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Abstract. In this paper, we consider a stationary heat problem on a two-
component domain with an ε-periodic imperfect interface, on which the
heat flux is proportional via a nonlinear function to the jump of the solu-
tion, and depends on a real parameter γ. Homogenization and corrector
results for the corresponding linear case have been proved in Donato et
al. (J Math Sci 176(6):891–927, 2011), by adapting the periodic unfold-
ing method [see (Cioranescu et al. SIAM J Math Anal 40(4):1585–1620,
2008), (Cioranescu et al. SIAM J Math Anal 44(2):718–760, 2012), (Cio-
ranescu et al. Asymptot Anal 53(4):209–235, 2007)] to the case of a two-
component domain. Here, we first prove, under natural growth assump-
tions on the nonlinearities, the existence and the uniqueness of a solution
of the problem. Then, we study, using the periodic unfolding method,
its asymptotic behavior when ε → 0. In order to describe the homoge-
nized problem, we complete some convergence results of Donato et al. (J
Math Sci 176(6):891–927, 2011) concerning the unfolding operators and
we investigate the limit behaviour of the unfolded Nemytskii operators
associated to the nonlinear terms. According to the values of the parame-
ter γ we have different limit problems, for the cases γ < −1, γ = −1 and
γ ∈ ]−1, 1]. The most relevant case is γ = −1, where the homogenized
matrix differs from that of the linear case, and is described in a more
complicated way, via a nonlinear function involving the correctors.
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Keywords. Periodic homogenization, Elliptic equations with jump,
Nonlinear interface conditions.

1. Introduction

In the present paper we investigate the thermal conduction in a composite
material of two components in the presence of a nonlinear interfacial ther-
mal resistance, which is described by nonlinear transmission conditions on the
interface.
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More precisely, we study the periodic homogenization of the following
problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−div(Aε∇uε
1) + hε

1(x, uε
1) = f in Ωε

1,
−div(Aε∇uε

2) + hε
2(x, uε

2) = f in Ωε
2,

Aε∇uε
1.n

ε
1 = −Aε∇uε

2.n
ε
2 on Γε,

−Aε∇uε
1.n

ε
1 = εγ+1hε(x, uε

1 − uε
2) on Γε,

uε
i = 0 on ∂Ω ∩ ∂Ωε

i , i = 1, 2,

(1.1)

where Ω = Ωε
1 ∪ Ω

ε

2 is a two-component domain, γ ∈ R, f ∈ L2(Ω), nε
i is the

unit outward normal to Ωε
i , for i = 1, 2.

The two components are open disjoint subsets of the open bounded set
Ω ∈ R

n, separated by a common boundary Γε. The component Ωε
2 is the (non

connected) intersection of Ω with the union of the ε-periodic translated sets of
εY2, where Y2 is contained in the reference periodicity cell Y . The other one
Ωε

1 = Ω\Ω
ε

2 is connected (see Fig. 1 in the next section).
We assume that the thermal conductivity of material is given by Aε(x) =

A(x/ε), the matrix A being Y -periodic, uniformly elliptic and bounded. The
nonlinear terms hε

i in the equation are defined by hε
i (x, s) = hi(x/ε, s) for

i = 1, 2, where h1 and h2 are Carathéodory functions satisfying some natural
growth conditions.

In the boundary conditions in (1.1) the nonlinear term hε is given by
hε(x, s) = h(x/ε, s/ε), so that the heat flux through the interface is continu-
ous, and proportional via a nonlinear function h to the jump of the temper-
ature. This means that the rate of heat transfer across the interfacial barrier
is proportional to the temperature difference by a nonlinear rule. Actually,
according to experimental results, in most cases, the flux on the interface is
not a linear function of the difference of temperature between two components
(see for instance [10]). This nonlinear condition generalizes the linear one of
the well-known Barenblatt’s model (see [5]).

Let us point out that in this work we allow the holes to meet the bound-
ary of the domain Ω and then Ωε

1, Ωε
2, Γε are somewhat different from those

considered in the linear case [26], where Ωε
2 only contains the holes inside

Ω.
Let us also mention that nonlinear interface conditions also arise in some

evolution problem modeling the electrical conduction in biological tissues, in
the presence of an interfacial resistance property of the cell membranes, see
[2].

In the present work, we apply the periodic unfolding method to get the
asymptotic behavior of the nonlinear problem (1.1) as ε tends to zero. In [26]
the authors have recently adapted this method to the case of two-component
domains by considering two unfolding operators: the first one, denoted T ε

1 ,
acts on functions defined in Ωε

1 and was originally denoted T ∗
ε in the literature

for perforated domains [13,15,16]; the second one, appropriate to case of two-
component domains and denoted T ε

2 , concerns functions defined in Ωε
2. They

maps functions defined on the oscillating domains Ωε
1, Ωε

2 into functions defined
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on the fixed ones Ω×Y1 and Ω×Y2, respectively. In particular, the relationship
between these two operators and the properties of their traces on the common
boundaries was also studied. These results were applied in order to recover and
improve the homogenization and corrector results obtained by S. Monsurrò and
P. Donato in [20,25,36].

The periodic unfolding method was introduced for the first time by Cio-
ranescu et al. [11]. It gives an elementary proof for the classical periodic homog-
enization problem originally considered in [6] (see also [14,40]) and corrector
results under natural assumptions (see [12] for a comprehensive presentation).
It was extended to the case of perforated domains in [13,15,16] and allows to
avoid using the extension operators, so that no condition for the existence of
such extensions is required as traditionally done in the literature (see [17,18]).

Let us mention that if {vn} is a bounded sequence of Lp(Ω), then the weak
Lp-convergence of the unfolded sequence {Tε(vn)} is equivalent to the two-scale
convergence of {vn}. We recall that the notion of two-scale convergence has
been introduced by Nguetseng in [38] and further developed by Allaire in [1]
with applications to periodic homogenization.

In the first part of the present work, we show an existence and unique-
ness result of the weak solution of problem (1.1), using the classical Minty–
Browder theorem. Then, we complete the study done in [26] with some new
results needed here for our nonlinear problem, including some convergence
results concerning the limit of the unfolded nonlinear terms in the variational
formulation of the problem (see Proposition 4.7 for more details). In the second
part, we study the homogenization of problem (1.1) for the different values of
γ ≤ 1.

Let us briefly describe the difficulties due to the presence of the non-
linear jump and the nonlinear function h2. The main difficulty is related to
the nonlinearity in the boundary condition, which gives rise to a term of the
form

εγ+1

∫

Γε

hε
(
x, uε

1 − uε
2

)
(v1 − v2) dσx = εγ 1

|Y |

∫

Ω×Γ

h

(

y,
T ε

b (uε
1 − uε

2)
ε

)

× (T ε
1 (v1) − T ε

2 (v2)) dx dσy.

In view of the results in [26], we prove that this term goes to zero for
γ > −1, while for γ < −1 the choice of test functions without jump, which
makes the term vanish, is enough to pass to the limit. This implies that the
homogenized matrix A0

γ is the same as that of the linear case with jump studied
before in the literature.

The case γ = −1 presents a major difficulty since we have only the weak
convergence of T ε

b (uε
1 − uε

2) /ε in L2(Ω × Γ) so that we need to identify the
limit of the unfolded boundary term. To do that, we use the Minty method for
monotone operators together with a suitable choice of sequence of test func-
tions and we obtain a boundary term in the limit problem. The homogenized
matrix is described in a more complicated way, since it is expressed via a non-
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linear function involving the correctors, as shown by Corollary 5.5. Moreover,
in this case, the uniqueness of the limit problem needs to be proved.

Concerning the nonlinear function h2, it leads to pass to the limit in
terms of the form

∫

Ωε
2

hε
2 (x, uε

2) v2 dx =
1

|Y |

∫

Ω×Y2

h2 (y, T ε
2 (uε

2)) T ε
2 (v2) dx dy,

where the weak convergence of T ε
2 (uε

2) in L2
(
Ω,H1 (Y2)

)
proved in [26] is not

sufficient to pass to the limit. To overcome this difficulty we improve here the
previous results proving that this convergence is actually strong for γ < 1 (see
Theorem 4.5). For the case γ = 1, the assumption that h2 ≡ 0 is required since
we cannot improve the weak convergence result of T ε

2 (uε
2). Some results for

this case have been announced in [41] where also Ωε
2 is supposed connected.

The pioneer paper on this subject was proposed by Auriault and Ene in
[4] for the linear case, using the multiple scale method. In [20,21,25,36,37],
the linear case (h1 = h2 = 0 and h (y, s) = sh̃ (y), where h̃ (y) is an Y -periodic
positive bounded function) was studied using the Tartar method and assuming
that the holes do not meet the boundary.

For similar homogenization problems of elliptic type we refer the reader
to [9,27,28,30,33,34,39] and for related parabolic problems [22–24,29,31],
together with the references therein. For the homogenization of linear and
quasilinear elliptic problems with a nonlinear Robin condition containing a
nonlinear term with the same growth as that in the boundary condition con-
sidered in the present paper, we refer to [8,16], respectively, where the periodic
unfolding method was used.

The paper is organized as follows:
In Sect. 2, we introduce the problem together with the assumptions concerning
the functions h, h1 and h2.
Section 3 is devoted to the existence and uniqueness of a weak solution of
problem (1.1).
In Section 4, we recall some properties of the unfolding operators introduced
in [13,15,26] and give some new convergence results.
Finally, in Sect. 5 we state and prove the homogenization results for the dif-
ferent case of the parameter, γ < −1, γ = −1 and γ ∈ ]−1, 1].

2. Statement of the problem

2.1. Notations

In this section we introduce the main notations and the two-component
domain.

In R
n (n ≥ 2), let Ω be an open bounded set with a Lipschitz continuous

boundary ∂Ω and Y :=
∏n

i=1[0, li[ be a reference cell, with li > 0, i = 1, . . . , n.
We assume that Y1 and Y2 are two disjoint connected open subsets of Y such
that Y2 	= ∅, Y 2 ⊂ Y and Y = Y1 ∪ Y 2, with a common boundary Γ = ∂Y2

Lipschitz continuous (see Fig. 1).
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Figure 1. The two-component composite

Remark 2.1. For the sake of simplicity, in this paper we assume that Y2 is
connected. Actually the results given here can be extended to the case where
Y2 has a finite number of connected components, in the spirit of Theorems
2.21 and 3.11 in [26].

Throughout this paper, ε will take its values in a positive real sequence
which tends to zero and c is a constant independent of ε.

For almost every z ∈ R
n, we use [z]Y to denote its integer part

(k1l1, . . . , knln), ki ∈ Z for i = 1, . . . , n, such that z − [z]Y ∈ Y and set
{z}Y = z − [z]Y .

Then, we have

x = ε
([x

ε

]

Y
+
{x

ε

}

Y

)
for a.e. x ∈ R

n.

Let us introduce the two-component domain as follows (see Fig. 1):
• for any k = (k1, . . . , kn) ∈ Z

n, kl = (k1l1, . . . , knln) and

Y k = kl + Y, Y k
i = kl + Yi, i = 1, 2,

• Kε =
{

k ∈ Z
n| εY k

i ∩ Ω 	= ∅, i = 1, 2
}

and

Ωε
1 = Ω \

⋃

k∈Kε

εY k
2 , Γε = ∂Ωε

1 ∩ Ω, Ωε
2 = Ω\Ωε

1. (2.1)

We allow here the holes to meet the boundary of the domain Ω. This
makes the domains Ωε

1, Ωε
2 and Γε somewhat different from themselves in our

last paper [26] for the linear case, where Ωε
2 only contains the holes inside Ω.

Here the domain Ωε
2 is the intersection of Ω and the union of the εY -periodic

translated sets of the hole εY2. Consequently, the interface Γε is bigger than
the corresponding in [26].

The following notations are also used in the sequel:

• θi =
|Yi|
|Y | , i = 1, 2,

• ũ: the zero extension to the whole Ω of a function u defined on Ωε
1 or Ωε

2,
• χ

ω
: the characteristic function of each open set ω of R

n,
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• Mω (f) :=
1

|ω|
∫

ω
f dx, for any open set ω of R

n and for any f ∈ L1 (ω),

• M (α, β,O): the set of the n × n matrix-valued functions A in (L∞ (O))n2

such that, for any λ ∈ R
n,

{
(A (x) λ, λ) ≥ α |λ|2 a.e. in O,
|A (x) λ| ≤ β |λ| a.e. in O,

for α, β ∈ R, 0 < α ≤ β.

2.2. The problem

Our goal is to describe the asymptotic behavior, as ε → 0, of the following
problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−div (Aε∇uε
1) + hε

1 (x, uε
1) = f in Ωε

1,
−div (Aε∇uε

2) + hε
2 (x, uε

2) = f in Ωε
2,

Aε∇uε
1.n

ε
1 = −Aε∇uε

2.n
ε
2 on Γε,

−Aε∇uε
1.n

ε
1 = εγ+1hε (x, uε

1 − uε
2) on Γε,

uε
i = 0 on ∂Ω ∩ ∂Ωε

i , i = 1, 2,

(2.2)

where the coefficient matrix Aε and the nonlinear terms hε, hε
i are given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Aε(x) = A
(

x
ε

)
,

hε(x, s) = h
(

x
ε , s

ε

)
,

hε
i (x, s) = hi

(
x
ε , s

)
for i = 1, 2,

(2.3)

with A, h1 and h2 satisfying assumptions (2.4)–(2.5) below.
The linear case, where h1 = h2 = 0 and h is of the form h (y, s) = sh̃ (y),

was studied, under the assumption that the holes do not intersect the exterior
boundary, by Tartar’s method in [25,36], by two-scale method in [28] and
recently by unfolding in [26].

Here we investigate a more general situation, where a nonlinear function
of the jump of the solution appears on the rapidly oscillating interface together
with the presence of the two nonlinear zero-order terms h1 and h2.

Throughout the paper, we assume that
{

γ ≤ 1, f ∈ L2 (Ω) ,
A ∈ M (α, β, Y ) , A is Y -periodic, (2.4)

and ⎧
⎪⎨

⎪⎩

h satisfies (H1) − (H3) ,

h1 satisfies (H1) and (H4) ,

h2 satisfies (H1) and (H′
4) ,

(2.5)

for some α, β ∈ R, 0 < α ≤ β and assumptions (H1)–(H4) shown below.
Furthermore, the homogenization results obtained in Sect. 5 depend on

the value of γ. Then, for the reader’s convenience, we list the different cases
and the corresponding assumptions as follows:
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⎧
⎪⎨

⎪⎩

h or h2 is strictly increasing if γ 	= ±1,

h is strictly increasing if γ = −1,

h is strictly increasing and h2 ≡ 0 if γ = 1.

(2.6)

Let us introduce the hypotheses related to the two-variable functions
h, h1 and h2.
Assumption H1: The function g (y, s) : R

n×R −→ R satisfies assumption (H1)
iff
1. g is a Carathéodory function,
2. g (·, s) is a (measurable) Y -periodic function for all s ∈ R,
3. g (y, ·) is an increasing function in C1 (R) s.t. g (y, 0) = 0 for all y ∈ R

n.
Assumption H2: The function g (y, s) : Y ×R −→ R satisfies assumption (H2)
iff there exists a constant c > 0 and an exponent q, with

1 ≤ q < 2 if n = 2, 3 and 1 ≤ q <
n

n − 2
if n > 3,

such that
∣
∣
∣
∣
∂g

∂s
(y, s)

∣
∣
∣
∣ ≤ c

(
1 + |s|q−1

)
for a.e. y ∈ Y and for all s ∈ R.

Assumption H3: The function g (y, s) : Y ×R −→ R satisfies assumption (H3)
iff there exists a constant c > 0 such that

sg (y, s) ≥ c |s|2 for a.e. y ∈ Y and for all s ∈ R.

Assumption H4: The function g (y, s) : Y ×R −→ R satisfies assumption (H4)
(resp. (H′

4)) iff there exists a constant c > 0 and an exponent p1 (resp. p2),
with

1 ≤ p1 < +∞ if n = 2 and 1 ≤ p1 ≤ n + 2
n − 2

if n > 2,

(resp. 1 ≤ p2 ≤ min
{

2, n+2
n−2

}
) such that

∣
∣
∣
∣
∂g

∂s
(y, s)

∣
∣
∣
∣ ≤ c

(
1 + |s|pi−1

)
for a.e. y ∈ Y and for all s ∈ R.

Remark 2.2. It is easy to check that
(i) the function g (y, s) = ξ (y)

(
s + |s|q−1

s
)

(resp. ξ (y) (s + |s|p1−1
s)) sat-

isfies assumptions (H1) − (H3) (resp. (H1), (H3) and (H4)) where ξ (y)
is any positive bounded measurable Y -periodic function,

(ii) if g (y, s) satisfies assumption (H1), then sg (y, s) ≥ 0 for a.e. y ∈
Y and for all s ∈ R,

(iii) if g (y, s) satisfies assumptions (H1) and (H2), then for some c > 0,

|g (y, s)| ≤ c (1 + |s|q) for a.e. y ∈ Y and for all s ∈ R,

since, due to the fact that g(y, 0) = 0 for all y ∈ R
n, we have

|g(y, s)| =
∣
∣
∣
∣

∫ s

0

∂g

∂τ
(y, τ)dτ

∣
∣
∣
∣ ≤ c

∣
∣
∣
∣

∫ s

0

(
1 + |τ |q−1

)
dτ

∣
∣
∣
∣ ≤ c (|s| + |s|q) ,

and
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• if |s| ≤ 1, |g(y, s)| ≤ c(1 + |s|q),
• if |s| > 1, |g(y, s)| ≤ 2c |s|q < 2c(1 + |s|q).

We now introduce the functional spaces adapted to our problem.

Definition 2.3. For every γ ∈ R,

Hε
γ

.= {u = (u1, u2)| u1 ∈ V ε
1 , u2 ∈ V ε

2 } (2.7)

equipped with the norm

‖u‖2
Hε

γ
= ‖∇u1‖2

L2(Ωε
1)

+ ‖∇u2‖2
L2(Ωε

2)
+ εγ ‖u1 − u2‖2

L2(Γε) , (2.8)

where V ε
i

.=
{

v ∈ H1 (Ωε
i )
∣
∣ v = 0 on ∂Ω ∩ ∂Ωε

i

}
, i = 1, 2, endowed respec-

tively with the norms

‖v‖V ε
1

= ‖∇v‖L2(Ωε
1)

, ‖v‖V ε
2

=
(
‖v‖2

L2(Ωε
2)

+ ‖∇v‖2
L2(Ωε

2)

)1/2

.

Remark 2.4. (i) As observed in [13], the Lipschitz assumption of ∂Ω implies
that for every open subset Ω0 of R

n such that Ω ⊂ Ω0 and ∂Ω ∩ ∂Ωε
1 =

∂Ω ∩ Ω0,

V ε
1 =

{
v ∈ H1(Ωε

1)
∣
∣ ∃v′ ∈ H1(Ωε

0), v′ = 0 in Ωε
0\Ωε

1 and v = v′|Ωε
1

}
,

where Ωε
0 = Ω0\

⋃
k∈Zn εY k

2 .
(ii) The norm ‖·‖V ε

1
is equivalent to ‖·‖H1(Ωε

1)
by constants independent of

ε since the Poincaré inequality holds in the space V ε
1 with a constant c

independent of ε, that is

‖v‖L2(Ωε
1)

≤ c ‖∇v‖L2(Ωε
1)

∀v ∈ V ε
1 ,

(see Theorem 2.9 in [13] for more details).

The space Hε
γ defined above is not exactly the one introduced in [24–

26,36], since as mentioned above, here the holes can meet the boundary of Ω
and then Γε is somewhat different. Nevertheless, it is easy to check that the
properties of the space Hε

γ proved in the papers quoted above are still true for
this situation. In particular, the following proposition is still true.

Proposition 2.5. [24] There exist some positive constants c, c1 and c2, indepen-
dent of ε, such that

‖u‖2
Hε

γ
≤ c

(
1 + εγ−1

)
‖u‖2

V ε
1 ×V ε

2
∀γ ∈ R, ∀u ∈ Hε

γ .

Moreover, if γ ≤ 1

c1 ‖u‖2
V ε
1 ×V ε

2
≤ ‖u‖2

Hε
γ

≤ c2

(
1 + εγ−1

)
‖u‖2

V ε
1 ×V ε

2
∀u ∈ Hε

γ . (2.9)
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Let us now turn back to problem (2.2), whose variational formulation is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uε = (uε
1, u

ε
2) ∈ Hε

γ such that
∫

Ωε
1

Aε∇uε
1∇v1 dx +

∫

Ωε
2

Aε∇uε
2∇v2 dx +

∫

Ωε
1

v1h
ε
1 (x, uε

1) dx

+
∫

Ωε
2

v2h
ε
2 (x, uε

2) dx + εγ+1

∫

Γε

(v1 − v2) hε (x, uε
1 − uε

2) dσ

=
∫

Ωε
1

fv1 dx +
∫

Ωε
2

fv2 dx ∀ (v1, v2) ∈ Hε
γ .

(2.10)

We state below an existence and uniqueness result for this problem, which
is a particular case of Theorem 3.1 proved in the next section.

Theorem 2.6. Let the function h satisfy assumptions (H1), (H2) and h1, h2

satisfy assumptions (H1), (H4). Suppose further that h or h2 fulfills assumption
(H3). Then, for every fixed ε, problem (2.10) has a solution uε ∈ Hε

γ .
If moreover h or h2 is strictly increasing, then the solution is unique.

We end this section by some a priori estimates for problem (2.10).

Proposition 2.7. (a priori estimates) Let γ ≤ 1 and suppose that the function
h satisfies assumptions (H1)–(H3) and h1, h2 satisfy assumptions (H1), (H4).
If uε = (uε

1, u
ε
2) is a weak solution of problem (2.2), then there exists a positive

constant c, independent of ε, such that
{

‖(∇uε
1,∇uε

2)‖L2(Ωε
1)×L2(Ωε

2)
≤ c,

‖uε
1 − uε

2‖L2(Γε) ≤ c ε−γ/2.
(2.11)

Proof. With the assumptions given as above, problem (2.2) has a weak solution
due to Theorem 2.6. Arguing as in the linear case [26], together with the
coerciveness of h, the proof of (2.11) is straightforward. �
Remark 2.8. For γ = 1, if the coerciveness assumption on h is replaced by
that on h2, then we still deduce the a priori estimates in (2.11) by using (2.9).

3. An existence and uniqueness result

Let O be a Lipschitz bounded open set of R
n. We take O1, O2 as the open

disjoint subsets of O such that O1 is connected and O2 has a finite number of
connected components. We also assume that the interface S between O1, O2

is Lipschitz continuous and set S1 = ∂O ∩ ∂O1, S2 = ∂O ∩ ∂O2.
The main result of this section concerns the existence and the uniqueness

of a weak solution of the following more general problem:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−div (B∇u1) + h1 (x, u1) = f in O1,
−div (B∇u2) + h2 (x, u2) = f in O2,
B∇u1.n1 = −B∇u2.n2 on S,
−B∇u1.n1 = h (x, δ(u1 − u2)) on S,
u1 = 0 on S1,
u2 = 0 on S2,

(3.1)

for a given δ ∈ R.
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The existence and uniqueness result stated in Theorem 2.6 will follow as
a particular case.

Let us define the functional space H as follows

H
.= {u = (u1, u2)| u1 ∈ V1, u2 ∈ V2} ,

endowed with the norm

‖u‖2
H = ‖∇u1‖2

L2(O1)
+ ‖∇u2‖2

L2(O2)
+ ‖u1 − u2‖2

L2(S) ∀u = (u1, u2) ∈ H,

where

Vi =
{
v ∈ H1 (Oi) : v = 0 on Si

}
, i = 1, 2,

with the norms ‖v‖V1
= ‖∇v‖L2(O1)

and ‖v‖V2
= ‖v‖H1(O2)

.
N.B. In this section, we suppose that all assumptions H introduced in Sect. 2
are written with O instead of Y and without any periodicity assumptions.

Now we introduce an assumption more general than (H2), which is
enough to obtain the results for the existence and the uniqueness.

Assumption H′
2: The function g (y, s) : Y ×R −→ R satisfies assumption (H′

2)
iff there exists a constant c > 0 and an exponent q, with

1 ≤ q < +∞ if n = 2 and 1 ≤ q ≤ n

n − 2
if n > 2

such that
∣
∣
∣
∣
∂g

∂s
(y, s)

∣
∣
∣
∣ ≤ c

(
1 + |s|q−1

)
∀(y, s) ∈ Y × R.

Theorem 3.1. Let f ∈ L2 (O) and B ∈ M (α, β,O). Suppose that the function
h satisfies assumptions (H1), (H′

2) and h1, h2 satisfy assumptions (H1), (H4).
Assume further that h or h2 satisfies assumption (H3). Then, there exists a
solution u = (u1, u2) ∈ H of the following variational formulation of problem
(3.1):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u = (u1, u2) ∈ H such that
∫

O1

B∇u1∇v1 dx +
∫

O2

B∇u2∇v2 dx +
∫

O1

v1h1 (x, u1) dx

+
∫

O2

v2h2 (x, u2) dx +
∫

S

(v1 − v2) h (x, δ(u1 − u2)) dσ

=
∫

O1

fv1 dx +
∫

O2

fv2 dx ∀ (v1, v2) ∈ H.

(3.2)

Furthermore, the solution is unique if h or h2 is strictly increasing.

This theorem is proved at the end of this section, after some preliminary
results. The next proposition shows in particular that all the terms in (3.2)
make sense:

Proposition 3.2. Let the function h satisfy assumptions (H1) , (H′
2) and the

functions h1, h2 satisfy (H1) , (H4). Suppose that r, r′, s, s′ are such that
(i) if n = 2, r, s ∈ [1,+∞[ and r ≥ qr′, s ≥ ps′,
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(ii) if n > 2, r =
2 (n − 1)

n − 2
, s = 2∗ =

2n

n − 2
and

1
r

+
1
r′ =

1
s

+
1
s′ = 1.

Then, the following three maps are bounded and continuous:

J : u = (u1, u2) ∈ H �−→ J (u) ∈ Lr′
(S) ,

Ji : ui ∈ H1 (Oi) �−→ Ji (ui) ∈ Ls′
(Oi) , i = 1, 2,

where J (u) (x) = h (x, δ(u1 (x) − u2 (x))), Ji (ui) (x) = hi (x, ui (x)) and for
every ui, vi ∈ H1 (Oi) , i = 1, 2,

{
(v1 − v2) h (x, δ(u1 − u2)) ∈ L1 (S) ,

vihi (x, ui) ∈ L1 (Oi) .
(3.3)

Moreover, there exists a positive constant c such that

‖J (u)‖Lr′ (S) ≤ c
(
1 + ‖u1 − u2‖r/r′

Lr(S)

)
. (3.4)

Proof. Let us first note that J = g1 ◦ g2 where

g1 : v ∈ Lr (S) �−→ g1 (v) ∈ Lr′
(S)

is defined by g1 (v) (x) = h (x, v (x)) and

g2 : u = (u1, u2) ∈ H �−→ u1 − u2 ∈ Lr (S) .

Taking into account that h satisfies (H1) and (H′
2), by the classical result in

[32], g1 is continuous and bounded. On the other hand, arguing as in [7,16], the
linear continuity of the inclusions H1 (Oi) ⊂ Lr (S) for i = 1, 2, gives that g2

is bounded and continuous. Hence, the operator J is bounded and continuous
from H into Lr′

(S), which provides (3.3)1.
We now turn our attention to the boundedness and the continuity of the

two maps J1, J2. If n > 2, the embeddings H1 (Oi) ⊂ L2∗
(Oi) for i = 1, 2, are

continuous.
Then, taking vi ∈ H1 (Oi), since the functions h1, h2 satisfy (H4) and

p1 ≤ n + 2
n − 2

=
2∗

(2∗)′ , we have

|hi (x, vi)| ≤ c (1 + |vi|p1) ≤ 2c
(
1 + |vi|

2∗
(2∗)′

)
, for i = 1, 2.

Consequently, the functions Ji, i = 1, 2, are bounded and continuous from
H1 (Oi) into L(2∗)

′
(Oi), which implies (3.3)2.

For n = 2 we argue in a similar way as above, using the continuous
embedding H1 (Oi) ⊂ Ls (Oi), i = 1, 2, ∀s ∈ [1,+∞[.

Finally, inequality (3.4) comes from similar arguments as in [7]. �

Let us now recall a result from [36] that we shall need in the sequel.

Lemma 3.3. [36] There exists a constant c > 0 such that

‖u‖L2(O1)×L2(O2)
≤ c ‖u‖H ,

for every u ∈ H.
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Proof of Theorem 3.1. We first prove the existence of the solution by using the
Minty–Browder theorem for the operator G : u = (u1, u2) ∈ H �→ G (u) ∈ H ′

where

〈G (u) , v〉H′,H =
∑

i=1,2

∫

Oi

B∇ui∇vi dx +
∑

i=1,2

∫

Oi

vihi (x, ui) dx

+
∫

S

(v1 − v2) h (x, δ(u1 − u2)) dσ −
∑

i=1,2

∫

Oi

fvi dx.

Clearly, the continuity and the boundedness of G follow from Proposition
3.2. Moreover, the fact that the functions h, h1 and h2 satisfy assumption (H1)
provides the monotonicity of G.

Let us turn our attention into the coerciveness of G. If h satisfies assump-
tion (H3), taking into account Remark 2.2 and Lemma 3.3, we have

〈G (u) , u〉H′ ,H ≥ α ‖∇u1‖2
L2(O1)

+ α ‖∇u2‖2
L2(O2)

+ c ‖u1 − u2‖2
L2(S)

−‖f‖L2(O)

(
‖u1‖L2(O1)

+ ‖u2‖L2(O2)

)

≥ c1 ‖u‖2
H − c2 ‖u‖H , ∀u ∈ H,

If the coerciveness assumption of h is replaced by that of h2, then

〈G (u) , u〉H′ ,H ≥ α ‖∇u1‖2
L2(O1)

+ α ‖∇u2‖2
L2(O2)

+ c ‖u2‖2
L2(O2)

−‖f‖L2(O)

(
‖u1‖L2(O1)

+ ‖u2‖L2(O2)

)

≥ c
(
‖u1‖2

H1(O1)
+ ‖u2‖2

H1(O2)

)
− c1 ‖u‖H

≥ c2 ‖u‖2
H − c1 ‖u‖H , ∀u ∈ H.

Obviously, the above inequalities imply that G is coercive.
Hence, by the Minty–Browder theorem, the operator G is surjective so

that there exists u ∈ H such that G (u) = 0, that is a solution u ∈ H of
problem (3.2).

Let us now check the uniqueness of the solution.
Suppose that problem (3.1) has two solutions u = (u1, u2), w =

(w1, w2) ∈ H. Choosing as test function v = u − w in (3.2), we have

∑

i=1,2

∫

Oi

B (∇ui − ∇wi) (∇ui − ∇wi) dx

+
∑

i=1,2

∫

Oi

(ui − wi) [hi (x, ui) − hi (x,wi)] dx

+
∫

S

[h (x, δ(u1 − u2)) − h (x, δ(w1 − w2))] [(u1 − u2) − (w1 − w2)] dσ = 0.

(3.5)
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By virtue of the ellipticity of B, the monotonicity of h, h1, h2 and the
fact that h (or h2) is strictly increasing, equality (3.5) gives

{
∇ (ui − wi) = 0 in Oi for i = 1, 2,

u1 − u2 = w1 − w2 on S (or u2 = w2 in O2).

Then, using the Poincaré inequality in V1 we obtain u ≡ w, which ends the
proof. �

4. Periodic unfolding method for two-component domains

In this section, we first recall the unfolding operators T ε
1 , T ε

2 for the two-
component domain and the boundary unfolding operator T ε

b together with
their main properties.

The operators T ε
1 and T ε

b have been introduced in [13,15,26] and T ε
2 in

[26], where the relationship between the traces of T ε
1 and T ε

2 is also studied.
Although as mentioned in Section 2 the domain Ωε

2 defined in [26] is somehow
different, all the results therein concerning the unfolding operators are still
true for this case. Indeed, the main difference concerns T ε

1 , due to the fact
that uε

1 does not belong to V ε .=
{

v ∈ H1 (Ωε
1)
∣
∣ v = 0 on ∂Ω

}
as in the linear

case studied in [26], but belongs to V ε
1 (see Definition 2.3). Also, the fact that

the domain Ωε
2 contains some more holes (or part of them) does not make any

relevant difference. Consequently, it is easy to check, taking into account [13,
Theorem 2.13], that the convergence results recalled in Theorem 4.3 below are
still true in this case.

In the second part of this section, we state some results concerning the
composed operators T ε

b ◦ h and T ε
i ◦ hi, i = 1, 2 where h, h1 and h2 are the

nonlinear functions in problem (2.2). Moreover, we prove (see Theorem 4.5
below) a new strong convergence result for T ε

2 (uε
2), which is needed to pass

to the limit in the unfolded nonlinear term concerning h2 in the variational
formulation (2.10).

In order to define the periodic unfolding operators, let us introduce the
following sets as in [13] (see Fig. 2).

• K̂ε =
{

k ∈ Z
n| εY k ⊂ Ω

}
, Ω̂ε = int

⋃

k∈K̂ε

ε
(
kl + Y

)
, Λε = Ω\Ω̂ε,

• Ω̂ε
i =

⋃

k∈K̂ε

εY k
i , Λε

i = Ωε
i \Ω̂ε

i , i = 1, 2.

4.1. The periodic unfolding operators

Definition 4.1. For any function φ Lebesgue-measurable on Ωε
i , the periodic

unfolding operators T ε
i , i = 1, 2 are defined by the formula

T ε
i (φ) (x, y) =

{
φ
(
ε
[x

ε

]

Y
+ εy

)
a.e. (x, y) ∈ Ω̂ε × Yi,

0 a.e. (x, y) ∈ Λε × Yi.
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Figure 2. The sets Ω̂ε and Λε

For any function φ Lebesgue-measurable on Γε, the periodic boundary
unfolding operator T ε

b is defined by

T ε
b (φ) (x, y) =

{
φ
(
ε
[x

ε

]

Y
+ εy

)
a.e. (x, y) ∈ Ω̂ε × Γ,

0 a.e. (x, y) ∈ Λε × Γ.

For the readers’ convenience, we recall the main properties of T ε
i for

i = 1, 2 as follows:

Proposition 4.2. [13,15,26] For p ∈ [1,+∞[, the operators T ε
i are linear and

continuous from Lp (Ωε
i ) to Lp (Ω × Y ), i = 1, 2; moreover,

(i) T ε
i (ϕψ) = T ε

i (ϕ) T ε
i (ψ), for every ϕ, ψ Lebesgue-measurable on Ωε

i .
(ii) For every ϕ ∈ L1 (Ωε

i ), one has
1

|Y |

∫

Ω×Yi

T ε
i (ϕ) (x, y) dx dy =

∫

Ω̂ε
i

ϕ (x) dx =
∫

Ωε
i

ϕ (x) dx −
∫

Λε
i

ϕ (x) dx.

(iii) For every ϕ ∈ Lp (Ωε
i ),

‖T ε
i (ϕ)‖Lp(Ω×Yi)

≤ |Y |1/p ‖ϕ‖Lp(Ωε
i ) .

(iv) For ϕ ∈ Lp (Ω),

T ε
i (ϕ) −→ ϕ strongly in Lp (Ω × Yi) .

(v) Let {ϕε} be a sequence in Lp (Ω) such that ϕε −→ ϕ strongly in Lp (Ω).
Then,

T ε
i (ϕε) −→ ϕ strongly in Lp (Ω × Yi) .

(vi) Let ϕ ∈ Lp (Yi) be a Y -periodic function and set ϕε (x) = ϕ(x/ε). Then

T ε
i (ϕε) −→ ϕ strongly in Lp (Ω × Yi) .

(vii) Let ϕε ∈ Lp (Ωε
i ) satisfy ‖ϕε‖Lp(Ωε

i ) ≤ C. If T ε
i (ϕε) ⇀ ϕ̂ weakly in

Lp (Ω × Yi), then

ϕ̃ε ⇀ θiMYi
(ϕ̂) weakly in Lp (Ω) .

(viii) If ϕ ∈ W 1,p (Ωε
i ), then ∇y [T ε

i (ϕ)] = εT ε
i (∇ϕ) and T ε

i (ϕ) ∈
Lp

(
Ω,W 1,p (Yi)

)
.
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(ix) If ϕ ∈ Ls (Γε) for s ∈ [1,+∞[, then

‖T ε
b (ϕ)‖Ls(Ω×Γ) ≤ |Y |1/s

ε1/s ‖ϕ‖Ls(Γε) .

Let us now recall the main convergence results which have been proved
in [13,26].

Theorem 4.3. [13,26] Let γ ∈ R and uε = (uε
1, u

ε
2) be a bounded sequence in

Hε
γ . Then,

‖T ε
1 (uε

1) − T ε
2 (uε

2)‖L2(Ω×Γ) ≤ Cε
1−γ
2 ,

and there exists a subsequence (still denoted ε), u1 ∈ H1
0 (Ω) and û1 ∈

L2
(
Ω,H1

per (Y1)
)
with MΓ (û1) = 0 a.e. x ∈ Ω such that

{
T ε

1 (uε
1) −→ u1 strongly in L2

(
Ω,H1 (Y1)

)
,

T ε
1 (∇uε

1) ⇀ ∇u1 + ∇yû1 weakly in L2 (Ω × Y1) .
(4.1)

Moreover, if γ ≤ 1, there exists a subsequence (still denoted ε), u2 ∈
L2 (Ω) and u2 ∈ L2

(
Ω,H1 (Y2)

)
with MΓ (u2) = 0 a.e. x ∈ Ω such that

{
T ε

2 (uε
2) ⇀ u2 weakly in L2

(
Ω,H1 (Y2)

)
,

T ε
2 (∇uε

2) ⇀ ∇yu2 weakly in L2 (Ω × Y2) .
(4.2)

Furthermore, if γ < 1, then u1 = u2 and

(i) if γ < −1, we have

û1 = u2 − yΓ∇u1 on Ω × Γ, (4.3)

where yΓ = y − MΓ(y).
(ii) if γ = −1, there exists ξΓ ∈ L2 (Ω) such that

T ε
1 (uε

1) − T ε
2 (uε

2)
ε

⇀ û1 − u2 + yΓ∇u1 + ξΓ weakly in L2 (Ω × Γ) . (4.4)

Remark 4.4. From now on, we set

û2 = u2 − yΓ∇u1 − ξΓ ∈ L2(Ω,H1(Y2)). (4.5)

With this notation, in (4.2)2 we can replace ∇yu2 by ∇u1 + ∇yû2 and (4.3)-
(4.4) can be rewritten respectively as follows:

û1 = û2 + ξΓ on Ω × Γ if γ < −1, (4.6)

T ε
1 (uε

1) − T ε
2 (uε

2) /ε ⇀ û1 − û2 weakly in L2 (Ω × Γ) if γ = −1. (4.7)

Let us mention that, when comparing to [26], the notations of û2 and u2

used here are interchanged, in order to simplify the presentation.
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4.2. Some convergence results

The main difficulty when passing to the limit in the unfolded version of problem
(2.2) is clearly given by the nonlinear terms. Concerning T ε

2 (uε
2), its weak

convergence in L2
(
Ω,H1 (Y2)

)
provided by Theorem 4.3 is not sufficient.

This is why we first need to prove that the above convergence is actually
strong. We do that in the next theorem, then we obtain the convergences of
the unfolded nonlinear terms.

Theorem 4.5. Let γ < 1 and uε = (uε
1, u

ε
2) be a bounded sequence in Hε

γ . Then,
there exists a subsequence (still denoted ε) and u1 ∈ H1

0 (Ω) such that
{

T ε
2 (uε

2) −→ u1 strongly in L2
(
Ω,H1 (Y2)

)
,

T ε
1 (uε

1) − T ε
2 (uε

2) −→ 0 strongly in L2 (Ω, Lr (Γ)) ,
(4.8)

where r is defined in Proposition 3.2.

Proof. From the proof of Theorem 2.18 in [26], we have

T ε
2 (uε

2) −→ u1 strongly in L2 (Ω × Γ) . (4.9)

Moreover, since Y2 is bounded with a Lipschitz boundary Γ, by the Friedrichs
inequality we have for some positive constant c,

‖v‖2
L2(Y2)

≤ c
(
‖v‖2

L2(Γ) + ‖∇v‖2
L2(Y2)

)
∀v ∈ H1 (Y2) ,

which applied to the function T ε
2 (uε

2) − u1 gives

‖T ε
2 (uε

2) − u1‖2
L2(Ω×Y2)

≤ c
(
‖T ε

2 (uε
2) − u1‖2

L2(Ω×Γ) + ‖∇yT ε
2 (uε

2)‖
2
L2(Ω×Y2)

)
,

(4.10)
since u1 is independent of y. Note that

‖∇yT ε
2 (uε

2)‖L2(Ω×Y2)
= ε ‖T ε

2 (∇uε
2)‖L2(Ω×Y2)

≤ c ε, (4.11)

in view of Proposition 4.2(iii), (viii) and the fact that uε is a bounded sequence
in Hε

γ . Taking into account (4.9)–(4.11), we deduce (4.8)1.
For the second convergence in (4.8) one has

∫

Ω

‖T ε
1 (uε

1) − T ε
2 (uε

2)‖
2
Lr(Γ) dx

≤ 2
∫

Ω

‖T ε
1 (uε

1) − u1‖2
Lr(Γ) dx + 2

∫

Ω

‖T ε
2 (uε

2) − u1‖2
Lr(Γ) dx

≤ c

(∫

Ω

‖T ε
1 (uε

1) − u1‖2
H1(Y1)

dx +
∫

Ω

‖T ε
2 (uε

2) − u1‖2
H1(Y2)

dx

)

−→ 0

where we use (4.1)1, (4.8)1 and the continuous embeddings H1(Yi) ⊂ Lr(Γ),
i = 1, 2 (see Proposition 3.2). This completes the proof. �

The following lemma is needed to prove the next proposition.

Lemma 4.6. There exists a positive constant c, independent of ε, such that, for
any v ∈ V ε

1 ,

‖v‖Ls(Ωε
1)

≤ c ‖v‖V ε
1

, (4.12)
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for every s ∈ [1, 2∗] if n > 2 and s ∈ [1,+∞[ if n = 2.

Proof. Let Ω0 be an open subset of R
n such that Ω ⊂ Ω0 and d (∂Ω0,Ω) >

diam(Y ). Set Ωε
0 = Ω0\

⋃
k∈Zn εY k

2 . Observe that, for ε small enough, ∂Ω0

does not meet the boundary of the holes intersecting ∂Ω. Consequently, if ṽ
is the zero extension to Ωε

0 of a function v ∈ V ε
1 , then according to Remark

2.4(i), ṽ ∈ H1(Ωε
0) and ṽ = 0 on ∂Ωε

0.
Hence, from classical results in [17,18], there exists an extension operator

P ε from H1 (Ωε
0) to H1

0 (Ω0) such that,

‖P εṽ‖H1
0 (Ω0)

≤ c ‖ṽ‖H1(Ωε
0)

,

where the constant c is independent of ε.
As a result, by using the Sobolev embedding H1

0 (Ω0) ⊂ Ls (Ω0), we
obtain

‖v‖Ls(Ωε
1)

= ‖ṽ‖Ls(Ωε
0)

≤ ‖P εṽ‖Ls(Ω0)
≤ c1 ‖P εṽ‖H1

0 (Ω0)
≤ c2 ‖v‖V ε

1
,

where the constant c2 does not depend on ε, which concludes the proof. �

Proposition 4.7. Let the function h1 satisfy assumptions (H1), (H4) and h2

satisfy assumptions (H1), (H′
4). If uε = (uε

1, u
ε
2) is a bounded sequence in Hε

γ ,
then there exists a subsequence (still denoted ε) and u1 ∈ H1

0 (Ω) such that

(i) T ε
1 (hε

1 (x, uε
1)) −→ h1 (y, u1) strongly in Lt/p1 (Ω × Y1),

(ii) T ε
2 (hε

2 (x, uε
2)) −→ h2 (y, u1) strongly in L2/p2 (Ω × Y2) if γ < 1,

where
{

t = max {2, p1} if n = 2,

t ∈
[
max

{
2, n+2

n−2

}
, 2∗

[
if n > 2.

Remark 4.8. In order to treat the nonlinear term by unfolding, in the sequel we
use the fact that, from the definition of the unfolding operators and assumption
(H1) on h, h1 and h2,

{
T ε

i (hε
i (·, v)) (x, y) = hi (y, T ε

i (v)(x, y)) , for i = 1, 2,

T ε
b (hε(·, w)) (x, y) = h(y, T ε

b (w)(x, y)),

for any function v measurable on Ωε
i and w measurable on Γε.

Proof of Proposition 4.7. From Proposition 4.2(iii) and Lemma 4.6, one has

‖T ε
1 (uε

1)‖Ls(Ω×Y1)
≤ |Y |1/s ‖uε

1‖Ls(Ωε
1)

≤ c ‖∇uε
1‖L2(Ωε

1)
≤ c1, (4.13)

for all s ∈ [2, 2∗] if n > 2 and s ∈ [2,+∞[ if n = 2.
Then, choosing s = 2∗ if n > 2 and s > max {2, p1} if n = 2, we obtain

by the interpolation inequality,

‖T ε
1 (uε

1) − u1‖Lt(Ω×Y1)
≤ C ‖T ε

1 (uε
1)

−u1‖1−a
Ls(Ω×Y1)

‖T ε
1 (uε

1) − u1‖a
L2(Ω×Y1)

∀t ∈ [2, s[, (4.14)
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with a = 2(s−t)
t(s−2) ∈ ]0, 1]. Hence, combining (4.1)1, (4.13) and (4.14), we get, up

to a subsequence,

T ε
1 (uε

1) −→ u1 strongly in Lt (Ω × Y1) ∀t ∈ [2, s[, (4.15)

for the above choice of s.
Now, in (4.15) we choose t = max {2, p1} if n = 2 and t ∈[

max
{

2, n+2
n−2

}
, 2∗

[
if n > 2. This means that p1 ≤ t. Since h1 satisfies

assumptions (H1) and (H4), from the classical results in [32] and convergence
(4.15), we obtain

h1 (y, T ε
1 (uε

1)) −→ h1 (y, u1) strongly in Lt/p1 (Ω × Y1) , (4.16)

which implies (i) by Remark 4.8.
Finally, when γ < 1, convergence (ii) is a direct consequence of Theorem

4.5 and the growth condition (H′
4) on h2. �

Remark 4.9. Due to the disconnectedness of the set Ωε
2, we cannot obtain for

v ∈ V ε
2 a similar result as that in Lemma 4.6. This is shown by the following

counter-example, suggested by Mardare [35]:
Let us fix k0 ∈ K̂ε and set

v =

{
ε−n/2 in εY k0

2 ,

0 elsewhere.

Then, if s > 2,

‖v‖Ls(Ωε
2)

= ε− n
2

∣
∣
∣εY k0

2

∣
∣
∣
1/s

= ε
n
s − n

2

∣
∣
∣Y k0

2

∣
∣
∣
1/s

→ +∞, as ε → 0,

while

‖v‖H1(Ωε
2)

= ‖v‖L2(Ωε
2)

=
∣
∣
∣Y k0

2

∣
∣
∣
1/s

.

5. Homogenization results

Here, we prove in details the result for γ = −1, which is more complicated.
For the other cases we only clarify the points where the proof is different.

5.1. The case γ = −1
In this case, although the strong convergence of T ε

2 (uε
2) proved in Theorem 4.5

allows to pass to the limit in the nonlinear term h2, we meet a main diffi-
culty concerning the nonlinear function h of the jump in the equation. Indeed,
from (4.4) we have only weak convergence of the term (T1 (uε

1) − T2 (uε
2))/ε in

L2 (Ω × Γ) and this does not allow to pass straightforward to the limit in the
interface term, as done in [26] for a linear h.

Nevertheless, in the spirit of the Minty method for monotone operators,
by choosing a sequence of suitable test functions, we are able to compute the
limit of the unfolded term h (y, T ε

b (uε
1 − uε

2)/ε), although we cannot improve
the weak convergence of T ε

b (uε
1 − uε

2)/ε.
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Theorem 5.1. For γ = −1, let (2.4), (2.5) and (2.6)2 hold true. If uε =
(uε

1, u
ε
2) is the solution of problem (2.2), then there exist u1 ∈ H1

0 (Ω), û1 ∈
L2

(
Ω,H1

per (Y1)
)
and û2 ∈ L2

(
Ω,H1 (Y2)

)
such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T ε
1 (uε

1) −→ u1 strongly in L2
(
Ω,H1 (Y1)

)
,

T ε
1 (∇uε

1) ⇀ ∇u1 + ∇yû1 weakly in L2 (Ω × Y1) ,

T ε
2 (uε

2) −→ u1 strongly in L2
(
Ω,H1 (Y2)

)
,

T ε
2 (∇uε

2) ⇀ ∇u1 + ∇yû2 weakly in L2 (Ω × Y2) .

(5.1)

The triplet (u1, û1, û2) is the unique solution of the following problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u1 ∈ H1
0 (Ω) , û1 ∈ L2

(
Ω,H1

per (Y1)
)
with MΓ (û1) = 0

and û2 ∈ L2
(
Ω,H1 (Y2)

)
such that

1
|Y |

∑

i=1,2

∫

Ω×Yi

A (y) (∇u1 + ∇yûi) (∇ϕ + ∇yΦi) dx dy +
1

|Y |
∑

i=1,2
∫

Ω×Yi

ϕhi (y, u1) dx dy +
1

|Y |

∫

Ω×Γ

h (y, û1 − û2) (Φ1 − Φ2) dx dσy

=
∫

Ω

f (x) ϕ (x) dx ∀ϕ ∈ H1
0 (Ω) , Φ1 ∈ L2

(
Ω,H1

per (Y1)
)
,

Φ2 ∈ L2
(
Ω,H1 (Y2)

)
.

(5.2)

Remark 5.2. Observe that in view of Theorem 2.6, assumption (2.5) and the
strict monotonicity (2.6)2 of h imply that the variational problem (2.10) admits
a unique solution uε ∈ Hε

γ . Besides, Proposition 2.7 gives the boundedness of
the norm of uε in Hε

γ .

In the proof of Theorem 5.1, we will need the following result:

Lemma 5.3. Let the spaces Wper (Y1) and B defined by

Wper(Y1) =
{
g ∈ H1

per(Y1)|MΓ(g) = 0
}

,

B = H1
0 (Ω) × L2(Ω,Wper(Y1)) × L2(Ω,H1(Y2)).

Then, ‖·‖B given by the formula

‖v‖2
B = ‖∇v1 + ∇y v̂1‖2

L2(Ω×Y1)
+ ‖∇v1 + ∇y v̂2‖2

L2(Ω×Y2)

+ ‖v̂1 − v̂2‖2
L2(Ω×Γ) , v = (v1, v̂1, v̂2) ∈ B

is a norm on B.

Proof. Let us prove that if ‖v‖B = 0 then v ≡ 0, the remaining properties of
a norm being trivial. Suppose then that ‖v‖B = 0. We have

{
v̂1 = v̂2 on Ω × Γ,

M = ‖∇v1 + ∇y v̂1‖2
L2(Ω×Y1)

+ ‖∇v1 + ∇y v̂2‖2
L2(Ω×Y2)

= 0.
(5.3)
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It is easy to see that

M = |Y | ‖∇v1‖2
L2(Ω) + ‖∇y v̂1‖2

L2(Ω×Y1)
+ ‖∇y v̂2‖2

L2(Ω×Y2)

+2
∫

Ω×Y1

∇v1∇y v̂1 dx dy + 2
∫

Ω×Y2

∇v1∇y v̂2 dx dy. (5.4)

Applying Green’s formula, we deduce from (5.3)1 and the Y -periodicity
of v̂1,

∫

Ω×Y1

∇v1∇y v̂1 dx dy +
∫

Ω×Y2

∇v1∇y v̂2 dx dy

=
n∑

i=1

∫

Ω

∂v1

∂xi

(∫

Y1

∂v̂1

∂yi
dy

)

dx +
n∑

i=1

∫

Ω

∂v1

∂xi

(∫

Y2

∂v̂2

∂yi
dy

)

dx

=
∫

Ω×Γ

v̂1∇v1.n1 (y) dx dσy +
∫

Ω×Γ

v̂2∇v1.n2 (y) dx dσy (5.5)

=
∫

Ω×Γ

(v̂1 − v̂2) ∇v1.n1 (y) dx dσy = 0,

since ∇v1 is independent of y and n2 = −n1.
Combining (5.3)–(5.5) implies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇v1 = 0 in Ω,

∇y v̂1 = 0 in Ω × Y1,

∇y v̂2 = 0 in Ω × Y2,

v̂1 = v̂2 on Ω × Γ.

(5.6)

This means that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v1 = 0 in Ω,

v̂1 = 0 in Ω × Y1,

v̂2 = C(x) in every connected component of Ω × Y2,

v̂1 = v̂2 on Ω × Γ,

(5.7)

where we make use of the Poincaré inequality on H1
0 (Ω) and the Poincaré–

Wirtinger inequality on Wper (Y1). This yields v ≡ 0 and the proof is complete.
�

Proof of Theorem 5.1. The proof consists of three steps.
Step 1: Passing to the limit.

From Theorems 4.3, 4.5 and Remark 4.4, convergences (5.1) follow for a
subsequence. In order to get the limit problem, we take (v1, v2) as test functions
in (2.10), where

vi = ϕ (x) + εωi (x) ψε
i (x) with ψε

i (x) = ψi(x/ε), i = 1, 2,

for ϕ, ωi ∈ D (Ω), ψ1 ∈ H1
per (Y1) and ψ2 ∈ H1 (Y2) (extended by Y -periodicity

to R
n).
Proposition 4.2(v) gives

T ε
i (vi) −→ ϕ strongly in L2 (Ω × Yi) , (5.8)



Vol. 22 (2015) Homogenization of diffusion problems 1365

since vi strongly converges to ϕ in L2 (Ω). Let us also note that

∇vi (x) = ∇ϕ + εψi(x/ε)∇ωi (x) + ωi (x) ∇yψi(x/ε).

Then, if we set Φi (x, y) = ωi (x)ψi (y), i = 1, 2, we have

T ε
i (∇vi) = T ε

i (∇ϕ) + ε ψi T ε
i (∇ωi) + ∇yψi T ε

i (ωi)

−→ ∇ϕ + ∇yΦi strongly in L2 (Ω × Yi) . (5.9)

Hence, from convergences (5.1)2,4, (5.8), (5.9) and Proposition 4.7, we obtain
by unfolding,
∫

Ωε
i

Aε∇uε
i ∇vi dx =

1
|Y |

∫

Ω×Yi

A (y) T ε
i (∇uε

i ) T ε
i (∇vi) dx dy

−→ 1
|Y |

∫

Ω×Yi

A (y) (∇u1 + ∇yûi) (∇ϕ + ∇yΦi) dx dy,

(5.10)

∫

Ωε
i

hε
i (x, uε

i ) vi dx =
1

|Y |

∫

Ω×Yi

hi (y, T ε
i (uε

i )) T ε
i (vi) dx dy

−→ 1
|Y |

∫

Ω×Yi

hi(y, u1) ϕ dx dy, (5.11)

for i = 1, 2 and
∫

Ωε
1

fv1 dx +
∫

Ωε
2

fv2 dx −→
∫

Ω

θ1fϕ dx +
∫

Ω

θ2fϕ dx =
∫

Ω

fϕ dx. (5.12)

On the other hand, in view of Remark 4.8,
∫

Γε

hε (x, uε
1 − uε

2) (v1 − v2) dσx = ε

∫

Γε

hε (x, uε
1 − uε

2) (ω1ψ
ε
1 − ω2ψ

ε
2) dσx

=
1

|Y |

∫

Ω×Γ

h

(

y,
T ε

b (uε
1 − uε

2)
ε

)

(ψ1 (y) T ε
1 (ω1) − ψ2 (y) T ε

2 (ω2)) dx dσy.

(5.13)
Note that Theorem 4.3 implies

∥
∥
∥
∥

T ε
b (uε

1 − uε
2)

ε

∥
∥
∥
∥

L2(Ω×Γ)

≤ c.

Thus, in view of assumption (H2) on h and the fact that q < 2, there exists
ζ ∈ L2/q (Ω × Γ) such that, up to a subsequence of ε,

h

(

y,
T ε

b (uε
1 − uε

2)
ε

)

⇀ ζ weakly in L2/q (Ω × Γ) . (5.14)

Then, we obtain

lim
ε→0

∫

Γε

hε (x, uε
1 − uε

2) (v1 − v2) dσx =
1

|Y |

∫

Ω×Γ

ζ (Φ1 − Φ2) dx dσy. (5.15)
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Collecting (5.10)–(5.12) and (5.15), passing to the limit as ε → 0 in the varia-
tional formulation (2.10) for γ = −1 and (v1, v2) chosen as above, by density
we deduce the following limit problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
|Y |

∑

i=1,2

∫

Ω×Yi

A (y) (∇u1 + ∇yûi) (∇ϕ + ∇yΦi) dx dy

+
1

|Y |

∫

Ω×Γ

ζ (Φ1 − Φ2) dx dσy +
1

|Y |
∑

i=1,2

∫

Ω×Yi

ϕhi (y, u1) dx dy

=
∫

Ω

f (x) ϕ (x) dx ∀ϕ ∈ H1
0 (Ω) , Φ1 ∈ L2

(
Ω,H1

per (Y1)
)
,

Φ2 ∈ L2
(
Ω,H1 (Y2)

)
.

(5.16)

Step 2: Identification of the limit ζ in (5.16).
We now show that

ζ = h (y, û1 − û2) . (5.17)

In order to do that, we use the Minty method for monotone operators, as
done for instance in [19] for Leray–Lions operators by the unfolding method or
in [3] for a parabolic problem with a jump of solution by the two-scale method.

This leads to use some test functions adapted to our nonlinear problem.
Consider the sequences

�ε
i (x) = λ0 (x) + ελi1

(
x,

x

ε

)
+ kελi2

(
x,

x

ε

)
, for i = 1, 2,

where
{

λ0 ∈ D (Ω) , λ1j ∈ D
(
Ω, C∞

per (Y1)
)
,

λ2j ∈ D (Ω, C∞ (Y2)) extended by Y-periodicity to R
n, j = 1, 2.

(5.18)

First, taking (uε
1 − �ε

1, u
ε
2 − �ε

2) as a test function in (2.10) written for
γ = −1 implies
∑

i=1,2

∫

Ωε
i

Aε∇uε
i (∇uε

i − ∇�ε
i ) dx +

∑

i=1,2

∫

Ωε
i

(uε
i − �ε

i ) hε
i (x, uε

i ) dx

+
∫

Γε

(uε
1 − �ε

1 − uε
2 + �ε

2) hε (x, uε
1 − uε

2) dσx =
∑

i=1,2

∫

Ωε
i

f (uε
i − �ε

i ) dx.

(5.19)
Moreover, from the monotonicity of h, h1, h2 and the assumption A ∈
M (α, β, Y ) we have

∑

i=1,2

∫

Ωε
i

Aε(∇uε
i − ∇�ε

i )(∇uε
i − ∇�ε

i ) dx

+
∑

i=1,2

∫

Ωε
i

(uε
i − �ε

i )[h
ε
i (x, uε

i ) − hε
i (x,�ε

i )] dx

+
∫

Γε

(uε
1 − uε

2 − �ε
1 + �ε

2)[h
ε (x, uε

1 − uε
2) − hε (x,�ε

1 − �ε
2)] dσx ≥ 0.

(5.20)
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Thus, combining (5.19) with (5.20) yields

∑

i=1,2

∫

Ωε
i

Aε∇�ε
i (∇uε

i − ∇�ε
i ) dx +

∑

i=1,2

∫

Ωε
i

(uε
i − �ε

i ) hε
i (x,�ε

i ) dx

+
∫

Γε

(uε
1−uε

2−�ε
1 + �ε

2) hε (x,�ε
1 − �ε

2) dσx ≤
∑

i=1,2

∫

Ωε
i

f (uε
i − �ε

i ) dx,

(5.21)
which gives, by unfolding, for ε small enough

1
|Y |

∑

i=1,2

∫

Ω×Yi

A (y) T ε
i (∇�ε

i ) [T ε
i (∇uε

i ) − T ε
i (∇�ε

i )] dx dy

+
1

|Y |
∑

i=1,2

∫

Ω×Yi

T ε
i (uε

i − �ε
i ) hi (y, T ε

i (�ε
i )) dx dy

+
1

|Y |

∫

Ω×Γ

[
T ε

b (uε
1−uε

2)
ε

− T ε
b (�ε

1−�ε
2)

ε

]

h

(

y,
T ε

b (�ε
1−�ε

2)
ε

)

dx dσy

≤ 1
|Y |

∑

i=1,2

∫

Ω×Yi

T ε
i (f) T ε

i (uε
i − �ε

i ) dx dy.

(5.22)
On the other hand, it is easily seen that, as ε → 0

⎧
⎪⎨

⎪⎩

T ε
i (�ε

i ) −→ λ0 strongly in L2 (Ω × Yi) ,
1
ε
T ε

i

(
ελi1

(
x,

x

ε

)
+ kελi2

(
x,

x

ε

))
−→ λi1(x, y) + kλi2(x, y)

strongly in L2(Ω,H1(Yi)) and L2(Ω × Γ), for i = 1, 2.

(5.23)

Consequently,

T ε
b (�ε

1 − �ε
2)

ε
−→ λ11 −λ21 + k (λ12 − λ22) strongly in L2 (Ω × Γ) . (5.24)

Moreover, for i = 1, 2, since

∇�ε
i (x) = ∇λ0 (x) + ε∇λi1

(
x,

x

ε

)
+ ∇yλi1

(
x,

x

ε

)

+ kε∇λi2

(
x,

x

ε

)
+ k∇yλi2

(
x,

x

ε

)
,

we obtain

T ε
i (∇�ε

i ) −→ ∇λ0 (x) + ∇yλi1 (x, y)+k∇yλi2 (x, y) strongly in L2 (Ω × Yi) .

Thus, passing to the limit in (5.22) as ε → 0, one deduces

∑

i=1,2

∫

Ω×Yi

A (y) (∇λ0 + ∇yλi1 + k∇yλi2)
[
∇u1 + ∇yûi

− (∇λ0 + ∇yλi1 + k∇yλi2)
]

dx dy
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+

∫

Ω×Γ

[û1−û2−λ11+λ21−k (λ12−λ22)] h (y, λ11−λ21+k (λ12−λ22))dx dσy

+
∑

i=1,2

∫

Ω×Yi

(u1 − λ0) hi (y, λ0) dx dy ≤ |Y |
∫

Ω

f (u1 − λ0) dx dy, (5.25)

where we use (5.23), (5.24) and the convergence results in Theorem 4.3.
Now let us choose λ0 = λn

0 and λi1 = λn
i1, i = 1, 2 such that, as n → +∞

⎧
⎪⎨

⎪⎩

λn
0 −→ u1 strongly in H1

0 (Ω) ,

λn
11 −→ û1 strongly in L2

(
Ω,H1

per (Y1)
)
,

λn
21 −→ û2 strongly in L2

(
Ω,H1 (Y2)

)
,

(5.26)

and pass to the limit as n → +∞ in (5.25), we obtain

− k
∑

i=1,2

∫

Ω×Yi

A (y) (∇u1 + ∇yûi + k∇yλi2) ∇yλi2 dx dy

− k

∫

Ω×Γ

(λ12 − λ22) h (y, û1 − û2 + k (λ12 − λ22)) dx dσy ≤ 0. (5.27)

Since (5.27) holds for every k ∈ R, we deduce the following equality:

∑

i=1,2

∫

Ω×Yi

A (y) (∇u1 + ∇yûi + k∇yλi2) ∇yλi2 dx dy

+
∫

Ω×Γ

(λ12 − λ22) h (y, û1 − û2 + k (λ12 − λ22)) dx dσy = 0. (5.28)

On the other hand, choosing ϕ ≡ 0, Φ1 = λ12, Φ2 = λ22 as the test functions
in (5.16) implies

∑

i=1,2

∫

Ω×Yi

A (y) (∇u1 + ∇yûi) ∇yλi2 dx dy +
∫

Ω×Γ

ζ (λ12 − λ22) dx dσy = 0.

(5.29)
Combining (5.28) with (5.29), one gets

k
∑

i=1,2

∫

Ω×Yi

A (y) ∇yλi2∇yλi2 dx dy −
∫

Ω×Γ

ζ (λ12 − λ22) dx dσy

+
∫

Ω×Γ

(λ12 − λ22) h (y, û1 − û2 + k (λ12 − λ22)) dx dσy = 0. (5.30)

Thus, letting k → 0 in (5.30) provides
∫

Ω×Γ

(λ12 − λ22) h (y, û1 − û2) dx dσy =
∫

Ω×Γ

ζ (λ12 − λ22) dx dσy

which gives (5.17).
Step 3: Existence and uniqueness of the solution of the limit problem (5.2).
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Let us consider operator P : u = (u1, û1, û2) ∈ B �−→ P(u) ∈ B′ defined
by

〈P(u), v〉B′,B =
∑

i=1,2

∫

Ω×Yi

A (y) (∇u1 + ∇yûi) (∇v1 + ∇y v̂i) dxdy

+
∑

i=1,2

∫

Ω×Yi

v1hi (y, u1) dxdy

+

∫

Ω×Γ

h (y, û1−û2) (v̂1−v̂2) dx dσy−|Y |
∫

Ω

fv1 dx ∀v = (v1, v̂1, v̂2) ∈ B,

where the space B is given in Lemma 5.3.
It is easily seen that P is bounded continuous, coercive and monotone.

Thus, from the Minty–Browder theorem, P is surjective, which implies that
Eq. (5.2) has a solution u = (u1, û1, û2) ∈ B. Let us check the uniqueness of
u. If problem (5.2) has two solutions u = (u1, û1, û2) and ω = (ω1, ω̂1, ω̂2), we
have

〈P(u) − P(ω), v〉B′,B = 0 ∀v = (v1, v̂1, v̂2) ∈ B.

Choosing v = u − ω yields

〈P(u) − P(ω), u − ω〉B′,B

=
∑

i=1,2

∫

Ω×Yi

A(y) (∇u1 − ∇ω1 + ∇yûi − ∇yω̂i)

× (∇u1 − ∇ω1 + ∇yûi − ∇yω̂i) dx dy

+
∑

i=1,2

∫

Ω×Yi

(hi (y, u1) − hi (y, ω1)) (u1 − ω1) dx dy (5.31)

+
∫

Ω×Γ

(h (y, û1 − û2) − h (y, ω̂1 − ω̂2)) (û1 − û2 − ω̂1 + ω̂2) dx dσy = 0.

Using the assumption A ∈ M (α, β, Y ) and the strictly monotonicity of h, we
obtain

{
∇ (u1 − ω1) + ∇y (ûi − ω̂i) = 0 in Ω × Yi, i = 1, 2,

û1 − ω̂1 − (û2 − ω̂2) = 0 on Ω × Γ,

which by Lemma 5.3 gives ‖u − ω‖B = 0, so that u ≡ ω. Hence, convergences
(5.1) hold for the whole sequence. This completes the proof. �

Remark 5.4. The fact that we cannot directly pass to the limit in the unfolded
nonlinear term h (y, T ε

b (uε
1 − uε

2)/ε) makes the situation here different from
the case of nonlinear Robin boundary conditions treated in [7,16], where some
weak convergence of the Nemytskii operator associated to the nonlinear func-
tion h was proved.
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In order to describe the homogenized problem solved by u1, we introduce
for every z ∈ R

n, the following problem:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find
(
χ

1
(·, z), χ

2
(·, z)

)
∈ Wper(Y1) × H1(Y2) such that

∑

i=1,2

∫

Yi

A (y) ∇yχ
i
(y, z)∇vi dy +

∫

Γ

h(y, χ
1
(y, z) − χ

2
(y, z))(v1 − v2) dσ

= −
∫

Y1

A (y) z∇v1 dy −
∫

Y2

A (y) z∇v2 dy, ∀v1 ∈ H1
per(Y1), v2 ∈ H1(Y2),

(5.32)
where the space Wper(Y1) is defined in Lemma 5.3.

The existence and the uniqueness of the solution of the above problem
can be proved using the Minty–Browder theorem as in the proof of Proposition
3.2, for the functional space

W
.=
{
v = (v1, v2) : v1 ∈ Wper(Y1), v2 ∈ H1(Y2)

}
,

endowed with the norm

‖v‖2
W = ‖∇v1‖2

L2(Y1)
+ ‖∇v2‖2

L2(Y2)
+ ‖v1 − v2‖2

L2(Γ) ∀v = (v1, v2) ∈ W.

Corollary 5.5. For γ = −1, under the hypotheses of Theorem 5.1, if uε =
(uε

1, u
ε
2) is the solution of problem (2.2), then there exists u1 ∈ H1

0 (Ω) such
that, for i = 1, 2,

{
ũε

i ⇀ θiu1 weakly in L2 (Ω) ,

Aε∇̃uε
i ⇀ θiMYi

(A(y)[∇u1 + ∇yχ
i
(y,∇u1)]) weakly in

(
L2 (Ω)

)n
,

(5.33)
and u1 is the unique solution of the following nonlinear problem:

{
−div (D(∇u1)) + θ1MY1 (h1 (·, u1)) + θ2MY2 (h2 (·, u1)) = f in Ω,

u1 = 0 on ∂Ω,

(5.34)
where

D(z) =
2∑

i=1

θiMYi

[

A(y)(z + ∇yχ
i
(y, z))

]

= MY (A)z

+
2∑

i=1

θiMYi

(

A(y)∇yχ
i
(y, z)

)

(5.35)

and for every z ∈ R
n, the pair (χ

1
(·, z), χ

2
(·, z)) is the unique solution of

problem (5.32).

Proof. Choosing ϕ ≡ 0 in (5.2) yields
1

|Y |
∑

i=1,2

∫

Ω×Yi

A (y) (∇u1 + ∇yûi) ∇yΦi dx dy

+
1

|Y |

∫

Ω×Γ

h (y, û1 − û2) (Φ1 − Φ2) dx dσy = 0. (5.36)
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This implies that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−divy (A (y)∇yû1 (x, y)) = divy (A (y)∇u1 (x)) a.e. in Ω × Y1,

−divy (A (y)∇yû2 (x, y)) = divy (A (y)∇u1 (x)) a.e. in Ω × Y2,

A (y) [∇yû1 (x, y) + ∇u1 (x)] n1

= −A (y) [∇yû2 (x, y) + ∇u1 (x)] n2 a.e. in Ω × Γ,

−A (y) [∇yû1 (x, y) + ∇u1 (x)] n1 = h (y, û1 − û2) a.e. in Ω × Γ,

û1 (x, ·) Y -periodic.

(5.37)

Clearly, (5.37) provides (û1, û2) under the following forms:
⎧
⎨

⎩

û1 (x, y) = χ
1
(y,∇u1),

û2 (x, y) = χ
2
(y,∇u1),

(5.38)

where, for every z ∈ R
n, the pair (χ

1
(·, z), χ

2
(·, z)) ∈ Wper(Y1) × H1(Y2) is

the solution of problem (5.32).
On the other hand, choosing Φ1 = Φ2 ≡ 0 in (5.2) gives

1

|Y |
∑

i=1,2

∫

Ω×Yi

A (y) (∇u1+∇yûi) ∇ϕ dx dy+
1

|Y |
∑

i=1,2

∫

Ω×Yi

hi (y, u1) ϕ dx dy

=

∫

Ω

f (x) ϕ (x) dx, (5.39)

that is
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
|Y |

∑
i=1,2 divx

∫

Yi
A (y) [∇u1 (x) + ∇yχ

i
(y,∇u1)] dy

+
1

|Y |
∑

i=1,2

∫

Yi
hi (y, u1 (x)) dy = f in Ω,

u1 = 0 on ∂Ω,

(5.40)

where we replaced (5.38) in (5.39). This, using (5.35) gives the homogenized
problem (5.34).

Let us now check the uniqueness of solution u1 of problem (5.34). Suppose
that u∗

1 is a solution of (5.34) and set û∗
1 = χ1(y,∇u∗

1) and û∗
2 = χ2(y,∇u∗

1).
Since (χ1(·, z), χ2(·, z)) is the unique solution of problem (5.32) for every z ∈
R

n, (u∗
1, û

∗
1, û

∗
2) satisfies (5.36) and (5.39). Summing these two equalities, one

has that (u∗
1, û

∗
1, û

∗
2) is a solution of problem (5.2) which by Theorem 5.1 has a

unique solution. Hence, u∗
1 ≡ u1 and problem (5.34) admits a unique solution.

Finally, convergences (5.33) follow from Proposition 4.2(i), (vi), (vii)
together with (5.1) and (5.38). �

5.2. The case γ < −1

In this case, as done in [26], thanks to the relationship between the traces of
û1 and û2 on Γ provided by Theorem 4.3, we can overcome the difficulty given
by the presence of the nonlinear jump on the boundary.
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Theorem 5.6. For γ < −1, under assumptions (2.4), (2.5) and (2.6)1 let uε =
(uε

1, u
ε
2) be the solution of problem (2.2). Then, there exist u1 ∈ H1

0 (Ω), û1 ∈
L2

(
Ω,H1

per (Y1)
)
and û2 ∈ L2

(
Ω,H1 (Y2)

)
such that convergences (5.1) hold.

If û (extended by periodicity) is given by

û =

{
û1 in Ω × Y1,

û2 + ξΓ in Ω × Y2,
(5.41)

with ξΓ as in Theorem 4.3, then the pair (u1, û) is the unique solution of the
following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u1 ∈ H1
0 (Ω) , û ∈ L2

(
Ω,H1

per (Y )
)
with MΓ (û) = 0 a.e. in Ω

such that
1

|Y |

∫

Ω×Y

A (y) (∇u1 + ∇yû) (∇ϕ + ∇yΦ) dx dy

+
1

|Y |
∑

i=1,2

∫

Ω×Yi

hi (y, u1) ϕ dx dy

=
∫

Ω

f (x) ϕ (x) dx ∀ϕ ∈ H1
0 (Ω) , ∀Φ ∈ L2

(
Ω,H1

per (Y )
)
.

(5.42)

Proof. Let us choose

v1 = v2 = ϕ (x) + εω (x) ψε (x)

as the test functions in (2.10) where ϕ, ω ∈ D (Ω), ψ ∈ H1
per (Y ) and ψε (x) =

ψ (x/ε). This makes the integral on the interface vanish, so that we only have
to treat the volume integrals.

By similar arguments as in the proof of Theorem 5.1, we get (5.8)–(5.12)
where Φ1 and Φ2 are replaced by Φ(x, y) = ω(x)ψ(y).

Hence, passing to the limit as ε → 0 in the variational formulation (2.10)
with the above choice of (v1, v2), by density we deduce

1
|Y |

∑

i=1,2

∫

Ω×Yi

A (y) (∇u1 + ∇yûi) (∇ϕ + ∇yΦ) dx dy

+
1

|Y |
∑

i=1,2

∫

Ω×Yi

hi(y, u1) ϕ dx dy

=
∫

Ω

f (x)ϕ (x) dx ∀ϕ ∈ H1
0 (Ω) , ∀Φ ∈ L2

(
Ω,H1

per (Y )
)
. (5.43)

Let us now recall that from Remark 4.4 the relationship between the
traces of û1 and u2 on Γ is given by û1 = û2 + ξΓ on Ω × Γ. Then, the
extension by periodicity of the function û defined by (5.41) is a function (still
denoted by û) which belongs to L2

(
Ω,H1

per (Y )
)

and satisfies

∇yû|Ω×Y1
= ∇yû1, ∇yû|Ω×Y2

= ∇yû2.

Consequently, (5.43) gives the limit problem (5.42).
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Finally, the uniqueness of (u1, û1, û2), which implies the convergences of
the whole sequence in (5.1), comes from the next corollary. �

Corollary 5.7. For γ < −1, under the hypotheses of Theorem 5.6, let uε =
(uε

1, u
ε
2) be the solution of problem (2.2). Then, there exists u1 ∈ H1

0 (Ω) such
that, for i = 1, 2

{
ũε

i ⇀ θiu1 weakly in L2 (Ω) ,

Aε∇̃uε
i ⇀ Ai

γ∇u1 weakly in
(
L2 (Ω)

)n
,

(5.44)

A1
γ and A2

γ being the constant matrices defined by

A1
γej = θ1MY1(Aej − A∇χ

j
), A2

γej = θ2MY2(Aej − A∇χ
j
)

where {ej}n is the canonical basis of R
n and the correctors χ

j
, j = 1, . . . , n,

are the unique solutions of the cell problems
⎧
⎨

⎩

−div (A (y) ∇(χ
j
− yj)) = 0 in Y,

χ
j

Y -periodic, MΓ(χ
j

) = 0. (5.45)

The function u1 is the unique solution of the following problem:
{

−div
(
A0

γ∇u1

)
+ θ1MY1 (h1 (·, u1)) + θ2MY2 (h2 (·, u1)) = f in Ω,

u1 = 0 on ∂Ω,

(5.46)
where the homogenized matrix A0

γ is given by

A0
γej = MY (Aej − A∇χ

j
) = A1

γej + A2
γej . (5.47)

Proof. Convergences (5.44) can be proved similarly as in [26].
Choosing ϕ ≡ 0 in (5.42), we get

1
|Y |

∫

Ω×Y

A (y) (∇u1 + ∇yû) ∇yΦ dx dy = 0,

which implies that
{

divy [A (y) (∇yû (x, y) + ∇u1 (x))] = 0 a.e. in Ω × Y,
û (x, ·) Y -periodic.

Consequently by standard arguments, one obtains

û (x, y) = −
n∑

j=1

∂u1

∂xj
(x)χ

j
(y) , (5.48)

where χ
j
, j = 1, . . . , n, are the solutions of the cell problems (5.45).

Now we choose Φ ≡ 0 in (5.42),
1

|Y |

∫

Ω×Y

A (y) (∇u1 + ∇yû) ∇ϕ dx dy +
1

|Y |

∫

Ω×Y1

h1 (y, u1) ϕ dx dy

+
1

|Y |

∫

Ω×Y2

h2 (y, u1)ϕ dx dy =
∫

Ω

f (x)ϕ (x) dx,
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that gives
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 1
|Y |div

(∫

Y
A (y) [∇u1 (x) + ∇yû (x, y)] dy

)

+
1

|Y |
∫

Y1
h1 (y, u1 (x)) dy +

1
|Y |

∫

Y2
h2 (y, u1 (x)) dy = f in Ω,

u1 = 0 on ∂Ω.

(5.49)

Replacing (5.48) yields (5.46). The uniqueness of the solution u1 of problem
(5.46) is straightforward. �

Remark 5.8. It is easy to check from the proof that for this case, we only need
assumption (H′

2) defined in Sect 3, instead of (H2), to obtain the homogeniza-
tion result.

5.3. The case γ ∈ ]−1, 1]

Let us turn to the last case, where we state the results for γ ∈ ]−1, 1[ and
γ = 1 separately.

Theorem 5.9. Assume that γ ∈ ]−1, 1[ and that (2.4)–(2.6)1 hold. If uε =
(uε

1, u
ε
2) is the solution of problem (2.2), then there exist u1 ∈ H1

0 (Ω) and
û1 ∈ L2

(
Ω,H1

per (Y1)
)
such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T ε
1 (uε

1) −→ u1 strongly in L2
(
Ω,H1 (Y1)

)
,

T ε
2 (uε

2) −→ u1 strongly in L2
(
Ω,H1 (Y2)

)
,

T ε
1 (∇uε

1) ⇀ ∇u1 + ∇yû1 weakly in L2 (Ω × Y1) ,

T ε
2 (∇uε

2) ⇀ 0 weakly in L2 (Ω × Y2) ,

(5.50)

and the pair (u1, û1) is the unique solution of the problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u1 ∈ H1
0 (Ω) , û1 ∈ L2 (Ω,Wper (Y1)) such that,

1
|Y |

∫

Ω×Y1

A (y) (∇u1 + ∇yû1) (∇ϕ + ∇yΦ1) dx dy

+
1

|Y |
∑

i=1,2

∫

Ω×Yi

hi (y, u1) ϕ dx dy

=
∫

Ω

f (x) ϕ (x) dx, ∀ϕ ∈ H1
0 (Ω) , ∀Φ1 ∈ L2

(
Ω,H1

per (Y1)
)
.

(5.51)

Proof. Theorems 4.3 and 4.5 imply convergences (5.50)1−3 and

T ε
2 (∇uε

2) ⇀ ∇yu2 weakly in L2 (Ω × Y2) , (5.52)

for some u2 ∈ L2
(
Ω,H1 (Y2)

)
, up to a subsequence.

We now choose as test functions in (2.10) the functions vi (x) = ϕ (x) +
εωi (x) ψε

i (x), i = 1, 2, where ϕ, ωi ∈ D (Ω) and ψε
i (x) = ψi

(x

ε

)
, with ψ1 ∈

H1
per (Y1) and ψ2 ∈ H1 (Y2) (extended by Y -periodicity to R

n). Arguing as in
the proof of Theorem 5.1 gives convergences (5.10)–(5.12).
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Now we treat the nonlinear jump on the interface. Taking into account
Remark 4.8, Proposition 4.2(ix) and the fact that the function h satisfies
assumption (H2), we have

εγ+1

∫

Γε

hε (x, uε
1 − uε

2) (v1 − v2) dσx

=
εγ+1

|Y |

∫

Ω×Γ

h

(

y,
T ε

b (uε
1 − uε

2)
ε

)

(ψ1 (y) T ε
1 (ω1) − ψ2 (y) T ε

2 (ω2)) dx dσy

≤ c εγ+1

∥
∥
∥
∥h

(

y,
T ε

b (uε
1 − uε

2)
ε

)∥
∥
∥
∥

L
2
q (Ω×Γ)

‖ψ1 (y) T ε
1 (ϕ1)

−ψ2 (y) T ε
2 (ϕ2)‖

L
( 2

q
)′

(Ω×Γ)

≤ c εγ+1
(
1 + ε−q ‖T ε

b (uε
1 − uε

2)‖
q
L2(Ω×Γ)

)

≤ c εγ+1
(
1 + ε−q/2 ‖uε

1 − uε
2‖

q
L2(Γε)

)

≤ c εγ+1
(
1 + ε−(1+γ)q/2

)
≤ c

(
εγ+1 + ε

1
2 (γ+1)(2−q)

)
−→ 0, (5.53)

since γ > −1 and q < 2.
From (5.10) to (5.12) and (5.53), passing to the limit as ε → 0 in the

variational formulation (2.10) for (v1, v2) given as above, we get
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ϕ ∈ H1
0 (Ω) , ∀ (Φ1,Φ2) ∈ L2

(
Ω,H1

per (Y1)
)

× L2
(
Ω,H1 (Y2)

)
,

1
|Y |

∫

Ω×Y1

A (y) (∇u1 + ∇yû1) (∇ϕ + ∇yΦ1) dx dy

+
1

|Y |
∑

i=1,2

∫

Ω×Yi

hi (y, u1) ϕ dx dy

+
1

|Y |

∫

Ω×Y2

A (y)∇yu2 (∇ϕ + ∇yΦ2) dx dy =
∫

Ω

f (x) ϕ (x) dx.

As in the proof of Theorem 3.3 in [26], choosing ϕ = Φ1 ≡ 0 and Φ2 ≡ 0
gives that ∇yu2 = 0 in Ω×Y2. Hence, convergence (5.50)4 follows from (5.52).
Finally, the uniqueness of (u1, û1) which implies the convergences of the whole
sequence in (5.50) comes from the next corollary. �

By similar arguments to those used in Theorem 5.7, we can prove the
following:

Corollary 5.10. For γ ∈ ]−1, 1[, assume that the hypotheses of Theorem 5.9 are
satisfied and uε = (uε

1, u
ε
2) is the solution of problem (2.2). Then there exists

u1 ∈ H1
0 (Ω) such that

⎧
⎪⎨

⎪⎩

ũε
i ⇀ θiu1 weakly in L2 (Ω) , i = 1, 2,

Aε∇̃uε
1 ⇀ A0

γ∇u1 weakly in
(
L2 (Ω)

)n
,

Aε∇̃uε
2 ⇀ 0 weakly in

(
L2 (Ω)

)n
,

(5.54)
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and u1 is the unique solution of problem (5.46), where the homogenized matrix
A0

γ is the constant matrix defined by

A0
γej = θ1MY1(Aej − A∇χ

j
). (5.55)

The correctors χ
j
, j = 1, . . . , n, are the unique solutions of the cell problems

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−div(A (y)∇(χ
j
− yj)) = 0 in Y1,

A (y) ∇(χ
j
− yj).n1 = 0 on Γ,

χ
j

Y -periodic, MΓ(χ
j
) = 0.

(5.56)

Let us now state the homogenization result for the case γ = 1, where
we make use of the same test functions and similar arguments in the proof of
Theorem 5.9.

Theorem 5.11. Let γ = 1 and the assumptions (2.4)–(2.6)3 hold. If uε =
(uε

1, u
ε
2) is the solution of problem (2.2), then there exist u1 ∈ H1

0 (Ω) and û1 ∈
L2

(
Ω,H1

per (Y1)
)
such that convergences (5.50)1,3,4 hold and (u1, û1) uniquely

satisfies
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 ∈ H1
0 (Ω) , û1 ∈ L2

(
Ω,H1

per (Y1)
)
with MΓ (û1) = 0 a.e. x ∈ Ω,

1
|Y |

∫

Ω×Y1

A (y) (∇u1 + ∇yû1) (∇ϕ + ∇yΦ1) dx dy

+
1

|Y |

∫

Ω×Y1

h1 (y, u1) ϕ dx dy

=
∫

Ω

f (x) ϕ (x) dx, ∀ϕ ∈ H1
0 (Ω) , ∀Φ1 ∈ L2

(
Ω,H1

per (Y1)
)
.

Moreover, the homogenized problem is the following:
{

−div
(
A0

γ∇u1

)
+ θ1MY1 (h1 (·, u1)) = f in Ω,

u1 = 0 on ∂Ω,
(5.57)

where A0
γ is defined by (5.55).

Remark 5.12. When γ = 1, Theorem 4.3 only provides the weak convergence
of T ε

2 (uε
2) to the function u2 in L2(Ω;H1(Y2)), so that we are not able to

characterize u2, except when h is linear as in [26]. In that case, this is done by
choosing v1 = 0 and v2 ∈ D(Ω) as test functions in the variational formulation
and passing to the limit as ε → 0. To do that, the weak convergence above
is sufficient since εh (y, T ε

b (uε
1 − uε

2)/ε) is of the form h̃ (y) T ε
b (uε

1 − uε
2). This

is not the case anymore when h is not linear then here we cannot prove the
uniqueness of u2. Consequently, the convergence of T ε

2 (uε
2) in (4.2)1 holds only

for a subsequence.
Observe also that the assumption h2 ≡ 0 is motivated by the fact that

Theorem 4.5 does not apply for γ = 1, so that one cannot pass to the limit
in the unfolded term concerning h2. The same assumption has been used by
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Timofte in [41] for the case where the domain Ωε
2 is also connected. The case

h2 	≡ 0 remains an open problem.
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and Numerical Analysis, Proc. Japan–France Seminar 1976 (Fujita ed.), Japan-
ese Society for the Promotion of Science, pp. 468–482 (1978)

[41] Timofte, C.: Upscaling in nonlinear diffusion problems in composite materials,
Progress in Industrial Mathematics at ECMI (2006), 328–332

Patrizia Donato and Kim Hang Le Nguyen
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