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Abstract. We consider the instationary Navier-Stokes system in general
unbounded domains Ω ⊂ R

n, n ≥ 3, with smooth boundary and con-
struct by the Fujita-Kato method mild solutions u ∈ L∞(0, T ; L̃n(Ω))

with initial value u0 ∈ L̃n(Ω). Here the classical Ln(Ω)–space is replaced

by L̃n(Ω) where for q > 2 the space L̃q is defined by Lq∩L2. Moreover, for

suitable initial values we identify mild solutions in L∞(0, T ; L̃n(Ω)) with

very weak solutions in Serrin’s class Lr(0, T ; L̃q(Ω)) where 2
r

+ n
q

= 1,
2 < r < ∞.
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1. Introduction

We consider the instationary Navier-Stokes system

ut − Δu + div (u ⊗ u) + ∇p = f in (0, T ) × Ω,

div u = 0 in (0, T ) × Ω,

u = 0 on (0, T ) × ∂Ω,

u(0) = u0 at t = 0,

(1.1)

in a general unbounded domain Ω ⊂ R
n, n ≥ 3, with uniform C2-boundary

and a finite time interval (0, T ). Here u = (u1, . . . , un) denotes the unknown
velocity field, p an associated pressure, f a given external force, and u0 the
initial value of u at time t = 0. For simplicity, the viscosity is set to ν = 1.
A precise definition of domains with uniform Ck-boundary can be found in
Definition 2.1 below.

A problem in this setting is the unboundedness of the underlying do-
main Ω. Due to counter-examples by Bogovskij and Maslennikova [6,7] the
Helmholtz decomposition of vector fields in Lq(Ω), 1 < q < ∞, on an
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unbounded smooth domain may fail unless q = 2. By analogy, a bounded
Helmholtz projection Pq with the properties required to define the Stokes op-
erator Aq = −PqΔ when q �= 2 may not exist. Therefore, in [9,11–14] Kozono,
Sohr and the first author of this article introduced the spaces

L̃q(Ω) :=

{
Lq(Ω) + L2(Ω), if 1 ≤ q < 2,

Lq(Ω) ∩ L2(Ω), if 2 ≤ q ≤ ∞.
(1.2)

The corresponding norm is defined as ‖u‖L̃q = max{‖u‖q, ‖u‖2} when q ≥ 2,
and as inf{‖u1‖q +‖u2‖2 : u = u1 +u2, u1 ∈ Lq(Ω), u2 ∈ L2(Ω)}. For bounded
domains we have that L̃q(Ω) = Lq(Ω) with equivalent norms. We note that
functions in L̃q(Ω) locally behave like Lq-functions, but globally exploit L2-
properties. By analogy, function spaces like L̃q

σ(Ω) of solenoidal vector fields
and W̃ k,q(Ω) of weakly differentiable functions will be defined.

As shown in [11] a Helmholtz projection P̃q : L̃q(Ω)n → L̃q
σ(Ω) is well

defined, allowing to define a closed Stokes operator Ãq = −P̃qΔ with domain
D̃1

q = W̃ 2,q(Ω)∩W̃ 1,q
0 (Ω)∩ L̃q

σ(Ω) dense in L̃q
σ(Ω). The operator Ãq has similar

properties as the usual Stokes operator Aq, generates an analytic semigroup
e−tÃq , t ≥ 0, enjoys the property of bounded imaginary powers and maxi-
mal regularity; for details and further properties of these function spaces and
operators we refer to [9,11–14] and [22,24] as well as to Sect. 2.

In this article we are looking for mild solutions u ∈ L∞(0, T ; L̃n
σ(Ω)) to be

constructed by the well-known Fujita-Kato method of successive approxima-
tion, see Fujita and Kato [16] working in D(A1/4

2 ) ⊂ L3
σ(Ω) when Ω is bounded,

Giga and Miyakawa [19] for u0 ∈ D(Aγ) and bounded domains, Kato [21] for
the case Ω = R

3 and Giga [18] for a more general and abstract approach. An
exposition of the method for the whole space R

n based on harmonic analysis
can be found in the monograph [5]. The Fujita-Kato method is strongly based
on the variation of constants formula (1.3) in the following definition.

Definition 1.1. Let 0 < T < ∞ and Ω ⊆ R
n, n ≥ 3, be a uniform C2-domain.

Assume that an initial velocity u0 ∈ L̃n
σ(Ω) is given. Then u ∈ L∞(0, T ; L̃n

σ(Ω))
with t1/2∇u(t) ∈ L∞(0, T ; L̃n(Ω)) is called mild solution to the Navier-Stokes
system with initial velocity u0 if it solves the integral equation

u(t) = e−tÃnu0 −
∫ t

0

e−(t−s)Ãn/2 P̃n/2(u(s) · ∇u(s)) ds (1.3)

for almost all 0 ≤ t < T .

The integral equation is to be read as equation in L̃n
σ(Ω). By L̃r–L̃q-

estimates of the Stokes semigroup, see (2.8), (2.9) below, it can be verified that
the integral term on the right hand side of (1.3) is well defined and contained
in L̃n

σ(Ω).
The main result of this article reads as follows:

Theorem 1.2. (Existence of Mild Solutions) Let 0 < T < ∞, a uniform C2-
domain Ω⊆R

n and an initial velocity u0 ∈ L̃n
σ(Ω) be given. Choose n<q<∞.

Then there is a constant γ=γ(τ(Ω), q)>0 such that the condition
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sup
0≤t<T

t(1−n/q)/2‖e−tÃnu0‖L̃q(Ω) + sup
0≤t<T

t1/2‖∇e−tÃnu0‖L̃n(Ω) ≤ γ (1.4)

implies the existence of a mild solution u to the Navier-Stokes system on [0, T )
with initial velocity u0. For the term τ(Ω) we refer to Definition 2.1.

Remark 1.3. Note that the smallness condition in Theorem 1.2 is satisfied
if ‖u0‖L̃n is small. Moreover, even for arbitrarily large initial values, we can
achieve the smallness condition by choosing a smaller time interval, i.e. choos-
ing a new T > 0. This follows directly from Lemma 3.1 below.

Concerning uniqueness we have the following result:

Theorem 1.4. (Uniqueness) Let Ω⊆R
n be a uniform C2-domain, let 0<T <∞

and u0 ∈ L̃n
σ(Ω). Let v and w be mild solutions to the Navier-Stokes equations

with the initial datum u0. Furthermore, assume that
• t(1−n/q)/2‖v(t)‖L̃q(Ω) → 0 as t → 0+ for some n < q < ∞, and
• t1/2‖∇w(t)‖L̃n(Ω) → 0 as t → 0+.

Then there exists 0 < T∗ ≤ T such that v = w on [0, T∗).

Mild solutions u ∈ L∞(0, T ; L̃n
σ(Ω)) are solutions in the sense of distri-

butions which are not necessarily weak solutions in the sense of Leray-Hopf
with finite kinetic energy (u ∈ L∞(0, T ;L2(Ω))) and finite dissipation inte-
gral (∇u ∈ L2(0, T ;L2(Ω))), see [20,23,28]. These mild solutions determine a
limiting case of the so-called very weak solutions contained in a Serrin class
Lr(0, T ; L̃q

σ(Ω)) where 2 < r < ∞, n < q < ∞ and 2
r + n

q = 1.
The concept of very weak solutions was discussed e.g. by Amann [2–4]

in the setting of Besov spaces, by Galdi, Kozono, Simader, Sohr and the first
author of this paper in classical Lq-spaces [8,10] and [17], and in weighted
Lebesgue and Bessel potential spaces using arbitrary Muckenhoupt weights,
see the work of Schumacher [25–27]. The adaptation to smooth unbounded
domains was performed by the authors in [15]. For a precise definition and
more properties especially for general unbounded domains we refer to [15] and
to Sect. 4 below.

The theory of very weak solutions is strongly based on duality arguments
which are not feasible in L∞–spaces and for mild solutions. This is one of the
reasons of introducing the Fujita-Kato iteration method. Nevertheless, mild
and and very weak solutions are strongly related to each other and do coincide
under slightly stronger conditions on the initial datum.

Theorem 1.5. Let Ω ⊆ R
n be a C2-domain, n ≥ 3, and 0 < T < ∞. Assume

Serrin exponents n ≤ r ≤ 2n and n < q < 2n are given. Let u0 ∈ L̃n
σ(Ω) be an

initial velocity.
(i) A very weak solution u ∈ Lr(0, T ; L̃q

σ(Ω)) to the Navier-Stokes system
with u(0) = u0 also belongs to the space L∞(0, T ; L̃n

σ(Ω)).
(ii) Let u ∈ L∞(0, T ; L̃n

σ(Ω)) be the solution constructed in Theorem 1.2.
Then, for some 0 < T∗ ≤ T , the solution u is contained in Lr(0, T∗; L̃q

σ(Ω))
and is a very weak solution to the Navier-Stokes equations on [0, T∗).
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For statements more precise than in Theorem 1.5 we refer to Theorems
4.1 and 4.2 in Sect. 4. In the following Sect. 2 we discuss the spaces L̃q(Ω) and
related spaces of Lorentz, Sobolev and Bochner type as well as properties of
the Stokes operator Ãq. Moreover, several results on very weak solutions are
summarized in Sect. 2. Complete proofs of Theorems 1.2 and 1.4 as well as
further results on mild solutions can be found in Sect. 3.

2. Preliminaries

Definition 2.1. A domain Ω ⊂ R
n is called uniform Ck-domain, k ∈ N0, if

there are constants α, β,K > 0 such that for all x0 ∈ ∂Ω there exist—after
an orthogonal and an affine coordinate transform—a function h on the closed
ball B′

α(0) ⊆ R
n−1 of class Ck and a neighborhood Uα,β,h(x0) of x0 with

the following properties: ‖h‖Ck ≤ K and h(0) = 0 and, if k ≥ 1, h′(0) = 0;
moreover,

Uα,β,h(x0) := {(y′, yn) ∈ R
n−1 × R : |y′| < α, |h(y′) − yn| < β},

U−
α,β,h(x0) := {(y′, yn) ∈ R

n−1 × R : |y′| < α, h(y′) − β < yn < h(y′)}
= Ω ∩ Uα,β,h(x0),

∂Ω ∩ Uα,β,h(x0) = {(y′, yn) ∈ R
n−1 × R : h(y′) = yn}.

The triple (α, β,K) is called the type of Ω and will be denoted by τ(Ω) =
(α, β,K).

For a constant C in some estimate we will write C = C(τ(Ω)) if it does
depend only on α, β and K, but in no other way on Ω.

Note that bounded and exterior domains are uniform Ck-domains as long
as the boundary is smooth enough.

For spaces of Sobolev-type we proceed analogously to the definition in
(1.2): For k ∈ N and 1 ≤ q ≤ ∞ we let

W̃ k,q(Ω) :=

{
W k,2(Ω) + W k,q(Ω), 1 ≤ q < 2,

W k,2(Ω) ∩ W k,q(Ω), 2 ≤ q ≤ ∞.
(2.1)

Similarly, we define the spaces W̃ 1,q
0 (Ω), 1 < q < 2 and 2 ≤ q < ∞, based on

the classical Sobolev spaces W 1,q
0 (Ω) and W 1,2

0 (Ω).
The L̃q- and W̃ k,q(Ω)-spaces have the following properties; for a proof

see [24]:

• Let 1 ≤ q < r ≤ ∞. Then (L̃q(Ω))∗ = L̃q′
(Ω) and ‖u‖L̃q ≤ ‖u‖L̃r .

• Let 1 ≤ r, p, q ≤ ∞, 1
r = 1

p + 1
q and let u ∈ L̃p, v ∈ L̃q. Then uv ∈ L̃r

and ‖uv‖L̃r ≤ ‖u‖L̃p‖v‖L̃q .
• Let m ∈ N, 1 ≤ q < ∞ and Ω ⊆ R

n be a uniform C2-domain. Then

W̃m,q(Ω) ↪→ L̃r(Ω)

if either q ≤ r ≤ ∞ and mq > n, or q ≤ r < ∞ and mq = n, or
q ≤ r ≤ nq

n−mq and mq < n.
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Concerning the Helmholtz projection on L̃q(Ω) for a domain Ω ⊆ R
n of

uniform type C1 we have the following result, see [11]. We define

L̃q
σ(Ω) :=

{
Lq

σ(Ω) + L2
σ(Ω), 1 < q < 2

Lq
σ(Ω) ∩ L2

σ(Ω), 2 ≤ q < ∞
, (2.2)

equipped with the norm of L̃q(Ω), and gradient spaces by

G̃q(Ω) :=

{
Gq(Ω) + G2(Ω), 1 < q < 2,

Gq(Ω) ∩ G2(Ω), 2 ≤ q < ∞,
(2.3)

which are based on the gradient spaces Gr(Ω) = {∇p ∈ Lr(Ω) : p ∈ Lr
loc(Ω)}.

The norm in G̃q(Ω) is denoted by ‖ · ‖G̃q(Ω) := ‖ · ‖L̃q(Ω).
The space L̃q(Ω) admits the direct algebraic and topological decomposi-

tion

L̃q(Ω) = L̃q
σ(Ω) ⊕ G̃q(Ω).

The corresponding projection P̃q from L̃q(Ω) onto its range L̃q
σ(Ω) and with

kernel G̃q(Ω) has a norm bounded by a constant c = c(q, τ(Ω)). We have
the duality relations

(
P̃q

)∗ = P̃q′ and L̃q
σ(Ω)∗ = L̃q′

σ (Ω). Using the Helmholtz
projection P̃q we define the Stokes operator Ãq, 1 < q < ∞, for a uniform
C2-domain Ω ⊆ R

n with domain

D(Ãq) :=

{
Dq + D2, 1 < q < 2,

Dq ∩ D2, 2 ≤ q < ∞,
(2.4)

where Dq := Lq
σ(Ω)∩W 1,q

0 (Ω)∩W 2,q(Ω). Then Ãq : D(Ãq) ⊆ L̃q
σ(Ω) → L̃q

σ(Ω)
is defined by Ãqu := −P̃qΔu and has the following properties, see [14]:

• Ãq is a densely defined closed operator in L̃q
σ(Ω) satisfying

(
Ãq

)∗ = Ãq′ .
• Ãq generates an analytic semigroup e−tÃq , t ≥ 0, having the bound∥∥e−tÃqf

∥∥
L̃q(Ω)

≤ Ceδt‖f‖L̃q(Ω)

for all f ∈ L̃q
σ(Ω) and t ≥ 0 with a constant C = C(q, δ, τ(Ω)), δ > 0.

It is unknown whether the usual resolvent estimate for the infinitesimal
generator Ãq of the analytic semigroup e−tÃq holds uniformly in the resolvent
parameter λ ∈ C as |λ| → 0. Therefore, the semigroup may increase exponen-
tially fast and the maximal regularity estimate in Theorem 2.2 below is stated
only for finite time intervals. For the same reason, the operator Ãq has often
to be replaced by I + Ãq in the following.

Note that from time to time we will omit the symbols Ω and 0, T for
domain and time interval, respectively, when this data is known from the
context.

Theorem 2.2. ([13, Theorem 1.4]) Let Ω ⊆ R
n be a uniform C2-domain and

let 1 < r, q < ∞, 0 < T < ∞. Given an external force f ∈ Lr(0, T ; L̃q
σ(Ω))
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and an initial value u0 ∈ D(Ãq) (for simplicity) there exists a unique vector
field u ∈ Lr(0, T ;D(Ãq)) ∩ W 1,r(0, T ; L̃q

σ(Ω)) solving the Cauchy problem

ut + Ãqu = f, u(0) = u0.

It can be represented by the variation of constants formula

u(t) = e−tÃqu0 +
∫ t

0

e−(t−τ)Ãqf(τ) dτ for a.a. 0 ≤ t ≤ T

and satisfies the maximal regularity estimate

‖u‖Lr(0,T ;D(Ãq)) + ‖ut‖Lr(0,T ;L̃q) ≤ C
(
‖u0‖D(Ãq) + ‖f‖Lr(0,T ;L̃q)

)
with a constant C = C(q, r, T, τ(Ω)) > 0.

A further crucial property of the Stokes operator is the fact that 1+Ãq

admits bounded imaginary powers, see [22]. Hence complex interpolation meth-
ods can be used to describe domains of fractional powers (1+Ãq)α, −1 ≤ α ≤ 1.
To be more precise, for 0 ≤ α ≤ 1 let the domain of the fractional power
(1 + Ãq)α be denoted by

D̃α
q = D̃α

q (Ω) = D((1 + Ãq)α), (2.5)

equipped with the norm ‖(1 + Ãq)α · ‖L̃q . For −1 ≤ α < 0 define D̃α
q as the

completion of L̃q
σ(Ω) in the norm ‖(1 + Ãq)α · ‖L̃q . These spaces are reflexive

and satisfy the duality relation (D̃α
q )∗ ∼= D̃−α

q′ . As special case we get that

D̃1/2
q = W̃ 1,q

0 (Ω) ∩ L̃q
σ(Ω) with norm ‖(1 + Ãq)1/2 · ‖L̃q ∼ ‖ · ‖W̃ 1,q(Ω).

Moreover, for −1 ≤ α ≤ β ≤ 1, the operator (1 + Ãq)β−α is an isomorphism
between D̃β

q and D̃α
q . Finally,[

D̃α
q , D̃β

q

]
θ

= D̃γ
q , (2.6)

when −1 ≤ α ≤ β ≤ 1 and (1−θ)α+θβ = γ, θ ∈ (0, 1). This result implies the
following embedding and decay estimates ([24, Proposition 3, Theorem 1]):

Let n ≥ 3, 1 < q ≤ r < ∞, and α := n
2

(
1
q − 1

r

)
≥ 0. Then

‖u‖L̃r(Ω) ≤ C‖(1 + Ãq)αu‖L̃q(Ω), 0 ≤ α ≤ 1, (2.7)

for all u ∈ D̃α
q and a constant C = C(τ(Ω), q, α). Moreover,∥∥e−tÃrf

∥∥
L̃r(Ω)

≤ Ceδt(1 + t)αt−α‖f‖L̃q(Ω), (2.8)∥∥∇e−tÃrf
∥∥

L̃r(Ω)
≤ Ceδt(1 + t)α+ 1

2 t−α− 1
2 ‖f‖L̃q(Ω) (2.9)∥∥e−tÃr P̃rdiv F

∥∥
L̃r(Ω)

≤ Ceδt(1 + t)α+ 1
2 t−α− 1

2 ‖F‖L̃q(Ω) (2.10)

for every f ∈ L̃q
σ(Ω) and matrix-valued field F ∈ L̃q(Ω), respectively, for any

t > 0 and δ > 0; here C = C(τ(Ω), r, q, δ) > 0. Note that in (2.10) the operator
e−tÃr P̃rdiv must be defined by duality to the operator ∇e−tÃr′ in (2.9).
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For later use we need Lorentz spaces over L̃q and their solenoidal sub-
spaces. First we define for 1 ≤ q, ρ ≤ ∞ the Lorentz spaces

L̃q,ρ(Ω) :=

{
Lq,ρ(Ω) + L2(Ω), q < 2,

Lq,ρ(Ω) ∩ L2(Ω), q > 2,

letting the case q = 2 undefined; here Lq,ρ(Ω) denotes a usual Lorentz space,
cf. [29, Ch. 1.18.6]. From [24, Theorem 3] we recall that for 1 ≤ q, r, s ≤ ∞
with r �= q, s �= 2, satisfying 1

s = 1−θ
q + θ

r with some 0 < θ < 1, and for
1 ≤ ρ ≤ ∞

(L̃q(Ω), L̃r(Ω))θ,ρ = L̃s,ρ(Ω).

Next we define for 1 < q < ∞, q �= 2, and 1 ≤ ρ < ∞ the spaces

L̃q,ρ
σ (Ω) := C∞

0,σ(Ω)
‖·‖L̃q,ρ(Ω) .

Then, by [24, Corollary 1], 1 < q, r, s < ∞ with r �= q, s �= 2, satisfying
1
s = 1−θ

q + θ
r with some 0 < θ < 1, and for 1 ≤ ρ < ∞ we get that

(L̃q
σ(Ω), L̃r

σ(Ω))θ,ρ = L̃s,ρ
σ (Ω). (2.11)

Finally, we provide some details on the theory of very weak solutions in
the context of general unbounded smooth domains using the spaces L̃q(Ω). For
more details we refer to [15] where a generalized Navier-Stokes system with
external force F (and even nonzero divergence and nonzero boundary values)
has been considered. The abstract external force field F in [15] combines the
initial value u0 and an external force f as follows:

〈F , φ〉 = (u0, φ(0)) + (f, φ)T,Ω. (2.12)

This point of view is advantageous to interpret the theory of very weak solu-
tions as a problem dual to the theory of strong (regular) solutions. In (2.12) the
brackets (·, ·)T,Ω denote the usual duality product for functions on Ω × (0, T )
whereas (·, ·) denotes the corresponding duality product on Ω.

Definition 2.3. Let Ω ⊆ R
n be a uniform C2-domain, 0 < T < ∞ and

2 < r < ∞, n < q < ∞ and 2/r + n/q = 1.
(i) The test function space of very weak solutions is defined as

T 1,r′,q′
(T,Ω) := {φ ∈ Lr′

(0, T ; D̃1
q′) ∩ W 1,r′

(0, T ; L̃q′
(Ω)) : φ(T ) = 0}

and equipped with the norm

‖φ‖T 1,r′,q′ (T,Ω) := ‖φt‖Lr′ (0,T ;L̃q′ (Ω)) + ‖φ‖Lr′ (0,T ;D̃1
q′ )

.

The set of bounded functionals on T 1,r′,q′
(T,Ω) is denoted by T −1,r,q

(T,Ω).
(ii) For an external force F ∈ T −1,r,q(T,Ω) we call u ∈ Lr(0, T ; L̃q(Ω)) a very

weak solution to the Navier-Stokes system with data F if the conditions

− (u, φt)T,Ω − (u,Δφ)T,Ω − (u ⊗ u,∇φ)T,Ω = 〈F , φ〉, (2.13)
(u,∇ψ)T,Ω = 0

hold for all test functions φ ∈ T 1,r′,q′
(T,Ω) and ∇ψ ∈ Lr′

(0, T ; L̃q′
(Ω)).
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(iii) Concerning the linear nonstationary Stokes system the nonlinear term
(u ⊗ u,∇φ)T,Ω in (2.13) is omitted. In that case 1 < r, q < ∞ can be
chosen arbitrarily, ignoring the Serrin condition 2/r + n/q = 1.

Let us have a close look at the test function space T 1,r′,q′
= T 1,r′,q′

(T,Ω)
in Definition 2.3 and the functional F , see (2.12).

Lemma 2.4. Let 1 < r, q < ∞, 0 < T < ∞ and Ω ⊆ R
n be a uniform C2-

domain. For every v ∈ Lr′
(0, T ; L̃q′

σ (Ω)) there exists a unique solution φ =
φ(v) ∈ T 1,r′,q′

to the backward Stokes equation

−φt + Ãqφ = v on (0, T ), φ(T ) = 0.

It can be represented by the formula

φ(v)(T − t) =
∫ t

0

e−(t−τ)Ãq′ v(T − τ) dτ. (2.14)

The map v �→ φ(v) is linear and satisfies, with C = C(q, r, T, τ(Ω)) > 0, the
bound

‖φ(v)‖T 1,r′,q′ (T,Ω) ≤ C‖v‖Lr′ (0,T ;L̃q′ (Ω)).

Proof. The assertions follow from the maximal regularity of the Stokes equa-
tion, cf. Theorem 2.2, and a variable transformation t̃ := T − t. �

Proposition 2.5. Let Ω ⊂ R
n be a uniform C2-domain, 0 < T < ∞, and let

Serrin exponents 2 < r < ∞, n < q < ∞, 2
r + n

q = 1, n ≥ 3, be given.
Then the following conditions on u0 are sufficient to imply that the functional
φ �→ 〈F , φ〉 := (u0, φ(0)) is contained in the data space T −1,r,q(T,Ω).

(i) The optimal condition on u0 in terms of real interpolation theory is

u0 ∈
(
D̃−1

q , L̃q
σ(Ω)

)
1/r′,r,

i.e. u0 ∈ D̃−1
q and

∫ T

0
‖e−tÃqu0‖r

L̃q dt < ∞.

(ii) In particular, the conditions u0 ∈ L̃ρ
σ(Ω) and

∫ T

0
‖e−tÃρu0‖r

L̃q dt < ∞ for
some 1 < ρ < ∞ imply that u0 ∈

(
D̃−1

q , L̃q
σ(Ω)

)
1/r′,r.

(iii) The conditions u0 ∈ L̃n,r
σ (Ω) and, if even r ≥ n ≥ 3, also u0 ∈ L̃n

σ(Ω) are
sufficient.

Proof. For the convenience of the reader we repeat the proofs of (i) and (ii)
from [15].

(i) We must show that 〈F , φ〉 = (u0, φ(0)) is bounded in φ ∈ T 1,r′,q′
. The

optimality condition is determined by the optimal space for the trace
φ(0), i.e., by the real interpolation space (L̃q′

σ , D̃1
q′)1/r,r′ , cf. [1, Theorem

III.4.10.2], and duality. By the duality theorem for real interpolation ([29,
Theorem 1.11.2]), this is the space (L̃q

σ, (D̃1
q′)∗)1/r,r = (D̃−1

q , L̃q
σ)1/r′,r us-

ing the duality relation (D̃1
q′)∗ = D̃−1

q . Since D̃1
q = D̃(I + Ãq), (I +
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Ãq)−1D̃−1
q = L̃q

σ, and I + Ãq generates the exponentially decreasing an-
alytic semigroup e−te−tÃq , the space (D̃−1

q , L̃q
σ)1/r′,r is characterized by

the condition u0 ∈ D̃−1
q such that

‖(I + Ãq)−1u0‖L̃q +
(∫ ∞

0

∥∥(I + Ãq)e−t(I+Ãq)(I + Ãq)−1u0

∥∥r

L̃q dt

)1/r

∼
(∫ T

0

∥∥e−tÃqu0

∥∥r

L̃q dt

)1/r

< ∞,

cf. [29, Theorem 1.14.5].
(ii) A direct proof for u0 ∈ Lρ

σ(Ω) with finite integral
∫ T

0
‖e−tÃρu0‖r

L̃q dt uses
Lemma 2.4. Let φ ∈ T 1,r′,q′

(T,Ω) and v = −φt + Ãq′φ. Then by (2.14)

|(u0, φ(0))| =

∣∣∣∣∣
∫ T

0

(
e−tÃρu0, v(t)

)
dt

∣∣∣∣∣ ≤ ‖e−tÃρu0‖Lr(0,T ;L̃q)‖v‖Lr′ (0,T ;L̃q′ )

where ‖v‖Lr′ (0,T ;L̃q′ ) ≤ C‖φ‖T 1,r′,q′ .
(iii) The next two conditions are consequences of [24, Theorem 2]. If

u0 ∈ L̃n,r
σ (Ω) or u0 ∈ L̃n

σ(Ω) and r≥n≥3, then
∫ T

0
‖e−tÃnu0‖r

L̃q dt is finite.
�

Theorem 2.6. (Very Weak Solutions [15]) Let Ω ⊆ R
n be a uniform C2-domain

and let 0 < T < ∞. Assume that F ∈ T −1,r,q(T,Ω) where 2 < r < ∞,
n < q < ∞ and Serrin’s condition 2

r + n
q = 1 is satisfied.

(i) There exists an η = η(τ(Ω), q, T ) > 0 with the following property: if

‖F‖T −1,r,q(T,Ω) ≤ η,

then there exists a very weak solution u ∈ Lr(0, T ; L̃q(Ω)) to the Navier-
Stokes system with datum F in the sense of Definition 2.3. The a priori
estimate

‖u‖Lr(0,T ;L̃q(Ω)) ≤ C‖F‖T −1,r,q(T,Ω)

holds with a constant C = C(τ(Ω), q, T ).
(ii) There exists a T ′ ∈ (0, T ) such that there is a very weak solution u ∈

Lr(0, T ′; L̃q(Ω)) to the Navier-Stokes system with data F|[0,T ′] ∈ T −1,r,q

(T ′,Ω).

3. Mild solutions

We will need the following norms (Kato norms):

‖u‖Kq
0

:= ‖u‖Kq
0 (T,Ω) := sup

0≤t<T
t(1−n/q)/2‖u(t)‖L̃q(Ω), n ≤ q < ∞,

‖u‖Kn
1

:= ‖u‖Kn
1 (T,Ω) := sup

0≤t<T
t1/2‖∇u(t)‖L̃n(Ω), and

‖u‖Kq := ‖u‖Kq(T,Ω) := max{‖u‖Kq
0 (T,Ω) , ‖u‖Kn

1 (T,Ω)}, n ≤ q < ∞.
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To prove Theorem 1.2 we need some preparations. First we recall that∫ t

0

(t − s)αsβds = Bt1+α+β , α, β > −1, 0 < t < ∞,

where the constant B equals the Eulerian Beta function B1+α,1+β .

Lemma 3.1. Let Ω ⊆ R
n be a uniform C2-domain and let u0 ∈ L̃n

σ(Ω). Then
for any exponent n < q < ∞, 2 < r < ∞ satisfying 2

r + n
q = 1 it holds that

lim
t→0+

t1/r
∥∥e−tÃnu0

∥∥
L̃q(Ω)

= 0,

lim
t→0+

t1/2
∥∥∇e−tÃnu0

∥∥
L̃n(Ω)

= 0.

Proof. First note that, by (2.8), for all v ∈ L̃n
σ(Ω)

t1/r
∥∥e−tÃnv

∥∥
L̃q(Ω)

≤ C‖v‖L̃n(Ω), 0 ≤ t ≤ 1,

with some constant C ≥ 1. Moreover, we use that
∥∥e−tÃqv

∥∥
L̃q(Ω)

≤ C‖v‖L̃q(Ω)

for every v ∈ L̃q
σ(Ω) and 0 ≤ t ≤ 1. Next we approximate u0 ∈ L̃n

σ(Ω) by
uε ∈ C∞

0,σ(Ω) to get the estimate

t1/r
∥∥e−tÃnu0

∥∥
L̃q ≤ t1/r

∥∥e−tÃn(uε − u0)
∥∥

L̃q + t1/r
∥∥e−tÃnuε

∥∥
L̃q

≤ C0‖uε − u0‖L̃n + C1t
1/r‖uε‖L̃q .

This proves the first assertion.
For the second assertion we find a constant C ≥ 1 such that the following

estimates hold: By (2.8), (2.9)∥∥e−tÃqv
∥∥

L̃n + t1/2
∥∥∇e−tÃnv

∥∥
L̃n ≤ C2‖v‖L̃n , 0 ≤ t ≤ 1,

and ‖∇v‖L̃n ≤ C4‖(1+Ãn)1/2v‖L̃n for all v ∈ D̃
1/2
n , cf. Sect. 2. Approximating

u0 ∈ L̃n
σ(Ω) by uε ∈ C∞

0,σ(Ω), the estimate

t1/2
∥∥∇e−tÃnu0

∥∥
L̃n ≤ t1/2

∥∥∇e−tÃn(uε − u0)
∥∥

L̃n + t1/2
∥∥∇e−tÃnuε

∥∥
L̃n

≤ C‖uε − u0‖L̃n + Ct1/2
∥∥e−tAn(1 + Ãn)1/2uε

∥∥
L̃n

≤ C‖uε − u0‖L̃n + C2t1/2‖(1 + Ãn)1/2uε‖L̃n

easily proves the second claim. �

Remark 3.2. A similar lemma holds for u0 in the Lorentz space L̃n,ρ
σ (Ω) if

n ≤ ρ < ∞. However, this argument does not work for the space L̃n,∞
σ (Ω),

which can be defined by real interpolation as well.

Proof of Theorem 1.2. We define the iteration procedure u(0)(t) := e−tÃnu0,
and

u(j+1)(t) := e−tÃu0 −
∫ t

0

e−(t−s)ÃP̃ (u(j)(s) · ∇u(j)(s)) ds, (3.1)

for j ≥ 0 and 0 ≤ t < T ; here e.g. Ã = Ãn/2, P̃ = P̃n/2. We will show
convergence of the sequence (u(j))j∈N in the norm ‖ · ‖Kq where we fixed



Vol. 22 (2015) Very weak solutions and the Fujita-Kato approach 1153

n < q < ∞. Related to q there exists 2 < r < ∞ such that 2
r + n

q = 1.
By assumption ‖u(0)‖Kq

0
≤ ‖u(0)‖Kq =: I < ∞.

Claim 1 The sequence
(
u(j)

)
is bounded with respect to the norm ‖ · ‖Kq .

Proof of Claim 1 From (2.8) we conclude that for all j ≥ 0

‖u(j+1)‖Kq
0

≤ ‖u(0)‖Kq
0

+ sup
0≤t<T

t1/r

∫ t

0

∥∥e−(t−s)ÃP̃ (u(j)(s) · ∇u(j)(s))
∥∥

L̃q ds

≤ I + C sup
0≤t<T

t1/r

∫ t

0

(t − s)−1/2‖u(j)(s) · ∇u(j)(s)‖L̃nq/(n+q) ds

≤ I + C sup
0≤t<T

t1/r

∫ t

0

(t − s)−1/2‖u(j)(s)‖L̃q‖∇u(j)(s)‖L̃n ds

≤ I + C‖u(j)‖2
Kq sup

0≤t<T
t1/r

∫ t

0

(t − s)−1/2s−1/2−1/r ds

= I + C‖u(j)‖2
Kq · B1/2,1/2−1/r.

For the other part of the norm ‖ · ‖Kq we get due to (2.9) that

‖u(j+1)‖Kn
1

≤ ‖u(0)‖Kn
1

+ sup
0≤t<T

t1/2

∫ t

0

‖∇e−(t−s)ÃP̃ (u(j)(s) · ∇u(j)(s))‖L̃n ds

≤ I + C sup
0≤t<T

t1/2

∫ t

0

(t − s)−1+1/r‖u(j)(s) · ∇u(j)(s)‖L̃nq/(n+q) ds

≤ I + C sup
0≤t<T

t1/2

∫ t

0

(t − s)−1+1/r‖u(j)(s)‖L̃q‖∇u(j)(s)‖L̃n ds

≤ I + C‖u(j)‖2
Kq sup

0≤t<T
t1/2

∫ t

0

(t − s)−1+1/rs−1/r−1/2 ds

= I + C‖u(j)‖2
Kq · B1/r,1/2−1/r.

Combining these estimates we find that

‖u(j+1)‖Kq ≤ ‖u(0)‖Kq + C1‖u(j)‖2
Kq (3.2)

with a constant C1. Now we fix γ in (1.4) by

γ :=
1

6C1
.

Since ‖u(0)‖Kq ≤ γ it is seen by induction that ‖u(j)‖Kq ≤ 1
3C1

. �

Claim 2 The sequence
(
u(j)

)
converges to a limit u ∈ L∞(0, T ; L̃n

σ(Ω)) and
‖u‖Kq < ∞.

Proof of Claim 2 We write u(j) as telescoping sum u(j) =
∑j

k=0 w(k), where
w(0) := u(0) and w(k) := u(k) − u(k−1). Note that this implies that
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w(j+1)(t) = −
∫ t

0

e−(t−s)ÃP̃
(
w(j)(s) · ∇u(j)(s) + u(j−1) · ∇w(j)(s)

)
ds

for all t and all j ∈ N.
Repeating the arguments from above we find, with C1 as in (3.2), that

‖w(0)‖Kq ≤ ‖u(0)‖Kq , ‖w(j+1)‖Kq ≤ C1‖w(j)‖Kq

(
‖u(j)‖Kq + ‖u(j−1)‖Kq

)
for all j. Since ‖u(j)‖Kq ≤ 1

3C1
we get the estimate ‖w(j+1)‖Kq ≤ 2

3‖w(j)‖Kq .
Consequently,

‖u(j)‖Kq ≤
j∑

k=0

‖w(k)‖Kq ≤
j∑

k=0

(
2
3

)k

‖u(0)‖Kq .

Hence the infinite sum
∑∞

k=0 w(k) is absolutely convergent in the norm ‖ · ‖Kq ,
and the sequence (u(j))j∈N converges in this norm to some element u. This
implies also pointwise convergence for every t ∈ (0, T ). Moreover, we get the
bound

‖u‖Kq ≤ 3‖u(0)‖Kq .

To prove the convergence of (u(j)) to u in L∞(0, T ; L̃n
σ(Ω)) we estimate

for any 0 ≤ t < T and j ∈ N the iterate w(j+1) by

‖w(j+1)(t)‖L̃n

≤
∫ t

0

∥∥e−(t−s)ÃP̃ [w(j)(s) · ∇u(j)(s) + u(j−1)(s) · ∇w(j)(s)]
∥∥

L̃n ds

≤ C1

∫ t

0

(t−s)−n/(2q)
∥∥w(j)(s) · ∇u(j)(s)+u(j−1)(s) · ∇w(j)(s)

∥∥
L̃nq/(n+q) ds

≤ 2C1‖w(j)‖Kq

1
3C1

∫ t

0

(t − s)−n/(2q)s−1/rs−1/2 ds

=
2
3
‖w(j)‖Kq · B′ ≤

(
2
3

)j

‖u(0)‖KqB′ (3.3)

where B′ = B1−n/(2q),1/2−1/r. We conclude that the sequence u(j) =
∑j

k=0 w(k)

converges to u in the norm of L∞(0, T ; L̃n(Ω)), too. Hence u ∈ L∞(0, T ; L̃n
σ(Ω))

and ‖u‖L∞(0,T ;L̃n) ≤ 3B′‖u(0)‖Kq . �

Claim 3 u is a solution of the integral equation.

Proof of Claim 3 We start from the integral Eq. (3.1) and pass to the limit
j → ∞. Since u(j) tends pointwise in L̃n(Ω) to u, the left hand side tends to
u(t) for a.a. t ∈ [0, T ) in L̃n(Ω). Concerning the integral term we estimate,
using the techniques as before,
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∥∥∥∥
∫ t

0

e−(t−s)ÃP̃ (u(j) · ∇u(j))(s) ds −
∫ t

0

e−(t−s)ÃP̃ (u · ∇u)(s) ds

∥∥∥∥
L̃n

≤ C

∫ t

0

(t − s)−1/2
(
‖u(j) − u‖L̃n‖∇u(j)‖L̃n + ‖u‖L̃n‖∇(u(j) − u)‖L̃n

)
ds

≤ C
(
‖u(j)‖Kn

1
‖u(j) − u‖L∞(0,T ;L̃n) + ‖u‖L∞(0,T ;L̃n)‖u(j) − u‖Kn

1

)
B1/2,1/2

≤ CB1/2,1/2‖u(0)‖Kq

(
‖u(j) − u‖L∞(0,T ;L̃n) + ‖u(j) − u‖Kn

1

)
,

which tends to 0 as j → ∞. This implies that u satisfies the integral equation.
Hence u is a mild solution in the sense of Definition 1.1. �

Theorem 3.3. The mild solution u ∈ L∞(0, T ; L̃n
σ(Ω)) constructed in Theorem

1.2 is contained in C([0, T ); L̃n
σ(Ω)) and satisfies u(0) = u0. Moreover, it has

the following properties:

(i) [t �→ t1/ru(t)] ∈ C([0, T ); L̃q
σ(Ω)) for all n < q < ∞ with function value 0

at t = 0. Here r is defined by 2
r + n

q = 1.
(ii) [t �→ t1/2∇u(t)] ∈ C([0, T ); L̃n(Ω)) with value 0 at t = 0.

Proof. By mathematical induction on j ∈ N we will show for all n ≤ q < ∞
(with 1/r = 0 when q = n) the continuity properties

t1/ru(j)(t) ∈ C([0, T ); L̃q
σ(Ω)), t1/2∇u(j)(t) ∈ C([0, T ); L̃n(Ω)), (3.4)

for any j ∈ N0. All functions in (3.4) are understood to equal zero at t = 0,
except in case q = n, where u(j)(0) = u0.

The initial step for u(0) is easy. For 0 < τ ≤ t < T we have that

t1/ru(0)(t) − τ1/ru(0)(τ) = τ1/re−τÃn
(
(t/τ)1/re−(t−τ)Ãn − 1

)
u0,

t1/2∇u(0)(t) − τ1/2∇u(0)(τ) = τ1/2∇e−τÃn
(
(t/τ)1/2e−(t−τ)Ãn − 1

)
u0,

and get, as long as τ stays bounded away from 0, that

‖t1/ru(0)(t) − τ1/ru(0)(τ)‖L̃q ≤ C
∥∥(

(t/τ)1/re−(t−τ)Ãn − 1
)
u0

∥∥
L̃q → 0,

‖t1/2∇u(0)(t) − τ1/2∇u(0)(τ)‖L̃n ≤ C
∥∥(

(t/τ)1/2e−(t−τ)Ãn − 1
)
u0

∥∥
L̃n → 0,

as |t − τ | → 0. This proves continuity of the functions in (3.4) for j = 0 in the
open interval (0, T ). The continuity in t = 0 follows from Lemma 3.1.

The inductive step will be split into two parts, one on continuity in (0, T ),
the other one on continuity at t = 0.

Claim 1 The functions in (3.4) are continuous in the open interval (0, T ).
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Proof of Claim 1 Assume that the assertion is true for a fixed but arbitrary
j ∈ N. For 0 < τ ≤ t < T we have∥∥t1/ru(j+1)(t) − τ1/ru(j+1)(τ)

∥∥
L̃q ≤

∥∥t1/re−tÃnu0 − τ1/re−τÃnu0

∥∥
L̃q

+ t1/r

∫ t

τ

∥∥e−(t−s)Ãn/2 P̃n/2(u(j)(s) · ∇u(j)(s))
∥∥

L̃q ds

+
∫ τ

0

∥∥(
t1/re−(t−s)Ãn/2 − τ1/re−(τ−s)Ãn/2

)
P̃n/2(u(j)(s) · ∇u(j)(s))

∥∥
L̃q ds

=: I1 + I2 + I3.

We have to show that the terms Ii tend to zero as |t− τ | → 0. From the initial
step we know that I1 tends to zero. The term I2 is treated as follows:

I2 ≤ Ct1/r

∫ t

τ

(t − s)−1/2‖u(j)(s)‖L̃q‖∇u(j)(s)‖L̃nds

≤ Ct1/rK2

∫ t

τ

(t − s)−1/2s−1/r−1/2ds

= CK2

∫ 1

τ/t

(1 − s)−1/2s−1/r−1/2ds

where K = 1
3C1

is the constant bounding the sequence ‖u(j)‖Kq as in the proof
of Theorem 1.2. Of course the above bound for I2 tends to zero as |t − τ | → 0
as long as τ stays bounded away from 0.

Now we discuss the term I3. For technical reasons we change variables to
get

I3 =
∫ 1

0

τ
∥∥(

t1/re−(t−τ)Ã − τ1/r
)
e−τ(1−s)ÃP̃ (u(j)(τs) · ∇u(j)(τs))

∥∥
L̃qds.

Interested in continuity on the open interval (0, T ), we assume that 0 < ε ≤
τ ≤ t ≤ T − ε with some ε > 0. Then a uniform continuity argument in
(s, t, τ) ∈ (0, 1)× [ε, T − ε]2 proves that for fixed s ∈ (0, 1) the integrand in I3,

Bτ,t(s) := τ
∥∥(

t1/re−(t−τ)Ã − τ1/r
)
e−τ(1−s)ÃP̃ (u(j)(τs) · ∇u(j)(τs))

∥∥
L̃q ,

satisfies Bτ,t(s) → 0 as |t − τ | → 0. We want to use Lebesgue’s theorem on
dominated convergence to show that I3 tends to zero. To find a bound for the
integrand Bτ,t, independent of τ, t ∈ [ε, T − ε], we estimate as follows:

Bτ,t(s) ≤ Cε

∥∥e−τ(1−s)Ãn/2 P̃n/2(u(j)(τs) · ∇u(j)(τs))
∥∥

L̃q

≤ Cε(τ(1 − s))−1/2‖u(j)(τs)‖L̃q‖∇u(j)(τs)‖L̃n

≤ CεK
2(1 − s)−1/2s−1/r−1/2.

The integrability of the latter term is obvious. Hence I3 → 0 as |t − τ | → 0.
Next we consider the continuity of the function [t �→ t1/2∇u(j+1)(t)] in

L̃n(Ω) on [ε, T −ε], ε > 0. Since the induction hypothesis gives the properties in
(3.4) for all n ≤ q < ∞ at the same time, we choose q0 = 3n with corresponding
Serrin exponent r0 = 3. We calculate for 0 < τ ≤ t < T
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‖t1/2∇u(j+1)(t) − τ1/2∇u(j+1)(τ)‖L̃n ≤
∥∥t1/2∇e−tÃnu0 − τ1/2∇e−τÃnu0

∥∥
L̃n

+ t1/2

∫ t

τ

∥∥∇e−(t−s)Ãn/2 P̃n/2(u(j)(s) · ∇u(j)(s))
∥∥

L̃n ds

+
∫ τ

0

∥∥∇
(
t1/2e−(t−s)Ãn/2 −τ1/2e−(τ−s)Ãn/2

)
P̃n/2(u(j)(s) · ∇u(j)(s))

∥∥
L̃nds

=: J1 + J2 + J3.

It has already been shown that J1 → 0 as |t − τ | → 0. For the next term we
find similarly as above

J2 ≤ Ct1/2

∫ t

τ

(t − s)−2/3‖u(j)(s)‖L̃3n‖∇u(j)(s)‖L̃n ds

≤ Ct1/2K2

∫ t

τ

(t − s)−2/3s−5/6 ds

≤ CK2

∫ 1

τ/t

(1 − s)−2/3s−5/6 ds,

tending to 0 as |t − τ | → 0, as long as τ stays away from 0.
The last integral J3 can be rewritten and estimated by∫ 1

0

τ
∥∥∥∇

(
t

1
2 e−(t−τ)Ãn/2 − τ

1
2

)
e−τ(1−s)Ãn/2 P̃n/2(u(j)(τs) · ∇u(j)(τs))

∥∥∥
L̃n

ds

≤C

∫ 1

0

∥∥∥(
t

1
2 e−(t−τ)Ã−τ

1
2

)
(1 + Ã)

1
2 e−τ(1−s)ÃP̃ (u(j)(τs) · ∇u(j)(τs))

∥∥∥
L̃n

ds.

Again, an argument using uniform continuity shows that the integrand

B′
τ,t(s) :=

∥∥(
t

1
2 e−(t−τ)Ã − τ

1
2
)
(1 + Ã)

1
2 e−τ(1−s)ÃP̃ (u(j)(τs) · ∇u(j)(τs))

∥∥
L̃n

tends to zero pointwise for every s ∈ (0, 1) as |t − τ | → 0. Moreover, it can be
estimated by the integrable pointwise upper bound

B′
τ,t(s) ≤ Cε

∥∥(1 + Ãn/2)1/2e−τ(1−s)ÃP̃ (u(j)(τs) · ∇u(j)(τs))
∥∥

L̃n

≤ CεK
2(1 − s)−2/3s−5/6

uniformly for t, τ ∈ [ε, T − ε]. Now Lebesgue’s theorem on dominated conver-
gence shows that J3 → 0 as |t−τ | → 0. This finishes the proof of the continuity
of t �→ t1/2∇u(j+1)(t) in (0, T ) with values in the space L̃n

σ(Ω). �

Claim 2 The functions in (3.4) are continuous at t = 0.

Proof of Claim 2 As in (3.2) we calculate, replacing T by an arbitrary 0 <
t ≤ T ,

‖u(j+1)‖Kq(t,Ω) ≤ ‖u(0)‖Kq(t,Ω) + C1‖u(j)‖2
Kq(t,Ω).

By Lemma 3.1, the first term on the right-hand side tends to zero as t → 0
when q > n, and the second term tends to zero as well, by induction hypothesis.
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For q = n, the above inequality needs a small modification since u0(t) →
u0 in L̃n(Ω). Using (3.3)

‖w(j+1)(t)‖L̃n ≤ 2
3
‖w(j)‖Kq(t,Ω) · B′ ≤

(2
3

)j

‖w(1)‖Kq(t,Ω) · B′.

Hence u(j+1)(t) − u(0)(t) → 0 in L̃n(Ω) as t → 0.
The continuity at t = 0 of both functions in (3.4) is thus shown. �
We know from the proof of Theorem 1.2 that ‖u(j) − u‖Kq → 0 for all

q > n and also that ‖u(j) − u‖L∞(0,T ;L̃n(Ω)) → 0 for j → ∞. This means that
t1/ru(j)(t) converges to t1/ru(t) in L̃q(Ω), n ≤ q < ∞, and that t1/2∇u(j)(t)
converges to t1/2∇u(j)(t) in L̃n(Ω) uniformly in t. So the continuity properties
for all j can be carried over to the limit function u. Now the proof is finished.

�

Proof of Theorem 1.4. We estimate as above for 0 < T ′ ≤ T to get that

‖v − w‖Kq(T ′,Ω) ≤ C
(
‖v‖Kq

0 (T ′,Ω) + ‖w‖Kn
1 (T ′,Ω)

)
‖v − w‖Kq(T ′,Ω).

By the assumptions we choose T ′ > 0 such that ‖v‖Kq
0 (T ′,Ω)+‖w‖Kn

1 (T ′,Ω) < 1
C ,

yielding ‖v − w‖Kq(T ′,Ω) = 0. Hence v = w on [0, T ′). �

Remark 3.4. Note that the solution u constructed in Theorem 1.2 satisfies
either of the requirements of Theorem 1.4. Hence, any further mild solution ũ
for which ‖ũ‖Kq

0 (t,Ω) or (!) ‖ũ‖Kn
1 (t,Ω) tends to zero as t → 0 coincides with u,

at least on a small interval. In particular, ũ has the continuity properties from
Theorem 3.3.

4. Mild vs. very weak solutions

Theorem 4.1. Let u ∈ L∞(0, T ; L̃n
σ(Ω)) be the solution constructed in Theorem

1.2 and let n ≤ r < ∞, n < q < ∞, 2
r + n

q = 1 be given Serrin exponents.
Then, for some 0 < T∗ ≤ T , the solution u is a very weak solution to the
Navier-Stokes equations contained in Lr(0, T∗; L̃q

σ(Ω)).

Proof. First of all note that u(0) defined by u(0)(t) = e−tÃu0 is contained
in Lr(0, T ; L̃q(Ω)) and that the functional F defined by 〈F , φ〉 = 〈u0, φ(0)〉 is
contained in T −1,r,q(T,Ω) by Proposition 2.5 (iii). Here we need the additional
assumption r ≥ n.

To show that u ∈ Lr(0, T∗; L̃q
σ(Ω)) for a sufficiently small T∗ we have to

estimate the nonlinear term. To this end we write u(j) ·∇u(j) = div (u(j)⊗u(j))
and estimate u(j+1) with the help of (2.10) by

‖u(j+1)(t)‖L̃q ≤ ‖u(0)(t)‖L̃q +
∫ t

0

‖e−(t−s)Ãn/2 P̃div (u(j)(s) ⊗ u(j)(s))‖L̃q ds

≤ ‖u(0)(t)‖L̃q + C

∫ t

0

(t − s)−1/r′‖u(j)(s)‖2
L̃q ds
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for a.a. t ∈ [0, T ). Then the Hardy-Littlewood-Sobolev inequality implies for
every 0 < T ′ ≤ T that

‖u(j+1)‖Lr(0,T ′;L̃q) ≤ ‖u(0)‖Lr(0,T ′;L̃q) + C2‖u(j)‖2
Lr(0,T ′;L̃q)

.

Choose T∗ > 0 such that ‖u(0)‖Lr(0,T∗;L̃q) ≤ 1/(6C2). Then it is easily
seen by induction that the sequence

(
‖u(j)‖Lr(0,T∗;L̃q)

)
j∈N

stays bounded by

1/(2C2). Since we have u(j) → u in L̃q(Ω) uniformly on any interval [ε, T∗),
as long as ε > 0 (cf. the proof of Theorem 1.2), we conclude ‖u‖Lr(ε,T∗;L̃q) ≤
1/(2C2). Letting ε → 0 we get from Fatou’s Lemma that u ∈ Lr(0, T∗; L̃q)
with norm bounded by 1/(2C2). This finishes the first part of the proof.

We still have to show that the mild solution u satisfies the variational
equality

−(u, φt)T∗,Ω + (u, Ãq′φ)T∗,Ω = (u0, φ(0)) + (u ⊗ u,∇φ)T∗,Ω (4.1)

for every φ ∈ T 1,r′,q′
(T∗,Ω). From the integral representations of u, cf. (1.3),

and of φ in terms of v = −φt + Ãq′φ, cf. (2.14) in Lemma 2.4, the left hand
side of (4.1) reads

−(u, φt)T∗,Ω + (u, Ãq′φ)T∗,Ω = (u, v)T∗,Ω

=

∫ T∗

0

{(
e−tÃnu0 , v(t)

)−
(∫ t

0

e−(t−s)Ãn/2 P̃n/2div (u(s) ⊗ u(s)) ds , v(t)

)}
dt

= (u0, φ(0)) −
∫ T∗

0

∫ t

0

(
e−(t−s)Ãn/2 P̃n/2div (u(s) ⊗ u(s)) , v(t)

)
ds dt

= (u0, φ(0)) +

∫ T∗

0

∫ t

0

(
u(s) ⊗ u(s) , ∇e−(t−s)Ãq′ v(t)

)
ds dt.

In the second term on the right-hand side we change the order of integration
and get the integral∫ T∗

0

∫ T∗

s

(
u(s) ⊗ u(s),∇e−(t−s)Ãq′ v(t)

)
dt ds

=
∫ T∗

0

(u(s) ⊗ u(s),∇φ(s)) ds

= (u ⊗ u,∇φ)T∗,Ω.

Summarizing, we have proved that the mild solution satisfies (4.1) and is
hence a very weak solution. �

A partial converse of Theorem 4.1 will be described in the following the-
orem. Actually, a very weak solution is contained in L∞(0, T ; L̃n

σ(Ω)), but it
is not necessarily a mild solution as constructed in Theorem 1.2. In particu-
lar, the continuity property C([0, T ); L̃n(Ω)) is missing. The main problem in
the proof compared to similar results proved in [15, Theorem 3.2, Theorem 3.3
and Proposition 3.4] is the fact that with r = ∞ the Hardy-Littlewood-Sobolev
inequality does not hold for r′ = 1.
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Theorem 4.2. Let Ω ⊆ R
n be a C2-domain, n ≥ 3, and 0 < T < ∞. Assume

Serrin exponents n ≤ r ≤ 2n and n < q < 2n are given, and let u0 ∈ L̃n
σ(Ω).

Then a very weak solution u ∈ Lr(0, T ; L̃q
σ(Ω)) to the Navier-Stokes sys-

tem with data F ∈ T −1,r,q(T,Ω) defined by 〈F , φ〉 = (u0, φ(0)) also belongs to
the space L∞(0, T ; L̃n

σ(Ω)). It satisfies the estimate

‖u(t) − e−tÃnu0‖L̃n(Ω) ≤ C‖u‖2
Lr(0,t;L̃q(Ω))

, (4.2)

for a.a. 0 ≤ t < T , with a constant C = C(q, T, τ(Ω)) > 0. In particular, u(t)
converges to u0 in L̃n(Ω) as t → 0 on a dense subset of (0, T ). Moreover,∥∥∥1

ε

∫ ε

0

u(s) ds − u0

∥∥∥
L̃n

σ(Ω)
≤ ‖(u0)ε − u0‖L̃n

σ(Ω) + C‖u‖2
Lr(0,ε;L̃q(Ω))

(4.3)

where (u0)ε := 1
ε

∫ ε

0
e−τÃnu0 dτ → u0 in L̃n

σ(Ω) as ε → 0.

Note that the set of exponents r, q as in Theorem 4.2 is nonempty for all
n; e.g., r = 2n, q = nn′ is a possible choice. For the proof of this theorem we
need a technical lemma based on real interpolation.

Lemma 4.3. Let Ω ⊆ R
n, n ≥ 3, be a uniform C2-domain and let t ∈ (0, T )

and ε > 0 satisfy 0 < t − ε < t + ε < T . Choose some Serrin exponents

2 < r ≤ 2n, n < q < 2n,
2
r

+
n

q
= 1.

Define the linear map Bε : C∞
0,σ(Ω) → R

n by

Bε(ψ)(s) =
1
2ε

∫ t+ε

t−ε

∇e−(τ−s)Ãn′ ψ dτ, s ∈ (0, t − ε).

Then the inequality

‖Bε(ψ)‖L(r/2)′ (0,t−ε;L̃(q/2)′ (Ω)) ≤ C‖ψ‖L̃n′ (Ω)

holds with a constant C only depending on r, τ(Ω), but neither on ψ, ε nor
on t.

Proof. Define ρ1 := (q/2)′ and ρ2 := q′ so that 1 < ρ2 < n′ < ρ1 < ∞.
Now we derive weak type estimates and use real interpolation. Using (2.9)

we obtain for almost every s ∈ (0, t − ε) that

‖Bε(ψ)(s)‖L̃(q/2)′ ≤ C

2ε

∫ t+ε

t−ε

(τ − s)−1/2dτ‖ψ‖L̃ρ1

≤ C‖ψ‖L̃ρ1 (t − ε − s)−1/2.

Consequently,

Bε : L̃ρ1
σ (Ω) → L2,∞(

0, t − ε; L̃(q/2)′
σ (Ω)

)
satisfying ‖Bεψ‖

L2,∞(0,t−ε;L̃
(q/2)′
σ )

≤ C‖ψ‖L̃ρ1 since ‖(t−ε−·)−1/2‖L2,∞(0,t−ε) =
1.
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The second estimate is similar: We get for every s ∈ (0, t − ε) that

‖B(ψ)(s)‖L̃(q/2)′ ≤ C

2ε
‖ψ‖L̃ρ2

∫ t+ε

t−ε

(τ − s)−1/r′
dτ

≤ C‖ψ‖L̃ρ2 (t − ε − s)−1/r′
.

Hence Bε : L̃ρ2
σ (Ω) → Lr′,∞(

0, t − ε; L̃(q/2)′
σ (Ω)

)
with norm bounded by C

independent of t and ε. Thus real interpolation, with θ = 2 − q/n, yields

B : (L̃ρ1
σ , L̃ρ2

σ )θ,(r/2)′ →
(
L2,∞(0, t − ε; L̃(q/2)′

σ ), Lr′,∞(0, t − ε; L̃(q/2)′
σ )

)
θ,(r/2)′ .

Note that n′ ≤ (r/2)′ since r ≤ 2n. Hence we get with (2.11) that

L̃n′
σ = L̃n′,n′

σ = (L̃ρ1
σ , L̃ρ2

σ )θ,n′ ↪→ (L̃ρ1
σ , L̃ρ2

σ )θ,(r/2)′ .

Finally we also have that(
L2,∞(0, t − ε; L̃(q/2)′

σ ), Lr′,∞(0, t − ε; L̃(q/2)′
σ )

)
θ,(r/2)′

= L(r/2)′,(r/2)′(
0, t − ε; L̃(q/2)′

σ

)
= L(r/2)′(

0, t − ε; L̃(q/2)′
σ

)
by [29, Theorem 1.18.6.2]. Thus we conclude that

Bε : L̃n′
σ → L(r/2)′

(0, t − ε; L̃(q/2)′
σ ).

Since the constants in the weak type estimates depend neither on ε nor on t,
the same holds for the constant in this estimate. This finishes the proof. �

Proof of Theorem 4.2. For ψ ∈ C∞
0,σ(Ω) and every Lebesgue point t of u we

will prove the estimate

|(u(t) − e−tÃnu0, ψ)| ≤ C‖u‖2
Lr(0,t;L̃q)

‖ψ‖L̃n′ . (4.4)

Let ε > 0 satisfy 0 < t − ε < t + ε < T . Then we put vε(s) :=
1
2εχ(t−ε,t+ε)(s)ψ. Note that vε ∈ Lr′

(0, T ; L̃q′
σ (Ω)). Using Lemma 2.4 we define

φε ∈ T 1,r′,q′
(T,Ω) by −(φε)t + Ãq′φε = vε. Then we consider the identity

1
2ε

∫ t+ε

t−ε

(u(s), ψ) ds = (u, vε)T,Ω (4.5)

= −(u, φεt)T,Ω + (u, Ãq′φε)T,Ω

= (u0, φε(0)) + (u ⊗ u,∇φε)T,Ω.

Since

φε(0) =
∫ T

0

e−τÃn′ vε(τ) dτ =
1
2ε

∫ t+ε

t−ε

e−τÃn′ ψ dτ → e−tÃn′ ψ

in L̃n′
(Ω) as ε → 0, and since t is a Lebesgue point of u, by (4.5)

(u(t) − e−tÃnu0, ψ) = lim
ε→0+

(u ⊗ u,∇φε)T,Ω.
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To estimate ∇φε we calculate

φε(s) =
∫ T−s

0

e−(T−s−τ)Ãn′ vε(T − τ) dτ

=
1
2ε

∫ T

s

e−(τ−s)Ãn′ χ(t−ε,t+ε)(τ)ψ dτ.

In particular, φε(s) = 0 for t + ε < s < T . Observe that (r/2)′ = q/n. Hence

|(u ⊗ u,∇φε)T,Ω| ≤
∫ t+ε

0

|(u(s) ⊗ u(s),∇φε(s))| ds

≤ ‖u‖2
Lr(0,t−ε;L̃q)

‖∇φε‖L(r/2)′ (0,t−ε;L̃(q/2)′ ) (4.6)

+ ‖u‖2
Lr(t−ε,t+ε;L̃q)

‖∇φε‖L(r/2)′ (t−ε,t+ε;L̃(q/2)′ ).

Now Lemma 4.3 will be applied to the term ∇φε in (4.6)2 yielding

‖∇φε‖L(r/2)′ (0,t−ε;L̃(q/2)′ ) ≤ C‖ψ‖L̃n′

with a constant independent of ε and t. Finally, let us consider the term in
(4.6)3. Since for t − ε < s < t + ε we have φε(s) = 1

2ε

∫ t+ε

s
e−(τ−s)Ãn′ ψ dτ we

get that

‖∇φε‖L(r/2)′ (t−ε,t+ε;L̃(q/2)′ )

≤ 1
2ε

(∫ t+ε

t−ε

(∫ t+ε

s

‖∇e−(τ−s)Ãn′ ψ‖L̃(q/2)′ dτ

)q/n

ds

)n/q

≤ C
‖ψ‖L̃n′

2ε

(∫ t+ε

t−ε

(∫ t+ε

s

(τ − s)−n/qdτ

)q/n

ds

)n/q

≤ C‖ψ‖L̃n′ .

This leads to the estimate

|(u ⊗ u,∇φε)T,Ω| ≤ C
(
‖u‖2

Lr(0,t−ε;L̃q)
+ ‖u‖2

Lr(t−ε,t+ε;L̃q)

)
‖ψ‖L̃n′

≤ C‖u‖2
Lr(0,t+ε;L̃q)

‖ψ‖L̃n′

for every ψ ∈ C∞
0,σ(Ω). Passing to the limit ε → 0 we arrive at the estimate

(4.4) for every Lebesgue point t ∈ (0, T ) of u.
For the estimate at t = 0 we exploit (4.2) for a.a. t ∈ (0, ε), take the

mean value over (0, ε) and get (4.3) by the triangle inequality. A more direct
argument copies the previous proof more or less by using vε = 1

εχ(0,ε)ψ and
even avoids Lemma 4.3. �
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