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Abstract. This paper is concerned with the local structure of the nodal set
of segregated configurations associated with a class of fractional singularly
perturbed elliptic systems. We prove that the nodal set is a collection of
smooth hyper-surfaces, up to a singular set with Hausdorff dimension
not greater than n− 2. The proof relies upon a clean-up lemma and the
classical dimension reduction principle by Federer.
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1. Introduction

Let M � 2 be a given integer, and let Ω ⊆ R
n be a smooth bounded domain.

In this paper we consider the following non-variational differential system,
involving the square root of Laplacian{

(−�)1/2ui,k = −kui,k

∑
j �=i uj,k in Ω,

ui,k = φi, i = 1, . . . ,M, on R
n\Ω,

(1.1)

where k is positive and large, the exterior boundary values φi are given smooth
functions. This system can be used to describe M densities (of mass, popula-
tions, probability,..) distributed in a domain and subject to laws of fractional
diffusion and Lotka–Volterra type competitive interaction [27]. The square
root of Laplacian arises when the underlying Gaussian process is replaced
by the Levy one, in order to allow discontinuous random walks. The action
of the integro-differential operator (−�)1/2 on a smooth bounded functional
u : Rn → R is defined by
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(−�)1/2u(x) = γnPV
∫
Rn

u(x) − u(z)
|x − z|n+1

dz with γn =
Γ(n+1

2 )

π
n+1
2

, (1.2)

and the notation PV means that the integral is taken in the Cauchy principal
value sense.

In the study of (1.1), a peculiar issue is the analysis of the behavior of
the densities in the case of strong competition, i.e. when k → +∞. In such
situation, one expects the formation of self-organized patterns, in which the
limiting densities are spatially segregated, therefore inducing a free boundary
problem. In this paper, we shall present some results concerning this topic,
when the creation of the free boundary is triggered by the interplay between
fractional diffusion and competitive interaction.

The study of the strong competition limits of elliptic systems is of in-
terest in different applicative contests, from biological models for competing
species to the phase-segregation phenomenon in Bose–Einstein condensation.
Regarding the standard Laplace diffusion case, abroad literature is present,
starting from [5,9–12,16], in a series of recent papers [2,4,21–23,28,30,32–34],
also in the parabolic case [13–15,29]. Among the others, the following results
are known: the uniform in k bounds for solutions of corresponding systems in
Hölder spaces, the regularity of the limiting profiles and the regularity of the
free boundaries in the singular limit.

Coming to the fractional diffusion case (1.1), there have been few ana-
lytical results in the literature. Verzini and Zilio [27] proved the local uniform
Cα (0 < α < 1) bounds for solutions to system (1.1) (similar results concern-
ing the systems of the relativistic version of Bose–Einstein condensation were
given in [25,26], to which we refer for further details). In our recent paper [31],
we gave a local uniform Lipschitz bound, using Kato inequality.

Under the results just described, we continue the study of system (1.1).
We will present some results concerning the regularity of the free boundary
in the singular limit. Before stating the main result, we assume throughout
the paper that φi ∈ C1(Rn) ∩ L∞(Rn), i = 1, 2, . . . ,M , are given nonnegative
functions, and assume further that φiφj = 0 for all i �= j. For system (1.1),
we only consider nonnegative solutions, that is ui,k � 0 for all i. Our regular-
ity results for the nodal set associated with (1.1) can be summarized in the
following theorem.

Theorem 1.1. Let u = (u1, . . . , uM ) be the singular limit of (1.1), whose com-
ponents are all nonnegative in R

n and Lipschitz continuous in the interior of
Ω. Assume that u(x) �≡ 0 in Ω. Let us consider the nodal set Γ(u) = {x ∈ Ω :
u(x) = 0}. Then the following properties hold:
(i) Hdim(Γ(u)) � n − 1. Moreover there exists a set Σ(u) ⊆ Γ(u), relatively

open in Γ(u), such that Hdim(Γ(u)\Σ(u)) � n − 2;
(ii) Σ(u) is a collection of smooth hyper-surfaces.

For the standard Laplace diffusion case, Theorem 1.1 has been proved by
Caffarelli et al. [4]. Here we extend their results to the fractional diffusion case.
Our proof rests on the representation of (−�)1/2 as Dirichlet-to-Neumann
operator associated to the harmonic extension to the open half-space R

n+1
+ :=
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R
n × (0,+∞) given by the convolution product with the Poisson kernel [7].

More precisely, given u(x) defined in R
n, extend it to v(x, y) in R

n+1
+ by

v(x, y) := γn

∫
Rn

yu(z)
(|x − z|2 + y2)(n+1)/2

dz. (1.3)

Then (−�)1/2u(x) = −∂yv(x, 0) and v(x, 0) = u(x) in R
n. When applying

the extension procedure to a solution ui,k of system (1.1), we end up with the
following mixed boundary value problem

⎧⎨
⎩

�vi,k = 0 in R
n+1
+ ,

∂νvi,k := −∂yvi,k = −kvi,k

∑
j �=i vj,k on Ω × {0},

vi,k = φi, i = 1, 2, . . . ,M, on R
n\Ω.

(1.4)

The Proof of Theorem 1.1 follows the mainstream of [3,4,24], based upon
a clean-up lemma and the classical dimension reduction principle by Federer.
The original clean-up lemma is stated for the standard Laplacian diffusion case,
see [4,14]. Here we generalize this lemma to the case of fractional diffusion. The
strategy of the proof is the following. First using harmonic extensions defined
in (1.3), the nodal set Γ(u) is equal to Γ(v(·, 0)). Here v = (v1, . . . , vM ) is the
singular limit of solutions vk = (v1,k, . . . , vM,k) corresponding to system (1.4).
Then we establish the clean-up lemma, which implies the regularity of the
regular part. Next we prove the Almgren’s monotonicity formula and make a
blowup to obtain the possible limits of Almgren’s frequency. The main difficult
in establishing this monotonicity formula is the lack of variational structure
for system (1.1), and as a peculiar difference with respect to the standard
Laplacian diffusion case, the singular limit does not segregate on the whole
R

n+1
+ , but only on its boundary R

n. However we have discovered a new vector
of functions Z (see Sect. 4) adopted to our setting. Finally, using the Federer’s
reduction principle, we are able to prove the Hausdorff dimension estimates
for the nodal sets.

2. Some preliminary results

In this section, we will discuss some preliminary facts concerning the limiting
profiles of system (1.4). As mentioned in the introduction, it suffices to prove
the regularity result for the nodal set Γ(v(·, 0)) := {x ∈ Ω : v(x, 0) = 0} of
the singular limit v = (v1, . . . , vM ) associated with system (1.4). By maximum
principle, we can assume that vk are bounded in L∞(Rn+1

+ ) independently
of k. Concerning the segregation property of the singular limit we have the
following theorem, which has already been proved in [27].

Theorem 2.1. ([27, Proposition 5.1]) Any sequence of {vk}k∈N, k → +∞, of
solutions to (1.4) admits a subsequence which converges to a limiting profile
v ∈ (H1 ∩ C0,α)loc(Rn+1

+ ∪ Ω), for every α ∈ (0, 1). Moreover v weakly solves



1486 S. Zhang and Z. Liu NoDEA

⎧⎪⎪⎨
⎪⎪⎩

�vi = 0 in R
n+1
+ ,

∂νvi � 0 in Ω × {0},
∂ν(vi −∑

j �=i vj) � 0 in Ω × {0},

vi∂ν(vi −∑
j �=i vj) = 0 in Ω × {0},

(2.1)

and vi(x, 0) are locally Lipschitz continuous satisfying vi(x, 0)vj(x, 0) = 0 for
all i �= j in Ω.

Corollary 2.1. For every i �= j the functions z = vi − vj are such that{−�z± � 0 in R
n+1
+ ,

∂νz± � 0 in Ω × {0}.

Proof. A subtraction of the equations satisfied by vi,k and vj,k yields{−�(vi,k − vj,k) = 0 in R
n+1
+ ,

∂ν(vi,k − vj,k) = −k(vi,k − vj,k)
∑

h�=i,j vh,k in Ω × {0}.

Now using the Kato inequality we have{−�|vi,k − vj,k| � 0 in R
n+1
+ ,

∂ν |vi,k − vj,k| = −k|vi,k − vj,k|∑h�=i,j vh,k in Ω × {0}.

Taking into account of the equalities

z+ =
|z| + z

2
, z− =

|z| − z

2
,

we finally obtain that{−�(vi,k − vj,k)± � 0 in R
n+1
+ ,

∂ν(vi,k − vj,k)± = −k(vi,k − vj,k)±∑
h�=i,j vh,k � 0 in Ω × {0},

(2.2)

which implies the desired result after passing to the weak limit (up to a sub-
sequence) as k → +∞. �

Remark 2.1. From the Proof of Corollary 2.1, we obtain the existence of non-
negative Radon measures μ+

i,j , μ−
i,j ∈ M(Ω′) such that

∂ν(vi − vj)± = −μ±
i,j in Ω′ × {0},

for every Ω′ � Ω. In particular,{−�(vi − vj) = 0 in R
n+1
+ ,

∂ν(vi − vj) = −μi,j on Ω × {0},
(2.3)

where μi,j = μ+
i,j − μ−

i,j .

Indeed, for every nonnegative η ∈ C∞(Rn+1
+ ) compactly supported in

R
n+1
+ ∪ Ω, we test Eq. (2.2) to find

0 � k

∫
Ω×{0}

η(vi,k − vj,k)± ∑
h�=i,j

vh,kdx

�
∫
R

n+1
+

(vi,k − vj,k)±�ηdxdy +
∫

Ω×{0}
(vi,k − vj,k)±∂νη.
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Since vk is uniformly bounded in L∞(Rn+1
+ ), we infer that

k

∫
Ω′×{0}

(vi,k − vj,k)± ∑
h�=i,j

vh,kdx � C(Ω′),

for any compact set Ω′ � Ω. Thus there exist nonnegative Radon measures
μ+

i,j , μ−
i,j ∈ M(Ω′) such that

k

∫
Ω′×{0}

(vi,k − vj,k)± ∑
h�=i,j

vh,kdx ⇀ μ±
i,j weak − ∗ in M(Ω′).

3. A clean up result

In this section, we start to analysis the geometric properties of the nodal set.
We first recall the definition of s-capacity.

Definition 3.1. ([19]) Let s be a positive number. Let E and T be Borel sets
in R

n. A measure μ is said to be admissible if the following condition holds:∫
E

dμ(y)
|x − y|s � 1 for x ∈ T. (3.1)

We define the relative s-capacity of the set E with respect to the set T as

CT
s (E) = supμ(E),

where the supremum is taken over all admissible measures. In particular, the
relative capacity of a set E with respect to its complement will be called simply
the s-capacity and denote by Cs(E).

Remark 3.1. Let E1 and E2 be two Borel sets in R
n. If μ is an admissible

measure on E1, then the measure μ′ defined on E2 by the equality

μ′(A) = μ(A ∩ E1)

is also admissible and the following equality holds:

μ′(E2) = μ(E1) for every E2 ⊇ E1.

Now we state a decay property of the 1
2 -harmonic functions, based on a

similar one for harmonic functions present in [19, Lemma 4.1, Chapter 1].

Lemma 3.1. Let a domain D ⊂ R
n intersect the ball B4R(0). Denote by H the

intersection of the complement of D and the ball BR(0), and by Γ the part of
the boundary of D in B4R(0). Let s = n−1 and u be a continuous nonnegative
solution of (−�)1/2u � 0 in D and u = 0 on R

n\D. Then

sup
x∈D

u(x) �
(

1 + ξ
Cs(H)

Rs

)
sup

x∈D∩BR(0)

u(x), (3.2)

where ξ > 0 is a constant depending on n.
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Proof. Since, under the similarity transformation, the capacity of a set is mul-
tiplied by the sth power of the similarity coefficient (cf. Theorem 2.3, Chapter
1 in [19]), it suffices to consider the case R = 1.

In the case of Cs(H) = 0, the inequality holds trivially. In the case
Cs(H) > 0, we take an arbitrary ε > 0, 0 < ε < Cs(H), and a measure μ such
that

U(x) =
∫

H

dμ(y)
|x − y|s � 1 for x �∈ H and μ(H) > Cs(H) − ε.

Denote by M = supx∈D u(x) and set v(x) = M(1 − U(x) + Cs(H)
3s ). We also

denote μ′ the measure defined on R
n by

μ′(A) = μ(A ∩ H) for every A ⊆ R
n.

Then by Remark 3.1,

U(x) =
∫

H

dμ(y)
|x − y|s =

∫
Rn

dμ′(y)
|x − y|s .

In the following we let s = n − 1, it is not difficult to check (see [20]) that the
function U(x) satisfies

(−�)1/2U(x) = C(n)μ′ in R
n.

As a consequence, (−�)1/2U(x) = 0 outside H, and thus

(−�)1/2v(x) = 0 in D.

Further, v(x) � u(x) on B4(0)\D. We need to prove that the inequality also
holds on R

n\B4(0). Indeed,

v|Rn\B4(0) � M

[
1 − 1

infx∈Rn\B4(0), y∈B1(0) |x − y|s
∫

dμ +
Cs(H)

3s

]

� M

[
1 − 1

3s
Cs(H) +

Cs(H)
3s

]
= M.

Now we can apply the maximum principle to conclude that

sup
x∈D∩B1(0)

u(x) � sup
x∈D∩B1(0)

v(x)

� M

(
1 − 1

supx∈B1(0), y∈B1(0) |x − y|s
∫

dμ +
Cs(H)

3s

)

� M

[
1 −

(
1
2s

− 1
3s

)
Cs(H) +

ε

2s

]
,

which completes the proof of the lemma since ε was arbitrary. �

Corollary 3.1. Under the assumptions of Lemma 3.1, we have

sup
x∈D

u(x) �
(

1 + η
|H|
Rn

)
sup

x∈D∩BR(0)

u(x), (3.3)

where |H| denotes the Lebesgue measure of the set H and η > 0 is a constant
depending on n.



Vol. 22 (2015) Nodal set of strongly competition systems 1489

Proof. Once Lemma 3.1 is settled, the proof follows almost word by word the
one presented in [19, Chapter 1, Lemma 4.2] for a similar situation. �

In the following, we need a technical lemma which is the fractional ana-
logue of Lemma 12 in [4].

Lemma 3.2. Let u be a continuous nonnegative solution of (−�)1/2u � 0 in
D and u = 0 on R

n\D. Assume that D is “narrow” in the sense that any ball
of radius h, Bh(0), contained in B1(0), intersects the complement of D, CD,
satisfies

|Bh ∩ CD|
|Bh| >

1
2
. (3.4)

Then there exists C > 0 such that

sup
B1/2(0)

u � e−C(1−|x|)/h sup
B1(0)

u.

Proof. We prove that in the ball B1−kh(0), k = 1, . . . , N , where N ∼ h−1, we
have

u(x) � 1
C1

sup
B1−(k−1)h(0)

u, (3.5)

for some C1 > 1. Indeed, combining Corollary 3.1 with (3.4) we have

sup
B1−kh(0)

u(x) � 1

1 + η
|CD∩B1−(k−1)h(0)|

|B1−(k−1)h(0)|
sup

B1−(k−1)h(0)

u � 1
C1

sup
B1−(k−1)h(0)

u,

for some universal constant C1 > 1. We can now iterate (3.5) int(1−|x|
h ) times,

and hence

u(x) �
(

1
C1

) 1−|x|
h

sup
B1(0)

u � e−( 1−|x|
h ) log C1 sup

B1(0)

u.

Thus the conclusion holds for C := log C1 > 0. �

In the following, we shall use the notations: for any dimension n � 1, we
consider (n + 1)-dimensional half ball B+

r (x0, 0) := Br(x0, 0) ∩ {y > 0}, which
boundary contains the spherical part ∂+B+

r := ∂Br ∩{y > 0} and the flat one
∂0Br := Br ∩ {y = 0}. Denote by X0 = (x0, 0) and X = (x, y), we recall the
following monotonicity formula by Alt et al. stated in [1].

Lemma 3.3. ([1]) Let u, v ∈ H1
loc(R

n+1) ∩ C(Rn+1) be continuous nonegative
functions such that uv ≡ 0. Assume moreover that −�u � 0, −�v � 0 in
R

n+1 and u(X0) = v(X0) = 0. Then the function

Φ(r) = Φ(X0, u, v, r) =
1
r4

∫
B+

r (X0)

|∇u|2
|X − X0|n−1

dX

∫
B+

r (X0)

|∇v|2
|X − X0|n−1

dX

(3.6)
is nondecreasing for r ∈ (0,+∞).
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Lemma 3.4. Let v = (v1, . . . , vM ) be the singular limit in Theorem 2.1. Denote
by z := v1 − v2 and assume that at x0 ∈ Γ(v(·, 0))

Φ(0+) = lim
r→0+

Φ((x0, 0), z+, z−, r) = λ > 0. (3.7)

Then
(a) the sequence vk(x, y) = 1

λk
v(x0 + λkx, λky), λk → 0, converges to

v1(x, 0) = αx+
1 , v2(x, 0) = βx−

1 ,
∑

j �=1,2

vj(x, 0) = 0;

(b) ∂ν(v1 − v2)(x, 0) = 0, so α = β.

Proof. Without loss of generality, we may assume x0 = 0. First note that v in
harmonic in R

n+1
+ and vi(x, 0) is locally Lipschitz continuous in Ω, then v is

locally Lipschitz continuous in R
n+1
+ ∪Ω, see for instance [8]. We now consider

a blowup sequence

vk(x, y) =
1
λk

v(x0 + λkx, λky) with λk → 0.

Let zk = v1,k − v2,k and

Φ± = Φ±(0, z±, λk) =
1
λ2

k

∫
B+

λk
(0)

|∇z±|2
|X|n−1

dxdy.

In this setting, zk is locally uniform Lipschitz bounded. Using (3.7) there exists
a positive constant c0 such that for k sufficient large

Φ± � c0 > 0. (3.8)

Define now z̃±
k = z±

k /
√

Φ±, then Φ±(0, z̃±
k , 1) = 1. We claim that, up to a

subsequence,
z̃±
k → z̃±

0 strongly in H1
loc(B

+
1 (0)). (3.9)

Indeed, by Remark 2.1 the functions z̃±
k satisfy{−�z̃±

k � 0 in R
n+1
+ ,

∂νz±
k = −μ̃±

1,2,k on Ωk × {0},
(3.10)

where Ωk := Ω/λk and μ̃±
1,2,k are measures defined by

μ̃±
1,2,k(A) =

1
λn−1

k

√
Φ± μ±

1,2(λkA).

We divide the proof of (3.9) into several steps.
Step 1. There exists C > 0, independent of k, such that for every 0 < R < 1,

‖z̃±
k ‖H1(B+

R(0)) � C.

We choose k sufficient large that (3.8) holds and B
+

λk
(0) � R

n+1
+ ∪ Ω. Then∫

B+
1 (0)

|∇z̃±
k |2dxdy � 1

c0

∫
B+

λk
(0)

|∇z̃±
k |2dxdy � C.
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Since ∂ν z̃±
k � 0 on Ωk × {0}, then a standard Brezis–Kato type argument

together with the H1-boundedness yield that ‖z̃±
k ‖L∞(B+

R(0)) � C(R) for every
k.
Step 2. For every given 0 < R < 1, there exists C > 0, independent of k, such
that ‖μ̃±

1,2,k‖M(∂0BR(0)) = μ̃±
1,2,k(∂0BR(0)) � C.

We multiply (3.10) by ϕ(x, y), a cutoff function such that 0 � ϕ � 1,
ϕ = 1 on BR(0) and ϕ = 0 outside B1(0), it holds after an integration by
parts that ∫

B+
1 (0)

∇z̃±
k · ∇ϕdxdy � −

∫
∂0B1(0)

ϕ(x, 0)dμ̃±
1,2,k.

That is

μ̃±
1,2,k(∂0BR(0)) � C(R)‖∇z̃±

k ‖L2(B+
1 (0)) � C(R).

Step 3. Strong H1
loc convergence.

By Steps 1. and 2. we have proved the existence of nonnegative functions
z̃±
0 and nonnegative measures μ̃±

1,2 such that

z̃±
k → z̃±

0 weakly inH1
loc(B

+
1 (0)) and strongly in L2

loc(B
+
1 (0)),

μ̃±
1,2,k ⇀ μ̃±

1,2 weak − ∗ in Mloc(∂0B1(0)).

To obtain the strong H1-convergence, we observe that z̃±
k (x, 0) are locally uni-

form Lipschitz bounded due to the fact that z̃± are locally Lipschitz continu-
ous in x. Thus, from the uniqueness of the limit, we have z̃±

k (x, 0) → z̃±
0 (x, 0)

locally uniformly in ∂0B1(0). Now multiplying (3.10) by (z̃±
k − z̃±

0 )η, with
η ∈ C∞

0 (B1(0)) yields∫
B+

1 (0)

∇z̃±
k · ∇(z̃±

k − ∇z̃±
0 )ηdxdy � −

∫
B+

1 (0)

∇z̃±
k · ∇η(z̃±

k − ∇z̃±
0 )dxdy

−
∫

∂0B1(0)

η(z̃±
k − z̃±

0 )dμ̃±
i,2,k → 0,

and the strong convergence follows immediately.
By (3.9) we have

Φ(0, z̃+
0 , z̃−

0 , s) = 1 for every s � 1. (3.11)

Indeed,

Φ(0, z̃+
k , z̃−

k , s)
Φ(0, z̃+

k , z̃−
k , t)

=
Φ(0, z̃+, z̃−, sλk)
Φ(0, z̃+, z̃−, tλk)

→ 1,

as λk → 0. Using the strong H1-convergence we have Φ(0, z̃+
0 , z̃−

0 , s)
= Φ(0, z̃+

0 , z̃−
0 , s) = 1.

We now reflect evenly z̃±
0 across the hyperplane y = 0, defining

ẑ±
0 (x, y) =

{
z̃±
0 (x, y), y � 0,

z̃±
0 (x,−y), y < 0.



1492 S. Zhang and Z. Liu NoDEA

From (3.11) and Corollary 12.4 in [6], we deduce that ẑ±
0 must be a two-planes

solution with respect to a direction transversal to the plane y = 0, say e1, due
to the even symmetry of ẑ±

0 . Therefore

z̃+
0 = αx+

1 , z̃−
0 = βx−

1 for some α, β > 0.

Using the boundary segregation condition v1(x, 0)v2(x, 0) = 0 we conclude
that

v1,k(x, 0) → α̃x+
1 , v2,k(x, 0) → β̃x−

1 ,

for some α̃, β̃ > 0 depending on λ. Note that (1/λk)vj(λkx, 0) is Lipschitz and
supported in narrower and narrower domains, so vj(x, 0) ≡ 0.

(b) follows from the fact that ∂ν(v1 − v2 −∑
j �=1,2)(x, 0) � 0 and ∂ν(v2 −

v1 −∑
j �=1,2)(x, 0) � 0, so we must have α̃ = β̃. �

Proposition 3.1. Assume the hypotheses of Lemma 3.4 hold. Then
∑

j>2 vj(x, 0)
≡ 0 in a neighborhood of x0.

Proof. The proof follows the iteration scheme used in [4]. By the assumption
of Lemma 3.4, we can assume in B1(0)

|(v1 − v2) − x1| � h0 and

∣∣∣∣∣∣
∑

j �=1,2

vj

∣∣∣∣∣∣ � h0,

with h0 > 0 small. We decompose v1 − v2 = w0 + z0 such that⎧⎨
⎩

−�w0 = 0 in B+
1 (0),

w0 = v1 − v2 on ∂+B1(0) := ∂B1(0) ∩ {y � 0},
∂νw0 = 0 on ∂0B1(0).

z0 is the part comes from the presence of vj , j > 2. Since |w0 −x1|∂+B1(0) � h0

we have |w0 − (v1 − v2)| � 2h0. Reflect evenly w0 across the hyperplane y = 0
and use the standard interior estimate give that

|∇x(w0 − x1)| = |(∇xw0) − e1| � Ch0 in ∂0B1/2(0),

where we have used the fact that ∂yw0(x, 0) = 0. We want to show that z0 can
be controlled by

∑
j>2 vj . This can be seen by the equations they satisfy,⎧⎨

⎩
−�z0 = �w0 − �(v1 − v2) = 0 in B+

1 (0),
z0 = (v1 − v2) − w0 = 0 on ∂+B1(0),
−∂ν

∑
j>2 vj � ∂νz0 � ∂ν

∑
j>2 vj on ∂0B1(0).

(3.12)

Let β0 :=
∑

j>2(sup
B

+
1

vj − vj) then
⎧⎨
⎩

−�β0 = 0 in B+
1 (0),

β0 � 0 on ∂+B1(0),
∂νβ0 = −∂ν

∑
j>2 vj on ∂0B1(0).

(3.13)

By maximum principle we have

−Ch0 � −β0 � z0 � β0 � Ch0 in B
+

1 (0).
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Therefore, for a small number h0 to be chosen, we have the starting
hypothesis: in B+

1 (0), we have
(a) |w0 − (v1 − v2)| � h0,
(b) |∇xw(x, 0) − e1| � h0,
(c) suppvj(x, 0) for j > 2 is contained in the h-neighborhood of the Lipschitz

level surface w0(x, 0) = 0.
Note that from hypothesis (c),

∑
j>2 vj(x, 0) fulfills the assumptions of Lemma

3.2. Thus in the ball ∂0B1−s(0) we have∑
j>2

vj(x, 0) � h0e
−cs/h0 � h2

0, (3.14)

provided h0 is small enough and s = h
1/2
0 /2. In particular, if we decompose

v1 − v2 = w1 + z1 such that w1 satisfies⎧⎨
⎩

−�w1 = 0 in B+
1−s(0),

w1 = v1 − v2 on ∂+B1−s(0),
∂νw1 = 0 on ∂0B1−s(0),

then z1 � h2
0. Therefore

|w1 − (v1 − v2)| = |z1| � h2
0 in B

+

1−s(0). (3.15)

In the following, we need a decay estimate concerning the comparison of
the gradients of w1 and w0. Reflect evenly w1 and w0 across the hyperplane
y = 0 and take a cut-off function η = 1 in B1−2s(0), η ≡ 0 outside B1−s(0),
we obtain that∫

B1−s(0)

|∇(w1 − w0)|2η2dxdy � C

∫
B1−s(0)

η2(v1 − v0)2|∇η|2dxdy � Ch0,

(3.16)
where we have used the fact that |w1−w0| = |(v1−v2)−w0| � h0 on ∂B1−s(0)
and both are harmonic in B1−s(0). Note also that ∇(w1 − w0) is harmonic in
B1−s(0), combining (3.16) with standard Moser iteration gives that

sup
B1−2s(0)

|∇(w1 − w0)| � Ch
1/2
0 .

In particular, by the even symmetry we have

sup
∂0B1−2s(0)

|∇x(w1 − w0)(x, 0)| � Ch
1/2
0 .

Finally, we define the iteration (starting with R0 = 1)

hk = h2
k−1, Rk = Rk−1 − h

1/2
k−1. (3.17)

We know that if h0 is small enough, then hk will converge to 0 very fast, and
limk→+∞ Rk � 1/2. In each ball B+

Rk
(0) we decompose v1 − v2 = wk + zk,

where ⎧⎨
⎩

−�wk = 0 in B+
Rk

(0),
wk = v1 − v2 on ∂+BRk

(0),
∂νwk = 0 on ∂0BRk

(0).
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Then in B+
Rk

(0), we have

(a) |wk − (v1 − v2)| � hk,
(b) |∇x(wk − wk−1)(x, 0)| � h

1/2
k−1,

(c) |∇xwk(x, 0) − e1| �
∑k

j=1 h
1/2
j−1 � 1/4,

(d) the level surface wk(x, 0) is Lipschitz with Lipschitz constant less than 1.

This completes the proof Proposition 3.1. �

4. Almgren monotonicity formula

In this section we prove Almgren’s monotonicity formula that plays a crucial
role in establishing the Hausdorff dimension of the singular set. First, we know
that

Lemma 4.1. Let Ω′ � Ω be fixed and define z = vi − vj for every i �= j. Then
for every x0 ∈ Γ(v(·, 0)) ∩ Ω′, the following properties hold:

(i) if Φ((x0, 0), z+, z−, 0+) = 0, then |∇z(x0, 0)| = 0;
(ii) if Φ((x0, 0), z+, z−, 0+) �= 0, then |∇z(x0, 0)| �= 0.

Proof. To show the first part, we assume by contradiction that there exist
xk → x0 and rk → 0 such that

lim
k→∞

1
rn+1
k

∫
B+

rk
(xk,0)

|∇z|2dxdy = a with a ∈ (0,+∞] (4.1)

We set Lk = 1
rn+1

k

∫
B+

rk
(xk,0)

|∇z|2dxdy and consider the sequence of functions

zk(x, y) =
1

Lkrk
z(xk + rkx, rky) for x ∈ Ω′ − xk

rk
, y � 0.

By (4.1) we have ‖∇zk‖L2(B+
1 )(0) = 1 for every n, and

1
rn+1

∫
B+

r (0)

|∇zk|2dxdy =

rn+1
k

rn+1

∫
B+

rrk
(0)

|∇z|2dxdy(
1

rn+1
k

∫
B+

rk
(xk,0)

|∇z|2dxdy
)2 .

Since limk→∞ 1
rn+1

k

∫
B+

rk
(xk,0)

|∇z|2dxdy = a > 0, then for rk small enough we
have

1
rn+1
k

∫
B+

rk
(xk,0)

|∇z|2dxdy >
a

2
.

Note also that z ∈ H1
loc(R

n+1
+ ). Hence for every 1 < r < r−1

k dist(Ω′, ∂Ω), we
have

1
rn+1

∫
B+

r (0)

|∇zk|2dxdy � C. (4.2)

This implies that the sequence {zk} admits a nontrivial weak limit z ∈
H1

loc(R
n+1
+ ).
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On the other hand, from the semi-continuity of Φ((x0, 0), z+, z−, r), given
ε > 0, there exist δ and τ such that

Φ((xn, 0), z+, z−, δ) � ε for xn ∈ ∂0Bτ (x0),

that is
1

δn+1

∫
B+

δ (xn,0)

|∇z+|2dxdy · 1
δn+1

∫
B+

δ (xn,0)

|∇z−|2dxdy � ε.

Scaling to (z+
k , z−

k ) we can distinguish among three different cases.
Case 1. Both ‖∇z+‖L2(B+

R(0)) and ‖∇z−‖L2(B+
R(0)) are infinitesimal for every

R > 0. In this situation, we have that there exists c � 0 such that zk → c.
Since by even extension zk is subharmonic and zk(0, 0) = 0, we infer that
c � 0.
Case 2. There exists c > 0 such that ‖∇z+‖L2(B+

R(0)) � c > 0 while
‖∇z−‖L2(B+

R(0)) → 0. Testing the equation{−�z+
k � 0 in B+

R(0),
∂νz+

k � 0 on ∂0BR(0),

with z+
k we obtain that in the limit z+

k ⇀ z �= 0, and thus z−
k → 0 strongly in

H1(B+
R(0)). Reflecting evenly across y = 0 and using again the subharmonicity

of z as before, we conclude that zk → c � 0.
Case 3. There exists c > 0 such that ‖∇z−‖L2(B+

R(0)) � c > 0 while
‖∇z+‖L2(B+

R(0)) → 0. Reasoning as in the previous case, we obtain that z+
k → 0

strongly in H1(B+
R(0)), thus zk → z = 0 by reflecting evenly across y = 0 and

using the subharmonicity of z.
In any case, z−

k → 0 and zk ⇀ z � 0 in H1
loc(R

n+1
+ ) for all i �= j. This

implies in particular that z(x, 0) = (vi − vj)(x, 0) = 0 in H
1/2
loc (Rn).

So we conclude that if we extend z oddly across {y = 0}, we obtain a
harmonic function defined on R

n+1 for which Φ(0, z+, z−, r) � C for all r � 1.
From the Morrey inequality, we have that for any X ∈ R

n+1, |X| � 1,

|z(X) − z(0)| � C|X|1− n+1
2 ‖∇z‖L2(2|X|),

in contradiction with the fact that z is harmonic in R
n+1 and nontrivial, thanks

to the classical Liouville theorem.
On the other hand, if Φ((x0, 0), z+, z−, 0+) �= 0 for some (vi − vj) and

x0 ∈ Γ(v(·, 0)), then according to the clean up lemma ∂νz(x, 0) = 0 in a
neighborhood of x0. In particular, |∇xz(x, 0)| �= 0. �

We can now prove Almgren’s monotonicity formula adapted to our set-
ting. As mentioned in the introduction, due to the lack of variational structure,
Almgren’s frequency formula does not valid for the singular limit v in current
situation. Nevertheless, thanks to Lemma 4.1, we can prove the Almgren’s
monotonicity formula for a vector function Z, whose nodal set coincide with
that of v. Precisely, we denote by Z the vector function with M(M−1)

2 compo-
nents

Z := (z1,2, z1,3, · · · , zM−1,M ), where zi,j = vi − vj , i < j. (4.3)
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In this setting, the nodal set Γ(v(., 0)) coincides with the set

Γ(Z(·, 0)) := {x ∈ Ω : zi,j(x, 0) = 0,∀i < j}.

Define for every x0 ∈ Ω′ � Ω and r ∈ (0,dist(x0, ∂Ω)) the quantity

E(r) = E(x0, Z, r) =
1

rn−1

∫
B+

r (x0,0)

∑
i<j

|∇zi,j |2dxdy

H(r) = H(x0, Z, r) :=
1
rn

∫
S+

r (x0,0)

∑
i<j

z2
i,jdσ,

then both E and H are absolutely continuous functions on r. We define the
Almgren’s frequency as

N(x0, Z, r) =
E(x0, Z, r)
H(x0, Z, r)

.

Lemma 4.2. (Pohozaev identity) Let Z be given in (4.3). Then for every x0 ∈
Ω′ and r ∈ (0, dist(x0, ∂Ω)), the following identity holds

(1 − n)
∫

B+
r (x0,0)

∑
i<j

|∇zi,j |2dxdy = r

∫
∂+B+

r (x0,0)

∑
i<j

[
2(∂νzi,j)2 − |∇zi,j |2

]
dσ.

(4.4)

Proof. Without loss of generality, we may assume (x0, 0) = (0, 0). By using
the following Pohozaev type identity

div

{
(X,∇z)∇z − X

|∇z|2
2

}
+
(

n − 1
2

)
|∇z|2 = (X,∇z)�z.

for z = zi,j and integrating it over B+
r := B+

r (0), we have

(1 − n)
∫

B+
r

|∇zi,j |2dxdy − r

∫
∂+B+

r

(2(∂νzi,j)2 − |∇zi,j |2)dσ

=
∫

∂0Br

2(x,∇xzi,j)∂νzi,jdx.

We claim that the last term in above equality equals to 0, which finishes
the proof of the lemma by summing the identities for i < j. Indeed, Fix ε > 0
and define the set Sε = {x ∈ Ω′\Γ(v(x, 0)) :

∑
i<j |∇zi,j(x, 0)| � ε}. Hence

lim
ε→0+

∑
i<j

∣∣∣∣
∫

∂0Br∩Sε

(x,∇xzi,j)∂νzi,jdx

∣∣∣∣ � lim
ε→0+

∑
i<j

εr

∫
∂0Br∩Sε

|∂νzi,j |dx = 0.

(4.5)
Fix x ∈ Γ(v(·, 0)) ∩ (Ω′\(Γ(v(·, 0)) ∪ Sε)), then we have |∇zi,j(x, 0)| �= 0 for
some i < j. By Lemma 4.1, Φ((x, 0), z+

i,j , z
−
i,j , 0

+) �= 0. Then Proposition 3.1
implies that in a small neighborhood of x there exist exactly two components
vi(x, 0), vj(x, 0). Hence ∂νzi,j(x, 0) = 0 in ∂0Bγ(x, 0) and

∑
i<j

∫
∂0Bγ(x,0)∩(Ω′\Sε)

(x,∇xzi,j)∂νzi,jdx = 0. (4.6)
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Therefore ∑
i<j

∫
∂0Br∩(Ω′\Sε)

(x,∇xzi,j)∂νzi,jdx = 0,

and by combining this with (4.5) we complete the proof of the lemma. �

Theorem 4.1. Let Ω̃ � Ω. For every x0 ∈ Ω̃, the Almgren frequency function
N(x0, Z, r) is nondecreasing for r∈(0, dist(x0, ∂Ω)), and the limit N(x0, Z, 0+)
:= limr→0+ N(x0, Z, r) exists and is finite. Moreover,

d

dr
log H(r) =

2N(r)
r

. (4.7)

Proof. We follow the same proof as for the harmonic functions case, see [18].
We compute the derivative of E(r) and use (4.4), to obtain

E′(r) =
1 − n

rn

∫
B+

r (x0,0)

∑
i<j

|∇zi,j |2dxdy +
1

rn−1

∫
∂+B+

r (x0,0)

∑
i<j

|∇zi,j |2dσ

=
2

rn−1

∫
∂+B+

r (x0,0)

∑
i<j

(∂νzi,j)2dσ. (4.8)

Now, if we multiply system (2.3) by zi,j and integrate by parts in B+
r (x0, 0)

we can rewrite E as

E(r) =
1

rn−1

∫
∂+B+

r (x0,0)

∑
i<j

zi,j∂νzi,jdσ.

Concerning the derivative of H(r), we find

H ′(r) =
2
rn

∫
∂+B+

r (x0,0)

∑
i<j

zi,j∂νzi,jdσ.

Thus, by performing a direct computation, (4.7) holds whenever H(x0, Z, r) >
0 for r ∈ (0,dist(x0, ∂Ω)), as well as

d

dr
N(r) =

E′H − H ′E
H2

=
2

r2n−1H2

⎡
⎣∫

∂+Br(x0,0)

∑
i<j

∂νz2
i,jdσ

∫
∂+Br(x0,0)

∑
i<j

z2
i,jdσ

−
⎛
⎝∫

∂+Br(x0,0)

∑
i<j

zi,j∂νzi,j

⎞
⎠

2

dσ

⎤
⎥⎦ � 0, (4.9)

by the Cauchy–Schwarz inequality. The only thing left to prove is that
H(x0, Z, r) > 0 for every x ∈ Ω̃ and 0 < r < dist(x0, ∂Ω). Since v(x, 0) �≡ 0 in
Ω, we can suppose without loss of generality that v(x, 0) �≡ 0 in Ω̃, and thus
Z(x, 0) �≡ 0 in Ω̃. Now we have the following claim.
Claim. Γ(v(·, 0)) has empty interior.



1498 S. Zhang and Z. Liu NoDEA

Assume not, and let x1 ∈ Γ(v(·, 0)) be such that d1 := dist(x1, ∂Γ(v(·, 0)))
< dist(x1, ∂Ω) (recall that we are assuming that Z(x, 0) is not identically zero
in Ω̃). We have

H(x1, Z, r) > 0 for r ∈ (d1, d1 + δ),

for some small δ > 0. In fact, if there exist ε > 0 such that H(d1 + ε) = 0, we
would have Z = 0 on ∂+Bd1+ε(x1, 0) and{−�z±

i,j � 0 in B+
d1+ε(x1, 0),

∂νz±
i,j � 0 on ∂0Bd1+ε(x1, 0).

(4.10)

Then by multiplying above equation by z±
i,j and integrating by parts in B+

d1+ε

(x1, 0) we obtain zi,j ≡ 0 in B+
d1+ε(x1, 0) for every i < j, in contradiction with

the definition of d1. By what we have done so far H(r) = H(x1, Z, r) verifies
, in (d1, d1 + δ), the initial value problem{

H ′(r) = a(r)H(r) for r ∈ (d1, d1 + δ),
H(d1) = 0,

with a(r) = 2N(r)/r, which is continuous also at d1 by the monotonicity of
N(r). Then by uniqueness H(r) ≡ 0 for r > d1, a contradiction with the
definition of d1.

If there were x0 ∈ Ω̃ and r0 ∈ (0, dist(x0, ∂Ω)) such that H(x0, Z, r0) = 0,
then similar as in the proof of above Claim., we would have Z ≡ 0 in B+

r0(x0, 0),
which contradicts the fact that Γ(v(·, 0)) has empty interior. �

Remark 4.1. As observed in the above proof, Γ(v(·, 0)) has empty interior
unless v(x, 0) ≡ 0 (and thus Z(x, 0) ≡ 0).

Corollary 4.1. Given Ω̃ � Ω there exists C > 0 such that

H(x0, Z, r2) � H(x0, Z, r1)
(

r2

r1

)2C

,

for every x0 ∈ Ω̃ and 0 < r1 < r2 < dist(Ω̃, ∂Ω).

Proof. For Ω̃ fixed, we let r̃ be positive constant such that r2 � r̃ < dist(Ω̃, ∂Ω).
Let also C := supx0∈Ω̃ |N(x0, Z, r̃)| < +∞. Then

d

dr
log H(x0, Z, r) =

2
r
N(x0, Z, r)

� 2
r
N(x0, Z, r̃) � 2C

r
,

for every 0 < r < r̃. Now we integrate between r1 and r2, 0 < r1 < r2 < r̃,
obtaining

H(x0, Z, r2)
H(x0, Z, r1)

�
(

r2

r1

)2C

,

as desired. �

Corollary 4.2. For each x0 ∈ Γ(v(·, 0)) we have N(x0, Z, 0+) � 1.
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Proof. Suppose not. Since the limit N(x0, Z, 0+) exists, we obtain the existence
of r and ε > 0 such that N(x0, Z, r) � 1− ε for all 0 � r � r. By Theorem 4.1
we have that

d

dr
log H(x0, Z, r) � 2

r
(1 − ε).

Integrating this inequality between r and r (r < r) yields

H(x0, Z, r) � C(r)r2(1−ε), (4.11)

But we know, ∀α ∈ (0, 1), Z is C0,α continuous function at (x0, 0). This means

H(x0, Z, r) � Cr2α,

by the fact that Z(x0, 0) = 0. We can choose α > 1− ε
2 , then above inequality

contradicts (4.11) for r small. �

Corollary 4.3. The map x0 �→ N(x0, Z, 0+) is upper semi-continuous.

Proof. Take a sequence xn → x in Ω. By Theorem 4.1, for some small r > 0,

N(xn, Z, r) � N(xn, Z, 0+).

By taking the limit superior in n and afterwards the limit as r → 0+ we obtain
N(x,Z, 0+) � lim supn N(xn, Z, 0+). �

5. Compactness of the blowup sequences

The frequency formula in Theorem 4.1 above allows to study the blowups. Let
Ω̃ � Ω and take some sequence xk ∈ Ω̃, tk ↓ 0. We define a blowup sequence
by

Zk(x, y) =
Z(xk + tkx, tky)

ρk
for x ∈ Ωk :=

Ω − xk

tk
and y > 0.

with

ρ2
k = ‖Z(xk + tk·, tk·)‖2

L2(∂+B+
1 (0))

=
1
tnk

∫
∂+B+

tk
(xk,0)

Z2dσ = H(xk, Z, tk).

We observe that ‖Zk‖L2(∂+B+
1 ) = 1 and Zk solves the system{−�zk

i,j = 0 in R
n+1
+ ,

∂νzk
i,j = −μk

i,j in Ωk × {0},
(5.1)

with μk
i,j(E) = 1

ρktn−1
k

μi,j(xk + tkE).

In this setting, for any z0 ∈ Ωk and r ∈ (0,dist(z0, ∂Ωk)),

E(z0, Zk, r) =
1

rn−1

∫
B+

r (z0,0)

∑
i<j

|∇zi,j |2dxdy,

and the following identities hold:

E(z0, Zk, r) =
1
ρ2

k

E(xk + tkz0, Z, tkr), H(z0, Zk, r) =
1
ρ2

k

H(xk + tkz0, Z, tkr),

(5.2)
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and hence
N(z0, Zk, r) = N(xk + tkz0, Z, tkr). (5.3)

We observe that (Ωk − xk)/tk → R
n as k → +∞ because dist(xk, ∂Ω) �

dist(Ω̃, ∂Ω) > 0 for every k. In the remaining part of this section we will prove
the following convergence result and present some of its main consequence.

Theorem 5.1. Under previous notations, there exists Z ∈ C0,1
loc (Rn+1

+ ) ∩ H1
loc

(Rn+1
+ ) such that, up to a subsequence, Zk → Z in C0,α

loc (Rn+1
+ ) for every 0 <

α < 1 and strongly in H1
loc(R

n+1
+ ). More precisely, there exists μi,j ∈ Mloc(Rn)

(the set of measures μ on R
n which are Radon measures when restricted to any

compact set), concentrated on on Γ(Z(·, 0)), such that μk
i,j → μi,j weak − � in

Mloc(Rn), Z solves {−�zi,j = 0 in R
n+1
+ ,

∂νzi,j = −μi,j in R
n × {0},

(5.4)

and it holds

(1 − n)
∫

B+
r (x0,0)

∑
i<j

|∇zi,j |2dxdy = r

∫
∂+B+

r (x0,0)

∑
i<j

[
2(∂νzi,j)2 − |∇zi,j |2

]
dσ

(5.5)
for every (x, 0) ∈ R

n × {0} and r > 0.

In the proof of Theorem 5.1, we need the following lemma.

Lemma 5.1. For any given R > 0 we have ‖Zk‖H1(B+
R(0)) � C, independently

of k.

Proof. Let C be a positive constant such that Corollary 4.1 holds for the
previously fixed domain Ω̃. We can assume, after taking k so large that tk,
tkR � r̃ < dist(Ω̃, ∂Ω),∫

∂+B+
R(0)

∑
i<j

(zk
i,j)

2dσ =
1
ρ2

k

∫
∂+B+

R(0)

∑
i<j

z2
i,j(xk + tkx, tky)dσ

=
1

ρ2
ktnk

∫
∂+B+

tkR(xk,0)

∑
i<j

z2
i,jdσ

= Rn H(xk, Z, tkR)
H(xk, Z, tk)

� Rn

(
tkR

tk

)2C

:= C(R)Rn,

where the last inequality follows by Corollary 4.1. Moreover,
1

Rn−1

∫
B+

R(0)

∑
i<j

|∇zk
i,j |2dxdy

=
H(0, wk, R)
H(0, Zk, R)

1
Rn−1

∫
B+

R(0)

∑
i<j

|∇zk
i,j |2dxdy

� C(R)
H(0, wk, R)

1
Rn−1

∫
B+

R(0)

∑
i<j

|∇zk
i,j |2dxdy
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=
C(R)

H(xk, Z, tkR)
1

(tkR)n−1

∫
B+

tkR(xk,0)

∑
i<j

|∇zi,j |2dxdy

= C(R)N(xk, Z, tkR) � C(R)N(xk, Z, r̃) � C ′(R),

where we have used identity (5.2), the continuity of the function x �→ N(x,Z, r̃),
as well as Theorem 4.1. �

Remark 5.1. Since ∂v(zk
i,j)

± � 0 in Ω×{0}, then the even extension of (zk
i,j)

±

through {y = 0} is subharmonic in Ωk × R. This together with the H1
loc-

boundedness provided by the previous lemma yield that ‖Zk‖L∞(B+
R(0)) � C,

independently of k.

Lemma 5.2. For any given R > 0 there exists C > 0, independent of k, such
that ‖μi,k‖M(∂0BR(0)) = μi,k(∂0BR(0)) � C for every i = 1, . . . ,M .

Proof. Fixed R > 0 and let k sufficiently large such that ∂0B2R ⊂ Ωk × {0}.
We multiply (5.1) by ϕ, a cutoff function such that 0 � ϕ � 1, ϕ = 1 in BR(0)
and ϕ = 0 in R

n+1\B2R(0). It holds after an integrating by parts that∫
B+

2R

∇(zk
i,j)

± · ∇ϕdxdy � −
∫

∂0B2R

ϕ(x, 0)d(μk
i,j)

±.

That is

(μk
i,j)

±(∂0BR) � C(R)‖∇zk
i,j‖L2(B+

R) + C(R)‖zk
i,j‖L∞(B+

R)
� C̃(R),

by Lemma 5.1 and Remark 5.1. �

Up to now, we have proved the existence of a non trivial function Z ∈
H1

loc(R
n+1
+ )∩L∞

loc(R
n+1
+ ) and μi,j ∈ Mloc(Rn) such that, up to a subsequence,

Zk ⇀ Z weakly in H l
loc(R

n+1
+ ), μk

i,j ⇀ μi,j weak- � in Mloc(Rn).

Moreover we have in distributional sense that{−�zi,j = 0 in R
n+1
+ ,

∂νzi,j = −μi,j in R
n × {0}.

The next step is to prove that the convergence Vk → V is indeed strongly
in H1

loc and in C0,α
loc . We begin with the following estimate for H(r)

Lemma 5.3. Fix R > 0. Then there exist constants C, r, k > 0 such that for
k � k we have

H(x,Zk, r) � Cr2,

for 0 < r < r and (x, 0) ∈ ∂0B2R(0) ∩ Γ(vk(·, 0)). In particular, Zk is uniform
Lipschitz bounded in B+

R(0).

Proof. Take k so large that xk+tkx ∈ Ω̃. Suppose moreover that x ∈ Γ(vk(·, 0)),
then Theorem 4.1 and Corollary 4.2 yield that for x ∈ ∂0B2R(0) and 0 < r < r,

d

dr
log

(
H(x,Zk, r)

r2

)
=

2
r

(N(x,Zk, r) − 1) � 0,
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which implies (after integration)

H(x,Zk, r)
r2

� H(x,Zk, r)
r2 � C ′‖Zk‖2

L∞(B+
2R+r(0))

� C(R).

By the method of [3] (see p. 853 therein), this bound implies the uniform
Lipschitz bound for Zk. �

By the compact embeddings C0,1(B+
R(0)) ↪→ C0,α(B+

R(0)) for α ∈ (0, 1)
we deduce the existence of a convergence subsequence Zk → Z in C0,α

loc . Now
we turn to the proof of the H1-strong convergence, then we shall finish the
proof of Theorem 5.1.

Lemma 5.4. For every R > 0 we have (up to a subsequence) Zk → Z strongly
in H1(B+

R(0)).

Proof. For every i = 1, . . . ,M , we have in distributional sense that{−�zk
i,j = 0 in B+

2R,
∂νzk

i,j = −μk
i,j in ∂0B2R,

{−�zi,j = 0 in B+
2R,

∂νzi,j = −μi,j in ∂0B2R.

Now, subtracting the second equation from the first one and testing the result
by (zk

i,j − zi,j)ϕ on B+
2R(0), where ϕ is a cutoff function such that 0 � ϕ � 1,

ϕ = 1 in BR(0) and ϕ = 0 in R
n+1\B2R(0), we obtain∫

B+
2R(0)

ϕ|∇(zk
i,j − zi,j)|2dxdy = −

∫
B+

2R(0)

(zk
i,j − zi,j)∇ϕ · ∇(zk

i,j − zi,j)dxdy

−
∫

∂0B2R(0)

ϕ(zk
i,j − zi,j)dμk

i,j

+
∫

∂0B2R(0)

ϕ(zk
i,j − zi,j)dμi,j .

By using the uniform convergence vi,k → vi in B+
2R(0), we have∣∣∣∣∣

∫
B+

2R(0)

(zk
i,j − zi,j)∇ϕ · ∇(zk

i,j − zi,j)dxdy

∣∣∣∣∣
� C‖zk

i,j − zi,j‖L∞(B+
2R(0))

∫
B+

2R(0)

|∇zk
i,j |2dxdy

→ 0,

and ∣∣∣∣∣−
∫

B0
2R(0)

ϕ(zk
i,j − zi,j)dμk

i,j +
∫

B0
2R(0)

ϕ(zk
i,j − zi,j)dμi,j

∣∣∣∣∣
� ‖zk

i,j − zi,j‖L∞(B+
2R(0))

(μk
i,j(B

0
2R(0)) + μi,j(B

0
2R(0))) → 0.

Hence, ∫
B+

2R(0)

ϕ|∇(zk
i,j − zi,j)|2dxdy → 0,

which, together with the weak H1
loc convergence yields the desired result. �
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End the Proof of Theorem 5.1. After Lemma 5.4 we are left to prove that the
identity (5.5) holds and that the measures μi,j are concentrated on Γ(Z(·, 0))
(for i < j).

As for the proof of (5.5), we note that Zk satisfies the following Pohozaev
identity

(1 − n)
∫

B+
r (0)

∑
i<j

|∇zk
i,j |2dxdy = r

∫
∂+B+

r (0)

∑
i<j

[2(∂νzk
i,j)

2 − |∇zk
i,j |2]dσ.

By strong H1
loc convergence,

(1 − n)
∫

B+
r (0)

∑
i<j

|∇zk
i,j |2dxdy → (1 − n)

×
∫

B+
r (0)

∑
i<j

|∇zi,j |2dx dy as k → +∞.

We need to prove that

r

∫
∂+B+

r (0)

∑
i<j

(∂νzk
i,j)

2dσ → r

∫
∂+B+

r (0)

∑
i<j

(∂νzi,j)2dσ

and

r

∫
∂+B+

r (0)

∑
i<j

|∇zk
i,j |2dσ → r

∫
∂+B+

r (0)

∑
i<j

|∇zi,j |2dσ,

as k → +∞. We only prove the second convergence, which implies also the
first one. Indeed, the strong H1

loc convergence implies that

∫ R

0

∫
∂+B+

r (0)

∑
i<j

|∇zk
i,j − ∇zi,j |2dσdr → 0.

So that
∫

∂+B+
r (0)

|∇zk
i,j |2dσ → ∫

∂+B+
r (0)

|∇zi,j |2dσ for a.e. r and there exists
an integrable function f ∈ L1(0, R) such that, up to a subsequence

∫
∂+B+

r (0)

|∇zk
i,j |2dσ � f(r) for a.e. r ∈ (0, R),

for every i < j. We can use the Dominated Convergence Theorem. Since every
subsequence of {Zk} admits a convergent sub-subsequence, and the limit is
the same, we conclude the convergence for the entire approximating sequence.

As for the proof of the second claim, we start by fixing an R > 0 and by
considering a cutoff function ϕ equal to one in ∂0BR(0), zero outside ∂0B2R.
Since ∫

∂0B2R(0)

(zk
i,j)

±ϕd(μk
i,j)

± =
∫

∂0B2R(0)∩Γ(Zk(·,0))
(zk

i,j)
±ϕd(μk

i,j)
±,
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then

0 = lim
k

∫
∂0B2R(0)

(zk
i,j)

±ϕd(μk
i,j)

±

= lim
k

∫
∂0B2R(0)

((zk
i,j)

± − z±
i,j)ϕd(μk

i,j)
± + lim

k

∫
∂0B2R(0)

z±
i,jϕd(μk

i,j)
±

=
∫

∂0B2R(0)

z±
i,jϕdμ±

i,j .

Thus
∫

∂0BR(0)
z±

i,jdμ±
i,j = 0 for every R > 0 and in particular μ±

i,j(K) = 0 for
every compact set K ∈ ((Rn × {0}) ∩ {z±

i,j > 0}), which proves the second
claim. �

Corollary 5.1. Under the previous notations, suppose that one of these situa-
tions occurs:

1. xk = x0 for every k,
2. xk ∈ Γ(Z(·, 0)) and xk → x0 ∈ Γ(Z(·, 0)) with N(x0, Z, 0+) = 1.

Then N(0, Z, r) = N(x0, Z, 0+) =: α for every r > 0, and Z = rαG(θ),
where (r, θ) are the generalized polar coordinates centered at the origin.

Proof. We divide the proof into two steps.
Step 1. N(0, Z, r) is constant. First observe that N(0, Zk, r) = N(xk, Z, tkr)
and that Theorem 5.1 yields limk N(0, Zk, r) = N(0, Z, r). As for the right
hand side, if xk = x0 for some x0, then by Theorem 4.1, limk N(x0, Z, tkr) =
N(x0, Z, 0+) for every r > 0. In the second situation, we claim that limk N(xk,

Z, tkr) = 1. let r̃ be a positive constant such that r̃ � dist(Ω̃, ∂Ω). For any
given ε > 0 take 0 < r = r(ε) � r̃ such that

N(x0, Z, r) � 1 + ε/2 for every 0 < r � r.

Moreover there exists δ0 > 0 such that

N(x,Z, r) � 1 + ε for (x, 0) ∈ ∂0Bδ0(x0, 0) ⊂ Ω̃ × {0}.

Thus, again by Theorem 4.1, we obtain

N(x,Z, r) � 1 + ε,

for every (x, 0) ∈ ∂0Bδ0(x0, 0) and 0 < r � r. Now the claim follows by also
taking into account Corollary 4.2.
Step 2. Z is homogeneous. We first note that (4.9) holds with zi,j replaced by
zi,j . Moreover, by Step 1., d

drN(0, Z, r) = 0. This together with the equality
condition in the Cauchy–Schwarz inequality, yields that there exists C(r) > 0
such that ∂νZ = C(r)Z. Thus

2C(r) =
2
∫

∂+B+
r

∑
i<j zi,j∂νzi,jdσ∫

∂+B+
r

∑
i<j z2

i,jdσ
=

d

dr
log H(0, Z, r) =

2
r
N(0, Z, r) =

2
r
α,

and hence C(r) = α
r and Z(X) = rαG(θ) in R

n+1
+ . �
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Proposition 5.1. Let Z be defined in (4.3). Then there exists δn > 0 (depending
only on the dimension) such that, for every x0 ∈ Γ(Z(·, 0)), either

N(x0, Z, 0+) = 1 or N(x0, Z, 0+) � 1 + δn.

Proof. Consider a blowup sequence at a fixed center (x0, 0) ∈ Γ(Z(·, 0))

Zk(x, y) =
Z(x0 + tkx, tky)

ρk
with ρ2

k = H(x0, Z, tk) and tk ↓ 0.

By Theorem 5.1 and Corollary 5.1 (case 1.) we have that, up to a subsequence,
Zk → Z uniformly, where

Z = rαG(θ), with α = N(x0, Z, 0+).

Moreover, after an even extension across {y = 0} (still denote by Z), Z is
harmonic in R

n+1\Γ(Z(·, 0)), and

− �Sngi,j = λgi,j in ∂B1(0)\Γ(Z(·, 0)), (5.6)

with λ = α(α + n − 1). Moreover, each component zi,j is harmonic in the
open set {zi,j > 0}, which implies that on every given connected component
A ⊆ {gi,j > 0} ⊆ ∂B1(0), λ = λ1(A) (the first eigenvalue). We divide the rest
of the proof into several steps.
Step 1. ∀(x0, 0) ∈ Γ(Z(·, 0))\{(0, 0)} we have

N(0, Z, 0+) � N(x0, Z, 0+).

Moreover, if N(x0, Z, 0+) = N(0, Z, 0+), then Z is constant along the direction
parallel to (x0, 0), that is Z(x + tx0, y) = Z(x, y), for every t > 0 and (x, y) ∈
R

n+1
+ .

Take, for every λ > 0, the rescaled function Z0,λ = Z(λx, λy) = λαZ(x, y)
= λαZ(x, y). By the definition of N we obtain that for every r > 0

N(x0, Z, r) = N(x0, λ
αZ, r) = N(x0, Z0,λ, r) = N(λx0, Z, λr).

Therefore, N(λx0, Z, 0+) = N(x0, Z, 0+) and the first result follows from the
upper semi-continuity of the function x �→ N(x,Z, 0+).

Moreover, if N(x0, Z, 0+) = N(0, Z, 0+), then the above discussion in
fact shows, ∀r > 0, N(x0, Z, r) ≡ α. So, Z is homogeneous with respect to
(x0, 0). Let X = (x0, 0), Y = (x, y)), then

Z(X + λY ) = λαZ(X + Y ), ∀Y.

Recalling that Z is also homogeneous with respect to (0, 0), we get, ∀t > 0,

Z(Y + tX) = λ−αZ(λY + tX) = Z(Y + λ−1tX), ∀Y.

Here λ > 0 can be choose arbitrarily, too. By taking λ → +∞ and using the
continuity of Z, we get Z(Y +tX) = Z(Y ), ∀Y , that is, Z(x+tx0, y) = Z(x, y),
∀(x, y), t > 0.
Step 2. If there are at least 3 connected components of {Z(·, 0) > 0}, then
there exists a universal constant δ(n) > 0 such that N(0, Z, 0+) � 1 + δ(n).

Since there at least 3 components of {Z(·, 0) > 0}, then one of them,
denote by C, must satisfy Hn−1(C) � Hn−1(∂B0

1(0))/3. By the isoperimetric
inequality (see for instance [17]), if we choose a half space H0 = {xn � 0}∩{y =
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0}, then λ1(C) > λ1(H0). Because the first eigenvalue of the half space H0 is n,

there exists γ > 0 such that λ1(C) = n + γ, and thus α =
√

(n−1
2 )2 + λ1(C) −

n−1
2 � 1 + δ(n), for some δ(n) > 0.

Step 3. Let n = 1. Given x0 ∈ Γ(v(·, 0)) and let Z be the blowup limit at (x0, 0).
Suppose that there are at most two connected components of {Z(·, 0) > 0}.
Then ∃δ > 0 such that, either N(x0, Z, 0+) = 1 or N(x0, Z, 0+) � 1 + δ.

Suppose first that there is only one nontrivial component of Z, say z1,2,
such that z1,2(·, 0) �≡ 0. Since z+

1,2 is subharmonic, then the strong maximum
principle together with the fact that z1,2(0, 0) = 0 implies that z1,2 ≡ 0, a
contradiction. So there are exactly two components of {Z(·, 0) > 0}.

If we blow up Z at (z0, 0) ∈ Γ(Z(·, 0)) (here z0 �= 0), we obtain a limit a
limit Ẑ, which satisfies{−�ẑi,j = 0 in R

n+1
+ ,

∂ν ẑi,j = −μ̂i,j in R
n × {0}.

Suppose that there at least three connected components of {Ẑ(·, 0) > 0},
then we can apply Step 2. to obtain a universal constant δ > 0 such that
N(0, Ẑ, 0+) � 1 + δ. Then by Step 1.,

N(0, Z, 0+) � N(z0, Z, 0+) = N(0, Ẑ, 0+) � 1 + δ.

So in the following we assume ∀(z, 0) ∈ Γ(v(·, 0)) and z �= 0, and any blowup
limit Ẑ at (z, 0), {Ẑ(·, 0) > 0} has at most two connected components. Because
(0, 0) ∈ Γ(Ẑ(·, 0)), there are exactly two connected components, {x > 0} and
{x < 0}. By the uniqueness of the first eigenfunction,

Ẑ = (x+
1 − x−

1 , 0, . . .) or Ẑ = (x+
1 , x−

1 , 0, . . .).

So after an even extension we have −�z1,2 = 0 or − �(z1,2 − z1,3) = 0 in R
2

and α ∈ N.
Step 4. We assume moreover that there are at most two connected components
of {Z(·, 0) > 0} and ∀(z0, 0) ∈ Γ(v(·, 0))\{(0, 0)},

N(z0, Z, 0+) = 1.

Then either α = 1 or α � 2.
Indeed, ∀(z, 0) ∈ Γ(Z(·, 0))\{(0, 0), if we blow up Z at (z0, 0) to obtain a

Ẑ, then after a normalization,

Ẑ = (x+
1 − x−

1 , 0, . . .) or Ẑ = (x+
1 , x−

1 , 0, . . .).

Thus similar to the previous step, we obtain that α ∈ N, and we can finish the
proof.
Conclusion. Assume this Proposition is valid for dimension n − 1. (Step 3.
says that this theorem holds for dimension 1). We only need to consider the
case when the condition of Step 4. is not satisfied, that is, ∃(x, 0) ∈ Γ(Z(·, 0)),
x �= 0, such that N(x,Z, 0+) > 1. We can blow up Z at (x, 0) to obtain a
limit Ẑ. We claim that ∀(z0, 0) ∈ ΓV̂ (·,0), either N(z0, (Ẑ, 0+) � 1+δ(n−1) or

N(z, (Ẑ, 0+) = 1. This is because if we blow up Ẑ at (z0, 0), the blowup limit



Vol. 22 (2015) Nodal set of strongly competition systems 1507

can be reduced to R
n, and we can apply the induction assumption on n − 1.

So we can apply Step 4. (if there is no (z0, 0) ∈ Γ(Ẑ(·, 0)), N(z0, Ẑ, 0+) > 1)
or Step 1. (if ∃(z0, 0) ∈ Γ(Ẑ(·, 0)), N(z0, Ẑ, 0+) � 1+ δ(n− 1) ) to obtain that
N(0, Ẑ, 0+) � min{1 + δ(n − 1), 2} (since N(0, Ẑ, 0+) = N(z0, Z, 0+) > 1).
Then N(z0, Z, 0+) � min{1 + δ(n − 1), 2}. Now using Step 1. again, we get
N(0, Z, 0+) � min{1 + δ(n − 1), 2}. �

6. Proof of Theorem 1.1

This section is devoted the proof of Theorem 1.1. To begin with, we decompose
Γ(v(·, 0)) in two parts.

Definition 6.1. We define the regular part of the Γv(x,0) by

Σ(v(·, 0)) : = {x ∈ Γ(v(·, 0)) : there exists a pair (i, j)
such that Φ((x0, 0), (vi − vj)+, (vi − vj)−, 0+) �= 0},

and the singular part by

S(v(·, 0)) = Γ(v(·, 0))\Σ(v(·, 0)).

Lemma 6.1. Let Z be defined in (4.3). Then

N(x0, Z, 0+)=1 for x0 ∈Σ(v(·, 0)), and N(x0, Z, 0+)>1 for x0 ∈S(v(·, 0)).

Proof. Suppose that x0 ∈ Σ(v(·, 0)). Without loss of generality, we take the
pair (v1, v2) such that

Φ((x0, 0), (v1 − v2)+, (v1 − v2)−, 0+) = λ �= 0.

Now define

vk = (vk
1 , . . . , vk

M ) with vk
i (x, y) = vi(x0 + λkx, λky)/λk,

and let Zk = Z(x0 + λkx, λky)/λk. Then Theorem 5.1 and Corollary 5.1 (case
1.) yield that, up to a subsequence, Zk → Z uniformly, where

Z = rαG(θ), with α = N(x0, Z, 0+).

From Lemma 3.4 we have z1,2 = (v1 − v2) = c0(λ)x1 and
∑

j>2 Zj(x, 0) ≡ 0.
This together with Corollary 5.1 implies that α = N(x0, Z, 0+) = 1.

Next, suppose that x0 ∈ S(v(·, 0)). Then according to Lemma 4.1 limx→x0 |
∇Z(x, 0)| = 0. By Proposition 5.1, we assume by contradiction that

N(x0, Z, 0+) = 1.

Consider a blowup sequence at (x0, 0) ∈ Γ(Z(·, 0)):

Zk(x, y) =
Z(x0 + tkx, tky)

ρk
with ρ2

k = H(x0, Z, tk) and tk ↓ 0.

Then
|∇Zk(0)| = tk|∇Z(x0, 0)|/ρk ≡ 0. (6.1)

By Theorem 5.1 and Corollary 5.1 (case 1.) again, the blowup limit has the
form zi,j = α(x+

1 − x−
1 ) for some i < j and

∑
h�=i,j vh ≡ 0. In particular,

|∇zi,j(0, 0)| �= 0 Applying the clean-up lemma we have ∂νzi,j = 0 in a small
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neighborhood of x0. As a consequence, the convergence of Zk to Z is of class
Cm for every m � 1. Moreover, (6.1) can be passed to the limit, obtaining
|∇zi,j(0, 0)| = 0, a contradiction. �

Proposition 6.1. S(v(·, 0)) is closed in Ω and Σ(v(·, 0)) is a smooth hyper-
surface.

Proof. Since N(x,Z, 0+) is upper semi-continuous in x and N(x,Z, 0+) = 1
or N(x,Z, 0+) � 1 + δn for some δn > 0, it is then easy to see that S(v(·, 0))
is closed in Ω. The proof of the last statement immediately follows from the
clean-up lemma established in Sect. 3. �

To complete the proof of Theorem 1.1, we need to prove the Hausdorff
dimension estimates for the nodal and singular sets. Since Γ(v(·, 0)) coincide
with Γ(Z(·, 0)) and by appropriate translation and scaling, it suffices to show
that:

Proposition 6.2. Assume that ∂0B2(0) � Ω × {0}. Then
Hdim(Γ(Z(·, 0)) ∩ ∂0B1(0)) � n − 1, (6.2)

Hdim(S(Z(·, 0)) ∩ ∂0B1(0)) � n − 2. (6.3)

The remainder of this section is devoted to the proof of Proposition 6.2.
As in [3,4,15,24], the idea is to apply a version of the so called Federer’s
Reduction Principle.

Theorem 6.1. (Federer’s Reduction Principle) Let F ⊆ (L∞
loc(R

n))M , and de-
fine, for any given V ∈ F , x0 ∈ R

n and t > 0, the rescaled and the translated
function

Vx0,t := V (x0 + t·).
We say that Vn → V in F if and only if Vn → V uniformly on every compact
set of Rn. Assume that F satisfies the following conditions:

(A1) (Closure under rescaling, translation and normalization ) Given any
|x0| � 1− t, 0 < t < 1, ρ > 0 and V ∈ F , we have that also ρ ·Vx0,t ∈ F .

(A2) (Existence of a homogeneous “blowup”) Given any |x0| < 1, tk ↓ 0 and
V ∈ F , there exists a sequence ρk ∈ (0,+∞), a real number α � 0
and a function Z ∈ F homogeneous of degree α such that if we define
Vk(x) = V (x0 + tkx)/ρk, then

Vk → Z in F , up to a subsequence.

(A3) (Singular set hypotheses) There exists a map S : F → D (where D :=
{A ⊂ R

n : A ∩ B1(0) is relatively closed in B1(0)}) such that
(i) Given |x0| < 1 − t, 0 < t < 1 and ρ > 0, it holds

S(ρ · Vx0,t) = (S(V ))x0,t :=
S(V ) − x0

t
.
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(ii) Given |x0| < 1, tk ↓ 0 and V , Z ∈ F such that there exists ρk > 0
satisfying Vk = ρkVx0,t → Z in F , the following “continuity” holds:

∀ε > 0 ∃k(ε) > 0 : k � k(ε) ⇒ S(Vk) ∩ B1(0) ⊆ {x ∈ R
n : dist(x,S(Z)) < ε}.

Then, if we define

d = max{dimL : L is a vector subspace of Rn and there exist V ∈ F and
α > 0 such that S(V ) �= 0 and Vy,t = tαV, ∀y ∈ L, t > 0}, (6.4)

either S(V ) ∩ B1(0) = ∅ for every V ∈ F , or else Hdim(S(V ) ∩
B1(0)) � d for every V in F . Moreover in the latter case there exist
a function V ∈ F , a dimension subspace L � R

n and a real number
α � 0 such that

Vy,t = tαV, ∀y ∈ L, t > 0, and S(V ) ∩ B1(0) = L ∩ B1(0).

If d = 0 then S(V ) ∩ Bρ(0) is a finite set for each V ∈ F and
0 < ρ < 1.

Proof of Proposition 6.2. We apply the Federer’s Reduction Principle to the
following class of functions:

F = {Z ∈ (L∞
loc(R

n+1
+ ))

M(M−1)
2 : there exists some domain Ω such that

∂0B2(0) ⊂ Ω × {0} and Z fulfills the assumption of Theorem 5.1}.

Let us start by checking (A1) and (A2). Hypothesis (A1) is immediately
satisfied by (5.2). Moreover, let |x0| < 1, tk ↓ 0 and Z ∈ F , and choose
ρk = ‖Z(x0 + tkx, tky)‖L2(∂+B1(0)). Theorem 5.1 and Corollary 5.1 (Case 1)
yields the existence of Z ∈ F such that (up to a subsequence) wk → Z in F
and Z is a homogeneous function of degree α = N(x0, Z, 0+) � 1. Hence also
(A2) holds. Next we choose the map S according to different situations.
Proof of (6.2). Define S : F → D by S(Z) = Γ(Z(·, 0)). Then Γ(Z(·, 0)) ∩
∂0B1(0) is obviously closed in ∂0B1(0) by the continuity of Z. It is quite
straightforward to check hypothesis (A3)-(i), and the local uniform conver-
gence consider in F clearly yields (A3)-(ii). Therefore in order to end the
proof of (6.2) the only thing left to prove is that the integer associated to
S (defined in (6.4)) is less than or equal to n − 1. Suppose by contradic-
tion that d = n; then this would imply the existence of Z ∈ F with S(Z) =
R

n, i.e., Z(x, 0) ≡ 0, which contradicts our assumption on Z. Thus
d � n − 1.
Proof of (6.3). Define S : F → D by S(Z) = S(v(·, 0)) = S(Z(·, 0)) := {x ∈
Ω : N(x,Z, 0+) > 1} (which belongs to D since S(Z(·, 0)) is closed in Ω). The
map satisfies (A3)-(i) thanks to identity (5.3), more precisely,

(x, 0) ∈ S(Zx0,t/ρ) ⇔ N(x,Zx0,t/ρ, 0+) > 1

⇔ N(x0 + tx, Z, 0+) > 1
⇔ (x0 + tx, 0) ∈ S(Z).

As for (A3)-(ii), take Zk, Z ∈ F as stated. Then in particular Zk → Z uni-
formly in B+

2 (0) and by arguing as in the proof of Lemma 5.4 it is easy to
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obtain the strongly convergence in H1(B+
3/2(0)). Suppose now that (A3)-(ii)

does not hold; then there exists a sequence (xk, 0) ∈ B0
1(0) (xk → x, up to

a subsequence, for some x) and ε > 0 such that N(xk, Zk, 0+) � 1 + δn and
dist(xk,S(Z)) � ε. But then for small r we obtain

N(xk, Zk, r) � N(xk, Zk, 0+) � 1 + δ,

and hence N(x,Z, 0+) � 1 + δ, a contradiction.
Finally, let us prove that d � n−2. If d = n−1 then we would have the ex-

istence of a function Z, homogeneous with respect to every point in R
n−1×{0}

such that S(Z(·, 0)) = R
n−1 × {0}. Now if we take a blowup sequence cen-

tred at (0, 0), namely, Z(tkx, tky)/ρk, we obtain at the limit a nonzero function
Z = rαG(θ) with α = N(0, Z, 0+) > 1. Then Z(z0+λx, λy) = λαZ(x, y) when-
ever z0 ∈ R

n−1 × {0}, (x, y) ∈ R
n+1
+ . We prove that Γ(Z(·, 0)) = R

n−1 × {0},
which leads to a contradiction since Hopf’s Lemma implies α = 1 (by pos-
sibly using the equation for Z

+
). Since Z(x, y) = limk Z(tkx, tky)/ρk and

S(Z(·, 0)) = R
n−1 × {0}, it is obvious that R

n−1 × {0} ⊆ Γ(Z(·, 0)). If there
were z ∈ Γ(Z(·, 0))\(Rn−1 × {0}), then since Z is homogeneous with respect
to every point on R

n−1 × {0}, we would have that either R
n−1 × [0,+∞)

or R
n−1 × (−∞, 0] would be contained in Γ(Z(·, 0)), in contradiction with

Remark 4.1. �
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