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Abstract. The Hardy–Sobolev trace inequality can be obtained via har-
monic extensions on the half-space of the Stein and Weiss weighted Hardy–
Littlewood–Sobolev inequality. In this paper we consider a bounded
domain and study the influence of the boundary mean curvature in the
Hardy–Sobolev trace inequality on the underlying domain. We prove ex-
istence of minimizers when the mean curvature is negative at the singular
point of the Hardy potential.
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1. Introduction

The weighted Stein and Weiss inequality (see [28]) states, in particular, that
there exists a constant C(N, s) > 0 such that

C(N, s)
(∫

RN

|x|−s|u|q(s)
) 2

q(s)

dx ≤
∫
RN

|ξ|û2dξ ∀u ∈ C∞
c (RN ),

where s ≤ 1, q(s) = 2(N−s)
N−1 and

û(ζ) =
1

(2π)
N
2

∫
RN

e−ıξ·xu(x)dx

is the Fourier transform of u. We consider the Hardy–Sobolev trace constant
which is given by
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S(s) := inf
u∈C∞

c (RN )

∫
RN

|ξ|û2dξ

(∫
RN

|x|−s|u|q(s)
) 2

q(s)

dx

. (1.1)

Denote by

R
N+1
+ =

{
z = (z1, z̃) ∈ R

N+1 : z1 > 0
}

with boundary R
N × {0} ≡ R

N . We denote and henceforth define D :=
D1,2(RN+1

+ ) the completion of C∞
c (RN+1

+ ) with respect to the norm

u �→
∫
R

N+1
+

|∇u|2dz.

Classical argument of harmonic extension, (see for instance [5] for generaliza-
tions) yields

S(s) = inf
u∈D

∫
R

N+1
+

|∇u|2dz

(∫
∂RN+1

+

|z̃|−s|u|q(s) dz̃

) 2
q(s)

. (1.2)

Note that for s = 0 then q(0) =: 2�, the critical Sobolev exponent while S(0)
coincides with the Sobolev trace constant studied by Escobar [8] and Beckner
[3] wiht applications in the Yamabe problem with prescribed mean curvature.
Existence of symmetric decreasing minimizers for the quotient S(s) in (1.1)
were obtained by Lieb [23, Theorem 5.1]. We also quote the works [25,26] for
the existence of minimizers in critical Sobolev trace inequalities. If s = 1, we
recover S(1) = 2Γ2( N+1

4 )

Γ2( N−1
4 )

, the relativistic Hardy constant (see e.g. [18]) which is
never achieved in D. In this case, it is expected that there is no influence of the
curvature in comparison with the works on Hardy inequalities with singularity
at the boundary or in Riemannian manifolds, see [10,29].

Let Ω be a smooth domain of RN+1, N ≥ 2 with 0 ∈ ∂Ω. We consider
(∂Ω, g̃) as a Riemaninan manifold, with Riemannian metric g̃ induced by R

N+1

on ∂Ω. Let d denote the Riemannian distance in (∂Ω, g̃). A classical argument
of partitioning of unity (see Lemma 2.4 below) yields the existence of a constant
C(Ω) > 0 such that the following inequality

C(Ω)
(∫

∂Ω

d−s(σ)|u|q(s)dσ

) 2
q(s)

≤
∫

Ω

|∇u|2dx +
∫

Ω

|u|2dx ∀u ∈ H1(Ω).

Our aims in this paper is to study the existence of minimizers for the
following quotient:

S(s,Ω) := inf
u∈H1(Ω)

∫
Ω

|∇u|2dx +
∫

Ω

|u|2dx

(∫
∂Ω

d−s(σ)|u|q(s)dσ

) 2
q(s)

, (1.3)
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for s ∈ [0, 1). Our main result is the following:

Theorem 1.1. Let Ω be a smooth domain of RN+1, N ≥ 3 with 0 ∈ ∂Ω and s ∈
[0, 1). Assume that the mean curvature of ∂Ω at 0 is negative. Then S(s,Ω) <
S(s) and S(s,Ω) is achieved by a positive function u ∈ H1(Ω) satisfying

⎧⎨
⎩

−Δu + u = 0 in Ω
∂u

∂ν
= S(s,Ω) d−s(σ)uq(s)−1 on ∂Ω,

where ν is the unit outer normal of ∂Ω.

In the literature, several authors studied the influence of curvature in the
Hardy–Sobolev inequalities in Euclidean space and in Riemmanian manifolds,
see [6,7,13–17,19,21] and the references there in. For instance, consider the
Hardy–Sobolev constant:

Q(s,Ω) := inf
w∈H1

0 (Ω)

∫
Ω

|∇w|2dx

(∫
Ω

|x|−s|w|2(s)dx

)2/2(s)
, (1.4)

with s ∈ (0, 2) and 2(s) = 2(N−s)
N−2 . The role of the local geometry ∂Ω at 0 in the

study of minimizers for Q(s,Ω) was first investigated by Ghoussoub and Kang
[13]. In [13] the authors showed that if all the principal curvatures of ∂Ω at 0
are negative then Q(s,Ω) < Q(s,RN+1

+ ) and it is achieved. This result were
improved by Ghoussoub and Roberts assuming only that the mean curvature
is negative at 0 while N ≥ 4. Later Demyanov and Nazarov [7] constructed
domains in which Q(s,Ω) is achieved wile the mean curvature of ∂Ω at 0 is
not negative. Actually, by the results in [7], extremals for Q(s,Ω) exists if Ω is
“average concave in a neighborhood of the origin”. Later on, in the same year,
Ghoussoub and Robert [14,15] used refined blow-up analysis to prove existence
of an extremal for Q(s,Ω) provided the mean curvature of ∂Ω is negative at 0.

Recently Chern and Lin [6] proved that if the mean curvature of ∂Ω at 0
is negative then Q(s,Ω) < Q(s,RN+1

+ ) for N ≥ 2 and in these cases, Q(s,Ω)
is attained. See also the recent work of Li and Lin [21] for generalizations.

We point out that the study of the effect of the curvature in the Hardy–
Sobolev trace inequality seems to be quite rare in the literature while the
Sobolev trace (s = 0) inequality have been intensively studied in the last years,
see for instance [25,26]. According to the authors level of information, the
paper is one of the first dealing with this question. We would like to emphasize
that our argument of proof (based on blow up analysis, in Proposition 3.1) is
different from those in the papers cited above. The main observation is that,
dealing with “pure” Hardy–Sobolev mnimization problem s ∈ (0, 1], one can
depict a sequence of radii rn → 0 where, if blow up occur, then concentration
can only happen in B(0, rn)∩∂Ω. Indeed, to prove existence of a minimizer for
S(s,Ω), we consider a minimizing sequence un, given by Ekeland variational
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principle which is bound in H1(Ω) and normalized so that∫
∂Ω

d−s(σ)|un|q(s)dσ = 1.

We suppose that un converges weakly to 0 (that is blow up occurs). Then
considering the Lévy concentration function r �→ ∫

∂Ω∩Br(0)
d−s(σ)|un|q(s)dσ,

it easy to see, by continuity, that there exists a sequence of real number rn

such that ∫
∂Ω∩Brn (0)

d−s(σ)|un|q(s)dσ =
1
2
.

Now because 0 < s, we have q(s) < 2� so that by compactness un → 0 in
Lq(s)(∂Ω). Using this we show that up to a subsequence rn → 0 as n → ∞.
Now scaling un with these parameters rn and making change of coordinates,
we find out new sequence of functions wn for which their mass concentrate at
a half ball centred at the origin. Namely∫

BN
r0

|z̃|−swn
q(s)dz̃ =

1
2
(1 + O(rn)).

Cutting-off wn by a function ηn near the origin and using further analysis, we
see that ηnwn converges in D1,2(RN+1

+ ) to a function w �= 0 satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δw = 0 in R
N+1
+ ,

− ∂w
∂z1 = S(s,Ω)|z̃|−s|w|q(s)−2w on ∂RN+1

+ ,∫
∂RN+1

+

|z̃|−s|w|q(s) dz̃ ≤ 1,

w �= 0.

This then implies that S(s,Ω) ≥ S(s).

2. Tool box

2.1. Existence of ground states in R
N+1
+

We start with a proof of existence of minimizers for S(s), with s ∈ (0, 1), which
might be of interest in the study of Hardy–Sobolev inequalities and different
from the one of [23].

Theorem 2.1. Let s ∈ (0, 1). Then S(s) has a positive minimizer w ∈ D which
satisfies ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Δw = 0 in R
N+1
+ ,

− ∂w

∂z1
= S(s)wq(s)−1 on R

N ,

∫
RN

wq(s) dx = 1.
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Proof. Recall that D := D1,2(RN+1
+ ). Define the functionals Φ,Ψ: D → R by

Φ(w) :=
1
2

∫
R

N+1
+

|∇w|2dx

and

Ψ(w) =
1

q(s)

∫
∂RN+1

+

|z|−s|w|q(s)dz.

By Ekeland variational principle there exits a minimizing sequence wn for the
quotient S := S(s) such that∫

∂RN+1
+

|z|−s|wn|q(s)dz = 1, (2.1)

Φ(wn) → 1
2
S

and

Φ′(wn) − SΨ′(wn) → 0 in D′, (2.2)

where D′ denotes the dual of D. We have that∫
R

N+1
+

|∇wn|2dz ≤ C. (2.3)

We define the Levi-type concentration function: for r > 0

Q(r) :=
∫

BN
r

|z̃|−s|wn|q(s)dz̃.

By continuity and (3.1) there exists rn > 0 such that

Q(rn) :=
∫

BN
rn

|z̃|−s|wn|q(s)dz̃ =
1
2
.

Let vn(z) = r
N−1

2
n wn(rnz). It is easy to check that for every s ∈ [0, 1]∫

R
N+1
+

|∇wn|2dz =
∫
R

N+1
+

|∇vn|2dz,

∫
RN

|z̃|−s|wn|q(s)dz̃=
∫
RN

|z̃|−s|vn|q(s)dz̃

and ∫
BN

1

|z̃|−s|vn|q(s)dz̃ =
1
2
. (2.4)

Hence vn is a minimizing sequence. In particular vn ⇀ v for some v in D. We
wish to show that v �= 0. If not then vn → 0 in L2

loc(R
N+1
+ ) and in L2

loc(R
N ).

Let ϕ ∈ C∞
c (B1) and ϕ ≡ 1 on B 1

2
. Using ϕ2vn as test in (2.2) and using

standard integration by parts∫
R

N+1
+

|∇(ϕvn)|2dz = S(s)
∫
RN

|z|−s|vn|q(s)−2|ϕvn|2dz̃ + o(1)

≤ S(s)

2
q(s)−2

q(s)

(∫
RN

|z̃|−s|ϕvn|q(s)dz̃

) 2
q(s)

+ o(1),
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where we used (2.4). By (1.2) we deduce that

S(s)
(∫

RN

|z̃|−s|ϕvn|q(s)dz̃

) 2
q(s)

≤ S(s)

2
q(s)−2

q(s)

(∫
RN

|z̃|−s|ϕvn|q(s)dz̃

) 2
q(s)

+ o(1).

Since s ∈ (0, 1), we have S(s) > S

2
q(s)−2

q(s)
so that

o(1) =
∫
RN

|z̃|−s|ϕvn|q(s)dz̃ =
∫

BN
1

|z̃|−s|vn|q(s)dz̃ + o(1)

because q(s) < 2�. We are therefore in contradiction with (2.4). Therefore
v �= 0 is a minimizer. Standard arguments show that v+ = max(v, 0) is also a
minimizer and the proof is complete by the maximum principle. �

2.2. Symmetry and decay estimates of ground states

Theorem 2.2. Let N ≥ 2 and let w ∈ D such that w > 0 and
⎧⎨
⎩

Δw = 0 in R
N+1
+ ,

−∂z1w := − ∂w
∂z1 = S(s)|z̃|−swq(s)−1 on ∂RN+1

+ .
(2.5)

Then we have:

(i) w = w(z) only depends on z1 and |z̃|, and w is strictly decreasing in |z̃|.
(ii) w(z) ≤ C

1+|z|N−1 for all z ∈ R
N+1
+ , for some positive constant C.

Proof. (i) For simplicity, we write S, q, instead of S(s), q(s). We first show
that

w is strictly decreasing in zN+1 in R
N+1
+ \{zN+1 = 0}. (2.6)

This will be shown with a variant of the moving plane method, see [1,2,11,12,
27]. For λ > 0, we consider the reflection R

N+1 → R
N+1, z �→ zλ at the hyper-

plane {z ∈ R
N+1 : zN+1 = λ}. Moreover, we let Hλ := {z ∈ R

N+1
+ : zN+1 >

λ}, and we define

uλ : RN+1
+ ∩ Hλ → R, uλ(z) = w(zλ) − w(z).

Then uλ is harmonic in R
N+1
+ ∩ Hλ, and it satisfies

uλ(z) = 0 on R
N+1
+ ∩ ∂Hλ

as well as

−∂z1uλ(z) = +S
(wq−1(zλ)

|zλ|s − wq−1(z)
|z|s

)
on R

N ∩ Hλ.
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Let uλ
− = min{uλ, 0}. Then∫

Hλ

|∇uλ
−|2 dz =

∫
Hλ

∇uλ∇uλ
− dz = −

∫
RN ∩Hλ

∂z1uλuλ
− dσ(z)

= S

∫
RN ∩Hλ

uλ
+

(
wq−1

|zλ|s − wq−1(z)
|z|s

)
dσ(z)

≤ S

∫
RN ∩Hλ

uλ
−|z|−s[wq−1(z) − wq−1(zλ)] dσ(z)

≤ (q − 1)S
∫
RN ∩Hλ

|uλ
−(z)|2|z|−swq−2(z) dσ(z).

In the last step we used that if w(zλ) ≤ w(z) then

wq−1(z) − wq−1(zλ) ≤ (q − 1)wq−2(z)[w(z) − w(zλ)] = −(q − 1)uλ
−(z)wq−2(z)

by the convexity of the function t �→ tq−1 on (0,∞). Using Hölder’s inequality,
we conclude that∫

Hλ

|∇uλ
−|2 ≤ c(λ)

(∫
RN ∩Hλ

|z|−s|uλ
−|q dσ(z)

) 2
q

(2.7)

with

c(λ) = (q − 1)S

( ∫
Mλ

|z|−swq(z) dσ(z)

) q−2
q

and

Mλ := {z ∈ R
N ∩ Hλ : u(z) > u(zλ)}

for λ > 0. Since c(λ) → 0 as λ → ∞, we have c(λ) < S and therefore uλ
− ≡ 0

in Hλ ∩ R
N+1
+ for λ > 0 sufficiently large. As a consequence,

λ∗ := inf{λ > 0: w(z) ≤ w(zλ′) for all z ∈ Hλ′ ∩ R
N+1
+ and all λ′ ≥ λ}<∞.

We claim that λ∗ = 0. Indeed, if, by contradiction, λ∗ > 0, then uλ∗
is a

nonnegative harmonic function in R
N+1
+ ∩ Hλ∗

satisfying uλ∗
= 0 on R

N+1
+ ∩

∂Hλ and

−∂z1uλ∗
(z) =

wq−1(zλ∗)
|zλ∗ |s − wq−1(z)

|z|s on R
N ∩ Hλ∗

,

where the last quantity is strictly positive whenever w(zλ∗) > 0. Consequently,
unless w ≡ 0, uλ∗

must be strictly positive in R
N+1
+ ∩Hλ∗

by the strong maxi-
mum principle. We then choose a sufficiently large set D compactly contained
in R

N ∩ Hλ∗
such that

(q − 1)S

( ∫
RN ∩Hλ∗\D

|z|−swq(z) dσ(z)

) q−2
q

< S.

Then, for λ < λ∗ close to λ∗, we have D ⊂ R
N ∩ Hλ,

(q − 1)S

(∫
RN ∩Hλ\D

|z|−swq(z) dσ(z)

) q−2
q

< S.
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and uλ > 0 in D. As a consequence, c(λ) < S for λ < λ∗ close to λ∗ because
Mλ ⊂ R

N ∩Hλ\D. By (2.7) we have uλ ≥ 0 in Hλ ∩R
N+1
+ for λ < λ∗ close to

λ∗, contrary to the definition of λ∗. We therefore conclude that λ∗ = 0, and
this shows (2.6).

Repeating the same argument for the functions z �→ w(z1, Az̃), where
A ∈ O(N) is an N -dimensional rotation, we conclude that w only depends on
z1 and |z̃|, and w is strictly decreasing in |z̃|. This ends the proof of (i).

To prove (ii), we write the (2.5) as{
Δw = 0 in R

N+1

−∂z1w = a(z)w on R
N ,

where a = S|z|−swq−2 ∈ Lp
loc(R

N ) for some p > N . Therefore by [20], we have
that w ∈ L∞

loc(R
N+1
+ ). Now since (2.5) is invariant under Kelvin transform, we

get immediately the result. �

2.3. Geometric preliminaries

We let Ei, i = 2, . . . , N + 1 be an orthonormal basis of T0∂Ω, the tangent
plane of ∂Ω at 0. We will consider the Riemaninan manifold (∂Ω, g̃) where g̃ is
the Riemannian metric induced by R

N+1 on ∂Ω. We first introduce geodesic
normal coordinates in a neighborhood (in ∂Ω) of 0 with coordinates y′ =
(y2, . . . , yN+1) ∈ R

N . We set

f(y′) := Exp∂Ω
0

(
N+1∑
i=2

yiEi

)
.

It is clear that the geodesic distance d satisfies

d(f(ỹ)) = |ỹ|. (2.8)

In addition the above choice of coordinates induces coordinate vector-fields on
∂Ω:

Yi(y′) = f∗(∂yi), for i = 2, . . . , N + 1.

Let g̃ij = 〈Yi, Yj〉, for i, j = 2, . . . , N + 1, be the component of the metric g̃.
We have near the origin

g̃ij = δij + O(|y|2).
We denote by N∂Ω the unit normal vector field along ∂Ω interior to Ω. Up to
rotations, we will assume that N∂Ω(0) = E1. For any vector field Y on T∂Ω,
we define H(Y ) = dN∂Ω[Y ]. The mean curvature of ∂Ω at 0 is given by

H
∂Ω(0) =

N+1∑
i=2

〈H(Ei), Ei〉.

Now consider a local parametrization of a neighbourhood of 0 in R
N+1 defined

as

F (y) := f(ỹ) + y1N∂Ω(f(ỹ)), y = (y1, ỹ) ∈ Br0 ,
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where Br0 is a small ball centred at 0. This yields the coordinate vector-fields
in R

N+1,

Yi(y) := F∗(∂yi) i = 1, . . . , N + 1.

Let gij = 〈Yi, Yj〉, for i, j = 1, . . . , N + 1, be the component of the flat metric
g. It follows that

gij = g̃ij + 2〈H(Yi), Yj〉y1 + O(|y|2).
We have the following expansion of the metric. See for instance [9] for the
proof.

Lemma 2.3. In a small ball Br0 centered at 0,

gij = δij + 2〈H(Ei), Ej〉y1 + O(|y|2);
gi1 = 0;
g11 = 1.

We now prove that Hardy (s = 1) and Hardy–Sobolev trace inequality
with singularity at the boundary and involving the geodesic boundary distance
function hold.

Lemma 2.4. Suppose that s ∈ [0, 1]. Then there exists a positive constant
C(s,Ω) such that We have

C(s,Ω)
(∫

∂Ω

d−s(σ)|u|q(s)dσ

) 2
q(s)

≤
∫

Ω

|∇u|2dx +
∫

Ω

|u|2dx ∀u ∈ H1(Ω).

Proof. Let u ∈ H1(Ω) and pick η ∈ C∞
c (F (Br0)) such that η ≡ 1 on F (B r0

2
)

and η ≡ 0 on F (Br0). Then, by using the Sobolev trace inequality, (1.2) and
Young’s inequality, we get

(∫
∂Ω

d−s(σ)|u|q(s)dσ

) 2
q(s)

=
(∫

∂Ω

d−s(σ)|ηu + (1 − η)u|q(s)dσ

) 2
q(s)

≤ 2
(∫

∂Ω

d−s(σ)|ηu|q(s)dσ

) 2
q(s)

+ C

(∫
∂Ω

|u|q(s)dσ

) 2
q(s)

≤ C

(∫
RN

|y|−s|(ηu)(F (y))|q(s) dy

) 2
q(s)

+ C‖u‖2
H1(Ω)

≤ C
1

S(s)

∫
R

N+1
+

|∇y(ηu)(F (y))|2 dy + C‖u‖2
H1(Ω).

Now by Lemma 2.3 and some integration by parts, we deduce that∫
R

N+1
+

|∇y(ηu)(F (y))|2 dy ≤ C‖u‖2
H1(Ω)

and the proof is complete. �
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2.4. Comparing S(s,Ω) and S(s)
Lemma 2.5. Let Ω ⊂ R

N+1 be a Lipschitz domain which is smooth at 0 ∈ ∂Ω.
We have the following expansion

S(s,Ω) ≤ S(s) + εCN,εH∂Ω(0) + O(ρ(ε)),

where

CN,ε =
N − 2

N

∫
B+

r0
ε

z1|∇z̃w|2dz +
∫

B+
r0
ε

z1|∂z1w|2dz

and

ρ(ε) = ε2

∫
B+

r0
ε

|z|2|∇w|2dz + ε2

∫
r0
2ε <|z|< r0

ε

w2dz + ε

∫
r0
2ε <|z̃|< r0

ε

w2dz̃

+ ε2

∫
∂′B+

r0
ε

|z̃|2−swq(s)dz̃ +
∫

∂RN+1
+ \B r0

ε

|z̃|−swq(s)dz̃

+ε2

∫
R

N+1
+ ∩B r0

ε

w2dz,

where ∂′B+
r = ∂B+

r ∩ ∂RN+1
+ .

Proof. Let w ∈ D, w > 0 be the minimizer for S(s) normalized so that∫
∂RN+1

+

|z̃|−swq(s) = 1.

Define

vε(F (y)) = ε
1−N

2 w
(y

ε

)
y ∈ B+

r0 .

Let η ∈ C∞
c (F (Br0)) such that η ≡ 1 on F (B r0

2
) and η ≤ 1 on R

N+1. We let

uε(F (y)) = η(F (y))vε(F (y)).

We have∫
Ω

|∇uε|2dx =
∫

Ω

η2|∇vε|2dx −
∫

Ω

(Δη)ηv2
εdx +

∫
∂Ω

η
∂η

∂ν
v2

εdσ

≤
∫

Ω∩F (Br0 )

|∇vε|2dx + C

∫
Ω∩F (Br0)\F (B r0

2
)

v2
εdx

+C

∫
∂Ω∩F (Br0 )\F (B r0

2
)

v2
εdσ

=
∫

B+
r0
ε

gij(εz)wiwj

√
|g|(εz)dz + O(ρ1(ε)),

where

ρ1(ε) = ε2

∫
r0
2ε <|z|< r0

ε

w2dz + ε2

∫
r0
2ε <|z̃|< r0

ε

w2dz̃.
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Notice that

gij(εz)wiwj = |∇w|2 − 2εz1〈H(∇z̃w),∇z̃w〉 + O(ε2|z|2|∇w|2)
and √

|g|(εz) = 1 + εz1H∂Ω(0) + O(ε2|z|2).
Using this with the fact that w(z) = w(z1, |z̃|), we get∫

B+
r0
ε

gij(εz)wiwj

√
|g|(εz)dz ≤

∫
B+

r0
ε

|∇w|2dz + εCN,εH∂Ω(0) + O(ρ2(ε)),

where

ρ2(ε) = ε2

∫
B+

r0
ε

|z|2|∇w|2dz.

Hence we obtain∫
Ω

|∇uε|2dx ≤
∫
R

N+1
+

|∇w|2 dz + εCN,εH∂Ω(0) + O(ρ2(ε)) + O(ρ1(ε)).

On the other hand by (2.8), we have∫
∂Ω

d−s(σ)uε
q(s) =

∫
∂RN+1

+

d

(
F (0, εz̃)

ε

)−s

ηq(s)(εz̃)wq(s)
√

|g|(0, εz̃)dz̃

=
∫

∂RN+1
+

|z̃|−s (εz̃)wq(s)
√

|g|(0, εz̃)dz̃

−
∫

∂RN+1
+

|z̃|−s (1 − ηq(s))(εz̃)wq(s)
√

|g|(0, εz̃)dz̃

=
∫

∂RN+1
+

|z̃|−swq(s)dz̃ + O(ρ3(ε)),

where

ρ3(ε) = ε2

∫
∂′B+

r0
ε

|z̃|2−swq(s)dz̃ +
∫

∂RN+1
+ \B r0

ε

|z̃|−swq(s)dz̃.

The lemma then follows by putting ρ(ε) = ρ1(ε) + ρ2(ε) + ρ3(ε). �

Proposition 2.6. Let Ω ⊂ R
N+1 be a Lipschitz domain which is smooth at

0 ∈ ∂Ω. Suppose that N ≥ 3 and s ∈ [0, 1). Assume that H∂Ω(0) < 0. Then
S(s,Ω) < S(s).

Proof. Consider w ∈ D given by Theorem 2.1 the positive minimizer for S(s).
By Theorem 2.2 we have that w(z) = ø(z1, |z̃|) and⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Δw = 0 in R
N+1
+

− ∂w
∂z1 = S(s)|z̃|−swq(s)−1 on ∂RN+1

+∫
∂RN+1

+

|z̃|−swq(s) = 1.

(2.9)
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In addition, thanks to Theorem 2.2, we have

w(z) ≤ C

1 + |z|N−1
for all z ∈ R

N+1
+ . (2.10)

For s = 0, we consider the Escobar–Beckner (see [3,8]) function

w(z) := cn
1

(1 + |z|2)N−1
2

, (2.11)

with cn = 2
N−1 |SN |−1

N , which uniquely minimizes S(0) up to translations.

Let ϕ be a nonnegative radially symmetric cut-off function in R
N+1 such

that ϕ ≤ 1 in R
N+1
+ , ϕ ≡ 1 on B2r0 , ϕ ≡ 0 on B3r0 and |∇ϕ| + |Δϕ| ≤ C.

Define ϕε(z) = ϕ(εz) for all z ∈ R
N+1
+ . We multiply (2.9) by |z|wϕε and

integrate by part to get
∫

B+
3r0

ε

ϕε|z||∇w|2 =
∫

∂′B+
3r0

ε

ϕε|w|2 +
∫

∂′B+
3r0

ε

ϕε|z̃|1−s|w|q(s)

+
1
2

∫
B+

3r0
ε

w2Δ(|z|ϕε).

By (2.10), provided N ≥ 3 we have

∫
∂′B+

3r0
ε

ϕε|w|2 +
∫

∂′B+
3r0

ε

ϕε|z̃|1−s|w|q(s) ≈ C + εN−2. (2.12)

We also have
∫

B+
3r0

ε

w2Δ(|z|ϕε) ≤ Cε2

∫
2r0

ε <|z|< 3r0
ε

ϕε|w|2 + Cε

∫
2r0

ε <|z|< 3r0
ε

ϕε|w|2

+C

∫
B+

3r0
ε

|z|−1|w|2

and thus
∫

B+
3r0

ε

w2Δ(|z|ϕε) ≈ C + εN−2.

Using this and (2.12) we deduce that

∫
B+

r0
ε

|z||∇w|2 ≈ C + εN−2. (2.13)
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By using similar arguments as above [multiplying (2.9) by |z|2wϕε and inte-
grating by parts] we have∫

B+
3r0

ε

|z|2|∇w|2 =
∫

∂′B+
3r0

ε

ϕε|z̃||w|2 +
∫

∂′B+
3r0

ε

ϕε|z̃|2−s|w|q(s)

+
1
2

∫
B+

3r0
ε

w2Δ(|z|2ϕε)

≤
∫

∂′B+
3r0

ε

|z̃||w|2 +
∫

∂′B+
3r0

ε

|z̃|2−s|w|q(s) + C

∫
B+

3r0
ε

w2.

By (2.10), the following estimates holds
∫

∂′B+
3r0

ε

|z̃||w|2dz̃ ≈
∫
R

N+1
+ ∩B r0

ε

w2dz ≈ C +

{
εN−3, N > 3
| log ε|, N = 3.

Now provided N ≥ 3, we have
∫

∂′B+
r0
ε

|z̃|2−swq(s)dz̃ ≈ C +

{
εN−2−s, s ∈ (0, 1)
| log ε|, s = 0.

We then deduce that
∫

B+
r0
ε

|z|2|∇w|2 ≈ C +

{
εN−3, N > 3 and s ∈ (0, 1)
| log ε|, N = 3 or s = 0.

In addition, we have∫
r0
2ε <|z̃|< r0

ε

w2dz̃ ≈ εN−2,

∫
r0
2ε <|z|< r0

ε

w2dz ≈ C +

{
εN−3, N > 3
| log ε|, N = 3

and ∫
∂RN+1

+ \B r0
ε

|z̃|−swq(s)dz̃ ≈ εN−s, s ∈ [0, 1).

Thanks to Lemma 2.5, and the above estimates we conclude that, provided
N ≥ 4 and s ∈ [0, 1),

S(s,Ω) ≤ S(s, 0) + C1εH∂Ω(0) + O(ε2)

and if N = 3 or s = 0, we get

S(s,Ω) ≤ S(s) + C1εH∂Ω(0) + O(ε2| log ε|),
with C1 > 0. �
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3. Existence of minimizer for S(s,Ω)

It is clear from Proposition 2.6 that the proof of Theorem 1.1 is finalized by the
two results in this section. However, we should emphasize that the argument
following below works also for the pure Hardy case: s = 1.

Proposition 3.1. Let Ω ⊂ R
N+1 be a Lipschitz domain which is smooth at

0 ∈ ∂Ω. Let s ∈ (0, 1] and N ≥ 2. Assume that S(s,Ω) < S(s). Then there
exists a minimizer for S(s,Ω).

Proof. We define Φ,Ψ: H1(Ω) → R by

Φ(u) :=
1
2

(∫
Ω

|∇u|2dx +
∫

Ω

|u|2dx

)

and

Ψ(u) =
1

q(s)

∫
∂Ω

d−s(σ)|u|q(s)dσ.

By Ekeland variational principle there exits a minimizing sequence un for the
quotient S(s,Ω) = S(s,Ω) such that∫

∂Ω

d−s(σ)|un|q(s)dσ = 1, (3.1)

Φ(un) → 1
2
S(s,Ω) (3.2)

and

Φ′(un) − S(s,Ω)Ψ′(un) → 0 in (H1(Ω))′, (3.3)

with (H1(Ω))′ denotes the dual of H1(Ω). We have that∫
Ω

|∇un|2dx +
∫

∂Ω

|un|2dσ ≤ Const. ∀n ≥ 1. (3.4)

In particular un ⇀ u for some u in H1(Ω).
Claim u �= 0.
Assume by contradiction that u = 0 (that is blow up occur). By conti-

nuity, (3.1) and the fact that s ∈ (0, 1], there exits a sequence rn > 0 such
that ∫

∂Ω∩Brn

d−s(σ)|un|q(s)dσ =
1
2
. (3.5)

We now show that, up to a subsequence, rn → 0. Indeed, by (3.1) and (3.5)∫
∂Ω\Brn

d−s(σ)|un|q(s)dσ =
1
2
.

Since q(s) < q(0) = 2� for s > 0, by compactness we have

rs
n C ≤

∫
∂Ω\Brn

|un|q(s)dσ ≤
∫

∂Ω

|un|q(s)dσ → 0 as n → ∞,

for some positive constant C.
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Define Fn(z)= 1
rn

F (rnz) for every z∈B+
r0
rn

and put (gn)i,j = 〈∂iFn, ∂jFn〉.
Clearly

gn → gEuc C1(K) for every compact set K ⊂ R
N+1, (3.6)

where gEuc denotes the Euclidean metric. Let

wn(z) = r
N−1

2
n un(F (rnz)) ∀z ∈ B+

r0
rn

.

Then we get∫
BN

r0

|z̃|−swn
q(s)dz̃ = (1 + o(1))

∫
BN

r0

|z̃|−swn
q(s)

√
|gn|dz̃.

Hence by (3.5) we have∫
BN

r0

|z̃|−swn
q(s)dz̃ =

1
2
(1 + crn). (3.7)

Let η ∈ C∞
c (F (Br0)), η ≡ 1 on F (B r0

2
) and η ≡ 0 on R

N+1\F (Br0). We define

ηn(z) = η(F (rnz)) ∀z ∈ R
N+1.

We have that

‖ηnwn‖D ≤ C ∀n ∈ N, (3.8)

where as usual D = D1,2(RN+1). Therefore

ηnwn ⇀ w in D.

We first show that w �= 0. Assume by contradiction that w ≡ 0. Thus wn → 0
in Lp

loc(R
N+1
+ ) and in Lp

loc(∂R
N+1
+ ) for every 1 ≤ p < 2�. Let ϕ ∈ C∞

c (B r0
2

) be
a cut-off function such that ϕ ≡ 1 on B r0

4
and ϕ ≤ 1 in R

N+1. Define

ϕn(F (y)) = ϕ(r−1
n y).

We multiply (3.3) by ϕ2
nun [which is bounded in H1(Ω)] and integrate by parts

to get∫
Ω

∇un∇(ϕ2
nun)dx = S(s,Ω)

∫
∂Ω

d−s(σ)|ϕnun|q(s)−2(ϕnun)2dσ + o(1)

≤ S(s,Ω)
(∫

∂Ω

d−s(σ)|ϕnun|q(s)dσ

) 2
q(s)

+ o(1),

where we have used (3.1). In the coordinate system and after integration by
parts, the above becomes

∫
R

N+1
+

|∇(ϕwn)|2gn

√
|gn|dz=S(s,Ω)

(∫
∂RN+1

+

|z̃|−s|ϕwn|q(s)
√

|gn|dz̃

) 2
q(s)

+o(1).
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Therefore, by (3.6), for some constant c > 0, we have

(1 − crn)
∫
R

N+1
+

|∇(ϕwn)|2dz = S(s,Ω)

(∫
∂RN+1

+

|z̃|−s|ϕwn|q(s)dz̃

) 2
q(s)

+ o(1).

(3.9)

Hence by the Hardy–Sobolev trace inequality (1.2), we get

(1 − crn)S(s)

(∫
∂RN+1

+

|z̃|−s|ϕwn|q(s)dz̃

) 2
q(s)

≤ S(s,Ω)

(∫
∂RN+1

+

|z̃|−s|ϕwn|q(s)dz̃

) 2
q(s)

+ o(1). (3.10)

Since S(s) > S(s,Ω), we conclude that

o(1) =
∫

∂RN+1
+

|z̃|−s|ϕwn|q(s)dz̃ =
∫

BN
r0

|z̃|−s|wn|q(s)dz̃ + o(1)

because by assumption q(s) < 2�. This is clearly in contradiction with (3.7)
thus w �= 0.

Now pick φ ∈ C∞
c (RN+1\{0}), and put φn(F (y)) = φ(r−1

n y) for every
y ∈ Br0 . For n sufficiently large, φn ∈ C∞

c (Ω) and it is bounded in H1(Ω). We
multiply (3.3) by φn and integrate by parts to get∫

Ω

∇un∇φndx = S(s,Ω)
∫

∂Ω

d−s(σ)|un|q(s)−2unφndσ + o(1).

Hence∫
R

N+1
+

〈∇wn,∇φ〉gn

√
|gn|dz=S(s,Ω)

∫
∂RN+1

+

|z̃|−s|wn|q(s)−2wnφ
√

|gn|dz̃+o(1).

Since ηn ≡ 1 on B r0
2rn

and the support of φ is contained in an annulus, for n

sufficiently large∫
R

N+1
+

〈∇(ηnwn),∇φ〉gn

√
|gn|dz

= S(s,Ω)
∫

∂RN+1
+

|z̃|−s|ηnwn|q(s)−2ηnwnφ
√

|gn|dz̃ + o(1).

Since also gn converges smoothly to the Euclidean metric on the support of φ,
by passing to the limit, we infer that, for all φ ∈ C∞

c (RN+1\{0})∫
R

N+1
+

∇w∇φ dz = S(s,Ω)
∫

∂RN+1
+

|z̃|−s|w|q(s)−2wφ dz̃. (3.11)

Notice that C∞
c (RN+1\{0}) is dense in C∞

c (RN+1) with respect to the
H1(RN+1) norm when N ≥ 2, see e.g. [24]. Consequently since w ∈ D, it
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follows that (3.11) holds for all φ ∈ C∞
c (RN+1) by (1.2). We conclude that⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δw = 0 in R
N+1
+ ,

− ∂w
∂z1 = S(s,Ω)|z̃|−s|w|q(s)−2w on ∂RN+1

+ ,∫
∂RN+1

+

|z̃|−s|w|q(s) dz̃ ≤ 1,

w �= 0.

Multiplying this equation by w and integrating by parts, leads to S(s,Ω) ≥
S(s) by (1.2) which is a contradiction and thus u = lim un �= 0 is a minimizer
for S(s,Ω). �

In the following we study the existence of minimizers for the Sobolev
trace inequality.

Proposition 3.2. Let Ω ⊂ R
N+1 be a Lipschitz domain which is smooth at

0 ∈ ∂Ω and N ≥ 2. Assume that S(0,Ω) < S(0). Then there exists a minimizer
for S(0,Ω).

Proof. Recall the Sobolev trace inequality, proved by Li and Zhu [22]: there
exists a positive constant C = C(Ω) such that for all u ∈ H1(Ω), we have

S(0)
(∫

∂Ω

|u|2�

dσ

)2/2�

≤
∫

Ω

|∇u|2dx + C

∫
∂Ω

|u|2dσ. (3.12)

Now we let un be a minimizing sequence for S(0), normalized as
‖un‖L2�(∂Ω) = 1. We now show that u = lim un is not zero. Put θn := un −u so
that θn ⇀ 0 in H1(Ω) and θn → 0 in L2(Ω), L2(∂Ω). Moreover by Brezis–Lieb
lemma [4] and recalling (3.1), it holds that

1 − lim
n→∞

∫
∂Ω

|θn|2�

dσ =
∫

∂Ω

|u|2�

dσ. (3.13)

By using (3.12), we have

S(0,Ω)
(∫

∂Ω

|u|2�

dσ

)2/2�

≤
∫

Ω

|∇u|2dx +
∫

∂Ω

|u|2dσ

≤
∫

Ω

|∇un|2dx +
∫

∂Ω

|un|2dσ −
∫

Ω

|∇θn|2dx + o(1)

≤
∫

Ω

|∇un|2dx +
∫

∂Ω

|un|2dσ

− S(0)
(∫

∂Ω

|θn|2�

dσ

)2/2�

+ o(1)

≤ S(0,Ω) − S(0)
(∫

∂Ω

|θn|2�

dσ

)2/2�

+ o(1).

We take the limit as n → ∞ and use (3.13) to get

S(0,Ω)
(∫

∂Ω

|u|2�

dσ

)2/2�

≤ S(0,Ω) − S(0)
(

1 −
∫

∂Ω

|u|2�

dσ

)2/2�

.
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Thanks to the concavity of the function t �→ t2/2�

, the above implies that∫
∂Ω

|u|2�

dσ ≥ 1 whenever S(0,Ω) < S(0). This completes the proof. �
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