], Y <yphe <vien (4.38)
In the same way as previously there exist deterministic continuous functions

uj with polynomial growth such that

V(t,z) €[0,T] xR, sel[t,T], YI™=ul(s,XL").

S
Moreover for any j € A, the sequence ( ?)n converges pointwisely to u and by
(4.38) we have
VjeA, VY(tz), u;(tz)=Ilim /‘a?”“(t,x) = lim \,@?"(t,m).
n n

Therefore, uj, j € A, is both [sc and usc and then continuous. Finally as
(Y912) e q = O((YP57%)e4) and Vj € A, YI0% = uj(s, XH"), s € [t,T], with
u; a deterministic continuous function with polynomial growth, then (u;);ca
is a viscosity solution of the following system of IPDEs:

min{u;(t,z) — %%x(ug(u z) — Mgt x));
J

—Owu;(t, ) — Luj(t,x) — Fj(t, z,ui(t, x),...,um(t,x))} =0, (4.39)
(t,x) € 0,T] x R;
u; (T, z) = e’ hj(z),
thus (e *u;)jea is a viscosity solution of the system of IPDEs (4.1) with
polynomial growth.
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Let us now deal with the issue of uniqueness. Let (;);ea be another solution
of (4.1) which belongs to II, and (Y7);ca € [H?]™ such that for any j € A, s €
[t, 77,

VI = (s, X37).
Define (Y75%);c 4 as follow:
(Y75%)jea = O((Y")jea).

Then there exist (4;)jea deterministic continuous functions with polynomial
growth (@;);ca such that:

Vi€ Aset,T], Y™ =aq;(s, Xb7).

Moreover (@;);jca is the unique viscosity solution of the following system of
IPDEs: Vj € A

min{a;(t,x) — in:zx(ﬂk(t,x) —gju(t,2));
€4,
Oyt ) — £35(t,2) — fi(t 3, (@t )eea)} =05 (440)
’lNJ,j(T, .’E) = h](if)
Note that it is (4x (¢, z))kea inside the arguments of f; and not (4x(t, z))kea.

As (@j)jea is also a solution of (4.40), then by uniqueness of Theorem 4.2 we
obtain ; = u;, for any j € A. Therefore

(Y1) jea = O((YP7)jea).
As (Y7),c4 is the unique fixed point of © in [H?]™, we then have
Vi€ Aselt,T), Y =YJ.

It follows that Vj € A, u; = u;. Finally (u;(¢,x));ca is the unique continuous
with polynomial growth functions viscosity solution of the system of IPDEs
(4.1). O

5. Appendix
5.1. Representation of the value function of the stochastic optimal switching
problem

Let T := (0, )n>0 be an admissible strategy of switching and let a =
(as)sejo,r) be the process defined by

Vs <T,  as:=oaoligy(s)+ > aj 1l ,0,(s). (5.1)
j=1

Let to € [0,T] and T' := ((I'))sejo,1))jea € [H?]™. Let us define the pair of
processes (V¢ N?) := (V¥ N¢)sepo,r) as the solution of the following BSDE:

S
Vees?, NeeH(?)
x T =
Ve = o) (XF") + [3 Vo) far) (1, X%, T, N7 Ydr (5.2)
= 3 [ Np D — A+ A s € (0.7
=1
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where IT; = (IT*)rea and A% is the cumulative switching cost associated with
the strategy a or T [see (3.25) for its definition]. This BSDE is not a standard
one, but in assuming that E[(4%)%] < oo and by setting V = V& — A% it
becomes a standard one and then it has a unique solution. Note that V¢ is
RCLL since A* is so.

Proposition 5.1. Under Assumption (A4) (1) (ii)-(iv), (II) and (III), the solu-
tion of BSDE (5.2) satisfies: Vj € A,
g _ ) a a
Y, = GSSSUPaeA{O(Vto —A}), P—as. (5.3)
where (YT9);c 4 is the first component of the solution of the BSDE (3.38).
Thus the solution of (3.38) is unique. Moreover there exists a* € A] such that
Ty a* a*
th(] ! = ‘/;0 - Atg .
Proof. Let (YT3, U K19 ;¢ 4 be the solution of the system (3.38). Let a €
Aj, and let us define
- IT,j T,j To, Ton
Ko = (Kalj — K7+ Z(K0n+1 — K, ") and
n>1

Vi>1landr <T, Uf’i = Z Uf’a"’i]l[engr<9n+l[ and U? = (U“’i)izl.
n>0

Therefore
r,j I o — 4 < o o ny .
YtoJ = Y01’j + / fj (T’ th“@? FT’ UrFJ)dT - Z/ UrFJ,ZdHr(l) + (KOIJ - KtOJ)
to i=1Yto
> (Y™ = gjan (01, X5 ) o, <) + Lo, =11 g (X27)

01 —
+ fa(r)(T7 Xﬁ7x7FTaU1(‘z)dT
to

oo 01 ] ) ) )
-> /t US'dH + (Ky7 — K, 7)
i=1 "0

T b tx T
= Y92’ 11[01<T] + fa(r) (7", )(T’m,:l.—‘r7 U;ﬂz)dT’
to

[e'e} 02 ) ) ) )
_ Z/ Ug,deﬁz) + (Kgld _ Ktl;,]) + (Ké;,al . Kgl,ou)
i=1"%0
t, t,
~j.on (01, Xg7 )iy <1) + Loy =11 h0rg (X77)-
Repeat now this procedure as many times as necessary and since a is an

admissible strategy (i.e. P[0, < T,Vn > 0] = 0) we obtain:

Y59 > by (X5 4 [ Xt T, U8)d
to = a(T)( T )+ . fa(T)(r’ ro9ETy r) r
0

oo T
-3 / USdH®Y — A% + K2 (5.4)
i=1""to
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As K& > 0 and by (5.2) we have

. T — —
}/tEJ - V;g(; + A?O > / (fa(r) (’I", Xﬁvﬁ’ FT? Uf) - fa(r) (’I“, Xf‘,z7 Frv Nra))dr
to
> [ @ Nean
i=1 710

T o T
> [Crtege - Neyds =3 [ - N
to i=1 to

Next by Girsanov’s Theorem [25, pp. 136], under the probability measure
D = [ ¢ N%a,i i t “N%a 7170 a

dP = g(i;1 [ VPN aidg D) pdP, (M = [ (VUSNT e — NoYeds —
Xt a.i a.i % . . . e

Z; ftO(Ur’ - N% )dHﬁ )>te[to,T] is a martingale, and by taking conditional

expectation of Ytl(:’j — Vg + Ajf,, we obtain

T
/ <VU“,Na,a,i’ Ue — Na>€d8

to

- Z/ (U8 = N )dH | Fyy | = 0.
i=1"to

1%} a a
Ep[Yy,” — Vi + A7 | 7] = Ep

Thus Ytl;’j > V4 — A%, P — a.s. and then, since P and P are equivalent, for

any a € A{O,

Yl >V - AL P —as. (5.5)

to?
Next let us consider a* the strategy defined by a*(r) = ajly,(r) +

o0
> ap 1 Lgr gr(r), r < T, where 05 = t, af = j and for n > 0,
k=1

kGAaz

041 = inf {7” > 05, Ye ™ = max (VR = gas a(r, Xﬁ’x))} AT,

and

Ik t,
G4y = arg max {Y9;+1 - ga;,kw;-ﬁ-lee:il)} -
Let us show that a* € A{O. We first prove that P[0 < T, Vn > 0] = 0. We
proceed by contradiction assuming that P[% < T, Vn > 0] > 0. By definition
of 07, we then have
Fva:+1

¢
— ga;,a;+1(92+1aXew )y iy € Agx, YR >0( > 0.

X
n+1

P (Y, =Y,

1 - 9:14»1
But A is finite, then there is a loop g, i1,...,ik, 0 (i1 # ip) of elements of A
and a subsequence (n4(w)),>0 such that:
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T v * t,x
P YG;; —Yo;; _giz,il-u(e Xo;q )7

n 9
g+l q+1 atl +1

l=1,...,k, (ik+1:i0), Vg >0| > 0. (56)

Next let us consider 6* = lim,, .o 0} and © = {0} < 6*,Yn > 0}. Thanks to
the non free loop property P[(6* < T) N ©° = 0 and then 6* is an accessible
stopping time (see e.g. [10, pp. 214], for more details). But for any j € A, the
process Y7 has only inaccessible jump times and 6* is accessible, therefore for
any j € A, AY}. = 0,P — a.s.. Going back to (5.6) and take the limit w.r.t. ¢
to obtain:

P[gio,il (9*’X;7*I) T Gigio (8*7X;7*x) = 0] >0,

which contradicts the non free loop property. We then have P[H; <T, V3>
0] = 0.

Now it remains to prove that E[(A% )?] < oo and a* is optimal in A{O for
the switching problem (5.3). Since (Y1), 4 solves the RBSDE (3.38) and by
the definition of a*, it yields:

oo

T . 0; .
V! =Yyl + / Far oy (r, X1% T, U i — > / Us kdH® (5.7
to k=1""to

since K1+ — Kgo;j = 0 holds for any r € [to, 07]. But
T,j Taj % t,x t,x
Yo = (Yo, ™" = gjag (07, Xgi ) ios <) + hy (X7 )15 =1
then
T,y Taj * T T
Y;to T = (Yef ! _gjoq( 1aX;; ))1[9{<T] + hj(Xé“ )1[0{:T]

i . <

- / Far oy (r, X127 T, U )dr = / Us - kdg®

to k=1 to
NG T
= Y " Loy <) + y(X7") Ly =1y

03 . > o .

[ ey (o X0 T U = S / U EAHY) — Ag:.
to k=1"to0

(5.8)

But we can do the same for the quantity ngri;’ai].[gi« <) to obtain

T,af T,af t,
Yo Lgp <1y = Yo ™ Ligg <1) + hag (X77) Liog =11 110 <)
02 — . > 0
| far (X T U Ydr =Y / Us - *dg®,
01 k=107
Substitute now this equality in the previous one and since o4 is the optimal
index at 65 to obtain:
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Vi = O/Faz-—ga¢b(927 ))1w*<T]+-hafﬂxtm)1w*—711w;<T

+hi (X551 / far(ry(r, XE° ,FT,U“ Ydr
to
o0 9;‘
- / U kA - A
1
k=1"to

Tal s s
= Yo, " s <11 + hay (X7") Lz =1 Loy <1 + g (XZ") Lo =1

; T *
+ / Fuetry (r, X2 T, 0y = 3 / U kS — A
to k=1 to

(5.9)

Repeating this procedure as many times as necessary and since P[G;‘ <T,Vj>
0] =0 to get

T > T
YSF’j: ha*(T)(Xé—zw)‘i_ fa*(r)(r7 Xﬁ’m7ﬁ7Uf*)dr—Z/ Ug*’de’l(‘k)_A'(ZL"*
to k=1"to

(5.10)

Now since I' € [H?]™, U* € H?*(¢?) and Y7 € S, we deduce from (5.10)
that E[(A% )?] < oo. Next by (5.2),

T
* * i — *
Ve AY v = /t Fae oy (r X057 T NS )
0
T — *
fa*(r) (’I", Xﬁ’z, F,«, U;l )dT
t
o7
-3 [ - an®
k=1""to
T * *
N ,U* ,a* a” a”*
> / (V SN —U*)Hdr
to
00 T
-3 [ v oy .
k=1""to
Once more using Girsanov’s Theorem, as in the bulk of the proof of Theo-
: a” a” Ty a* a* Ty
rem 3.2, to obtain Ep[V,% — Af -V, ] > 0and then V¢ — A7 —Y, " >
0,P — a.s. Taking now into account (5.5) leads to the desired result. 0

Remark 5.1. As a by product of (5.3) we have also:

Vi€ A, E[VQ']= sup E[V - Af].
a€Aj,
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5.2. Other equivalent definitions of viscosity solution of IPDEs

The following definition is an equivalent one for the solution of the IPDE (3.21)
in the case when f does not depend on the component (. Basically it is an
adaptation to our framework, which is of evolution type, of Definitions 1 and
2 given in [5] in the stationary case.

Definition 5.1. Assume that the function f of IPDE (3.21) does not depend on

¢. Let w: [0,T] x R — R be a continuous function which belongs to I1,. It is

said a viscosity subsolution (resp. supersolution) of (3.21) if:

(i) w(T,z) < h(x) (resp. w(T,z) > h(x)), Vo € R;

(ii) for any (t,x) € (0,T) x R, 6 > 0 and a function ¢ € C)? such that
u(t,z) = (t,z) and w — ¢ has a global mazimum (resp. minimum) at
(t,z) on [0,T] x B(x,C,d), we have:

min {u(t, 2) — W(t,z); —0p(t,x) — Lro(t, )
—Il"s(t,x,gp) —IQ"S(t,w,mDa:(p(tw)) — f(t,x,u(t,x))} <0 (resp. >0).

The function u is said to be a viscosity solution of (3.21) if it is both its
viscosity subsolution and supersolution. 0

Proposition 5.2. If f does not depend on ( then Definitions (3.1) and (5.1) are
equivalent.

Proof. We prove it only for the subsolution property since the supersolution
one is similar. Let u be a subsolution of equation (3.21) according to Definition
5.1. Then for any o € R we have u(T, zo) < h(zo). Next let (t9, o) € (0,T)xR
and ¢ € C;72 such that u — ¢ has a global maximum at (¢, zo) in [0, 7] x R.
If we set @(t, ) := @(t,x) + u(to, zo) — ¢(to, To), then @ belongs also to Cp?
and v — @ has a global maximum at (tp,x0) in [0,7] x R and finally verifies
@(to, zo) := u(to, o). Applying Definition 5.1 with @ yields:

min{u(tmxo) — U(to, z0); —Orp(to, o) — L1 (to, x0) — I (to, z0, ¥)

~T2%(to, 30, ulty, 7o), Dacp(to,20)) = f(to, o, ulto,0)) } < 0

for any § > 0. Next since (to,29) € (0,T) x R is a global maximum point of
u — ¢, we then have

u(to, xo + o(to, zo)y) — u(to, x0) < @(to, o + o(to, x0)y) — ©(to, xo)

which implies that 12 (to, xo, Dy (to, o), u) < I?°(tg, 20, Dy (to, o), ) and
then

min{u(to, zo) — ¥(to, 0); —9ep(to, x0) — L(to, xo) — f(to, o, ulto, z0))} <0
which means that v is a subsolution for (3.21) according to Definition 3.1.
We are going now to show that if u is a subsolution of (3.21) according to
Definition 3.1 then it is a subsolution according to Definition 5.1. Once more let
us consider a continuous function v which belong to II, which is a subsolution
of (3.21) according to Definition 3.1. Then for all zy € R, u(T,z¢) < h(zo).
Next let us fix § > 0, (o, o) € (0,7) x R and finally let us consider ¢ € C}?
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such that u — ¢ has a global maximum at (to,z¢) on [0,7] x B(xy,Cy0) and
u(to, zo) = @(to,xo). There exists a function ¢ which belongs to C;’g such
that v — ¢ attains a global maximum in (tg,z) on [0,7] X R and satisfying

@(s,y) = ¢(s,y), for any (s, y) such that |(s,y) — (to,z0)| < €g2. Consequently
we have also

9p(to, wo) = Opp(to, zo), Dap(to, o) = Dap(to, z0),
D3, ¢(to, o) = DZ,¢(to, @0),  ulto, x0) = G(to, o). (5.11)
Next for any ¢ > 0, there exists o, element of C2(]0,7] x R) such that
u <. <@and g — u as € — 0, a.e. (see e.g. Lemma 4.7 in [19] or [2]). It

implies that u — ¢, and . — @ have a global maximum at (¢o,zo) on [0,7] xR.
Therefore, on the one hand, we have

Orpe(to, zo) = 0ip(to, o), Dazpe(to,zo)
= DI@(tOWxO)’ D?vzgoﬁ(tovxo) < Diz@(t()?xo) (512>
and, on the other hand, by Definition 3.1 it holds

min{u(to,xo) = (to, z0); ~Orpe(to, w0) — L1 pe(to, 7o)
~I(to, 30, 0c) — flto, w0, ults, 20)) } < 0. (5.13)

Recall now the definition of £! in (4.2) and taking into account of (5.11) and
(5.12) to obtain

Lo (to, w0) < L1 p(to, 7o) (5.14)
On the other hand

5 5
I(to, x0, pc) = T2 (to, o, pe) + L7 (to, To, Datpe(to, o), Pc)
5 . s
< Ih2(tg, o, P) + %2 (to, w0, Deip(to, o), ©c)
5 5
= Il)z (th Zo, 90) +I212 (to,l‘o,ngO(to,xo), QOG)' (515)

Plug now (5.14) and (5.15) in (5.13) to obtain
min{u(to,aco) — U(tg, zp);

—0yp(to, m0) — L1 p(to, w0) — II’%(to,xoa ©) — IQ’g(toﬂcm D (to, z0), pe)
—f(to,$07u(to7$0))} < 0. (5.16)

Take now the limit as € — 0 in (5.16), using the Lebesgue dominated conver-
gence theorem and by the following inequality (which is valid since u < ¢ in
[0,T] x B(zo,Csd) and u(to, xo) = ¢(to, x0))

/é ‘ |<6(<P(to,xo + o(to, x0)z) — ¢(to, x0) — Dx(to, zo)o(to, xo)z }dII(z)

> [s " (u(to, zo + U(to,l‘o)z) —u(to, zo) — DzQD(to,xo)U(to, xo)z}dﬂ(z)
5<]2|<0
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we obtain

miﬂ{u(to, 20) — W (to, 0); —Opp(to, To) — L p(to, z0)

T (to, z0, ) — T*°(to, x0, Datp(to, o), u) — f(t07$oau(to,$o))} <0
which is the desired result. O

Similarly, there is another equivalent definition for system of IPDEs (4.1)
which is:
Definition 5.2. A function (u1,...,uy) : [0,7] x R — R™ € II, such that for
any i € A, wu; is usc (resp. lsc), is said to be a viscosity subsolution (resp.
supersolution) of (4.1) if for any i € A,
(1) wi(T,xo) < hi(xo) (resp. wi(T,x) > hi(z)), Vao € R;
(ii) for any (to,z0) € (0,T) x R, 6 > 0 and a function ¢ € C* such that
u;(to, o) = p(to, xo) and u; — ¢ has a global maximum (resp. minimum,)
at (to, zo) on [0,T] x B(zg,Cyd), we have

min{ui(to,mo) — %af(uj(to,mo) — 95 (to, x0)); —Opp(to, xo) — ﬁlgo(to,xo)
—I"(to, w0, p) — I*°(to, w0, Dpp(to, x0), us)
~ filto, w0, ur (b0, o), -, i1 (to, 30), wi(to, o), - um (to, 20)) }
<0 (resp. > 0).

The functions (u;)™, is called a viscosity solution of (4.1) if (wix)™y and
(u;)™, are respectively viscosity supersolution and viscosity subsolution of
(4.1).

We then have the following result whose proof is just an adaptation of
the previous one and then is left for the reader.

Proposition 5.3. Definitions (5.2) and (4.1) are equivalent. O
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