
Nonlinear Differ. Equ. Appl. 22 (2015), 1607–1660
c© 2015 Springer Basel
1021-9722/15/061607-54
published online August 7, 2015
DOI 10.1007/s00030-015-0338-x

Nonlinear Differential Equations
and Applications NoDEA

Systems of integro-PDEs with interconnected
obstacles and multi-modes switching problem
driven by Lévy process
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Abstract. In this paper we show existence and uniqueness of the solu-
tion in viscosity sense for a system of nonlinear m variational integral-
partial differential equations with interconnected obstacles whose coeffi-
cients (fi)i=1,...,m depend on (uj)j=1,...,m. From the probabilistic point
of view, this system is related to optimal stochastic switching problem
when the noise is driven by a Lévy process. The switching costs depend
on (t, x). As a by-product of the main result we obtain that the value
function of the switching problem is continuous and unique solution of
its associated Hamilton–Jacobi–Bellman system of equations. The main
tool we used is the notion of systems of reflected BSDEs with oblique
reflection driven by a Lévy process.
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1. Introduction

In this paper, we study the existence and uniqueness of a solution to the system
of integro-partial differential equations (IPDEs in short) of the following form:
∀i = 1, . . . , m,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min{ui(t, x) − max
j �=i

(uj(t, x) − gij(t, x));

−∂tui(t, x) − Lui(t, x) − fi(t, x, (u1, u2, . . . , um)(t, x))} = 0,

(t, x) ∈ [0, T ) × R,

ui(T, x) = hi(x)

(1.1)

where L is a generator associated with a stochastic differential equation whose
noise is driven by a Lévy process L := (Lt)t≤T defined on a filtered probability
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space (Ω,F , (F)t≤T ,P) and then L is a non local operator [see (3.22) for its
definition].

This system is related to a stochastic optimal switching problem since a
particular case is actually its associated Hamilton–Jacobi–Bellman system.

Let us describe briefly the stochastic optimal switching problem. Let
(t, x) ∈ [0, T ] × R and (Xt,x

s )s≤T be the solution of the following standard
stochastic differential equation:

dXt,x
s = b(s,Xt,x

s )ds+σ(s,Xt,x
s− )dLs, ∀s ∈ [t, T ] and Xt,x

s =x for s ≤ t.

Next let (as)s∈[0,T ] be the following pure jump process:

as := α01l{θ0}(s) +
∞∑

j=1

αj−11l]θj−1,θj ](s), ∀s ≤ T,

where {θj}j≥0 is an increasing sequence of stopping times with values in [0, T ]
and (αj)j≥0 are random variables with values in A := {1, . . . , m} (the set
of modes to which the controller can switch) such that for any j ≥ 0, αj

is Fθj
−measurable. The pair Υ = ((θj)j≥0, (αj)j≥0) is called a strategy of

switching and when it satisfies P[θn < T,∀n ≥ 0] = 0 it is moreover said
admissible. Finally we denote by Ai

t the set of admissible strategies such that
α0 = i and θ0 = t.

Assume next that for any i = 1, . . . , m, fi(t, x, (yi)i=1,...,m) = fi(t, x),
i.e., fi does not depend on (yi)i=1,m. Let Υ be an admissible strategy of Ai

t

with which one associates a payoff given by:

Ja(t, x)=J(Υ)(t, x) := E

[∫ T

t

fa(s)(s,Xt,x
s )ds −

∑

j≥1

gαj−1,αj
(θj ,X

t,x
θj

)1l{θj<T}

+haT
(Xt,x

T )

]

(1.2)

where fa(s)(s,Xt,x
s ) =

∑
i∈A fi(s,Xt,x

s )1[a(s)=i], s ∈ [t, T ], (resp. haT
(Xt,x

T ) =
∑

i∈A hi(X
t,x
T )1[aT =i]) is the instantaneous (resp. terminal) payoff when the

strategy a (or Υ) is implemented while gi� is the switching cost function when
moving from mode i to mode � (i, � ∈ A, i �= �). Next let us define the optimal
payoff when starting from mode i ∈ A at time t by

ui(t, x) := inf
Υ∈Ai

t

J(Υ)(t, x) (1.3)

As a by-product of our general result we obtain that the value functions
(ui(t, x))i∈A (or optimal payoffs) of this switching problem is continuous and
of polynomial growth and is the unique solution in viscosity sense of system
(1.1). A similar problem has been already considered by Biswas et al. [6], how-
ever one should emphazise that in that work, the switching costs are constant
and do not depend on (t, x). This latter feature makes the problem easier to
handle since one can directly work with the functions ui defined in (1.2)–(1.3).
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Optimal switching problems are well documented in the literature (see
e.g. [3,6–8,11,12,14,17,18,20,24,27] etc. and the references therein), especially
in connection with mathematical finance, energy market, etc.

The main objective and novelty of this paper is to study system (1.1) in
the general case, i.e., to allow for fi to depend on (ui)i=1,m and the switching
costs gij to depend on (t, x) and to show that (1.1) has a unique solution.
Our method is based on the link of (1.1) with systems of reflected BSDEs
with inter-connected obstacles driven by a Lévy process, i.e., systems of the
following form: ∀j = 1, . . . , m, ∀s ≤ T ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Y j,t,x
s = hj(X

t,x
T ) +

∫ T

s
fj(r,Xt,x

r , (Y k,t,x
r )k∈A, (U j,t,x,i

r )i≥1)dr

−
∞∑

i=1

∫ T

s
U j,t,x,i

r dH
(i)
r + Kj,t,x

T − Kj,t,x
s

Y j,t,x
s ≥ max

k �=j
{Y k,t,x

s − gjk(s,Xt,x
s )}

and
[

Y j,t,x
s − max

k �=j
{Y k,t,x

s − gjk(s,Xt,x
s )}

]

dKj,t,x
s = 0

(1.4)

where ((H(i)
s )s≤T )i≥1 are the Teugels martingales associated with the Lévy

process L. Under appropriate assumptions on the data (fi)i=1,...,m, (hi)i=1,...,m

and (gij)i,j=1,...,m we show existence and uniqueness of Fs-adapted processes
((Y j,t,x

s , (U j,t,x,i
s )i≥1,K

j,t,x
s )s≤T )j∈A which satisfy (1.4). Additionally there

exist deterministic continuous functions (uj(t, x))j∈A such that:

∀s ∈ [t, T ], Y j,t,x
s = uj(s,Xt,x

s ), (1.5)

and we show that (uj(t, x))j∈A is the unique solution of (1.1).
In the Brownian framework of noise, the link between systems of PDEs

with interconnected obstacles and systems of reflected BSDEs with oblique
reflection has been already stated in several papers (see e.g. [15,18], etc.).
Therefore in this work we extend this link to the setting where the noise is
driven by a Lévy process.

This article is organized as follows. In Sect. 2 we collect the main results
on Teugels martingales. Section 3 is devoted to reflected BSDEs driven by
a Lévy process (existence and uniqueness of a solution and comparison) and
their connection with IPDEs with obstacle. We finally consider the system of
reflected BSDEs with inter-connected obstacles (1.4) and we show existence
and uniqueness of a solution of this system when, mainly, the functions (fi)i∈A

are Lipschitz in ((yi)i∈A, ζ) and the switching costs verify the so-called non free
loop property. We construct a mapping which is a contraction in an appropriate
Banach space and which has a unique fixed point which provides the solution
of system (1.4). Section 4 is devoted to the study of system of IPDEs (1.1).
Contrarily to system of reflected BSDEs (1.4), we only consider the case when
the functions fi, i ∈ A, do not depend on ζ. We first show that this system
has a solution in viscosity sense when for any i ∈ A, the function fi is non-
decreasing w.r.t. to yk (k �= i) when the other components are fixed. We then
give a comparison result of subsolutions and supersolutions of system (1.1)
based on Jensen–Ishii’s Lemma on PDEs with non-local term [5,6]. As usual
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this comparison result insures continuity and uniqueness of the solution of
system (1.1). Finally we provide another existence and uniqueness result of a
solution for system (1.1) in the case when for any i ∈ A, fi is decreasing w.r.t.
yk for any k �= i when the other components are fixed. This result is deeply
based on the first existence and uniqueness of the solution of system (1.1) and,
on the other hand, the existence and uniqueness result of a solution of system
of reflected BSDEs (1.4). According to our knowledge it cannot be obtained
by using PDE techniques only. At the end of this paper we give an Appendix
where two complementary results are collected. The first one is related to the
representation of the Y j

s of the solution of system (1.4) as a value function of a
switching problem. As for the second one, it provides an equivalent definition
of the viscosity solution of system (1.1) which is somehow of local type. �

2. Preliminaries

A Lévy process is an R-valued RCLL (for right continuous with left limits)
stochastic process L = {Lt, t ≥ 0} defined on a probability space (Ω,F ,P) with
stationary and independent increments (L0 = 0) and stochastically continuous.

For t ≤ T let us set Ft = Gt ∨ N where Gt := σ{Ls, 0 ≤ s ≤ t} and N
is the P-null sets of F , therefore {Ft}t≤T is complete and right continuous.
Next by P we denote the σ-algebra of predictable processes on [0, T ] × Ω
and finally for any RCLL process (Γt)t≤ we denote by Γt− := lims↗t Γs and
ΔΓt := Γt − Γt− its jump at t, t ∈ (0, T ].

We now introduce the following spaces:
(a) S2 := {ϕ := {ϕt, 0 ≤ t ≤ T} is an R-valued, Ft-adapted RCLL process

s.t. E( sup
0≤t≤T

|ϕt|2) < ∞} ; A2 is the subspace of S2 of non-decreasing

continuous processes null at t = 0;
(b) H2 := {ϕ := (ϕt)t≤T is an R-valued, Ft-progressively measurable process

such that E(
∫ T

0
|ϕt|2dt) < ∞};

(c) �2 := {x = (xn)n≥1 is an R-valued sequence s.t. ‖x‖2 :=
∞∑

i=1

x2
i < ∞};

(d) H2(�2) := {ϕ = (ϕt)t≤T = ((ϕn
t )n≥1)t≤T such that ∀n ≥ 1, ϕn is a P-

measurable process and

E

(∫ T

0

‖ϕt‖2
dt

)

=
∞∑

i=1

E

(∫ T

0

|ϕi
t|

2
dt

)

< ∞};

(e) L2 := {ξ, an R-valued and FT -measurable random variable such that
E[|ξ|2] < ∞};

(f) Πg is the space of deterministic functions v(t, x) from [0, T ] × R into R

of polynomial growth, i.e., such that for some positive constants p and C
one has,

|v(t, x)| ≤ C(1 + |x|p), ∀(t, x) ∈ [0, T ] × R;

(g) C1,2
p := C1,2([0, T ] × R) ∩ Πg.

�
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Let us now recall the Lévy–Khintchine formula of a Lévy process (Lt)t≤T

whose characteristic exponent is Ψ, i.e.,

∀t ≤ T and θ ∈ R, E(eiθLt) = etΨ(θ)

with

Ψ(θ) = iaθ − 1
2

2θ2 +

∫

R

(eiθx − 1 − iθx1l(|x|<1))Π(dx)

= iaθ − 1
2

2θ2 +

∫

|x|≥1

(eiθx − 1)Π(dx) +
∫

0<|x|<1

(eiθx − 1 − iθx)Π(dx)

where a ∈ R, 
 ≥ 0 and Π is a σ-finite measure on R
∗ := R − {0} (we set

Π({0}) = 0 and then the domain of integration is the whole space), called the
Lévy measure of L, verifying

∫

R

(1 ∧ x2)Π(dx) < ∞. (2.1)

Moreover we assume that Π satisfies the following assumption:

∃ε > 0 and λ > 0 such that
∫

(−ε,ε)c

eλ|x|Π(dx) < +∞. (2.2)

Conditions (2.1)–(2.2) imply that for any i ≥ 2,
∫

R

|x|iΠ(dx) < ∞ (2.3)

and then the process (Lt)t≤T have moments of any order.
Next following Nualart-Schoutens [23] we define, for every i ≥ 1, the

so-called power-jump processes L(i) and their compensated version Y (i), also
called Teugels martingales, as follows: ∀t ≤ T ,

L
(1)
t = Lt and for i ≥ 2, L

(i)
t =

∑

s≤t

(ΔLs)i, Y
(i)
t = L

(i)
t − tE(L(i)

1 ).

Note that for any i ≥ 2 and t ≤ T , E(L(i)
t ) = t

∫

R
xiΠ(dx) exists, i.e., is defined

and belongs to R ([21], pp. 29).
An orthonormalization procedure can be applied to the martingales Y (i)

in order to obtain a set of pairwise strongly orthonormal martingales (H(i))i≥1

such that each H(i) is a linear combination of (Y (j))j=1,i, i.e.,

H(i) = ci,iY
(i) + · · · + ci,1Y

(1).

It has been shown in [23] that the coefficients ci,k correspond to the ortho-
normalization of the polynomials 1, x, x2, . . . with respect to the measure
ν(dx) = x2Π(dx) + 
2δ0(dx) (δ0 is the Dirac measure at 0). Specifically the
polynomials (qi)i≥0 defined by, for any i ≥ 1,

qi−1(x) = ci,ix
i−1 + ci,i−1x

i−2 + · · · + ci,1

and satisfying
∫

R

qn(x)qm(x)ν(dx) = δnm, ∀n,m ≥ 0.
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Next let us set

pi(x) = xqi−1(x) = ci,ix
i + ci,i−1x

i−1 + · · · + ci,1x and

p̃i(x) = x(qi−1(x) − qi−1(0)) = ci,ix
i + ci,i−1x

i−1 + · · · + ci,2x
2.

Then for any i ≥ 1 and t ≤ T we have:

H
(i)
t =

∑

0<s≤t

{ci,i(ΔLs)i + · · · + ci,2(ΔLs)2} + ci,1Lt − tE[ci,i(L1)(i)

+ · · · + ci,2(L1)(2)] − tci,1E(L1)

= qi−1(0)Lt +
∑

0<s≤t

p̃i(ΔLs) − tE

⎡

⎣
∑

0<s≤1

p̃i(ΔLs)

⎤

⎦ − tqi−1(0)E(L1).

As a consequence, for any t ≤ T and i ≥ 1, ΔH
(i)
t = pi(ΔLt) for each i ≥ 1.

In the particular case of i = 1, we obtain

H
(1)
t = c1,1(Lt − tE(L1)) with c1,1

=
[∫

R

x2Π(dx) + 
2

]− 1
2

and E[L1] = a +
∫

|x|≥1

xΠ(dx). (2.4)

Finally note that for any i, j ≥ 1 the predictable quadratic variation process
of H(i) and H(j) is 〈H(i),H(j)〉t = δijt,∀t ≤ T . �
Remark 2.1. If Π = 0, we are in the classical Brownian case and all non-zero
degree polynomials qi(x) will vanish, giving H(i) = 0, i ≥ 2. On the other hand,
if Π only has mass at 1, we are in the Poisson case and once more H(i) = 0,
i ≥ 2. Both cases are degenerate ones in this Lévy process framework. �

The main result in the paper by Nualart-Schoutens [22] is the following
representation property which allows for developing the BSDE theory in this
Lévy framework.

Theorem 2.1. [22, pp. 118] Let ξ be a random variable of L2, then there exists
a process Z = (Zi)i≥1 that belongs to H2(�2) such that:

ξ = E(ξ) +
∑

i≥1

∫ T

0

Zi
sdH(i)

s .

�

3. Systems of reflected BSDEs with oblique reflection driven
by a Lévy process

3.1. Reflected BSDE driven by a Lévy process and their relationship with
IPDEs

As a consequence of Theorem 2.1, and as in the framework of Brownian noise
only, one can study standard BSDEs or reflected ones. The result below related
to existence and uniqueness of a solution for a reflected BSDE driven by a Lévy
process, is proved in [26]. Indeed let us introduce a triple (f, ξ, S) that satisfies:
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Assumptions (A1):

(i) ξ a random variable of L2 which stands for the terminal value;
(ii) f : [0, T ] × Ω × R × �2 −→ R is a function such that the process

(f(t, 0, 0))t≤T belongs to H2 and there exists a constant κ > 0 verify-
ing

|f(t, y, ζ) − f(t, y′, ζ ′)| ≤ κ(|y − y′| + ‖ζ − ζ ′‖�2), for every t, y, y′, ζ and ζ ′.

(iii) S := (St)0≤t≤T is a process of S2 such that ST ≤ ξ, P− a.s., and whose
jump times are inaccessible stopping times. This in particular implies
that for any t ≤ T , Sp

t = St−, where Sp is the predictable projection of
S (see e.g. [9, pp. 58]) for more details on those notions.
In [26], the authors have proved the following result related to existence

and uniqueness of the solution of one barrier reflected BSDEs whose noise is
driven by a Lévy process.

Theorem 3.1. Assume that the triple (f, ξ, S) satisfies Assumptions (A1). Then
there exists a unique triple of processes (Y,U,K) := ((Yt, Ut,Kt))t≤T with
values in R × �2 × R

+ such that:
⎧
⎪⎪⎨

⎪⎪⎩

(Y,U,K) ∈ S2 × H(�2) × A2;

Yt = ξ +
∫ T

t
f(s, Ys, Us)ds + KT − Kt −

∞∑

i=1

∫ T

t
U i

sdH
(i)
s , ∀t ≤ T ;

Yt ≥ St, ∀ 0 ≤ t ≤ T and
∫ T

0
(Yt − St)dKt = 0, P − a.s.

(3.1)

The triple (Y,U,K) is called the solution of the reflected BSDE associated with
(f, ξ, S). �

To proceed we need to compare solutions of reflected BSDEs of types
(3.1). So let us consider a stochastic process V = (Vt)t≤T = (V i)i≥1 =
((V i

t )t≤T )i≥1 which belongs to H2(�2) and let M := (Mt)t≤T be the stochastic
integral defined by:

∀t ≤ T, Mt :=
∞∑

i=1

∫ t

0

V i
s dH(i)

s .

We next denote by ε(M) := (ε(M)t)t≤T the process that satisfies:

∀t ≤ T, ε(M)t = 1 +
∫ t

0

ε(M)s−dMs.

By Doléans-Dade’s formula we have (see e.g. [25]):

∀t ≤ T, ε(M)t = exp

⎧
⎨

⎩
Mt − 1

2
[M,M ]ct −

∑

0≤s≤t

ΔMs

⎫
⎬

⎭

∏

0≤s≤t

{1 + ΔMs}.

Let us now introduce the following assumption on the process V .
Assumptions (A2): The process V = (V i)i≥1 = ((V i

t )t≤T )i≥1 verifies

P − a.s., ∀t ≤ T,

∞∑

i=1

V i
t pi(ΔLt) > −1. (3.2)
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and there exists a constant C such that:
∞∑

i=1

|V i
t |2 ≤ C, dP ⊗ dt − a.e. (3.3)

We then have:

Proposition 3.1. Assume that Assumption (A2) is fulfilled. Then, P-a.s., for
any t ∈ [0, T ], ε(M)t > 0 and ε(M) is a martingale of S2.

Proof. First note that for any t ≤ T ,

ΔMt =
∞∑

i=1

V i
t ΔH

(i)
t =

∞∑

i=1

V i
t pi(ΔLt) > −1,

therefore for any t ≤ T , ε(Mt) > 0. Next by using Doléans-Dade’s formula and
since d〈H(i),H(j)〉s = δijds, we have: ∀t ≤ T ,

ε(M)2t = ε(2M + [M,M ])t

= ε

⎛

⎝2
∞∑

i=1

∫ .

0

V i
s dH(i)

s +
∞∑

i=1

∞∑

j=1

∫ .

0

V i
s V j

s d[H(i),H(j)]s

⎞

⎠

t

= ε

(

2
∞∑

i=1

∫ .

0

V i
s dH(i)

s +
∞∑

i=1

∫ .

0

|V i
s |2ds

+
∞∑

i=1

∞∑

j=1

∫ .

0

V i
s V j

s d([H(i),H(j)]s − 〈H(i),H(j)〉s)

⎞

⎠

t

= ε(N)texp

{ ∞∑

i=1

∫ t

0

|V i
s |2ds

}

where

Nt = 2
∞∑

i=1

∫ t

0

V i
s dH(i)

s +
∞∑

i=1

∞∑

j=1

∫ t

0

V i
s V j

s d([H(i),H(j)]s

−〈H(i),H(j)〉s), t ≤ T,

is a local martingale. On the other hand, the quantity
∑∞

i=1

∫ T

0
|V i

s |2ds is
bounded and ε(N) ≥ 0, then

E[(ε(M)t)2] ≤ CE[ε(N)0] ≤ C, ∀t ≤ T,

since ε(N) is a supermartingale. It follows that ε(M) is not only a local mar-
tingale but also a martingale and then by Doob’s maximal inequality it belongs
to S2. �

Remark 3.1. The result of Proposition 3.1 still holds true if instead of (3.3)
we only have
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∞∑

i=1

∫ T

0

|V i
s |2ds ≤ C, P − a.s. (3.4)

�

Next for two processes U i = (U i
k)k≥1, i = 1, 2, of H2(�2) we define their

scalar product in H2(�2) which we denote by 〈U1, U2〉p := (〈U1, U2〉p
t )t≤T as:

∀t ≤ T, 〈U1, U2〉p
t =

∑

k≥1

U1
k (t)U2

k (t).

Proposition 3.2. Let ξ ∈ L2, ϕ := (ϕs)s≤T ∈ H2, δ := (δs)s≤T a uniformly
bounded process, and finally let V = (V i)i≥1 ∈ H2(�2) satisfying (A2). Let
(Y,U) := (Yt, Ut)t≤T ∈ S2 × H2(�2) be the solution of the following BSDE:

∀t ≤ T, Yt = ξ +
∫ T

t

(ϕs + δsYs + 〈V,U〉p
s)ds −

∞∑

i=1

∫ T

t

U i
sdH(i)

s . (3.5)

For t ≤ T , let (Xt
s)s∈[t,T ] be the process defined as follows:

∀s ∈ [t, T ], Xt
s = e

∫ s
t

δrdr ε(M)s

ε(M)t
. (3.6)

Then for any t ≤ T , Yt satisfies:

Yt = E

[

Xt
T ξ +

∫ T

t

Xt
sϕsds|Ft

]

, P − a.s..

On the other hand, if (Y ′, U ′) ∈ S2 × H2(�2) is the solution of the BSDE:

Y ′
t = ξ +

∫ T

t

f(s, Y ′
s , U ′

s)ds −
∞∑

i=1

∫ T

t

U ′i
s dH(i)

s , ∀t ≤ T (3.7)

where

f(t, Y ′
t , U ′

t) ≥ ϕt + δtY
′
t + 〈V,U ′〉p

t , dP ⊗ dt − a.s.

then for any t ≤ T ,

Y ′
t ≥ E

[

Xt
T ξ +

∫ T

t

Xt
sϕsds|Ft

]

, P − a.s..

Proof. First note that the processes (Y,U) and (Y ′, U ′) exist thanks to Theo-
rem 3.1. Let us now fix t ∈ [0, T ]. Since V satisfies (A2) then ε(M) > 0 which
implies that (Xt

s)s∈[t,T ] is defined ω by ω. On the other hand it satisfies

∀s ∈ [t, T ], dXt
s = Xt

s−(δsds + dMs)

and since δ is uniformly bounded then as in Proposition 3.1, one can show
that E[sups∈[t,T ] |Xt

s|2] < ∞. Now by Itô’s formula, for any s ∈ [t, T ], we have

−d(YsX
t
s) = −Ys−dXt

s − Xt
s−dYs − d[Y,Xt]s

= −Xt
s−Ys−δsds − Ys−Xt

s−dMs + Xt
s−ϕsds + Xt

s−δsYsds
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−Xt
s−

⎧
⎨

⎩

∑

i≥1

U i
sdH(i)

⎫
⎬

⎭

−Xt
s−

⎧
⎨

⎩

∞∑

i=1

∞∑

j=1

V i
s U j

s d([H(i),H(j)]s − 〈H(i),H(j)〉s)

⎫
⎬

⎭

= Xt
sϕsds − dNs

where for any s ∈ [t, T ]

dNs = Ys−Xt
s−

{ ∞∑

i=1

V i
s dH(i)

s

}

+ Xt
s−

⎧
⎨

⎩

∑

i≥1

U i
sdH(i)

s

⎫
⎬

⎭

+Xt
s−

⎧
⎨

⎩

∞∑

i=1

∞∑

j=1

V i
s U j

s d([H(i),H(j)]s − 〈H(i),H(j)〉s)

⎫
⎬

⎭
.

Note that since Xt is uniformly square integrable, Y ∈ S2, U ∈ H2(�2) and
finally taking into account Assumption (A2) on V , we get that N is a uniformly
integrable martingale on [t, T ]. Therefore taking conditional expectation to
obtain:

Yt = E

[

Xt
T ξ +

∫ T

t

Xt
sϕsds|Ft

]

, P − a.s.

which is the desired result.
We now focus on the second part of the claim. By Itô’s formula we have:

∀s ∈ [t, T ],

−d(Y ′
sXt

s) = −Y ′
s−dXt

s − Xt
s−dY ′

s − d[Y ′,Xt]s

= −Xt
s−Y ′

s−δsds − Y ′
s−Xt

s−

{ ∞∑

i=1

V i
s dH(i)

s

}

+ Xt
s−f(s, Y ′

s , U ′
s)ds

−Xt
s−

{ ∞∑

i=1

U ′i
s dH(i)

s

}

−Xt
s−

⎧
⎨

⎩

∞∑

i=1

∞∑

j=1

V i
s U ′j

s d[H(i),H(j)]s

⎫
⎬

⎭
.

Next since Xt ≥ 0 and taking into account the inequality which f verifies to
obtain

−d(Y ′
sXt

s) ≥ Xt
sϕsds − dN ′

s P − a.s.,

where for any s ∈ [t, T ],
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dN ′
s = Y ′

s−Xt
s−

{ ∞∑

i=1

V i
s dH(i)

s

}

− Xt
s−

{ ∞∑

i=1

U ′i
s dH(i)

s

}

−Xt
s−

⎧
⎨

⎩

∞∑

i=1

∞∑

j=1

V i
s U ′j

s d([H(i),H(j)]s − 〈H(i),H(j)〉s)

⎫
⎬

⎭
.

But once more N ′ is a uniformly integrable martingale then by taking the
conditional expectation we obtain:

Y ′
t ≥ E

[

Xt
T ξ +

∫ T

t

Xt
sϕsds|Ft

]

, P − a.s.

which completes the proof. �

We are now ready to give a comparison result of solutions of two BSDEs
of type (3.1).

Proposition 3.3. For i = 1, 2, let (fi, ξi) be a pair that satisfies Assumption
(A1)-(i),(ii) and let (Y i, U i) ∈ S2 × H2(�2) be the solution of the following
BSDE: ∀t ≤ T ,

Y i
t = ξi +

∫ T

t

fi(s, Y i
s , U i

s)ds −
∞∑

j=1

∫ T

t

U i,j
s dH(j)

s .

Assume that:

(i) For any U1, U2 ∈ H2(l2), there exists a process V U1,U2
= (V U1,U2

j )j≥1

(which may depend on U1 and U2) satisfying (A2) such that f1 verifies:

f1(t, Y 2
t , U1

t ) − f1(t, Y 2
t , U2

t ) ≥ 〈V U1,U2
, (U1 − U2)〉p

t , dP ⊗ dt − a.e.;
(3.8)

(ii) P − a.s., ξ1 ≥ ξ2 and

f1(t, Y 2
t , U2

t ) ≥ f2(t, Y 2
t , U2

t ), dP ⊗ dt − a.e.. (3.9)

Then P-a.s., Y 1
t ≥ Y 2

t , ∀t ∈ [0, T ].

Proof. Let us set Ȳ = Y 1 −Y 2, Ū = U1 −U2 and ξ̄ = ξ1 −ξ2, then ∀t ∈ [0, T ],

Ȳt = ξ̄ +
∫ T

t

{f1(s, Y 1
s , U1

s ) − f2(s, Y 2
s , U2

s )}ds −
∞∑

j=1

∫ T

t

Ū j
s dH(j)

s .

Next let us set

∀s ≤ T, δs = (f1(s, Y 1
s , U1

s ) − f1(s, Y 2
s , U1

s )) × (Ȳs)−11l{Ȳs �=0} and

ϕs = f1(s, Y 2
s , U2

s ) − f2(s, Y 2
s , U2

s ). (3.10)

Then by (3.9) we have, ϕs ≥ 0, dP ⊗ dt − a.e.. On the other hand (δs)s∈[0,T ]

is bounded since f1 is uniformly Lipschitz. Finally we have

f1(s, Y 1
s , U1

s ) − f2(s, Y 2
s , U2

s ) ≥ ϕs + δsȲs + 〈V U1,U2
, Ū〉p

s , dP ⊗ ds − a.e..
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Therefore thanks to Proposition 3.2 we get,

∀t ≤ T, Ȳt ≥ E

[

Xt
T ξ̄ +

∫ T

t

Xt
sϕsds|Fs

]

≥ 0, P − a.s.

where (Xt
s)s∈[t,T ] is defined in the same way as in (3.6) with the new processes

δ and ϕ defined in (3.10). As Xt, ξ̄ and ϕ are non-negative then for any t ≤ T ,
Ȳt ≥ 0 which implies that P − a.s.,∀t ≤ T, Y 1

t ≥ Y 2
t since Y 1 and Y 2 are

RCLL. The proof of the claim is now complete. �

Remark 3.2. Conditions (3.8) and (3.9) can be replaced respectively with

f2(t, Y 2
t , U1

t ) − f2(t, Y 2
t , U2

t ) ≥ 〈V U1,U2
, (U1 − U2)〉p

t , dP ⊗ dt − a.e.

(3.11)

and

f1(t, Y 1
t , U1

t ) ≥ f2(t, Y 1
t , U1

t ), dP ⊗ dt − a.e.. (3.12)

In this case, with the other properties, one can show that we have P-a.s.,
Y 1 ≥ Y 2. �

Remark 3.3. Point (i) of Proposition 3.3 is satisfied in the following cases:

(i) f does not depend on the component ζ;
(ii) If L reduces to a Poisson process, we have H(i) ≡ 0 for all i ≥ 2, then

Assumption (A2) reads: (a) V = (Vt)t∈[0,T ] is bounded; (b) for any stop-
ping time τ , such that �Lτ �= 0, Vτ > −1, P − a.s..

(iii) The generator f satisfies

f(t, y, ζ) = h1(t, y,
∑

i≥1

θi
tζ

i), ∀(t, y, ζ) ∈ [0, T ] × R × �2

where the mapping η ∈ R �→ h1(t, y, η) is non decreasing and uniformly
Lipschitz and ((θi

t)i≥1)t≤T satisfies
∑

i≥1

|θi
t|2 ≤ C, dt ⊗ dP − a.e. and P − a.s.,∀t ≤ T,

∑

i≥1

θi
tpi(ΔLt) ≥ 0.

�

We finally provide a comparison result of solutions of reflected BSDEs of
type (3.1) which will be useful in the sequel.

Proposition 3.4. For i = 1, 2, let (fi, ξi, S
i) be a triple which satisfies Assump-

tion (A1) and let (Y i
t ,Ki

t , U
i
t )t≤T be the solution of the RBSDE associated with

(fi, ξi, S
i). Assume that:

(i) P − a.s, ξ1 ≥ ξ2 and ∀t ∈ [0, T ], f1(t, y, ζ) ≥ f2(t, y, ζ) and S1
t ≥ S2

t ;
(ii) f1 verifies condition (3.8).

Then P-a.s. for any t ≤ T , Y 1
t ≥ Y 2

t .
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Proof. For i = 1, 2, let us consider the following sequence of processes (Y i,n,
U i,n) ∈ S2 × H2(�2), n ≥ 0, that satisfy:

Y i,n
t = ξi +

∫ T

t

fi(s, Y i,n
s , U i,n

s )ds + n

∫ T

t

(Y i,n
s − Si

s)
−ds

−
∞∑

j=1

∫ T

t

U i,n,j
s dH(j)

s , ∀t ≤ T

and let us denote by

fn
i (s, y, ζ) := fi(s, y, ζ) + n(y − Si

s)
−.

For any n ≥ 0, fn
1 satisfies (3.8) and fn

1 ≥ fn
2 . Therefore using the comparison

result of Proposition 3.3, we deduce that: ∀n ≥ 0,

P − a.s., ∀t ≤ T, Y 1,n
t ≥ Y 2,n

t . (3.13)

But since f1 verifies (3.8) then we can show that for i = 1, 2, Y i,n↗Y i in S2

since the processes Si do not have predictable jumps (see e.g. [16], Theorem
1.2.a, pp. 5). Thus, inequality (3.13) implies that P-a.s., Y 1 ≥ Y 2. �

We are now going to make a connection between reflected BSDEs and
their associated IPDEs with obstacle. So let (t, x) ∈ [0, T ]×R and let (Xt,x

s )s≤T

be the solution of the following standard SDE driven by the Lévy process L,
i.e.,

Xt,x
s = x +

∫ t∨s

t

b(r,Xt,x
r )dr +

∫ t∨s

t

σ(r,Xt,x
r−)dLr, ∀s ≤ T, (3.14)

where we assume that the functions b and σ are jointly continuous, Lipschitz
continuous w.r.t. x uniformly in t, i.e., there exists a constant C ≥ 0 such that
for any t ∈ [0, T ], x,x′ ∈ R,

|σ(t, x) − σ(t, x′)| + |b(t, x) − b(t, x′)| ≤ C|x − x′|. (3.15)

As a consequence, the functions b(t, x) and σ(t, x) are of linear growth. We
additionally assume that σ is bounded, i.e., there exists a constant Cσ such
that

∀(t, x) ∈ [0, T ] × R, |σ(t, x)| ≤ Cσ. (3.16)

Under the above conditions on b and σ, the process Xt,x exists and is unique
(see e.g. [25], pp. 249), and satisfies:

∀p ≥ 1, E
[

sup
s≤T

|Xt,x
s |p

]

≤ C(1 + |x|p). (3.17)

Next let us consider the following functions:

h : x ∈ R �→ h(x) ∈ R;
f : (t, x, y, ζ) ∈ [0, T ] × R

1+1 × �2 �→ f(t, x, y, ζ) ∈ R;
Ψ : (t, x) ∈ [0, T ] × R �→ Ψ(t, x) ∈ R,

which we assume satisfying:
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Assumptions (A3):

(i) h, Ψ and f(t, x, 0, 0) are jointly continuous and belong to Πg;
(ii) the mapping (y, ζ) �→ f(t, x, y, ζ) is Lipschitz continuous uniformly in

(t, x);
(iii) For any x ∈ R, h(x) ≥ Ψ(T, x);
(iv) The generator f has the following form:

f(t, x, y, ζ) = h

⎛

⎝t, x, y,
∑

i≥1

θi
tζ

i

⎞

⎠ , ∀(t, x, y, ζ) ∈ [0, T ] × R
1+1 × �2

where the mapping η ∈ R �−→ h(t, x, y, η) is non decreasing, and there
exists a constant C > 0, such that ∀t ∈ [0, T ], x, y, η, η′ ∈ R,

|h(t, x, y, η) − h(t, x, y, η′) ≤ C|η − η′|.
Moreover (θi

t)i≥1 satisfies
∑

i≥1

|θi
t|2 ≤ C, dt ⊗ dP − a.e. and P − a.s.,∀t ≤ T,

∑

i≥1

θi
tpi(ΔLt) ≥ 0.

�
Next let (t, x) ∈ [0, T ] × R be fixed and let us consider the following

reflected BSDE:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(Y t,x, U t,x,Kt,x) ∈ S2 × H(�2) × A2;
Y t,x

s = h(Xt,x
T ) +

∫ T

s
f(r,Xt,x

r , Y t,x
r , U t,x

r )dr + Kt,x
T − Kt,x

s

−
∞∑

i=1

∫ T

s
U t,x,i

r dH
(i)
r

∀s ≤T, Y t,x
s ≥Ψ(s,Xt,x

s ) and
∫ T

0
(Y t,x

s − Ψ(s,Xt,x
s ))dKt,x

s = 0, P− a.s.

(3.18)

Under assumptions (A3)-(i),(ii),(iii), the reflected BSDE (3.18) is well-posed
and, thanks to Theorem 3.1, has a unique solution (Y t,x, U t,x,Kt,x). Moreover
the following estimate holds true:

E

⎡

⎣ sup
0≤s≤T

|Y t,x
s |2 +

∫ T

0

⎧
⎨

⎩

∑

i≥1

|U t,x,i
s |2

⎫
⎬

⎭
ds

⎤

⎦

≤ CE

[

|h(Xt,x
T )|2 +

∫ T

0

|f(s,Xt,x
s , 0, 0)|2ds + sup

0≤s≤T
|Ψ(s,Xt,x

s )|2
]

. (3.19)

On the other hand, the quantity

u(t, x) = Y t,x
t , (3.20)

is deterministic, continuous and satisfies

∀(t, x) ∈ [0, T ] × R,∀s ∈ [t, T ], Y t,x
s := u(s,Xt,x

s ).

Fore more details, one can see e.g. [26, pp. 1265]. Finally note that under
Assumptions (A3) and by (3.19) the function u belongs also to Πg.
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We now introduce the following IPDE with obstacle:
⎧
⎪⎪⎨

⎪⎪⎩

min
{

u(t, x) − Ψ(t, x);−∂tu(t, x) − Lu(t, x) − f(t, x, u(t, x),Φ(u)(t, x))
}

= 0, (t, x) ∈ [0, T ) × R,

u(T, x) = h(x),

(3.21)

where L is the generator associated with the process Xt,x of (3.14) which has
the following expression:

Lu(t, x) = (E[L1]σ(t, x) + b(t, x))∂xu(t, x) +
1
2
σ(t, x)2
2∂2

xxu(t, x)

+
∫

R

[u(t, x + σ(t, x)y) − u(t, x) − ∂xu(t, x)σ(t, x)y]Π(dy) (3.22)

and

Φ(u)(t, x)

=

(
1

c1,1
∂xu(t, x)σ(t, x)1lk=1

+
∫

R

(u(t, x + σ(t, x)y) − u(t, x) − ∂xu(t, x)y)pk(y)Π(dy)

)

k≥1

where c1,1 is defined in (2.4).
We are going to consider solutions of (3.21) in viscosity sense whose

definition is as follows:

Definition 3.1. A continuous function u : [0, T ]×R → R is said to be a viscosity
subsolution (resp. supersolution) of (3.21) if:

(i) u(T, x) ≤ h(x) (resp. u(T, x) ≥ h(x));
(ii) for any (t, x) ∈ (0, T ) ×R and for any ϕ ∈ C1,2

p such that ϕ(t, x) = u(t, x)
and ϕ − u attains its global minimum (resp. maximum) at (t,x),

min
{

u(t, x) − Ψ(t, x);−∂tϕ(t, x) − Lϕ(t, x)

−f(t, x, ϕ(t, x),Φ(ϕ)(t, x))
}

≤ 0 (resp. ≥ 0).

The function u is said to be a viscosity solution of (3.21) if it is both its
viscosity subsolution and supersolution.

�

In [26], Ren-El Otmani (Theorem 5.8, pp. 1265) have shown that under
Assumption (A3), the function u defined in (3.20) is a viscosity solution for
(3.21).
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3.2. Systems of reflected BSDEs with inter-connected obstacles driven
by a Lévy process and multi-modes switching problem

We now introduce the following functions fi, hi and gij , i, j ∈ A:

fi : (t, x, (yi)i=1,m, ζ) ∈ [0, T ] × R × R
m × �2 �−→ fi(t, x, (yi)i=1,m, ζ) ∈ R,

gij : (t, x) ∈ [0, T ] × R �−→ gij(t, x) ∈ R,

hi : x ∈ R �−→ hi(x) ∈ R (3.23)

which we assume satisfying:
Assumptions (A4):

(I) For any i ∈ A:
(i) The mapping (t, x) → fi(t, x,−→y , ζ) is continuous uniformly with

respect to (−→y , ζ) where −→y = (yi)i=1,m;
(ii) The mapping (−→y , ζ) �→ fi(t, x,−→y , ζ) is Lipschitz continuous uni-

formly w.r.t. (t, x);
(iii) fi(t, x, 0, 0) is measurable and of polynomial growth;
(iv) For any U1, U2 ∈ H2(l2), X,Y ∈ S2, i ∈ A, there exist V U1,U2,i =

(V U1,U2,i
k )k≥1 (which may depend on U1 and U2) that satisfy

Assumption (A2) and such that:

fi(t,Xt, Yt, U
1
t ) − fi(t,Xt, Yt, U

2
t )

≥ 〈V U1,U2,i, (U1 − U2)〉p
t , dP ⊗ dt − a.e. (3.24)

(v) For any i ∈ A and k ∈ Ai := A − {i}, the mapping yk →
fi(t, x, y1, . . . , yk−1, yk, yk+1, . . . , ym, ζ) is nondecreasing whenever
the other components (t, x, y1, . . . , yk−1, yk+1, . . . , ym, ζ) are fixed.

(II) ∀i, j ∈ A, gii ≡ 0 and for k �= j, gjk(t, x) is non-negative, continuous
with polynomial growth and satisfy the following non free loop property:

For any (t, x) ∈ [0, T ] ×R and for any sequence of indices i1, . . . , ik
such that i1 = ik and card{i1, . . . , ik} = k − 1 we have

gi1i2(t, x) + gi2i3(t, x) + · · · + giki1(t, x) > 0.

(III) ∀i ∈ A, hi is continuous with polynomial growth and satisfies the follow-
ing consistency condition:

hi(x) ≥ max
j∈Ai

(hj(x) − gij(T, x)), ∀x ∈ R.

We now describe precisely the switching problem. Let Υ = ((θj)j≥0, (αj)j≥0)
be an admissible strategy and let a = (as)s∈[0,T ] be the process defined by

∀s ≤ T, as := α01l{θ0}(s) +
∞∑

j=1

αj−11l]θj−1θj ](s),

where {θj}j≥0 is an increasing sequence of Ft-stopping times with values in
[0,T] and for j ≥ 0, αj is a random variable Fθj

-measurable with values in
A = {1, . . . , m}. If P[limn θn < T ] = 0, then the pair {θj , αj}j≥0 (or the
process a) is called an admissible strategy of switching. Next we denote by
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(Aa
s)s≤T the switching cost process associated with an admissible strategy a,

which is defined as following:

∀s < T, Aa
s =

∑

j≥1

gαj−1,αj
(θj ,X

t,x
θj

)1l[θj≤s] and Aa
T = lim

s→T
Aa

s (3.25)

where Xt,x is the process given in (3.14). For η ≤ T and i ∈ A, we denote by

Ai
η := {a admissible strategy such that α0 = i, θ0 = η and E[(Aa

T )2] < ∞}.

Assume momentarily that for i ∈ A, the function fi of (3.23) does not depend
on −→y and ζ. For t ≤ T and a given admissible strategy a ∈ Ai

t, we define the
payoff Ja

i (t, x) by:

Ja
i (t, x) := E

[∫ T

t

fa(s)(s,Xt,x
s )ds + ha(T )(X

t,x
T ) − Aa

T

]

where fa(s)(. . . ) = fk(. . . ) (resp. ha(T )(.) = hk(.)) if at time s (resp. T ) a(s) =
k (resp. a(T ) = k) (k ∈ A). Finally let us define

J i(t, x) := sup
a∈Ai

t

Ja
i (t, x), i = 1, . . . , m. (3.26)

As a by-product of our main result which is given in Theorem 4.1 below, we get
that the functions (J i(t, x))i=1,...,m is the unique continuous viscosity solution
of the Hamilton–Jacobi–Bellman system associated with this switching prob-
lem. �

Let (t, x) ∈ [0, T ]×R and let us consider the following system of reflected
BSDEs with oblique reflection: ∀j = 1, . . . , m

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y j ∈ S2, U j ∈ H2(�2), Kj ∈ A2;
Y j

s = hj(X
t,x
T ) +

∫ T

s
fj(r,Xt,x

r , Y 1
r , Y 2

r , . . . , Y m
r , U j

r )dr

−
∞∑

i=1

∫ T

s
U j,i

r dH
(i)
r + Kj

T − Kj
s , ∀s ≤ T ;

∀s ≤ T, Y j
s ≥ max

k∈Aj
{Y k

s − gjk(s,Xt,x
s )} and

∫ T

0
{Y j

s − max
k∈Aj

{Y k
s − gjk(s,Xt,x

s )}}dKj
s = 0.

(3.27)

Note that the solution of this BSDE depends actually on (t, x) which we will
omit for sake of simplicity, as far as there is no confusion. We then have the
following result related to existence and uniqueness of the solution of (3.27).

Theorem 3.2. Assume that Assumption (A4) (I) (ii)–(iv), (A4) (II) and (A4)
(III) are fulfilled. Then system of reflected BSDE with oblique reflection (3.27)
has a unique solution.

Proof. The proof follows the same lines as in [7] and [15]. It will be given in
two steps.
Step 1 We will first assume that the functions fi, i ∈ A, verify (A4) (I) (ii)–(v).
The other assumptions remain fixed.
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Let us introduce the following standard BSDEs:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ȳ ∈ S2, Ū ∈ H2(�2);
Ȳs = max

j=1,m
hj(X

t,x
T ) +

∫ T

s
max

j=1,m
fj(r,Xt,x

r , Ȳr, . . . , Ȳr, Ūr)dr

−
∞∑

i=1

∫ T

s
Ū i

rdH
(i)
r , ∀s ≤ T,

(3.28)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Y ∈ S2, U ∈ H2(�2);
Ys = min

j=1,m
hj(X

t,x
T ) +

∫ T

s
min

j=1,m
fj(r,Xt,x

r ,Yr, . . . ,Yr,Ur)dr

−
∞∑

i=1

∫ T

s
Ui

rdH
(i)
r , ∀s ≤ T.

(3.29)

Note that thanks to Theorem 1 in [23], each one of the above BSDEs has a
unique solution. Next for j ∈ A and n ≥ 1, let us define (Y j,n, U j,n,Kj,n) by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y j,n ∈ S2, U j,n ∈ H2(�2), Kj,n ∈ A2;
Y j,0 = Y
Y j,n

s = hj(X
t,x
T ) +

∫ T

s
fj(r,Xt,x

r , Y 1,n−1
r , . . . ,

Y j−1,n−1
r , Y j,n

r , Y j+1,n−1
r , . . . , Y m,n−1, U j,n

r )dr

−
∞∑

i=1

∫ T

s
U j,n,i

r dH
(i)
r + Kj,n

T − Kj,n
s , ∀s ≤ T ;

Y j,n
s ≥ max

k∈Aj

(Y k,n−1
r − gjk(r,Xt,x

r )), ∀s ≤ T ;
∫ T

0

[

Y j,n
r − max

k∈Aj

(Y k,n−1
r − gjk(r,Xt,x

r ))
]

dKj,n
r = 0.

(3.30)

By induction we can show that system (3.30) has a unique solution for any
fixed n ≥ 1 since when n is fixed, (3.30) reduces to m decoupled reflected
BSDEs of the form (3.1). On the other hand it is easily seen that (Ȳ , Ū , 0) is
also a solution of:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȳs = max
j=1,m

hj(X
t,x
T ) +

∫ T

s
max

j=1,m
fj(r,Xt,x

r , Ȳr, . . . , Ȳr, Ūr)dr

−
∞∑

i=1

∫ T

s
Ū i

rdH
(i)
r + K̄T − K̄s,∀s ≤ T ;

Ȳs ≥ max
k∈Aj

(Ȳs − gjk(s,Xt,x
s )), ∀s ≤ T ;

∫ T

0

[

Ȳr − max
k∈Aj

(Ȳs − gjk(s,Xt,x
s ))

]

dK̄r = 0.

Next since for any i ∈ A, fi verifies Assumption A4(I)(ii)-(v), by Proposi-
tion 3.4 and an induction argument, we get that P-a.s. for any j, n and s ≤ T ,
Y j,n−1

s ≤ Y j,n
s ≤ Ȳs. Then the sequence (Y j,n)n≥0, has a limit which we denote

by Y j , for any j ∈ A. By the monotonic limit theorem in [13], Y j ∈ S2 and
there exist U j ∈ H2(�2) and Kj a non-decreasing process of S2 such that:
∀s ≤ T ,
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⎧
⎪⎨

⎪⎩

Y j
s = hj(X

t,x
T ) +

∫ T

s
fj(r,Xt,x

r ,
−→
Yr, U

j
r )dr −

∞∑

i=1

∫ T

s
U j,i

r dH
(i)
r + Kj

T − Kj
s ,

Y j
s ≥ max

k∈Aj

(Y k
s − gjk(s,Xt,x

s )),

(3.31)

where for any j ∈ A, U j is the weak limit of (U j,n)n≥1 in H2(�2) and for any
stopping time τ , Kj

τ is the weak limit of Kj,n
τ in L2(Ω,Fτ ,P). Finally note

that Kj is predictable since the processes Kn,j are so, for any n ≥ 1.
Let us now consider the following RBSDE:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ŷ j ∈ S2, Û j ∈ H2(�2), K̂j ∈ S2, non-decreasing and K̂j
0 = 0;

Ŷ j
s = hj(X

t,x
T ) +

∫ T

s
fj(r,Xt,x

r , Y 1
r , . . . , Y j−1

r , Ŷ j
r , Y j+1

r , . . . , Y m
r , Û j

r )dr

−
∞∑

i=1

∫ T

s
Û j,i

r dH
(i)
r + K̂j

T − K̂j
s ,∀s ≤ T ;

Ŷ j
s ≥ max

k∈Aj

(Y k
s − gjk(s,Xt,x

s )), ∀s ≤ T ;

∫ T

0

[

Ŷ j
r− − max

k∈Aj

(Y k
r− − gjk(r,Xt,x

r−))
]

dK̂j
r = 0.

(3.32)

According to Theorem 3.3 in [1], this equation has a unique solution. By
Tanaka-Meyer’s formula (see e.g.[25], Theorem 68, pp. 216), for all j ∈ A:

(Ŷ j
T − Y j

T )+ = (Ŷ j
s − Y j

s )+ +
∫ T

s

1l{Ŷ j
r−−Y j

r−>0}d(Ŷ j
r − Y j

r )

+
∑

s<r≤T

[
1l{Ŷ j

r−−Y j
r−>0}(Ŷ

j
r − Y j

r )−+1l{Ŷ j
r−−Y j

r−≤0}(Ŷ
j
r − Y j

r )+
]

+
1
2
L0

t (Ŷ
j − Y j)

where the process (L0
t (Ŷ

j − Y j))t≤T is the local time of the semi martingale
(Ŷ j

s − Y j
s )0≤s≤T at 0 which is a nonnegative process. Then we have

(Ŷ j
T − Y j

T )+ ≥ (Ŷ j
s − Y j

s )+ +
∫ T

s

1l{Ŷ j
r−−Y j

r−>0}d(Ŷ j
r − Y j

r )

= (Ŷ j
s − Y j

s )+ −
∫ T

s

1l{Ŷ j
r−−Y j

r−>0}

×
[

fj(r,Xt,x
r , Y 1

r , . . . , Y j−1
r , Ŷ j

r , Y j+1
r . . . , Y m

r , Û j
r )

−fj(r,Xt,x
r , Y 1

r , . . . , Y j
r , . . . , Y m

r , U j
r )

]

dr

−
∫ T

s

1l{Ŷ j
r−−Y j

r−>0}d(K̂j
r − Kj

r )

+
∞∑

i=1

∫ T

s

1l{Ŷ j
r−−Y j

r−>0}(Û
j,i
r − U j,i

r )dH(i)
r .
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First note that by (3.32),
∫ T

s
1l{Ŷ j

r−−Y j
r−>0}d(K̂j

r − Kj
r ) ≤ 0. Now by Assump-

tion (A4)(I)(iv), we obtain:

(Ŷ j
s − Y j

s )+ ≤
∫ T

s

1l{Ŷ j
r−−Y j

r−>0}[fj(r,Xt,x
r , Y 1

r , . . . , Ŷ j
r , . . . , Y m

r , Û j
r )

−fj(r,Xt,x
r , Y 1

r , . . . , Y j
r , . . . , Y m

r , Û j
r )

+fj(r,Xt,x
r , Y 1

r , . . . , Y j
r , . . . , Y m

r , Û j
r )

−fj(r,Xt,x
r , Y 1

r , . . . , Y j
r , . . . , Y m

r , U j
r )]dr

−
∞∑

i=1

∫ T

s

1l{Ŷ j
r−−Y j

r−>0}(Û
j,i
r − U j,i

r )dH(i)
r

≤
∫ T

s

1l{Ŷ j
r−−Y j

r−>0}C(Ŷ j
r− − Y j

r−)+dr

+
∞∑

i=1

∫ T

s

1l{Ŷ j
r−−Y j

r−>0}V
Uj ,Ûj ,j
i (r)(Û j,i

r − U j,i
r )dr

−
∞∑

i=1

∫ T

s

1l{Ŷ j
r−−Y j

r−>0}(Û
j,i
r − U j,i

r )dH(i)
r .

Next for t ≤ T , let us set Mt =
∑∞

i=1

∫ t

0
V Uj ,Ûj ,j

i (r)dH
(i)
r and Zt =

∑∞
i=1

∫ t

0
1l{Ŷ j

r−−Y j
r−>0}(Û

j,i
r − U j,i

r )dH
(i)
r (M and Z depend on j but this is

irrelevant). By Proposition 3.1, ε(M) ∈ S2, ε(M) > 0 and E[ε(M)T ] = 1.
Then using Girsanov’s Theorem [25, pp. 136], under the probability measure
dP̃ := ε(M)T dP, we obtain that the process (Z̃t = Zt− < M,Z >t)t≤T is a
martingale and then

EP̃

[ ∞∑

i=1

∫ T

s

1l{Ŷ j
r−−Y j

r−>0}V
Uj ,Ûj ,j
i (r)(Û j,i

r − U j,i
r )dr

−
∞∑

i=1

∫ T

s

1l{Ŷ j
r−−Y j

r−>0}(Û
j,i
r − U j,i

r )dH(i)
r

]

= −EP̃(Z̃T − Z̃s) = 0.

Thus for any s ≤ T ,

EP̃(Ŷ j
s − Y j

s )+ ≤ EP̃

[∫ T

s

C(Ŷ j
r − Y j

r )+dr

]

and finally by Gronwall’s Lemma, ∀j ∈ A, ∀s ≤ T , (Ŷ j
s − Y j

s )+ = 0 P̃ − a.s.
and then also P − a.s. since those probabilities are equivalent. It implies that
P-a.s., Ŷ j ≤ Y j for any j ∈ A. On the other hand, since ∀n ≥ 1, ∀j ∈ A,
Y j,n−1 ≤ Y j , then we have

∀s ≤ T, max
k∈Aj

(Y k,n−1
s − gjk(s,Xt,x

s )) ≤ max
k∈Aj

(Y k
s − gjk(s,Xt,x

s )).
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Therefore by comparison, we obtain Y j,n ≤ Ŷ j , and then Y j ≤ Ŷ j which
implies Y j = Ŷ j , ∀j ∈ A.

Next by Itô’s formula applied to (Y j − Ŷ j)2 we obtain: ∀s ∈ [0, T ],

(Y j
s − Ŷ j

s )2 = (Y j
0 − Ŷ j

0 )2 + 2
∫ s

0

(Y j
r− − Ŷ j

r−)d(Y j
r − Ŷ j

r )

+
∞∑

i=1

∞∑

k=1

∫ s

0

(U j,i
r − Û j,i

r )(U j,k
r − Û j,k

r )d[H(i),H(k)]r.

As Y j = Ŷ j and taking expectation in both-hand sides of the previous equality
to obtain

E

⎡

⎣

∫ T

0

∑

i≥1

(U j,i
r − Û j,i

r )2dr

⎤

⎦ = 0.

It implies that U j = Û j , dt ⊗ dP and finally Kj = K̂j for any j ∈ A, i.e.
(Y j , U j ,Kj)j∈A verify (3.32).

Next we will show that the predictable process Kj does not have jumps.
First note that since Kj is predictable then its jumping times are also pre-
dictable. So assume there exist j1 ∈ A and a predictable stopping time τ
such that ΔKj1

τ = ΔK̂j1
τ > 0. As Y j verifies (3.32) and since the mar-

tingale part in this latter equation has only inaccessible jump times then
ΔY j1

τ = −ΔKj1
τ = −ΔK̂j1

τ < 0. By the second equality in (3.32) we have

Y j1
τ− = max

k∈Aj1

(Y k
τ− − gj1k(τ,Xt,x

τ−)). (3.33)

Now let j2 ∈ Aj1 be the optimal index in (3.33), i.e.,

Y j2
τ− − gj1,j2(τ,X

t,x
τ ) = Y j1

τ− > Y j1
τ ≥ Y j2

τ − gj1,j2(τ,X
t,x
τ ).

Note that gj1,j2(τ,X
t,x
τ−) = gj1,j2(τ,X

t,x
τ ) since the stopping time τ is pre-

dictable, and the process (Xt,x
s )t≤s≤T does not have predictable jump times.

Thus ΔY j2
τ < 0 and once more we have,

Y j2
τ− = max

k∈Aj2

(Y k
τ− − gj2k(τ,Xt,x

τ−)). (3.34)

We can now repeat the same argument as many times as necessary, to deduce
the existence of a loop �1, . . . , �p−1, �p = �1 (p ≥ 2) and �2 �= �1 such that

Y �1
τ− = Y �2

τ− − g�1�2(τ,X
t,x
τ−), . . . , Y �p−1

τ− = Y
�p

τ− − g�p−1�p
(τ,Xt,x

τ−)

which implies that

g�1�2(τ,X
t,x
τ−) + · · · + g�p−1�p

(τ,Xt,x
τ−) = 0

which is contradictory with Assumption (A4) (II). It implies that ΔKj1
τ = 0

and then Kj1 is continuous since it is predictable. As j is arbitrary in A, then
the processes Kj are continuous and taking into account (3.32), we deduce
that the triples (Y j , U j ,Kj)j∈A, is a solution for system (3.27). �
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Step 2 We now deal with the general case i.e. we assume that fi, i ∈ A, do no
longer satisfy the monotonicity assumption (A4) (I) (v) but (A4) (I) (ii)–(iv)
solely.

Let j ∈ A and t0 ∈ [0, T ] be fixed. We should stress here that we do not
need to take t0 = t since the result is valid for general stochastic process and
not only of Markovian type as Xt,x. For a ∈ Aj

t0 and Γ := ((Γl
s)s∈[0,T ])l∈A ∈

[H2]m := H2 × · · · × H2 (m times), we introduce the unique solution of the
switched BSDE which is defined by: ∀s ∈ [t0, T ],

V a
s = ha(T )(X

t,x
T ) +

∫ T

s

fa(r)(r,Xt,x
r ,

−→
Γr, N

a
r )dr

−
∞∑

i=1

∫ T

s

Na,i
r dH(i)

r − Aa
T + Aa

s (3.35)

where V a ∈ S2 and Na ∈ H2(�2) (
−→
Γr = (Γi

r)i∈A). First note that the solution of
this equation exists and is unique since in setting, for s ∈ [t0, T ], Ṽ a

s = V a
s −Aa

s

and h̃a
T = ha(T )(X

t,x
T ) − Aa

T this equation becomes standard and has a unique
solution by Nualart et al.’s result (see [23], Theorem 1, pp. 765). Moreover
(see Appendix, Proposition 5.1) we have the following link between the BSDEs
(3.27) and (3.35),

Y j
t0 = esssupa∈Aj

t0
(V a

t0 − Aa
t0) = V a∗

t0 − Aa∗
t0 (3.36)

for some a∗ ∈ Aj
t0 . Next let us introduce the following mapping Θ defined on

[H2]m by

Θ : [H2]m → [H2]m

Γ = (Γj)j∈A �→ (Y j)j∈A (3.37)

where (Y j , U j ,Kj)j∈A is the unique solution of the following system of RBS-
DEs:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Y j
s = hj(X

t,x
T ) +

∫ T

s
fj(r,Xt,x

r ,
−→
Γr, U

j
r )dr;

−
∞∑

i=1

∫ T

s
U j,i

r dH
(i)
r + Kj

T − Kj
s , ∀s ≤ T.

Y j
s ≥ max

k∈Aj

{Y k
s − gjk(s,Xt,x

s )}, ∀s ≤ T ;
∫ T

0
[Y j

s − max
k∈Aj

{Y k
s − gjk(s,Xt,x

s )}]dKj
s = 0.

(3.38)

By the result proved in Step 1, Θ is well-defined. Next for η ∈ H2 let us define
‖ · ‖2,β by

‖η‖2,β :=

(

E

[∫ T

0

eβs|ηs|2ds

]) 1
2

,

which is a norm of H2, equivalent to ‖.‖ and (H2, ‖ · ‖2,β) is a Banach
space. Let now Γ1 and Γ2 be two processes of [H2]m and for k = 1, 2, let
(Y k,j , Uk,j ,Kk,j)j∈A = Θ(Γk), i.e., that satisfy: ∀s ≤ T ,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y k,j
s = hj(X

t,x
T ) +

∫ T

s
fj(r,Xt,x

r ,
−→
Γk

r , Uk,j
r )dr;

−
∞∑

i=1

∫ T

s
Uk,j,i

r dH
(i)
r + Kk,j

T − Kk,j
s

Y k,j
s ≥ max

q∈Aj

{Y k,q
s − gjq(s,Xt,x

s )};

∫ T

0

[

Y k,j
s − max

q∈Aj

{Y k,q
s − gjq(s,Xt,x

s )}
]

dKk,j
s = 0.

Next let us define (Ŷ j)j∈A through the following system of reflected BSDEs
with oblique reflection: ∀s ≤ T ,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ŷ j
s = hj(X

t,x
T ) +

∫ T

s
fj(r,Xt,x

r ,
−→
Γ1

r, Û
j
r ) ∨ fj(r,Xt,x

r ,
−→
Γ2

r, Û
j
r )dr;

−
∞∑

i=1

∫ T

s
Û j,i

r dH
(i)
r + K̂j

T − K̂j
s

Ŷ j
s ≥ max

q∈Aj

{Ŷ q
s − gjq(s,Xt,x

s )};
∫ T

0

[

Ŷ j
s − max

q∈Aj

{Ŷ q
s − gjq(s,Xt,x

s )}
]

dK̂j
s = 0.

Recall once more that a ∈ Aj
t0 and let us define V k,a, k = 1, 2, and V̂ a, via

BSDEs, by

V̂ a
s = ha(T )(X

t,x
T ) +

∫ T

s

fa(r)(r,Xt,x
r ,

−→
Γ1

r, N̂
a
r ) ∨ fa(r)(r,Xt,x

r ,
−→
Γ2

r, N̂
a
r )dr

−
∞∑

i=1

∫ T

s

N̂a,i
r dH(i)

r − Aa
T + Aa

s , s ≤ T,

and for k = 1, 2,

V k,a
s = ha(T )(X

t,x
T ) +

∫ T

s

fa(r)(r,Xt,x
r ,

−→
Γk

r , Nk,a
r )dr − Aa

T + Aa
s

−
∞∑

i=1

∫ T

s

Nk,a,i
r dH(i)

r , s ≤ T.

By Proposition 5.1 in Appendix, we have:

Y k,j
t0 = esssupa∈Aj

t0
(V k,a

t0 − Aa
t0), k = 1, 2 and

Ŷ j
t0 = esssupa∈Aj

t0
(V̂ a

t0 − Aa
t0) := V̂ a∗

t0 − Aa∗
t0 . (3.39)

In addition for s ∈ [t0, T ], fa(s) verifies the inequality (3.24) of Assumption

(A4) (I) (iv). Actually let us set as = α01l{θ0}(s) +
∞∑

j=1

αj−11l]θj−1θj ](s), s ∈
[t0, T ], and let U1, U2 ∈ H2(l2), X,Y ∈ S2. For any s ∈ [t0, T ] we have:

fa(s)(s,Xs, Ys, U
1
s ) − fa(s)(s,Xs, Ys, U

2
s )

= [fα0(s,Xs, Ys, U
1
s ) − fα0(s,Xs, Ys, U

2
s )]1l{θ0≤s≤θ1}

+
∑

j≥2

[fαj−1(s,Xs, Ys, U
1
s ) − fαj−1(s,Xs, Ys, U

2
s )]1l]θj−1,θj ](s)

≥ 〈V U1,U2,α0 , (U1 − U2)〉p
s1l{θ0≤s≤θ1}
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+
∑

j≥2

〈V U1,U2,αj−1 , (U1 − U2)〉p
s1l]θj−1,θj ](s)

=: 〈V U1,U2,a, (U1 − U2)〉p
s .

where for any s ∈ [t0, T ],

V U1,U2,a
s := (V U1,U2,a,i

s )i≥1

= V U1,U2,α0
s 1l{θ0≤s≤θ1}

+
∑

j≥2

V U1,U2,αj−1
s 1l]θj−1,θj ](s).

But on [t0, T ] × Ω,

P

{

ω,∃s ≤ T, such that
∞∑

i=1

V U1,U2,a,i
s (ω)pi(ΔLs(ω)) ≤ −1

}

≤
∑

j∈A

P{ω,∃s ≤ T, such that
∞∑

i=1

V U1,U2,j,i
s (ω)pi(ΔLs(ω)) ≤ −1} = 0

which implies that

P − a.s., ∀s ∈ [t0, T ],
∞∑

i=1

V U1,U2,a,i
s (ω)pi(ΔLs(ω)) > −1.

On the other hand, on [t0, T ] × Ω,
∞∑

i=1

|V U1,U2,a,i
s |2 ≤

∑

�∈A

∞∑

i=1

|V U1,U2,�,i
s |2 ≤ C, ds ⊗ dP − a.e.

Thus the process V U1,U2,a verifies Assumption (A2) and fa(s) satisfies Assump-
tion (A4) (I) (iv) on [t0, T ].

Consequently, by the comparison result of Proposition 3.3, for any strat-
egy a ∈ Aj

t0 , P-a.s. for any s ∈ [t0, T ], V̂ a
s ≥ V 1,a

s ∨ V 2,a
s . This combined with

(3.39) leads to Y 1,j
t0 ∨ Y 2,j

t0 ≤ Ŷ j
t0 = V̂ a∗

t0 − Aa∗
t0 . We then deduce

V 1,a∗
t0 − Aa∗

t0 ≤ Y 1,j
t0 ≤ V̂ a∗

t0 − Aa∗
t0 and V 2,a∗

t0 − Aa∗
t0 ≤ Y 2,j

t0 ≤ V̂ a∗
t0 − Aa∗

t0

which implies

|Y 1,j
t0 − Y 2,j

t0 | ≤ |V̂ a∗
t0 − V 1,a∗

t0 | + |V̂ a∗
t0 − V 2,a∗

t0 |. (3.40)

Next we first estimate the quantity |V̂ a∗
t0 − V 1,a∗

t0 |. For s ∈ [t0, T ] let us set
ΔV a∗

s := V̂ a∗
s − V 1,a∗

s and ΔNa∗
s := N̂a∗

s − N1,a∗
s . Applying Itô’s Formula to

the process eβs|ΔV a∗
s |2 we obtain: ∀s ∈ [t0, T ],

eβs|ΔV a∗
s |2 +

∫ T

s

eβr‖ΔNa∗
r ‖2dr

= −
∫ T

s

βeβr|ΔV a∗
r− |2dr − 2

∞∑

i=1

∫ T

s

eβrΔV a∗
r−ΔNa∗,i

r dH(i)
r
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+2
∫ T

s

eβrΔV a∗
r− [fa∗(r)(r,Xt,x

r ,
−→
Γ1

r, N̂
a∗
r ) ∨ fa∗(r)(r,Xt,x

r ,
−→
Γ2

r, N̂
a∗
r )

−fa∗(r)(r,Xt,x
r ,

−→
Γ1

r, N̂
1,a∗
r )]dr

−
∞∑

i=1

∞∑

l=1

∫ T

s

eβrΔNa∗,i
r ΔNa∗,l

r d([H(i),H(l)]r − 〈H(i),H(l)〉r).

By the Lipschitz property of fj , j ∈ A, and then of fa∗ and the fact that for
any x, y ∈ R, |x ∨ y − y| ≤ |x − y| we have: ∀s ∈ [t0, T ],

|fa∗(r)(r,Xt,x
r ,

−→
Γ1

r, N̂
a∗
r ) ∨ fa∗(r)(r,Xt,x

r ,
−→
Γ2

r, N̂
a∗
r ) − fa∗(r)(r,Xt,x

r ,
−→
Γ1

r, N̂
1,a∗
r )|

≤ |fa∗(r)(r,Xt,x
r ,

−→
Γ1

r, N̂
a∗
r )∨fa∗(r)(r,Xt,x

r ,
−→
Γ2

r, N̂
a∗
r )−fa∗(r)(r,Xt,x

r ,
−→
Γ1

r, N̂
a∗
r )|

+|fa∗(r)(r,Xt,x
r ,

−→
Γ1

r, N̂
a∗
r ) − fa∗(r)(r,Xt,x

r ,
−→
Γ1

r, N̂
1,a∗
r )|

≤ L(|−→Γ1
r − −→

Γ2
r| + ‖N̂a∗

r − N1,a∗
r ‖). (3.41)

The inequality 2xy ≤ 1
β x2 +βy2 (for any β > 0 and x, y ∈ R) and (3.41) yield:

∀s ∈ [t0, T ],

eβs|ΔV a∗
s |2 ≤ −

∫ T

s

eβr‖ΔNa∗
r ‖2dr −

∫ T

s

βeβr|ΔV a∗
r− |2ds

−2
∞∑

i=1

∫ T

s

eβrΔV a∗
r−ΔNa∗,i

r dH(i)
r

+2L

∫ T

s

eβr|ΔV a∗
r− |(|−→Γ1

r − −→
Γ2

r| + ‖ΔNa∗
r ‖)dr

−
∞∑

i=1

∞∑

l=1

∫ T

s

eβrΔNa∗,i
r ΔNa∗,l

r d([H(i),H(l)]r − 〈H(i),H(l)〉r)

≤ −
∫ T

s

eβr‖ΔNa∗
r ‖2dr −

∫ T

s

βeβr|ΔV a∗
r− |2ds

−2
∞∑

i=1

∫ T

s

eβrΔV a∗
r−ΔNa∗,i

r dH(i)
r

+
∫ T

s

βeβr|ΔV a∗
r− |2ds +

L2

β

∫ T

s

eβr(|−→Γ1
r − −→

Γ2
r| + ‖ΔNa∗

r ‖)2dr

−
∞∑

i=1

∞∑

l=1

∫ T

s

eβrΔNa∗,i
r ΔNa∗,l

r d([H(i),H(l)]r − 〈H(i),H(l)〉r)

≤ 2L2

β

∫ T

s

eβr|−→Γ1
r − −→

Γ2
r|2dr − 2

∞∑

i=1

∫ T

s

eβrΔV a∗
r−Na∗,i

r dH(i)
r

−
∞∑

i=1

∞∑

l=1

∫ T

s

eβrΔNa∗,i
r ΔNa∗,l

r d([H(i),H(l)]r − 〈H(i),H(l)〉r),



1632 S. Hamadène and X. Zhao NoDEA

for β ≥ 2L2. We deduce, in taking expectation,

∀s ∈ [t0, T ], E[eβs|ΔV̂ a∗
s |2] ≤ 2L2

β
E

[∫ T

s

eβr|−→Γ1
r − −→

Γ2
r|2dr

]

.

Similarly, we get also ∀s ∈ [t0, T ],

E[eβs|V̂ a∗
s − V 2,a∗

s |2] ≤ 2L2

β
E

[∫ T

s

eβr|−→Γ1
r − −→

Γ2
r|2dr

]

.

Therefore by (3.40) we obtain:

E[eβt0 |Y 1,j
t0 − Y 2,j

t0 |2] ≤ 8L2

β
‖Γ1 − Γ2‖2

2,β . (3.42)

As t0 is arbitrary in [0, T ] then by integration w.r.t. t0 we get

‖Θ(Γ1) − Θ(Γ2)‖2,β ≤
√

8L2Tm

β
‖Γ1 − Γ2‖2,β . (3.43)

Henceforth for β large enough, Θ is contraction on the Banach space
([H2]m, ‖.‖2,β), then it has a fixed point (Y j)j∈A which has a version which is
the unique solution of system of RBSDE (3.27). �

Remark 3.4. As a consequence of (3.42), there exists a constant C > 0, such
that ∀j ∈ A, s ≤ T ,

E[|Y 1,j
s − Y 2,j

s |2] ≤ C‖(Y 1,j)j∈A − (Y 2,j)j∈A‖2
2,β . (3.44)

This estimate will be useful later. �
Corollary 3.1. Under Assumptions (A4), there exist deterministic lower semi-
continuous functions (uj(t, x))j∈A of polynomial growth such that

∀(t, x) ∈ [0, T ] × R, ∀s ∈ [t, T ], Y j
s = uj(s,Xt,x

s ), ∀j ∈ A.

Proof. This is a direct consequence of the construction by induction of the
solution (Y j , U j ,Kj)j∈A given in Step 1. Actually by Ren et al.’s result [26],
there exist deterministic continuous functions of polynomial growth ū(t, x),
u(t, x) and uj,n(t, x), n ≥ 0 and j ∈ A, such that ∀(t, x) ∈ [0, T ]×R, ∀s ∈ [t, T ]
(a)

Ȳs = ū(s,Xt,x
s ) and Ys = u(s,Xt,x

s ).

(b)

Y j,n
s = uj,n(s,Xt,x

s ), ∀j ∈ A,

and

Y ≤ Y j,n ≤ Y j,n+1 ≤ Ȳ .

This yields, for any n ≥ 0 and (t, x) ∈ [0, T ] × R,

u(t, x) ≤ un(t, x) ≤ un+1(t, x) ≤ ū(t, x).

Thus uj(t, x) := limn→∞ uj,n(t, x), j ∈ A, verify the required properties
since (Y j,n)n converges to Y j , j ∈ A, in S2. �
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We now give a comparison result for solutions of systems (3.27). The
induction argument allows to compare the solution of the approximating
schemes, by Proposition 3.3, and then to deduce the same property for the
limiting processes.

Remark 3.5. Let (Ȳ j , Ū j , K̄j)j∈A be a solution of the system of RBSDEs
(3.27) associated with ((f̄j)j∈A, (ḡjk)j,k∈A, (h̄j)j∈A) which satisfy (A4). If for
any j, k ∈ A,

fj ≤ f̄j , hj ≤ h̄j , gjk ≥ ḡjk

then for any j ∈ A, Y j ≤ Ȳ j . �

4. Existence and uniqueness of the solution for the system
of IPDEs with inter-connected obstacles

This section focuses on the main result of this paper which is the proof of
existence and uniqueness of a solution for the system of IPDEs introduced
in the beginning of this paper (1.1). For this objective we use its link with
the system of RBSDEs (3.27). However we are led to make, hereafter, the
following additional assumption because, basically, the hypothesis (A4)-(iv) is
either artificial in this deterministic setting or not easy to verify.
Assumption (A5): For any i ∈ A, fi does not depend on the variable ζ ∈ �2.

�
So we are going to consider the following system of IPDEs: ∀i ∈ A,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min{ui(t, x) − max
j∈Ai

(uj(t, x) − gij(t, x));

−∂tui(t, x) − Lui(t, x) − fi(t, x, u1(t, x), . . . , um(t, x))}
= 0, (t, x) ∈ [0, T ] × R;

ui(T, x) = hi(x)

(4.1)

where

Lu(t, x) = L1u(t, x) + I(t, x, u)

with

L1u(t, x) := (E[L1]σ(t, x) + b(t, x))∂xu(t, x) +
1
2
σ(t, x)2
2D2

xxu(t, x) and

I(t, x, u) :=
∫

R

[u(t, x + σ(t, x)y) − u(t, x) − ∂xu(t, x)σ(t, x)y]Π(dy). (4.2)

Note that for any φ ∈ C1,2
p and (t, x) ∈ [0, T ] × R, the non-local term

I(t, x, φ) :=
∫

R

[φ(t, x + σ(t, x)y) − φ(t, x) − ∂xφ(t, x)σ(t, x)y]Π(dy) (4.3)

is well-defined. Actually let δ > 0 and let us define, for any q ∈ R,

I1,δ(t, x, φ) :=
∫

|y|≤δ

[φ(t, x + σ(t, x)y) − φ(t, x) − ∂xφ(t, x)σ(t, x)y]Π(dy),

(4.4)
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I2,δ(t, x, q, u) :=
∫

|y|>δ

[u(t, x + σ(t, x)y) − u(t, x) − qσ(t, x)y]Π(dy). (4.5)

By Taylor’s expansion we have

φ(t, x + σ(t, x)y) − φ(t, x) − ∂xφ(t, x)σ(t, x)y

=
∫ y

0

σ(t, x)2D2
xxφ(t, x + σ(t, x)r)(y − r)dr.

But there exists a constant Ctx such that for any |r| ≤ δ, |D2
xxφ(t, x +

σ(t, x)r)| ≤ Ctx since φ belongs to C1,2 and σ is bounded. Therefore for |y| ≤ δ,

|φ(t, x + σ(t, x)y) − φ(t, x) − ∂xφ(t, x)σ(t, x)y| ≤ Ctx|y|2

which implies that I1,δ(t, x, φ) ∈ R. Next for any (t, x), I2,δ(t, x,Dxφ(t, x), φ) ∈
R since Π integrates any power function outside [−ε, ε]. Henceforth I(t, x, φ)
is well-defined. �

We are now going to give the definition of a viscosity solution of (4.1).
First for a locally bounded function u: (t, x) ∈ [0, T ] × R → u(t, x) ∈ R, we
define its lower semi-continuous (lsc for short) envelope u∗ and upper semi-
continuous (usc for short) envelope u∗ as following:

u∗(t, x) = lim
(t′,x′)→(t,x), t′<T

u(t′, x′), u∗(t, x) = lim
(t′,x′)→(t,x), t′<T

u(t′, x′)

Definition 4.1. A function (u1, . . . , um) : [0, T ] ×R → R
m which belongs to Πg

such that for any i ∈ A, ui is usc (resp. lsc), is said to be a viscosity subsolution
(resp. supersolution) of (4.1) if for any i ∈ A, ϕ ∈ C1,2

p , ui(T, x) ≤ hi(x)
(resp. ui(T, x) ≥ hi(x)) and if (t0, x0) ∈ (0, T )×R is a global maximum (resp.
minimum) point of ui − ϕ,

min
{

ui(t0, x0) − max
j∈Ai

{uj(t0, x0) − gij(t0, x0)}; −∂tϕ(t0, x0) − Lϕ(t0, x0)

−fi(t0, x0, u1(t0, x0), . . . , ui−1(t0, x0), ui(t0, x0), . . . , um(t0, x0))
}

≤ 0(resp. ≥ 0).

The function (ui)m
i=1 is called a viscosity solution of (4.1) if (ui∗)m

i=1 and
(u∗

i )
m
i=1 are respectively viscosity supersolution and subsolution of (4.1).

The following result is needed later.

Lemma 4.1. Let (ui)m
i=1 be a supersolution of (4.1) which belongs to Πg, i.e.

for some γ > 0 and C > 0,

|ui(t, x)| ≤ C(1 + |x|γ), ∀(t, x) ∈ [0, T ] × R and i ∈ A.

Then there exists λ0 > 0 such that for any λ ≥ λ0 and θ > 0, −→v (t, x) =
(ui(t, x) + θe−λt(1 + |x|2γ+2))m

i=1 is supersolution of (4.1).

Proof. As usual wlog we assume that the functions (ui)i=1,m are lsc and we
use Definition 4.1. Let i ∈ A be fixed and ϕi ∈ C1,2

p such that ϕi(s, y) −
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(ui(s, y)+ θe−λs(1+ |y|2γ+2)) has a global maximum in (t, x) ∈ (0, T )×R and
ϕi(t, x) = ui(t, x) + θe−λt(1 + |x|2γ+2). By Definition 4.1 we have:

min
{

ui(t, x) + θe−λt(1 + |x|2γ+2) − max
j∈Ai

(−gij(t, x) + (uj(t, x)

+θe−λt(1 + |x|2γ+2)));

−∂t(ϕi(t, x) − θe−λt(1 + |x|2γ+2)) − 1
2
σ(t, x)2


2D2
xx(ϕi(t, x) − θe−λt(1 + |x|2γ+2)) − (σ(t, x)E(L1) + b(t, x))Dx(ϕi(t, x)

−θe−λt(1 + |x|2γ+2)) −
∫

R

[ϕi(t, x + σ(t, x)y)

−θe−λt|x + σ(t, x)y|2γ+2 − (ϕi(t, x) − θe−λt|x|2γ+2)

−Dx(ϕi(t, x) − θe−λt|x|2γ+2)σ(t, x)y]Π(dy) − fi(t, x,−→u )
}

≥ 0.

Then

−∂tϕ
i(t, x) − Lϕi(t, x) − fi(t, x, −→v (t, x))

≥ θλe−λt(1 + |x|2γ+2) − 1

2
θe−λtσ(t, x)2�2D2

xx|x|2γ+2

−(σ(t, x)E(L1) + b(t, x))Dx(θe−λt|x|2γ+2)

−
∫

R

(θe−λt|x + σ(t, x)y|2γ+2−θe−λt|x|2γ+2−θe−λtDx|x|2γ+2σ(t, x)y)Π(dy)

+ fi(t, x, −→u (t, x)) − fi(t, x, −→v (t, x))

≥ θe−λt
{

λ(1 + |x|2γ+2) − 1

2
σ(t, x)2�2D2

xx|x|2γ+2

−(σ(t, x)E(L1) + b(t, x))Dx|x|2γ+2

−
∫

R

(|x + σ(t, x)y|2γ+2 − |x|2γ+2 − Dx|x|2γ+2σ(t, x)y)Π(dy)

+
m∑

k=1

Ck,i
t,x,θ,λ(1 + |x|2γ+2)

}
(4.6)

where Ck,i
t,x,θ,λ is bounded by the Lipschiz constant of fi with respect to

(yi)i=1,...,m which is independent of θ. But, since φ(y) = |y|2γ+2 ∈ C1,2
p , then

the non-local term is well-defined. Now let us set ψ(ρ) := φ(x + ρσ(t, x)y), for
ρ, x, y ∈ R. First note that for any t, x, y we have

|x + σ(t, x)y|2γ+2 − |x|2γ+2 − Dx|x|2γ+2σ(t, x)y| = |ψ(1) − ψ(0) − Dρψ(0)|

=
∣
∣
∣
∣

∫ 1

0

(1 − ρ)ψ(2)(ρ)dρ

∣
∣
∣
∣

≤ C|y|2(|x|2γ + |y|2γ).

Therefore by (2.3) we have
∫

R

||x + σ(t, x)y|2γ+2 − |x|2γ+2 − Dx|x|2γ+2σ(t, x)y|Π(dy)
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≤ C

∫

R

|y|2(|x|2γ + |y|2γ)Π(dy)

≤ C(1 + |x|2γ).

It follows that there exists a constant λ0 ∈ R
+ which does not depend on

θ such that if λ ≥ λ0 then the right-hand side of (4.6) is non-negative for
any i ∈ A. Thus �v is a viscosity supersolution of (4.1), which is the desired
result. �

Remark 4.1. In the same way one can show that if (ui)m
i=1 is a viscosity sub-

solution of (4.1) which belongs to Πg, i.e. for some γ > 0 and C > 0,

|ui(t, x)| ≤ C(1 + |x|γ), ∀(t, x) ∈ [0, T ] × R and i ∈ A.

Then there exists λ0 > 0 such that for any λ ≥ λ0 and θ > 0, −→v (t, x) =
(ui(t, x) − θe−λt(1 + |x|2γ+2))m

i=1 is subsolution of (4.1). �
4.1. Existence of the viscosity solution of system (4.1)

In this section we deal with the issue of existence of the viscosity solution
of (4.1). Recall that (Y j , U j ,Kj)j∈A is the unique solution of (3.27) and let
(uj(t, x))j∈A be the functions defined in Corollary 3.1.

Theorem 4.1. Assume Assumptions (A4) and (A5) and (3.15), (3.16) as well,
then (uj(t, x))j∈A is a viscosity solution of (4.1).

Proof. The proof will be divided into two steps.
Step 1 We first show that (uj)m

j=1 is a supersolution of (4.1). We will use
Definition 4.1. Note that for all j ∈ A, as uj is lsc, we then have uj∗ = uj .
Next let us set un

j (t, x) = Y j,n,t,x
t , where (Y j,n,t,x;U j,n,t,x,Kj,n,t,x)j∈A is the

unique solution of (3.30). As pointed out in Corollary 3.1, for any n ≥ 0,
(t, x) ∈ [0, T ] × R and s ∈ [t, T ],

Y j,n,t,x
s = un

j (s,Xt,x
s ) and un

j (t, x)↗uj(t, x).

Additionally by induction for any n ≥ 0, (un
j )j∈A, are continuous, belong to

Πg and by Ren et al.’s result ([26], Theorem 5.8) verify in viscosity sense the
following system (n ≥ 1): ∀j ∈ A,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
{

un
j (t, x) − max

k∈Aj

(un−1
j (t, x) − gjk(t, x));

−∂tu
n
j (t, x) − Lun

j (t, x) − fj(t, x, (un−1
1 , . . . ,

un−1
j−1 , un

j , un−1
j+1 , . . . , un−1

m )(t, x))
}

= 0;

un
j (T, x) = hj(x).

(4.7)

First note that for any j ∈ A, uj verifies

uj(T, x) = hj(x) and uj(t, x) ≥ max
k∈Aj

{uk(t, x) − gjk(t, x)},

∀(t, x) ∈ [0, T ] × R.

Now let j ∈ A, (t, x) ∈ (0, T ) ×R and φ a function which belongs to C1,2
p such

that uj − φ has a global minimum in (t, x) on [0, T ] × R (wlog we assume it
strict and that uj(t, x) = φ(t, x)). Next let δ > 0 and for n ≥ 0 let (tn, xn)
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be the global minimum of un
j − φ on [0, T ] × B′(x, 2δCσ) (Cσ is the constant

of boundedness of the diffusion coefficient σ which appears in (3.16) and B′

stands for the closure of the ball B). Therefore

(tn, xn) →n (t, x) and un
j (tn, xn) →n u(t, x).

Actually let us consider a convergent subsequence of (tn, xn), which we still
denote by (tn, xn), and let set (t∗, x∗) its limit. Then

un
j (tn, xn) − φ(tn, xn) ≤ un

j (t, x) − φ(t, x). (4.8)

Taking the limit wrt n and since uj∗ = uj is lsc to obtain

uj(t∗, x∗) − φ(t∗, x∗) ≤ uj(t, x) − φ(t, x).

As the minimum (t, x) of uj − φ on [0, T ] × R is strict then (t∗, x∗) = (t, x).
It follows that the sequence ((tn, xn))n converges to (t, x). Going back now to
(4.8) and sending n to infinity to obtain

uj∗(t, x) = uj(t, x) ≤ lim inf
n

un
j (tn, xn) ≤ lim sup

n
un

j (tn, xn) ≤ uj(t, x)

which implies that un
j (tn, xn) →n uj(t, x).

Now for n large enough (tn, xn) ∈ (0, T )×B(x, 2Cσδ) and it is the global
minimum of un

j − φ in [0, T ] × B(xn, Cσδ). As un
j is a supersolution of (4.7),

then by Definition 5.1 in Appendix we have

−∂tφ(tn, xn) − L1φ(tn, xn) − I1,δ(tn, xn, φ) ≥ I2,δ(tn, xn,Dxφ(tn, xn), un
j )

+fj(tn, xn, un−1
1 (tn, xn), . . . , un−1

j−1 (tn, xn), un
j (tn, xn),

un−1
j+1 (tn, xn), . . . , un−1

m (tn, xn)). (4.9)

But there exists a subsequence of {n} such that:
(i) for any k ∈ Aj , (un−1

k (tn, xn))n is convergent and then limn un−1
k (tn, xn) ≥

uk∗(t, x) = uk(t, x);
(ii) (I1,δ(tn, xn, φ))n →n I1,δ(t, x, φ).
Next by Fatou’s Lemma and since uj∗ = uj and uj ≥ φ we have

lim inf
n→∞ I2,δ(tn, xn,Dxφ(tn, xn), un

j ) ≥ I2,δ(t, x,Dxφ(t, x), uj)

≥ I2,δ(t, x,Dxφ(t, x), φ). (4.10)

Taking the lim inf wrt to n (through the previous subsequence) in each hand-
side of (4.9), using the fact that fj is continuous and verifies (A4) (I) (v) and
finally by (4.10) to obtain:

−∂tφ(t, x) − L1φ(t, x) − I1,δ(t, x, φ)

≥ I2,δ(t, x,Dxφ(t, x), uj) + fj(t, x, u1(t, x), . . . ,
uj−1(t, x), uj(t, x), uj+1(t, x), . . . , um(t, x)).

As uj ≥ φ and since I(. . . ) = I1,δ(. . . ) + I2,δ(. . . ) we then obtain from the
previous inequality,

−∂tφ(t, x) − L1φ(t, x)

≥ I(t, x, φ) + fj(t, x, u1(t, x), . . . , uj−1(t, x), uj(t, x), uj+1(t, x), . . . , um(t, x))
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which means that uj is a viscosity supersolution of
⎧
⎪⎪⎨

⎪⎪⎩

min{uj(t, x) − max
k∈Aj

(uk(t, x) − gjk(t, x));

−∂tuj(t, x) − Luj(t, x) − fj(t, x, u1(t, x), . . . , um(t, x))} = 0;
uj(T, x) = hj(x).

As j is arbitrary then (uj)j∈A is a viscosity supersolution of (4.1). �
Step 2 We will now show that (u∗

j )j∈A is a subsolution of (4.1). As a first step
we are going to show that

∀j ∈ A, min{u∗
j (T, x) − hj(x); u∗

j (T, x) − max
k∈Aj

(u∗
k(T, x) − gjk(T, x))} = 0.

By definition of u∗
j and since un

j ↗uj , we have

min{u∗
j (T, x) − hj(x); u∗

j (T, x) − max
k∈Aj

(u∗
k(T, x) − gjk(T, x))} ≥ 0

Next suppose that for some x0 ∈ R, ∃j > 0, s.t.

min{u∗
j (T, x0) − hj(x0); u∗

j (T, x0) − max
k∈Aj

(u∗
k(T, x0) − gjk(T, x0))} = 2ε.

We will show that leads to a contradiction. Let (tk, xk)k≥1 → (T, x0) and
uj(tk, xk) → u∗

j (T, x0). We can find a sequence of functions (vn)n≥0 ∈
C1,2([0, T ] × R) of compact support such that vn → u∗

j , since u∗
j is usc. On

some neighborhood Bn of (T, x0) we have,

∀(t, x) ∈ Bn, min{vn(t, x) − hj(x);
vn(t, x) − max

k∈Aj

(u∗
k(t, x) − gjk(t, x))} ≥ ε. (4.11)

Let us denote by Bn
k := [tk, T ] × B(xk, δk

n), for some δk
n ∈]0, 1] small enough

such that Bn
k ⊂ Bn. Since u∗

j is of polynomial growth, there exists c > 0, such
that |u∗

j | ≤ c on Bn. We can then assume vn ≥ −2c on Bn. Define

V n
k (t, x) := vn(t, x) +

4c|x − xk|2
δn
k

2 +
√

T − t

Note that V n
k (t, x) ≥ vn(t, x) and

(u∗
j − V n

k )(t, x) ≤ −c ∀(t, x) ∈ [tk, T ] × ∂B(xk, δn
k ). (4.12)

On the other hand, an easy calculation yields

−{∂tV
n
k (t, x) + LV n

k (t, x)}
= −

{
∂tv

n(t, x) + ∂t((T − t)
1
2 ) + {E(L1)σ(t, x) + b(t, x)}

×
{

∂xvn(t, x) +
8c(x − xk)

(δn
k )2

}

+
1
2
σ(t, x)2
2

(

D2
xxvn(t, x) +

8c

(δn
k )2

)

+
∫

R

[vn(t, x + σ(t, x)y) − vn(t, x) − ∂xvn(t, x)σ(t, x)y]Π(dy)
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+
∫

R

[
4c|x − xk + σ(t, x)y|2

(δn
k )2

− 4c|x − xk|2
(δn

k )2
− 8c(x−xk)

(δn
k )2

σ(t, x)y
]

Π(dy)
}

.

Note that Φ(x) := 4c|x−xk|2
(δn

k )2 ∈ C2 ∩ Πg and vn ∈ C1,2 and of compact support,
then the two non-local terms are bounded and ∂tv

n, ∂xvn, D2
xxvn are so. Since

∂t(
√

T − t) → −∞, when t → T , then we can choose tk large enough in front
of δk and the derivatives of vn to ensure that

− (∂tV
n
k (t, x) + LV n

k (t, x)) ≥ 0, ∀(t, x) ∈ Bk
n. (4.13)

Consider now the stopping time θk
n := inf{s ≥ tk, (s,Xtk,xk

s ) ∈ Bk
n

c} ∧ T ,
where Bk

n
c is the complement of Bk

n and θk := inf{s ≥ tk, uj(s,Xtk,xk
s ) =

max
l∈Aj

(ul(s,Xtk,xk
s ) − gjl(s,Xtk,xk

s ))} ∧ T . Applying Itô’s formula with V n
k (t, x)

on [tk, θk
n ∧ θk] yields:

V n
k (tk, xk) = V n

k (θk
n ∧ θk,Xtk,xk

θk
n∧θk

)

−
∫ θk

n∧θk

tk

[b(r,Xtk,xk
r )∂xV n

k (r,Xtk,xk
r ) + ∂tV

n
k (t, x)(r,Xtk,xk

r )]dr

−
∫ θk

n∧θk

tk

σ(r,Xtk,xk
r− )∂xV n

k (r,Xtk,xk
r− )dLr

−1
2

∫ θk
n∧θk

tk

σ2(r,Xtk,xk
r )
2∂2

xxV n
k (r,Xtk,xk

r )dr

−
∑

tk<r≤θk
n∧θk

{V n
k (r,Xtk,xk

r ) − V n
k (r,Xtk,xk

r− )

−σ(r,Xtk,xk
r− )∂xV n

k (r,Xtk,xk
r− )ΔLr}. (4.14)

Next let us deal with the last term of (4.14) and let us set

h(s, y) = V n
k (s,Xtk,xk

s− + σ(s,Xtk.xk
s− )y) − V n

k (s,Xtk,xk
s− )

−∂xV n
k (s,Xtk.xk

s− )σ(s,Xtk.xk
s− )y.

By the mean value theorem we have

h(s, y) =
1
2
∂2

xxvn(s,Xtk,xk
s− + X̄σ(s,Xtk.xk

s− )y)(σ(s,Xtk.xk
s− )y)2

+
4c

δn
k

2 (σ(s,Xtk.xk
s− )y)2

where X̄ is a stochastic processes which is valued in (0, 1). As vn is of compact
support and σ is bounded then

E

[∫ T

0

∫

R

|h(s, y)|Π(dy)ds

]

< ∞.

It follows that
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E

⎡

⎣
∑

tk<r≤θk
n∧θk

{V n
k (r,Xtk,xk

r )

−V n
k (r,Xtk,xk

r− ) − σ(r,Xtk,xk
r− )∂xV n

k (r,Xtk,xk
r− )ΔLr}

⎤

⎦

= E

[∫ θk
n∧θk

tk

∫

R

h(s, y)Π(dy)ds

]

< ∞.

Next going back to (4.14), taking expectation and taking into account of (4.13),
(4.12) and (4.11) to obtain

V n
k (tk, xk) = E

[
V n

k (θk
n ∧ θk,Xtk,xk

θk
n∧θk

)

−
∫ θk

n∧θk

tk

(∂tV
n
k (r,Xtk,xk

r ) + LV n
k (r,Xtk,xk

r ))dr

]

≥ E[V n
k (θk

n,Xtk,xk

θk
n

)1l{θk
n≤θk} + V n

k (θk,Xtk,xk

θk
)1l{θk

n>θk}]

= E[{V n
k (θk

n,Xtk,xk

θk
n

)1l{θk
n<T} + V n

k (T,Xtk,xk

T )1l{θk
n=T}}1l{θk

n≤θk}

+V n
k (θk,Xtk,xk

θk
)1l{θk

n>θk}]

≥ E[{(u∗
j (θ

k
n,Xtk,xk

θk
n

)+c)1l{θk
n<T}+(ε+hj(X

tk,xk

T ))1l{θk
n=T}}1l{θk

n≤θk}

+{ε + max
k∈Aj

(u∗
k(θk,Xtk,xk

θk
) − gjk(θk,Xtk,xk

θk
))}1l{θk

n>θk}]

≥ E[uj(θk
n ∧ θk,Xtk,xk

θk
n∧θk

)] + c ∧ ε

= E

[

uj(tk, xk)−
∫ θk

n∧θk

tk

fj(s,Xtk,xk
s , (ul(s,Xtk,xk

s ))l=1,mds

]

+c ∧ ε

since the processes (Y j = uj(.,X.))j∈A stopped at time θk
n ∧ θk solves

an explicit RBSDE system with triple of data given by ((fj)j∈A, (hj)j∈A,
(gi,j)i,j∈A). In addition, dKj,t,x = 0 on [tk, θk]. On the other hand, (uj)j∈A ∈
Πg and then taking into account (3.17) and Assumption (A4) (I) (iii), we
deduce that

lim
k→∞

E

[∫ θk
n∧θk

tk

fj(s,Xtk,xk
s , (ul(s,Xtk,xk

s ))l=1,m)ds

]

= 0.

Taking the limit in the previous inequalities yields:

lim
k→∞

V n
k (tk, xk) = lim

k→∞
{vn(tk, xk) +

√
T − tk} = vn(T, x0)

≥ lim
k→∞

uj(tk, xk) + c ∧ ε = u∗
j (T, x0) + c ∧ ε.
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As vn → u∗
j pointwisely, then we get a contradiction, when taking the limit in

the previous inequalities, and the result follows, i.e., ∀x ∈ R, ∀j ∈ A,

min

{

u∗
j (T, x) − hj(x); u∗

j (T, x) − max
l∈Aj

(u∗
l (T, x) − gjl(T, x))

}

= 0.

Finally the proof of u∗
j (T, x) = hj(x),∀j ∈ A, is obtained in the same way as

in [15, pp. 180] since the function (gij)i,j∈A verify the non free loop property
(A4) (II). �

Now let us show (u∗
j )j∈A is a subsolution of (4.1). First note that since

un
j ↗uj and un

j is continuous, we have

u∗
j (t, x) = lim sup

n→∞
∗un

j (t, x) = lim
n→∞,t′→t,x′→x

un
j (t′, x′).

Besides ∀j ∈ A and n ≥ 0 we deduce from the construction of un
j that

un
j (t, x) ≥ max

l∈Aj

(un−1
l (t, x) − gjl(t, x))

and by taking the limit in n we obtain: ∀j ∈ A, ∀x ∈ R,

u∗
j (t, x) ≥ max

l∈Aj

(u∗
l (t, x) − gjl(t, x)).

Next fix j ∈ A. Let (t, x) ∈ (0, T ) × R be such that

u∗
j (t, x) − max

l∈Aj

(u∗
l (t, x) − gjl(t, x)) > 0. (4.15)

We are going to use once more Definition 4.1. Let (t, x) ∈ (0, T )×R
k and φ be

a function of C1,2
p such that u∗

j −φ has a global maximum at (t, x) on [0, T ]×R

which wlog we assume strict and verifying u∗
j (t, x) = φ(t, x). Then there exist

subsequences {nk} and ((t′nk
, x′

nk
))k such that

((t′nk
, x′

nk
))k →k (t, x) and unk

j (t′nk
, x′

nk
) →k u∗

j (t, x).

Let now δ > 0 and (tnk
, xnk

) be the global maximum of unk
j − φ on [0, T ] ×

B′(x, 2δCσ). Therefore

(tnk
, xnk

) →k (t, x) and unk
j (tnk

, xnk
) →k u∗

j (t, x).

Actually let us consider a convergent subsequent of (tnk
, xnk

), which we still
denote by (tnk

, xnk
), and let (t̄, x̄) be its limit. Then for some k0 and for k ≥ k0

we have

unk
j (tnk

, xnk
) − φ(tnk

, xnk
) ≥ unk

j (t′nk
, x′

nk
) − φ(t′nk

, x′
nk

). (4.16)

Taking the limit wrt k to obtain

u∗
j (t̄, x̄) − φ(t̄, x̄) ≥ u∗

j (t, x) − φ(t, x).

As the maximum (t, x) of u∗
j − φ on [0, T ] × R is strict then (t̄, x̄) = (t, x). It

follows that the sequence ((tnk
, xnk

))k converges to (t, x). Going back now to
(4.16) and taking the limit wrt k we obtain
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u∗
j (t, x) ≥ lim sup

k
unk

j (tnk
, xnk

) ≥ lim inf
k

unk
j (tnk

, xnk
)

≥ lim inf
k

unk
j (t′nk

, x′
nk

) = u∗
j (t, x)

which implies that unk
j (tnk

, xnk
) → u∗

j (t, x) as k → ∞.
Now for k large enough,

(i) (tnk
, xnk

) ∈ (0, T ) × B(x, 2δCσ) and is the global maximum of unk
j − φ in

[0, T ] × B(xnk
, Cσδ);

(ii) unk
j (tnk

, xnk
) > max

l∈Aj

(unk−1
l (tnk

, xnk
) − gjl(tnk

, xnk
)).

As unk
j is a subsolution of (4.7), then by Definition 5.1 in Appendix we have

−∂tφ(tnk
, xnk

) − L1φ(tnk
, xnk

)

≤ I1,δ(tnk
, xnk

, φ)

+I2,δ(tnk
, xnk

,Dxφ(tnk
, xnk

), unk
j )

+fj(tnk
, xnk

, unk−1
1 (tnk

, xnk
),

. . . , unk−1
j−1 (tnk

, xnk
), unk

j (tnk
, xnk

), unk−1
j+1 (tnk

, xnk
), . . . , unk−1

m (tnk
, xnk

)).

(4.17)

But there exists a subsequence of {nk} (which we still denote by {nk}) such
that:

(i) for any l ∈ Aj , (unk−1
l (tnk

, xnk
))k is convergent and then

limk unk−1
l (tnk

, xnk
) ≤ u∗

l (t, x);
(ii) (I1,δ(tnk

, xnk
, φ))nk

→k I1,δ(t, x, φ);

(iii) lim sup
k

I2,δ(tnk
, xnk

,Dxφ(tnk
, xnk

), unk
j ) ≤ I2,δ(t, x,Dxφ(t, x), u∗

j ).

Point (i) is due to the fact that un
l belongs uniformly to Πg; (ii) is just the

Lebesgue dominated convergence Theorem ; (iii) stems from an adapta-
tion of Fatou’s Lemma, definition of u∗

j and finally monotonicity of I2,δ.

Going back now to (4.17) and taking the limit superior wrt k (through
the previous subsequence), using the fact that fj is continuous and verifies
(A4)(I)(v) to obtain

−∂tφ(t, x) − L1φ(t, x)

≤ I1,δ(t, x, φ) + I2,δ(t, x,Dxφ(t, x), u∗
j ) + fj(t, x, u∗

1(t, x), . . . ,

u∗
j−1(t, x), u∗

j (t, x), u∗
j+1(t, x), . . . , u∗

m(t, x))

≤ I(t, x,Dxφ(t, x), φ) + fj(t, x, u∗
1(t, x), . . . ,

u∗
j−1(t, x), u∗

j (t, x), u∗
j+1(t, x), . . . , u∗

m(t, x)).

This last inequality is due to that fact that u∗
j ≤ φ and since I1,δ + I2,δ = I.

Finally combining it with (4.15) we obtain that uj is a viscosity subsolution
of
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min{uj(t, x) − max
k∈Aj

(u∗
k(t, x) − gjk(t, x));

−∂tuj(t, x) − Luj(t, x) − fj(t, x, u∗
1(t, x), . . . ,

u∗
j−1(t, x), uj(t, x), u∗

j+1(t, x), . . . , u∗
m(t, x))} = 0;

uj(T, x) = hj(x).

As j is arbitrary then (uj)j∈A is a viscosity subsolution of (4.1). �
4.2. Uniqueness of the viscosity solution of system (4.1)

We now give a comparison result of subsolution and supersolution of system
(4.1), from which we get the continuity and uniqueness of its solution.

Proposition 4.1. Assume Assumptions (A4) fulfilled. Let (uj)j∈A (resp.
(wj)j∈A) be a subsolution (resp. supersolution) of (4.1) which belongs to Πg.
Then for any j ∈ A,

∀(t, x) ∈ [0, T ] × R, uj(t, x) ≤ wj(t, x)

Proof. Let γ be a real constant such that for any j ∈ A and (t, x) ∈ [0, T ]×R,

|uj(t, x)| + |wj(t, x)| ≤ C(1 + |x|γ).

To begin with we additionally assume the existence of a constant λ such that
λ < −m.max

j∈A
{Cj} (Cj is the Lipschitz constant of fj w.r.t −→y ) and for any

j ∈ A and any t, x, y1, . . . , yj−1, yj+1, . . . , ym, y ≥ y′,

fj(t, x, y1, . . . , yj−1, y, yj+1, . . . , ym)
−fj(t, x, y1, . . . , yj−1, y

′, yj+1 . . . , ym) ≤ λ(y − y′). (4.18)

Thanks to Lemma 4.1 and Remark 4.1, we know there exists ν large enough
such that for any θ > 0, wj,θ,ν(t, x) = wj(t, x) + θe−νt(1 + |x|2γ+2) (resp.
uj,θ,ν(t, x) = uj(t, x)−θe−νt(1+|x|2γ+2)) is a supersolution (resp. subsolution).
So it is enough to show that

∀j ∈ A, ∀(t, x) ∈ [0, T ] × R, uj,θ,ν(t, x) ≤ wj,θ,ν(t, x),

then taking limits as θ → 0, the result follows. By the growth condition there
exists a constant C > 0 such that

∀j ∈ A,∀(t, x) ∈ [0, T ] × R, s.t. |x| ≥ C, uj,θ,ν(t, x) < 0 < wj,θ,ν(t, x).
(4.19)

Finally for the sake of simplicity we merely denote uj,θ,ν (resp. wj,θ,ν) by uj

(resp. wj).
To obtain the comparison result, we proceed by contradiction assuming

that

∃(t1, x1) ∈ [0, T ] × R, such that max
j∈A

(uj(t1, x1) − wj(t1, x1)) > 0.

Taking into account the values of the subsolution and the supersolution at T ,
there exist (t̄, x̄) ∈ [0, T [×B(0, C) (wlog we assume that t̄ > 0), such that :

0 < max
(t,x)∈[0,T ]×R

max
j∈A

(uj(t, x) − wj(t, x))

= max
(t,x)∈[0,T [×B(0,C)

max
j∈A

(uj(t, x) − wj(t, x)) = max
j∈A

(uj(t̄, x̄) − wj(t̄, x̄)).



1644 S. Hamadène and X. Zhao NoDEA

We now define the set A as follows:

A := {j ∈ A, uj(t̄, x̄) − wj(t̄, x̄) = max
k∈A

(uk(t̄, x̄) − wk(t̄, x̄))}. (4.20)

By the assumption (A4)(II), using the same argument as in [15, pp. 171], we
can prove that there exists j ∈ A such that,

uj(t̄, x̄) > max
k∈Aj

(uk(t̄, x̄) − gjk(t̄, x̄)). (4.21)

Let us now take such a j ∈ A. For ε > 0 and ρ > 0, let us define

Φj
ε,ρ(t, x, y) := uj(t, x) − wj(t, y) − |x − y|2

ε
− |t − t̄|2 − ρ|x − x̄|4.

By (4.19) and since lim|y|→∞ wj(t, y) = ∞, lim|x|→∞ uj(t, x) = −∞, there
exists a constant C ′ such that for any t ∈ [0, T ], uj(t, x) − wj(t, y) < 0 for any
|x| ≥ C ′ or |y| ≥ C ′. It follows that for any ε > 0 and ρ > 0, there exists
(t0, x0, y0) such that

Φj
ε,ρ(t0, x0, y0) = max

(t,x,y)∈[0,T ]×B′(0,C′)2
Φj

ε,ρ(t, x, y) = max
(t,x,y)∈[0,T ]×R2

Φj
ε,ρ(t, x, y).

Note that the maximum exists since Φj
ε,ρ is usc and B′(0, C ′)2 is the closure of

B(0, C ′)2. On the other hand let us point out that (t0, x0, y0) depends actually
on ε and ρ which we omit for sake of simplicity. We then have,

Φj
ε,ρ(t̄, x̄, x̄) = uj(t̄, x̄) − wj(t̄, x̄)

≤ uj(t̄, x̄) − wj(t̄, x̄) +
|x0 − y0|2

ε
+ |t0 − t̄|2 + ρ|x0 − x̄|4

≤ uj(t0, x0) − wj(t0, y0). (4.22)

The growth condition of uj and wj implies that
ε−1|x0 − y0|2 + |t0 − t̄|2 + ρ|x0 − x̄|4 is bounded and then lim

ε→0
(x0 − y0) = 0.

Next by (4.22), for any subsequence (t0l
, x0l

, y0l
)l which converges to (t̃, x̃, x̃),

uj(t̄, x̄) − wj(t̄, x̄) ≤ uj(t̃, x̃) − wj(t̃, x̃),

since uj is usc and wj is lsc. By the definition of (t̄, x̄) this last inequality is
an equality. Using both the definition of Φj

ε,ρ and (4.22), it implies that the
sequence

lim
ε→0

(t0, x0, y0) = (t̄, x̄, x̄) (4.23)

and once more from (4.22) we deduce

lim
ε→0

ε−1|x0 − y0|2 = 0. (4.24)

Finally classically (see e.g. [15, pp. 173]) we have also

lim
ε→0

(uj(t0, x0), wj(t0, y0)) = (uj(t̄, x̄), wj(t̄, x̄)). (4.25)

Next as the functions (uk)k∈A are usc and (gij)i,j∈A are continuous, and since
the index j satisfies (4.21), there exists r > 0 such that for (t, x) ∈ B((t̄, x̄), r)
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we have uj(t, x) > max
k∈Aj

(uk(t, x) − gjk(t, x)). But by (4.25), (4.23) and once

more since uj is usc then there exists ε0 such that for any 0 < ε < ε0, we have:

uj(t0, x0) > max
k∈Aj

(uk(t0, x0) − gij(t0, x0)).

Now for ε small enough, we are able to apply Jensen–Ishii’s lemma for non local
operators (see e.g. Barles et al. [5, pp. 583] or Biswas et al. [6], Lemma 4.1, pp.
64) with uj , wj and φ(t, x, y) := |x−y|2

ε +|t− t̄|2+ρ|x0−x̄|4 at point (t0, x0, y0).
For any δ ∈ (0, 1) there are p0

u, q0
u, p0

w, q0
w, M0

u and M0
w real constants such that:

(i) p0
u − p0

w = ∂tφ(t0, x0, y0), q0
u = ∂xφ(t0, x0, y0), q0

w = −∂yφ(t0, x0, y0)
(4.26)

and
(

M0
u 0

0 −M0
w

)

≤ 4
ε

(
1 −1

−1 1

)

+
(

12ρ|x0 − x̄|2 0
0 0

)

; (4.27)

(ii) −p0
u − {σ(t0, x0)E(L1) + b(t0, x0)}q0

u − 1
2σ(t0, x0)2
2M0

u

−fj(t0, x0, (uk(t0, x0))m
k=1) − I1,δ(t0, x0, φ(t0, ., y0))

−I2,δ(t0, x0, q
0
u, uj) ≤ 0;

(4.28)

(iii) −p0
w − {σ(t0, y0)E(L1) + b(t0, y0)}q0

w − 1
2σ(t0, y0)2
2M0

w

−fj(t0, y0, (wk(t0, y0))m
k=1) − I1,δ(t0, y0,−φ(t0, x0, .))

−I2,δ(t0, y0, q
0
w, wj) ≥ 0.

(4.29)

We are now going to provide estimates for the non-local terms. First let us set
ψρ(t, x) := ρ|x − x̄|4 + |t − t̄|2. By definition of (t0, x0, y0), for any d, d′ ∈ R,

uj(t0, x0 + d′) − wj(t0, y0 + d) − ε−1|x0 + d′ − y0 − d|2 − ψρ(t0, x0 + d′)

≤ uj(t0, x0) − wj(t0, y0) − ε−1|x0 − y0|2 − ψρ(t0, x0).

Therefore for z ∈ R, in taking d′ = σ(t0, x0)z and d = σ(t0, y0)z, we obtain

uj(t0, x0 + σ(t0, x0)z) − uj(t0, x0) − q0
uσ(t0, x0)z

≤ wj(t0, y0 + σ(t0, y0)z) − wj(t0, y0)

−q0
wσ(t0, y0)z + ε−1|σ(t0, x0) − σ(t0, y0)|2z2

+ψρ(t0, x0 + σ(t0, x0)z) − ψρ(t0, x0) − Dxψρ(t0, x0)σ(t0, x0)z.

It implies that for any δ > 0,

I2,δ(t0, x0, q
0
u, uj) − I2,δ(t0, y0, q

0
w, wj)

≤ Cε−1|x0 − y0|2 + I2,δ(t0, x0,Dxψρ(t0, x0), ψρ) (4.30)

since σ(t, x) is uniformly Lipschitz w.r.t. x. But it easy to check that we have

|I2,δ(t0, x0,Dxψρ(t0, x0), ψρ)| ≤ Cρ

∫

|z|≥δ

{|z|2 + |z|4}Π(dz).
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On the other hand, since φ ∈ C2

I1,δ(t0, x0, φ(t0, ., y0)) =
∫

|z|≤δ

{φ(t0, x0 + σ(t0, x0)z, y0) − φ(t0, x0, y0)

−Dxφ(t0, x0, y0)σ(t0, x0)z}Π(dz)

≤ σ(t0, x0)2
∫

|z|≤δ

{ε−1 + Cρ(1 + |z|2)}|z|2Π(dz),

and

I1,δ(t0, y0,−φ(t0, x0, .)) =
∫

|z|≤δ

{−φ(t0, x0, y0 + σ(t0, y0)z) + φ(t0, x0, y0)

+Dyφ(t0, x0, y0)σ(t0, y0)z}Π(dz)

= −ε−1σ(t0, y0)2
∫

|z|≤δ

|z|2dΠ(z).

Therefore we have

−I1,δ(t0, x0, φ(t0, ., y0)) + I1,δ(t0, y0,−φ(t0, x0, .))

≥ −σ(t0, x0)2
∫

|z|≤δ

{ε−1 + Cρ(1 + |z|2)}|z|2Π(dz)

−ε−1σ(t0, y0)2
∫

|z|≤δ

|z|2dΠ(z). (4.31)

Making now the difference between (4.28) and (4.29) yields

− (p0
u − p0

w) − [(σ(t0, x0)E(L1) + b(t0, x0))q0
u − (σ(t0, y0)E(L1) + b(t0, y0))q0

w]

− 1
2

2[σ(t0, x0)2M0

u − σ(t0, y0)2M0
w] − [fj(t0, x0, (uk(t0, x0))m

k=1)

− fj(t0, y0, (wk(t0, y0))m
k=1)] − I1,δ(t0, x0, φ(t0, ., y0))

+ I1,δ(t0, y0,−φ(t0, x0, .)) − I2,δ(t0, x0, q
0
u, uj) + I2,δ(t0, y0, q

0
w, wj) ≤ 0.

Taking now into account (4.30) and (4.31) we get

− (p0
u − p0

w) − [(σ(t0, x0)E(L1) + b(t0, x0))q0
u − (σ(t0, y0)E(L1) + b(t0, y0))q0

w]

− 1
2

2[σ(t0, x0)2M0

u − σ(t0, y0)2M0
w] − [fj(t0, x0, (uk(t0, x0))m

k=1)

− fj(t0, y0, (wk(t0, y0))m
k=1)]−σ(t0, x0)2

∫

|z|≤δ

{ε−1+Cρ(1 + |z|2)}|z|2Π(dz)

− ε−1σ(t0, y0)2
∫

|z|≤δ

|z|2dΠ(z)

− Cε−1|x0 − y0|2 − I2,δ(t0, x0,Dxψρ(t0, x0), ψρ) ≤ 0.

Next by using the properties satisfied by p0
u, q0

u, p0
w, q0

w, M0
u and M0

w and send-
ing δ to 0 to obtain the existence of a constant Cε,ρ such that for any fixed ρ
we have lim sup

ε→0
Cε,ρ ≤ 0 and
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−{fj(t0, x0, (uk(t0, x0))m
k=1) − fj(t0, y0, (wk(t0, y0))m

k=1)}
≤ Cε,ρ + ρC

∫

R

{|z|2 + |z|4}Π(dz). (4.32)

Next since fj is Lipschitz w.r.t. (yk)m
k=1 and by condition (4.18) we have

−λ(uj(t0, x0) − wj(t0, y0)) −
∑

k∈Aj

Υj,k
ε,ρ(uk(t0, x0) − wk(t0, y0))

≤ Cε,ρ + Cρ

∫

R

{|z|2 + |z|4}Π(dz),

where Υj,k
ε,ρ stands for the increment rate of fj with respect to yk (k �= j), which,

by monotonicity condition (A4) (I) (v) on fj , is non-negative and bounded by
Cj . Thus

−λ(uj(t0, x0) − wj(t0, y0)) ≤
∑

k∈Aj

Υj,k
ε,ρ(uk(t0, x0) − wk(t0, y0))+ + Cε,ρ

+Cρ

∫

R

{|z|2 + |z|4}Π(dz)

≤ Cj

∑

k∈Aj

(uk(t0, x0) − wk(t0, y0))+ + Cε,ρ

+Cρ

∫

R

{|z|2 + |z|4}Π(dz).

Taking the limit superior in both hand-sides as ε → 0, once again uk (resp.
wk) is usc (resp. lsc) and j ∈ A, we get

−λ(uj(t̄, x̄) − wj(t̄, x̄)) ≤ Cj

∑

k∈Aj

(uk(t̄, x̄) − wk(t̄, x̄))+

+Cρ

∫

R

{|z|2 + |z|4}Π(dz),

finally take ρ → 0 to obtain,

−λ(uj(t̄, x̄) − wj(t̄, x̄)) ≤ Cj

∑

k∈Aj

(uk(t̄, x̄) − wk(t̄, x̄))+

≤ (m − 1)Cj(uj(t̄, x̄) − wj(t̄, x̄)).

But this is contradictory since uj(t̄, x̄) − wj(t̄, x̄) > 0 and −λ > (m − 1)Cj .
Henceforth for any j ∈ A, uj ≤ wj .

We now consider the general case. Let (uj)j∈A (resp. (wj)j∈A) be a
subsolution (resp. supersolution) of (4.1). Denote ũj(t, x) = eλtuj(t, x) and
w̃j(t, x) = eλtwj(t, x). Then it is easy to show that (ũj)j∈A (resp. (w̃j)j∈A)
is a subsolution (resp. supersolution) of the following system of variational
inequalities which is similar to (4.1):
⎧
⎪⎪⎨

⎪⎪⎩

min{ũj(t, x) − max
k∈Aj

(ũk(t, x) − eλtgjk(t, x));

−∂tũj(t, x) − Lũj(t, x) + λũj(t, x) − eλtfj(t, x, (e−λtũk)m
k=1)} = 0;

ũj(T, x) = eλT hj(x).

(4.33)
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Next let us set

Fj(t, x,−→y ) := −λyj + eλtfj(t, x, (e−λtyk)m
k=1)

with λ is chosen such that λ ≥ m(1 + max
k∈A

Ck) where Ck is the Lipschitz

constant of fk w.r.t. to (yk)m
k=1. Then we can mimic the proof of Step 1 to

obtain that ∀j ∈ A, ũj ≤ w̃j which yields also uj ≤ wj for any j ∈ A. The
proof is now complete. �

As a by-product we have:

Theorem 4.2. Under Assumptions (A4), (A5), and (3.15), (3.16) as well, the
system of variational inequalities with inter-connected obstacles (4.1) has a
unique continuous viscosity solution with polynomial growth. �

In the case when the functions fj , j ∈ A, do not depend on �y, by the
characterization (3.35)–(3.36) (see also Remark 5.1), we deduce that the func-
tions (uj(t, x))j∈A are nothing but (Jj(t, x))j∈A. Thus, as a by product of
Theorem 4.2, we have:

Corollary 4.1. Assume that:
(i) For any i = 1, . . . , m, fi is jointly continuous and of polynomial growth ;
(ii) For any i, j ∈ A, gij (resp. hi) satisfy (A4) (II) (resp. (A4) (III)).

Then the value functions (Jj(t, x))j∈A defined in (3.26) are continuous,
belong to Πg and is the unique viscosity solution of the Hamilton–Jacobi–
Bellman system associated with the stochastic optimal switching problem
which is: ∀j ∈ A,

⎧
⎪⎪⎨

⎪⎪⎩

min{uj(t, x) − max
�∈Aj

(u�(t, x) − gj�(t, x));

−∂tuj(t, x) − Luj(t, x) − fj(t, x)} = 0, (t, x) ∈ [0, T ] × R;
uj(T, x) = hj(x).

(4.34)

�
4.3. Second existence and uniqueness result

In this section we consider the issue of existence and uniqueness of a solution for
the systems of IPDEs (4.1) when the functions (−fj)j∈A verify (A4) (I). This
turns into assuming that (fj)j∈A verify, instead of (A4) (I) (v), the following:

(A4)(†): For any j ∈ A, for any k �= j, the mapping yk → fj(t, x, y1, . . . , yk−1,
yk, yk+1, . . . , ym) is nonincreasing whenever the other components (t, x, y1, . . . ,
yk−1, yk+1, . . . , ym) are fixed.

The other assumptions on (−fj)j∈A remain the same.

Theorem 4.3. Assume that Assumptions (A4) (II)–(III), (A5) are fulfilled and
(−fj)j∈A verify (A4) (I). Then the system of IPDEs (4.1) has a continuous
and of polynomial growth solution which is moreover unique.

Proof. We first focus on the issue of existence.
For any j ∈ A and λ ∈ R let us define Fj by:

Fj(t, x, y1, . . . , ym) := eλtfj(t, x, e−λty1, . . . , e−λtym) − λyj .
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Since fj is uniformly Lipschitz w.r.t. (yk)k=1,m then Fj is so and for λ large
enough, Fj satisfies:

For any k = 1,m, the mapping yk → Fj(t, x, y1, . . . , yk−1, yk, yk+1, . . . ,
ym) is nonincreasing whenever the other components (t, x, y1, · · · , yk−1, yk+1,
. . . , ym) are fixed.

Let us now consider the following iterative Picard sequence : ∀j ∈ A,
Y j,0 = 0 and for n ≥ 1, define:

(Y 1,n, . . . , Y m,n) = Θ((Y 1,n−1, . . . , Y m,n−1))

where Θ is the mapping defined in (3.37)–(3.38) where fj is replaced with Fj .
By (3.43), the sequence (Y j,n)j∈A converges in ([H2]m, ‖.‖2,β) to the unique
solution (Y j)j∈A of the system of RBSDEs associated with

((Fj(s,Xt,x
s , y1, . . . , ym))j∈A, (eλT hj(X

t,x
T ))j∈A, (eλtgjk(s,Xt,x

s ))j,k∈A).

So using an induction argument on n and Theorem 4.2, there exist determin-
istic continuous functions with polynomial growth (un

j )j∈A such that: for any
n ≥ 0 and j ∈ A,

∀(t, x) ∈ [0, T ] × R, ∀s ∈ [t, T ], Y j,n
s = un

j (s,Xt,x
s ). (4.35)

By (3.44), take s = t we obtain

∀j, n, q, t ≤ T, x ∈ R, |un
j (t, x) − uq

j(t, x)| = E[|Y j,n
t − Y j,q

t |2]
≤ C‖(Y j,n−1)j∈A − (Y j,q−1)j∈A‖2

2,β .

Thus for any j ∈ A, (un
j )n≥0 is of Cauchy type and converges pointwisely to

a deterministic function uj . But (Y j)j∈A = Θ((Y j)j∈A), then once more by
(3.44), we also have:

∀s ∈ [0, T ], E[|Y j
s − Y j,m

s |2] ≤ C‖(Y j)j∈A − (Y j,m−1)j∈A‖2
2,β . (4.36)

By (4.35) we then obtain

∀j ∈ A, ∀s ∈ [t, T ], P − a.s., Y j
s = uj(s,Xt,x

s ). (4.37)

Next as Θ is a contraction then, by induction on n we have

∀n, q ≥ 0, ‖(Y j,n+q)j∈A − (Y j,n)j∈A‖2,β ≤ Cn
Θ

1 − CΘ
‖(Y j,1)j∈A‖2,β

where CΘ ∈]0, 1[ is the constant of contraction of Θ. Since the norms ‖.‖ and
‖.‖2,β are equivalent, then there exists a constant C1 such that:

∀n, q ≥ 0, ‖(Y j,n+q)j∈A − (Y j,n)j∈A‖ ≤ C1C
n
Θ‖(Y j,1)j∈A‖.

Take now the limit as q goes to +∞ and in the view of (4.36) and (4.37), if
we take s = t we deduce that :

∀(t, x) ∈ [0, T ] × R, |uj(t, x) − un
j (t, x)| ≤ C2‖(Y j,1)j∈A‖.

But it is easy to check that ‖(Y j,1)j∈A‖(t, x) is of polynomial growth (by
(3.28)–(3.29) and since E[sups≤T |Xt,x

s |γ ] is of polynomial growth for any γ ≥
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0). Therefore for any j ∈ A, uj is of polynomial growth, i.e., belongs to Πg

since un
j is so. We will now show the continuity of uj . For any j ∈ A, let us set

Ȳ j,0
s = C(1 + |Xt,x

s |p), s ≤ T,

where C and p are related to polynomial growth of (uj)j∈A, i.e.,

∀j ∈ A, |uj(t, x)| ≤ C(1 + |x|p), ∀(t, x) ∈ [0, T ] × R.

Next for any n ≥ 1 and j ∈ A let us set

(Ȳ 1,n, . . . , Ȳ m,n) = Θ((Ȳ 1,n−1, . . . , Ȳ m,n−1)).

As Θ is a contraction then once more the sequence ((Ȳ j,n)j∈A)n≥0 converges
in ([H2]m, ‖.‖2,β) to (Y j,t,x)j∈A the unique solution of the system of RBSDEs
associated with

((Fj(s,Xt,x
s , y1, . . . , ym))j∈A, (eλT hj(X

t,x
T ))j∈A, (eλtgjk(s,Xt,x

s ))j,k∈A).

By the definition of Ȳ j,0, we have

P − a.s., ∀j ∈ A, s ∈ [t, T ], Y j,t,x
s ≤ Ȳ j,0

s

and taking into account of (A4)(†) we obtain

∀j ∈ A, ∀s ∈ [t, T ], Fj(s,Xt,x
s , Y 1,t,x

s , . . . , Y m,t,x
s ) ≥ Fj(s,Xt,x

s , Ȳ 1,0
s , . . . , Ȳ m,0

s ).

Next by the comparison result of Remark 3.5 and since (Ȳ j,1)j∈A =
Θ((Ȳ j,0)j∈A) , (Y j,t,x)j∈A = Θ((Y j,t,x)j∈A) we get

∀j ∈ A, s ∈ [t, T ], Ȳ j,1
s ≤ Y j,t,x

s .

Now by an induction argument we obtain, for any n ≥ 0 and j ∈ A,

∀s ∈ [t, T ], Ȳ j,2n+1
s ≤ Y j,t,x

s ≤ Ȳ j,2n
s . (4.38)

In the same way as previously there exist deterministic continuous functions
ūn

j with polynomial growth such that

∀(t, x) ∈ [0, T ] × R, s ∈ [t, T ], Ȳ j,n
s = ūn

j (s,Xt,x
s ).

Moreover for any j ∈ A, the sequence (ūn
j )n converges pointwisely to u and by

(4.38) we have

∀j ∈ A, ∀(t, x), uj(t, x) = lim
n

↗ū2n+1
j (t, x) = lim

n
↘ū2n

j (t, x).

Therefore, uj , j ∈ A, is both lsc and usc and then continuous. Finally as
(Y j,t,x)j∈A = Θ((Y j,t,x)j∈A) and ∀j ∈ A, Y j,t,x

s = uj(s,Xt,x
s ), s ∈ [t, T ], with

uj a deterministic continuous function with polynomial growth, then (uj)j∈A

is a viscosity solution of the following system of IPDEs:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min{uj(t, x) − max
�∈Aj

(u�(t, x) − eλtgj�(t, x));

−∂tuj(t, x) − Luj(t, x) − Fj(t, x, u1(t, x), . . . , um(t, x))} = 0,

(t, x) ∈ [0, T ] × R;
uj(T, x) = eλT hj(x),

(4.39)

thus (e−λtuj)j∈A is a viscosity solution of the system of IPDEs (4.1) with
polynomial growth.
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Let us now deal with the issue of uniqueness. Let (ūj)j∈A be another solution
of (4.1) which belongs to Πg and (Ȳ j)j∈A ∈ [H2]m such that for any j ∈ A, s ∈
[t, T ],

Ȳ j,t,x
s = ūj(s,Xt,x

s ).

Define (Ỹ j,t,x)j∈A as follow:

(Ỹ j,t,x)j∈A = Θ((Ȳ j,t,x)j∈A).

Then there exist (ũj)j∈A deterministic continuous functions with polynomial
growth (ũj)j∈A such that:

∀j ∈ A, s ∈ [t, T ], Ỹ j,t,x
s = ũj(s,Xt,x

s ).

Moreover (ũj)j∈A is the unique viscosity solution of the following system of
IPDEs: ∀j ∈ A

⎧
⎪⎪⎨

⎪⎪⎩

min{ũj(t, x) − max
k∈Aj

(ũk(t, x) − gjk(t, x));

−∂tuj(t, x) − Lũj(t, x) − fj(t, x, (ūk(t, x))k∈A)} = 0 ;
ũj(T, x) = hj(x).

(4.40)

Note that it is (ūk(t, x))k∈A inside the arguments of fj and not (ũk(t, x))k∈A.
As (ūj)j∈A is also a solution of (4.40), then by uniqueness of Theorem 4.2 we
obtain ũj = ūj , for any j ∈ A. Therefore

(Ȳ j,t,x)j∈A = Θ((Ȳ j,t,x)j∈A).

As (Y j)j∈A is the unique fixed point of Θ in [H2]m, we then have

∀j ∈ A, s ∈ [t, T ], Ȳ j,t,x
s = Y j

s .

It follows that ∀j ∈ A, ūj = uj . Finally (uj(t, x))j∈A is the unique continuous
with polynomial growth functions viscosity solution of the system of IPDEs
(4.1). �

5. Appendix

5.1. Representation of the value function of the stochastic optimal switching
problem

Let Υ := (θn, αn)n≥0 be an admissible strategy of switching and let a =
(as)s∈[0,T ] be the process defined by

∀s ≤ T, as := α01l{θ0}(s) +
∞∑

j=1

αj−11l]θj−1θj ](s). (5.1)

Let t0 ∈ [0, T ] and Γ := ((Γj
s)s∈[0,T ])j∈A ∈ [H2]m. Let us define the pair of

processes (V a, Na) := (V a
s , Na

s )s∈[0,T ] as the solution of the following BSDE:
⎧
⎪⎪⎨

⎪⎪⎩

V a ∈ S2, Na ∈ H2(l2)
V a

s = ha(T )(X
t,x
T ) +

∫ T

s
1l{r≥t0}fa(r)(r,Xt,x

r ,
−→
Γr, N

a
r )dr

−
∞∑

i=1

∫ T

s
Na,i

r dH
(i)
r − Aa

T + Aa
s , s ∈ [0, T ],

(5.2)



1652 S. Hamadène and X. Zhao NoDEA

where
−→
Γr = (Γk

r )k∈A and Aa is the cumulative switching cost associated with
the strategy a or Υ [see (3.25) for its definition]. This BSDE is not a standard
one, but in assuming that E[(Aa

T )2] < ∞ and by setting V̄ a = V a − Aa, it
becomes a standard one and then it has a unique solution. Note that V a is
RCLL since Aa is so.

Proposition 5.1. Under Assumption (A4) (I) (ii)–(iv), (II) and (III), the solu-
tion of BSDE (5.2) satisfies: ∀j ∈ A,

Y Γ,j
t0 = esssupa∈Aj

t0
(V a

t0 − Aa
t0), P − a.s. (5.3)

where (Y Γ,j)j∈A is the first component of the solution of the BSDE (3.38).
Thus the solution of (3.38) is unique. Moreover there exists a∗ ∈ Aj

t0 such that
Y Γ,j

t0 = V a∗
t0 − Aa∗

t0 .

Proof. Let (Y Γ,j , UΓ,j ,KΓ,j)j∈A be the solution of the system (3.38). Let a ∈
Aj

t0 and let us define

K̃a
T = (KΓ,j

θ1
− KΓ,j

t0 ) +
∑

n≥1

(KΓ,αn

θn+1
− KΓ,αn

θn
) and

∀i ≥ 1 and r ≤ T,Ua,i
r =

∑

n≥0

UΓ,αn,i
r 1l[θn≤r<θn+1[ and Ua := (Ua,i)i≥1.

Therefore

Y Γ,j
t0 = Y Γ,j

θ1
+

∫ θ1

t0

fj(r,Xt,x
r ,

−→
Γr, U

Γ,j
r )dr −

∞∑

i=1

∫ θ1

t0

UΓ,j,i
r dH(i)

r + (KΓ,j
θ1

− KΓ,j
t0 )

≥ (Y Γ,α1
θ1

− gj,α1(θ1,X
t,x
θ1

))1[θ1<T ] + 1[θ1=T ]hα0(X
t,x
T )

+
∫ θ1

t0

fa(r)(r,Xt,x
r ,

−→
Γr, U

a
r )dr

−
∞∑

i=1

∫ θ1

t0

Ua,i
r dH(i)

r + (KΓ,j
θ1

− KΓ,j
t0 )

= Y Γ,α1
θ2

1[θ1<T ] +
∫ θ2

t0

fa(r)(r,Xt,x
r ,

−→
Γr, U

a
r )dr

−
∞∑

i=1

∫ θ2

t0

Ua,i
r dH(i)

r + (KΓ,j
θ1

− KΓ,j
t0 ) + (KΓ,α1

θ2
− KΓ,α1

θ1
)

−gj,α1(θ1,X
t,x
θ1

)1[θ1<T ] + 1[θ1=T ]hα0(X
t,x
T ).

Repeat now this procedure as many times as necessary and since a is an
admissible strategy (i.e. P[θn < T,∀n ≥ 0] = 0) we obtain:

Y Γ,j
t0 ≥ ha(T )(X

t,x
T ) +

∫ T

t0

fa(r)(r,Xt,x
r ,

−→
Γr, U

a
r )dr

−
∞∑

i=1

∫ T

t0

Ua,i
r dH(i)

r − Aa
T + K̃a

T . (5.4)
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As K̃a
T ≥ 0 and by (5.2) we have

Y Γ,j
t0 − V a

t0 + Aa
t0 ≥

∫ T

t0

(fa(r)(r,Xt,x
r ,

−→
Γr, U

a
r ) − fa(r)(r,Xt,x

r ,
−→
Γr, N

a
r ))dr

−
∞∑

i=1

∫ T

t0

(Ua,i
r − Na,i

r )dH(i)
r

≥
∫ T

t0

〈V Ua,Na,a, Ua − Na〉p
sds −

∞∑

i=1

∫ T

t0

(Ua,i
r − Na,i

r )dH(i)
r

Next by Girsanov’s Theorem [25, pp. 136], under the probability measure

dP̃ := ε(
∞∑

i=1

∫ ·
t0

V Ua,Na,a,i
r dH

(i)
r )T dP, (Mt :=

∫ t

t0
〈V Ua,Na,a, Ua − Na〉p

sds −
∞∑

i=1

∫ t

t0
(Ua,i

r − Na,i
r )dH

(i)
r )t∈[t0,T ] is a martingale, and by taking conditional

expectation of Y Γ,j
t0 − V a

t0 + Aa
t0 , we obtain

EP̃[Y Γ,j
t0 − V a

t0 + Aa
t0 |Ft0 ] ≥ EP̃

[∫ T

t0

〈V Ua,Na,a,i, Ua − Na〉p
sds

−
∞∑

i=1

∫ T

t0

(Ua,i
r − Na,i

r )dH(i)
r |Ft0

]

= 0.

Thus Y Γ,j
t0 ≥ V a

t0 − Aa
t0, P̃ − a.s. and then, since P and P̃ are equivalent, for

any a ∈ Aj
t0 ,

Y Γ,j
t0 ≥ V a

t0 − Aa
t0 , P − a.s.. (5.5)

Next let us consider a∗ the strategy defined by a∗(r) = α∗
01l{t0}(r) +

∞∑

k=1

α∗
k−11l]θ∗

k−1θ∗
k](r), r ≤ T , where θ∗

0 = t0, α∗
0 = j and for n ≥ 0,

θ∗
n+1 = inf

{

r ≥ θ∗
n, Y

Γ,α∗
n

r = max
k∈Aα∗

n

(Y Γ,k
r − gα∗

n,k(r,Xt,x
r ))

}

∧ T,

and

α∗
n+1 = arg max

k∈Aα∗
n

{
Y Γ,k

θ∗
n+1

− gα∗
n,k(θ∗

n+1,X
t,x
θ∗

n+1
)
}

.

Let us show that a∗ ∈ Aj
t0 . We first prove that P[θ∗

n < T, ∀n ≥ 0] = 0. We
proceed by contradiction assuming that P[θ∗

n < T, ∀n ≥ 0] > 0. By definition
of θ∗

n, we then have

P
[
Y

Γ,α∗
n

θ∗
n+1

= Y
Γ,α∗

n+1
θ∗

n+1
− gα∗

n,α∗
n+1

(θ∗
n+1,X

t,x
θ∗

n+1
), α∗

n+1 ∈ Aα∗
n
, ∀n ≥ 0

]
> 0.

But A is finite, then there is a loop i0, i1, . . . , ik, i0 (i1 �= i0) of elements of A
and a subsequence (nq(ω))q≥0 such that:
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P
[

Y Γ,il

θ∗
nq+l

= Y
Γ,il+1
θ∗

nq+l

− gil,il+1(θ
∗
nq+l

,Xt,x
θ∗

nq+l

),

l = 1, . . . , k, (ik+1 = i0), ∀q ≥ 0
]

> 0. (5.6)

Next let us consider θ∗ = limn→∞ θ∗
n and Θ = {θ∗

n < θ∗,∀n ≥ 0}. Thanks to
the non free loop property P[(θ∗ < T ) ∩ Θc] = 0 and then θ∗ is an accessible
stopping time (see e.g. [10, pp. 214], for more details). But for any j ∈ A, the
process Y j has only inaccessible jump times and θ∗ is accessible, therefore for
any j ∈ A, ΔY j

θ∗ = 0,P − a.s.. Going back to (5.6) and take the limit w.r.t. q
to obtain:

P[gi0,i1(θ
∗,Xt,x

θ∗ ) + · · · + gik,i0(θ
∗,Xt,x

θ∗ ) = 0] > 0,

which contradicts the non free loop property. We then have P[θ∗
j < T, ∀j ≥

0] = 0.
Now it remains to prove that E[(Aa∗

T )2] < ∞ and a∗ is optimal in Aj
t0 for

the switching problem (5.3). Since (Y Γ,j)j∈A solves the RBSDE (3.38) and by
the definition of a∗, it yields:

Y Γ,j
t0 = Y Γ,j

θ∗
1

+
∫ θ∗

1

t0

fa∗(r)(r,Xt,x
r ,

−→
Γr, U

a∗
r )dr −

∞∑

k=1

∫ θ∗
1

t0

Ua∗,k
r dH(k)

r (5.7)

since KΓ,j
r − KΓ,j

θ∗
0

= 0 holds for any r ∈ [t0, θ∗
1 ]. But

Y Γ,j
θ∗
1

= (Y Γ,α∗
1

θ∗
1

− gjα∗
1
(θ∗

1 ,Xt,x
θ∗
1

))1[θ∗
1<T ] + hj(X

t,x
T )1[θ∗

1=T ]

then

Y Γ,j
t0 = (Y Γ,α∗

1
θ∗
1

− gjα∗
1
(θ∗

1 ,Xt,x
θ∗
1

))1[θ∗
1<T ] + hj(X

t,x
T )1[θ∗

1=T ]

+
∫ θ∗

1

t0

fa∗(r)(r,Xt,x
r ,

−→
Γr, U

a∗
r )dr −

∞∑

k=1

∫ θ∗
1

t0

Ua∗,k
r dH(k)

r

= Y
Γ,α∗

1
θ∗
1

1[θ∗
1<T ] + hj(X

t,x
T )1[θ∗

1=T ]

+
∫ θ∗

1

t0

fa∗(r)(r,Xt,x
r ,

−→
Γr, U

a∗
r )dr −

∞∑

k=1

∫ θ∗
1

t0

Ua∗,k
r dH(k)

r − Aa∗
θ∗
1
.

(5.8)

But we can do the same for the quantity Y
Γ,α∗

1
θ∗
1

1[θ∗
1<T ] to obtain

Y
Γ,α∗

1
θ∗
1

1[θ∗
1<T ] = Y

Γ,α∗
1

θ∗
2

1[θ∗
2<T ] + hα∗

1
(Xt,x

T )1[θ∗
2=T ]1[θ∗

1<T ]

+
∫ θ∗

2

θ∗
1

fa∗(r)(r,Xt,x
r ,

−→
Γr, U

a∗
r )dr −

∞∑

k=1

∫ θ∗
2

θ∗
1

Ua∗,k
r dH(k)

r .

Substitute now this equality in the previous one and since α∗
2 is the optimal

index at θ∗
2 to obtain:



Vol. 22 (2015) Systems of integro-PDEs with interconnected 1655

Y Γ,j
t0 = (Y Γ,α∗

2
θ∗
2

− gα∗
1α∗

2
(θ∗

2 ,Xt,x
θ∗
2

))1[θ∗
2<T ] + hα∗

1
(Xt,x

T )1[θ∗
2=T ]1[θ∗

1<T ]

+hj(X
t,x
T )1[θ∗

1=T ] +
∫ θ∗

2

t0

fa∗(r)(r,Xt,x
r ,

−→
Γr, U

a∗
r )dr

−
∞∑

k=1

∫ θ∗
2

t0

Ua∗,k
r dH(k)

r − Aa∗
θ∗
1

= Y
Γ,α∗

2
θ∗
2

1[θ∗
2<T ] + hα∗

1
(Xt,x

T )1[θ∗
2=T ]1[θ∗

1<T ] + hj(X
t,x
T )1[θ∗

1=T ]

+
∫ θ∗

2

t0

fa∗(r)(r,Xt,x
r ,

−→
Γr, U

a∗
r )dr −

∞∑

k=1

∫ θ∗
2

t0

Ua∗,k
r dH(k)

r − Aa∗
θ∗
2
.

(5.9)

Repeating this procedure as many times as necessary and since P[θ∗
j < T, ∀j ≥

0] = 0 to get

Y Γ,j
s = ha∗(T )(X

t,x
T )+

∫ T

t0

fa∗(r)(r,Xt,x
r ,

−→
Γr, U

a∗
r )dr−

∞∑

k=1

∫ T

t0

Ua∗,k
r dH(k)

r −Aa∗
T .

(5.10)

Now since Γ ∈ [H2]m, Ua∗ ∈ H2(�2) and Y Γ,j ∈ S2, we deduce from (5.10)
that E[(Aa∗

T )2] < ∞. Next by (5.2),

V a∗
t0 − Aa∗

t0 − Y Γ,j
t0 =

∫ T

t0

fa∗(r)(r,Xt,x
r ,

−→
Γr, N

a∗
r )dr

−
∫ T

t0

fa∗(r)(r,Xt,x
r ,

−→
Γr, U

a∗
r )dr

−
∞∑

k=1

∫ T

t0

(Na∗
r − Ua∗,k

r )dH(k)
r

≥
∫ T

t0

〈V Na∗
,Ua∗

,a∗
, Na∗ − Ua∗〉p

rdr

−
∞∑

k=1

∫ T

t0

(Na∗,k
r − Ua∗,k

r )dH(k)
r .

Once more using Girsanov’s Theorem, as in the bulk of the proof of Theo-
rem 3.2, to obtain EP̃[V a∗

t0 −Aa∗
t0 −Y Γ,i

t0 |Ft0 ] ≥ 0 and then V a∗
t0 −Aa∗

t0 −Y Γ,i
t0 ≥

0,P − a.s. Taking now into account (5.5) leads to the desired result. �

Remark 5.1. As a by product of (5.3) we have also:

∀j ∈ A, E[Y Γ,j
t0 ] = sup

a∈Aj
t0

E[V a
t0 − Aa

t0 ].

�
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5.2. Other equivalent definitions of viscosity solution of IPDEs

The following definition is an equivalent one for the solution of the IPDE (3.21)
in the case when f does not depend on the component ζ. Basically it is an
adaptation to our framework, which is of evolution type, of Definitions 1 and
2 given in [5] in the stationary case.

Definition 5.1. Assume that the function f of IPDE (3.21) does not depend on
ζ. Let u : [0, T ] × R → R be a continuous function which belongs to Πg. It is
said a viscosity subsolution (resp. supersolution) of (3.21) if:
(i) u(T, x) ≤ h(x) (resp. u(T, x) ≥ h(x)), ∀x ∈ R;
(ii) for any (t, x) ∈ (0, T ) × R, δ > 0 and a function ϕ ∈ C1,2

p such that
u(t, x) = ϕ(t, x) and u − ϕ has a global maximum (resp. minimum) at
(t, x) on [0, T ] × B(x,Cσδ), we have:

min
{

u(t, x) − Ψ(t, x);−∂tϕ(t, x) − L1ϕ(t, x)

−I1,δ(t, x, ϕ) − I2,δ(t, x, u,Dxϕ(t, x)) − f(t, x, u(t, x))
}

≤ 0 (resp. ≥ 0).

The function u is said to be a viscosity solution of (3.21) if it is both its
viscosity subsolution and supersolution. �

Proposition 5.2. If f does not depend on ζ then Definitions (3.1) and (5.1) are
equivalent.

Proof. We prove it only for the subsolution property since the supersolution
one is similar. Let u be a subsolution of equation (3.21) according to Definition
5.1. Then for any x0 ∈ R we have u(T, x0) ≤ h(x0). Next let (t0, x0) ∈ (0, T )×R

and ϕ ∈ C1,2
p such that u − ϕ has a global maximum at (t0, x0) in [0, T ] × R.

If we set ϕ̄(t, x) := ϕ(t, x) + u(t0, x0) − ϕ(t0, x0), then ϕ̄ belongs also to C1,2
p

and u − ϕ̄ has a global maximum at (t0, x0) in [0, T ] × R and finally verifies
ϕ̄(t0, x0) := u(t0, x0). Applying Definition 5.1 with ϕ̄ yields:

min
{

u(t0, x0) − Ψ(t0, x0);−∂tϕ(t0, x0) − L1ϕ(t0, x0) − I1,δ(t0, x0, ϕ)

−I2,δ(t0, x0, u(t0, x0),Dxϕ(t0, x0)) − f(t0, x0, u(t0, x0))
}

≤ 0

for any δ > 0. Next since (t0, x0) ∈ (0, T ) × R is a global maximum point of
u − ϕ, we then have

u(t0, x0 + σ(t0, x0)y) − u(t0, x0) ≤ ϕ(t0, x0 + σ(t0, x0)y) − ϕ(t0, x0)

which implies that I2,δ(t0, x0,Dxϕ(t0, x0), u) ≤ I2,δ(t0, x0,Dxϕ(t0, x0), ϕ) and
then

min{u(t0, x0) − Ψ(t0, x0);−∂tϕ(t0, x0) − Lϕ(t0, x0) − f(t0, x0, u(t0, x0))} ≤ 0

which means that u is a subsolution for (3.21) according to Definition 3.1.
We are going now to show that if u is a subsolution of (3.21) according to

Definition 3.1 then it is a subsolution according to Definition 5.1. Once more let
us consider a continuous function u which belong to Πg which is a subsolution
of (3.21) according to Definition 3.1. Then for all x0 ∈ R, u(T, x0) ≤ h(x0).
Next let us fix δ > 0, (t0, x0) ∈ (0, T ) × R and finally let us consider ϕ ∈ C1,2

p
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such that u − ϕ has a global maximum at (t0, x0) on [0, T ] × B(x0, Cσδ) and
u(t0, x0) = ϕ(t0, x0). There exists a function ϕ̃ which belongs to C1,2

p such
that u − ϕ̃ attains a global maximum in (t0, x0) on [0, T ] × R and satisfying
ϕ̃(s, y) = ϕ(s, y), for any (s, y) such that |(s, y)−(t0, x0)| < Cσδ

2 . Consequently
we have also

∂tϕ̃(t0, x0) = ∂tϕ(t0, x0), Dxϕ̃(t0, x0) = Dxϕ(t0, x0),
D2

xxϕ̃(t0, x0) = D2
xxϕ(t0, x0), u(t0, x0) = ϕ̃(t0, x0). (5.11)

Next for any ε > 0, there exists ϕε element of C1,2([0, T ] × R) such that
u ≤ ϕε ≤ ϕ̃ and ϕε → u as ε → 0, a.e. (see e.g. Lemma 4.7 in [19] or [2]). It
implies that u−ϕε and ϕε − ϕ̃ have a global maximum at (t0, x0) on [0, T ]×R.
Therefore, on the one hand, we have

∂tϕε(t0, x0) = ∂tϕ̃(t0, x0), Dxϕε(t0, x0)
= Dxϕ̃(t0, x0), D2

xxϕε(t0, x0) ≤ D2
xxϕ̃(t0, x0) (5.12)

and, on the other hand, by Definition 3.1 it holds

min
{

u(t0, x0) − Ψ(t0, x0);−∂tϕε(t0, x0) − L1ϕε(t0, x0)

−I(t0, x0, ϕε) − f(t0, x0, u(t0, x0))
}

≤ 0. (5.13)

Recall now the definition of L1 in (4.2) and taking into account of (5.11) and
(5.12) to obtain

L1ϕε(t0, x0) ≤ L1ϕ(t0, x0). (5.14)

On the other hand

I(t0, x0, ϕε) = I1, δ
2 (t0, x0, ϕε) + I2, δ

2 (t0, x0,Dxϕε(t0, x0), ϕε)

≤ I1, δ
2 (t0, x0, ϕ̃) + I2, δ

2 (t0, x0,Dxϕ(t0, x0), ϕε)

= I1, δ
2 (t0, x0, ϕ) + I2, δ

2 (t0, x0,Dxϕ(t0, x0), ϕε). (5.15)

Plug now (5.14) and (5.15) in (5.13) to obtain

min
{

u(t0, x0) − Ψ(t0, x0);

−∂tϕ(t0, x0) − L1ϕ(t0, x0) − I1, δ
2 (t0, x0, ϕ) − I2, δ

2 (t0, x0,Dxϕ(t0, x0), ϕε)

−f(t0, x0, u(t0, x0))
}

≤ 0. (5.16)

Take now the limit as ε → 0 in (5.16), using the Lebesgue dominated conver-
gence theorem and by the following inequality (which is valid since u ≤ ϕ in
[0, T ] × B(x0, Cσδ) and u(t0, x0) = ϕ(t0, x0))
∫

δ
2 <|z|≤δ

(ϕ(t0, x0 + σ(t0, x0)z) − ϕ(t0, x0) − Dxϕ(t0, x0)σ(t0, x0)z}dΠ(z)

≥
∫

δ
2<|z|≤δ

(u(t0, x0 + σ(t0, x0)z) − u(t0, x0) − Dxϕ(t0, x0)σ(t0, x0)z}dΠ(z)
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we obtain

min
{

u(t0, x0) − Ψ(t0, x0);−∂tϕ(t0, x0) − L1ϕ(t0, x0)

−I1,δ(t0, x0, ϕ) − I2,δ(t0, x0,Dxϕ(t0, x0), u) − f(t0, x0, u(t0, x0))
}

≤ 0

which is the desired result. �

Similarly, there is another equivalent definition for system of IPDEs (4.1)
which is:

Definition 5.2. A function (u1, . . . , um) : [0, T ] × R → R
m ∈ Πg such that for

any i ∈ A, ui is usc (resp. lsc), is said to be a viscosity subsolution (resp.
supersolution) of (4.1) if for any i ∈ A,
(i) ui(T, x0) ≤ hi(x0) (resp. ui(T, x) ≥ hi(x)), ∀x0 ∈ R;
(ii) for any (t0, x0) ∈ (0, T ) × R, δ > 0 and a function ϕ ∈ C1,2

p such that
ui(t0, x0) = ϕ(t0, x0) and ui − ϕ has a global maximum (resp. minimum)
at (t0, x0) on [0, T ] × B(x0, Cσδ), we have

min
{

ui(t0, x0) − max
j∈Ai

(uj(t0, x0) − gij(t0, x0));−∂tϕ(t0, x0) − L1ϕ(t0, x0)

−I1,δ(t0, x0, ϕ) − I2,δ(t0, x0,Dxϕ(t0, x0), ui)

−fi(t0, x0, u1(t0, x0), . . . , ui−1(t0, x0), ui(t0, x0), . . . , um(t0, x0))
}

≤ 0 (resp. ≥ 0).

The functions (ui)m
i=1 is called a viscosity solution of (4.1) if (ui∗)m

i=1 and
(u∗

i )
m
i=1 are respectively viscosity supersolution and viscosity subsolution of

(4.1).

We then have the following result whose proof is just an adaptation of
the previous one and then is left for the reader.

Proposition 5.3. Definitions (5.2) and (4.1) are equivalent. �
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eds, Paris (1975)

[11] Duckworth, K., Zervos, M.: A model for investment decisions with switching
costs. Ann. Appl. Probab. 11(1), 239–260 (2001)

[12] El Asri, B., Hamadène, S.: The finite horizon optimal multi-modes switch-
ing problem: the viscosity solution approach. Appl. Math. Optim. 60(2), 213–
235 (2009)

[13] Fan, X.L.: Reflected backward stochastic differential equations driven by a Levy
process. Commun. Stat.-Theory Methods (2013)

[14] Hamadène, S., Jeanblanc, M.: On the starting and stopping problem: application
in reversible investments. Math. Oper. Res. 32(1), 182–192 (2007)

[15] Hamadène, S., Morlais, M.A.: Viscosity solutions of systems of PDEs with inter-
connected obstacles and switching problem. Appl. Math. Optim. 67(2), 163–
196 (2013)

[16] Hamadène, S., Ouknine, Y.: Reflected backward stochastic differential equation
with jumps and random obstacle. Electron. J. Probab. 8(2), 1–20 (2003)

[17] Hamadène, S., Zhang, J.: Switching problem and related system of reflected
backward SDEs. Stoch. Process. Appl. 120(4), 403–426 (2010)

[18] Hu, Y., Tang, S.: Multi-dimensional BSDE with oblique reflection and optimal
switching. Probab. Theory Related Fields 147(1–2), 89–121 (2010)

[19] Jakobsen, E.R., Karlsen, K.H.: A “maximum principle for semicontinuous func-
tions” applicable to integro-partial differential equations. Nonlinear Differ. Equ.
Appl. NoDEA 13(2), 137–165 (2006)

[20] Ly Vath, V., Pham, H.: Explicit solution to an optimal switching problem in the
two-regime case. SIAM J. Control Optim. 46(2), 395–426 (2007)

[21] Meyer, P.A.: Probabilités et Potentiel. Hermann, Paris (1966)



1660 S. Hamadène and X. Zhao NoDEA

[22] Nualart, D., Schoutens, W.: Chaotic and predictable representations for Lévy
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