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Abstract. We show that the nonlinear contraction semigroup generated
by the Benjamin–Bona–Mahony equation with dissipative memory

ut − utxx + ux −
∫ ∞

0

g(s)uxx(t − s) ds + upux = 0

is exponentially stable for every p ∈ N.
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1. Introduction

This paper deals with the propagation of the one-directional small amplitude
long waves in shallow water. In the conservative context, such waves are de-
scribed by the Korteweg–de Vries (KdV) equation [19]

ut + uxxx + ux + uux = 0,

where u = u(x, t) : I × R
+ → R denotes the wave surface, I ⊂ R being

a bounded interval. In 1972, Benjamin, Bona and Mahony [4] proposed to
replace the term uxxx by −utxx, thus obtaining the regularized KdV equation
(here called BBM equation)

ut − utxx + ux + uux = 0.

The equation above can be directly derived from Newton’s second law, in the
same way the KdV equation is obtained from the Euler one [21,22]. In the
dissipative context, namely, in the modeling of long gravity waves when also
viscosity is taken into account (see e.g. [6,10,18]), the BBM equation turns
into

ut − utxx − νuxx + ux + uux = 0, ν > 0, (1.1)
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or, more generally,
ut − utxx − νuxx + (f(u))x = q (1.2)

where f and q are a suitable nonlinear function and a time-independent forcing
term, respectively. Actually, it is a standard matter to prove that the initial
value problem associated to (1.2) with the Dirichlet boundary condition is
globally well-posed in the Sobolev space H1

0 (I). Hence, it generates a nonlinear
solution semigroup S(t) on H1

0 (I) defined by the action

u0 �→ S(t)u0 = u(t),

where u(t) is the unique solution at time t with initial datum u0 ∈ H1
0 (I).

Concerning the longtime dynamics, Wang and Yang [29,31] proved the ex-
istence of a finite-dimensional global attractor for S(t). Since the semigroup
is not compact in H1

0 (I), the proof is based on the weak continuity of S(t)
and energy methods inspired by Ghidaglia’s work (see e.g. [12,27,28]). Other
results can be found for instance in [3,5,15,20,27,30] and references therein.

Coming back to the homogeneous model (1.1), multiplying in L2(I) the
equation by 2u and exploiting the Dirichlet boundary condition, the (twice)
energy

E(t) = ||S(t)u0||2H1(I)

is readily seen to satisfy the equality
d
dt

E(t) = −2ν||ux(t)||2L2(I).

Hence, in light of the Poincaré inequality and the Gronwall lemma, we deduce
the exponential stability

E(t) ≤ E(0)e−κt,

where κ is a strictly positive constant depending only on ν and the interval
I. Note that, in the conservative limit case ν = 0, the energy is preserved,
namely E(t) = E(0). Many other papers related with damped BBM equations
with weaker dissipation are nowadays present in the literature (see [1,2,7,17]).
Still, to the best of our knowledge, none of them is dealing with dispersive
equations with dissipative memory.

Motivated by the discussion above, our aim is to study the asymptotic
behavior of the integro-differential equation

ut − utxx + ux −
∫ ∞

0

g(s)uxx(t − s) ds + upux = 0 (1.3)

in the unknown u = u(x, t) : I × R → R, complemented with the Dirichlet
boundary condition

u|∂I = 0.

Here p ∈ N is a fixed constant (when p = 0 the model becomes linear), while
g is a bounded convex summable function on [0,∞) of total mass∫ ∞

0

g(s) ds = 1
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having the explicit form

g(s) =
∫ ∞

s

μ(y) dy,

where μ : R
+ = (0,∞) → [0,∞), the so-called memory kernel, is a nonincreas-

ing absolutely continuous summable function of total mass

κ :=
∫ ∞

0

μ(s) ds = g(0) > 0.

Moreover, the function u is supposed to be known for all t ≤ 0. From the
physical viewpoint, Eq. (1.3) can be interpreted as a memory relaxation of
the dissipative BBM model (1.1) which, setting ν = 1, is formally recovered
when p = 1 and the kernel g collapses into the Dirac mass at zero. It is
also worth noting that the memory term provides a more realistic description
of the Fick’s law. In particular, it prevents the infinite propagation speed of
regularization [9,26]. In our opinion, this motivates and justifies the interest
in studying the asymptotic properties of such a model, as compared to the
“classical” dissipative case discussed above. In this work we prove that the
nonlinear solution semigroup generated by (1.3), acting on a suitable Hilbert
space accounting for the presence of the memory, remains exponentially stable.

In order to explain the mathematical difficulties encountered in the analy-
sis, we begin to observe that, also at a linear level, the exponential stability of
(1.3) is much harder to prove than the one of (1.1). An enlightening example
is provided by a comparison between the classical heat equation

ut − uxx = 0

with the Dirichlet boundary condition and its memory relaxation, i.e. the
Gurtin–Pipkin equation [16]

ut −
∫ ∞

0

g(s)uxx(t − s) ds = 0.

In the first case, similarly to (1.1), the exponential stability is almost trivial,
whereas the exponential stability of the Gurtin–Pipkin model has been proved
only in recent years [13]. In the nonlinear situation the picture is even worse.
Indeed, although the asymptotic analysis of the one-dimensional reaction–
diffusion equation is carried out under quite general assumptions, the cor-
responding nonlinear Gurtin–Pipkin case suffers from serious drawbacks, and
requires the choice of specific memory kernels concentrated at zero [14]. For
the BBM equation the scenario is similar: while adding a further nonlinearity
h(u) in (1.2) does not cause any essential extra difficulty, the picture becomes
much more involved when dissipative memory is introduced. In particular, even
showing exponential stability in the homogeneous case (as we do in the present
paper) is not at all an easy task. Concerning the existence of the global attrac-
tor when further nonlinearities and/or source terms are present, the techniques
devised in this work do not apply and, at the moment, an answer seems out
of reach.
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Plan of the paper. In the next Sect. 2 we introduce the functional setting
and the notation, while in Sect. 3 we establish the existence of the solution
semigroup. The final Sects. 4 and 5 are devoted to the main result about
exponential stability.

2. Functional setting and notation

In what follows, 〈·, ·〉 and ‖·‖ will denote the standard inner product and norm
on the Hilbert space L2(I). In order to simplify the calculation, we introduce
the strictly positive operators

A = −∂xx with D(A) = H2(I) ∩ H1
0 (I) � L2(I)

and

B = I + A with D(B) = D(A).

The operator B commutes with A and the bilinear form

〈u, v〉1 = 〈B 1
2 u,B

1
2 v〉

defines an equivalent inner product on the space H1
0 (I) with induced norm

‖u‖21 = ‖u‖2 + ‖ux‖2,
and we have the Poincaré inequality

λ1

1 + λ1
‖u‖21 ≤ ‖ux‖2 (2.1)

where λ1 > 0 is the first eigenvalue of A. Finally, we consider the so-called
memory space

M = L2
μ(R+;H1

0 (I))

of square summable H1
0 -valued functions on R

+ with respect to the measure
μ(s)ds, endowed with the inner product

〈η, ξ〉M =
∫ ∞

0

μ(s)〈ηx(s), ξx(s)〉ds.

The infinitesimal generator of the right-translation semigroup on M is the
linear operator

Tη = −η′

with domain

D(T ) =
{

η ∈ M : η′ ∈ M, lim
s→0

‖ηx(s)‖ = 0
}

,

the prime standing for the weak derivative with respect to the internal variable
s ∈ R

+. Defining the nonnegative functional

Γ[η] = −
∫ ∞

0

μ′(s)‖ηx(s)‖2 ds,

an integration by parts together with a limiting argument yield the equality
(see [8,24])

2〈Tη, η〉M = −Γ[η]. (2.2)



Vol. 22 (2015) The Benjamin–Bona–Mahony equation 903

The phase space of our problem will be

H = H1
0 (I) × M

endowed with the norm

‖(u, η)‖2H = ‖u‖21 + ‖η‖2M.

3. The contraction semigroup

We translate the problem in the so-called history space framework of Dafermos
[9]. To this aim, introducing the auxiliary variable

η = ηt(x, s) =
∫ s

0

u(x, t − y) dy,

accounting for the integrated past history of u, we rewrite (1.3) as

But + ux +
∫ ∞

0

μ(s)Aη(s) ds + upux = 0, (3.1)

ηt = Tη + u. (3.2)

By means of standard arguments based on a Galerkin approximation proce-
dure, one can show that system (3.1)–(3.2) above is well-posed in the phase
space H. In particular, the solution continuously depends on the initial data.
As a consequence, it generates a strongly continuous solution semigroup

S(t) : H → H
defined by the action

z0 = (u0, η0) �→ S(t)z0 = z(t),
where

z(t) = (u(t), ηt)

is the unique (weak) solution to (3.1)–(3.2) with initial datum z(0) = z0.
Introducing (twice) the energy at time t ≥ 0 corresponding to the initial datum
z0 ∈ H as

E(t) = ‖S(t)z0‖2H,

we multiply (3.1) by 2u in L2(I) and (3.2) by 2η in M. Summing up, we obtain
d
dt

E + 2〈ux, u〉 + 2〈upux, u〉 = 2〈Tη, η〉M.

Since, due to the boundary condition,

2〈ux, u〉 + 2〈upux, u〉 =
∫

I

d
dx

(u2(x)) dx +
2

p + 2

∫
I

d
dx

(up+2(x)) dx = 0,

an exploitation of (2.2) provides the energy identity
d
dt

E + Γ[η] = 0. (3.3)

In particular, since the functional Γ[η] is nonnegative, we have the control

E(t) ≤ E(0), (3.4)

meaning that S(t) is actually a contraction semigroup.
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4. Exponential stability

For the longterm analysis, the memory kernel μ is supposed to satisfy the
additional assumption (see [9])

μ′(s) + δμ(s) ≤ 0 (4.1)

for some δ > 0 and almost every s ∈ R
+. Note that μ can be unbounded in a

neighborhood of zero.
The main result of the paper reads as follows.

Theorem 4.1. There exist a strictly positive constant ω, depending on μ and
the length of the interval |I|, and an increasing positive function Qp, depending
besides on μ and |I| also on p, such that

E(t) ≤ Qp(E(0))e−ωt.

In order to prove Theorem 4.1, we need to introduce an auxiliary energy-
type functional. First, due to the possible singularity of μ at zero, we choose
s� > 0 such that ∫ s�

0

μ(s) ds ≤ κ

4
. (4.2)

Then, defining the truncated kernel

ρ(s) = μ(s�)χ(0,s�](s) + μ(s)χ(s�,∞)(s),

for ε > 0 we consider the functional

Ψε(t) = −ε

∫ ∞

0

ρ(s)〈ux(t), ηt
x(s)〉ds.

Since ρ(s) ≤ μ(s), it is easily seen that

|Ψε(t)| ≤ αεE(t) (4.3)

for every t ≥ 0, for some universal constant α = α(μ, |I|) > 0.

Lemma 4.2. There exist universal constants β, γ > 0, depending only on μ and
|I| but independent on p and the initial energy E(0), such that the inequality

d
dt

Ψε(t) +
εκ

4
‖ux(t)‖2 ≤ δ

4
‖ηt‖2M + βεΓ[ηt] (4.4)

holds for every t ≥ 0, whenever εE(0)p ≤ γ.

Proof. In what follows C ≥ 0 will denote a generic constant possibly depending
on the structural quantities of the problem but independent on p and the initial
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energy E(0). We compute the time derivative of Ψε as

d
dt

Ψε = −ε

∫ ∞

0

ρ(s)〈utx, ηx(s)〉ds − ε

∫ ∞

0

ρ(s)〈ux, ηtx(s)〉ds

= ε

∫ ∞

0

ρ(s)〈B−1ux, Aη(s)〉ds

+ ε

∫ ∞

0

ρ(s)
(∫ ∞

0

μ(σ)〈B−1Aη(σ), Aη(s)〉dσ

)
ds

+ ε

∫ ∞

0

ρ(s)〈B−1(upux), Aη(s)〉ds − ε

∫ ∞

0

ρ(s)〈ux, T ηx(s)〉ds

− ε‖ux‖2
∫ ∞

0

ρ(s)ds.

Then appealing to (4.1) we estimate

ε

∫ ∞

0

ρ(s)〈B−1ux, Aη(s)〉ds+ε

∫ ∞

0

ρ(s)
(∫ ∞

0

μ(σ)〈B−1Aη(σ), Aη(s)〉dσ

)
ds

≤ Cε
(‖ux‖‖η‖M + ‖η‖2M

)
≤ κε

8
‖ux‖2 + Cε‖η‖2M

≤ κε

8
‖ux‖2 + CεΓ[η]. (4.5)

Moreover, using (4.2) and the equality ρ(s) = μ(s) for s ≥ s�, we have

−ε‖ux‖2
∫ ∞

0

ρ(s) ds ≤ −ε‖ux‖2
∫ ∞

s�

μ(s) ds ≤ −3κε

4
‖ux‖2. (4.6)

Integrating by parts in s, we infer that

−ε

∫ ∞

0

ρ(s)〈ux, Tηx(s)〉ds = −ε

∫ ∞

s�

μ′(s)〈ux, ηx(s)〉ds

≤ ε‖ux‖
(

−
∫ ∞

s�

μ′(s)‖ηx(s)‖ds

)

≤ κε

8
‖ux‖2 + Cε

(
−

∫ ∞

s�

μ′(s)‖ηx(s)‖ds

)2

.

Therefore, since

(
−

∫ ∞

s�

μ′(s)‖ηx(s)‖ds

)2

≤
∫ ∞

s�

μ′(s) ds

∫ ∞

s�

μ′(s)‖ηx(s)‖2 ds ≤ μ(s�)Γ[η],

we obtain

−ε

∫ ∞

0

ρ(s)〈ux, Tηx(s)〉ds ≤ κε

8
‖ux‖2 + CεΓ[η]. (4.7)
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Finally, exploiting the embedding H1(I) ⊂ L∞(I) and (3.4),

ε

∫ ∞

0

ρ(s)〈B−1(upux), Aη(s)〉ds ≤ Cε‖upux‖‖η‖M ≤ Cε‖u‖p
L∞‖ux‖‖η‖M

≤ Cε‖u‖p
1‖ux‖‖η‖M ≤ CεE(0)

p
2 ‖ux‖‖η‖M

≤ δ

4
‖η‖2M + Cε2E(0)p‖ux‖2.

At this point, choosing ε > 0 such that

CεE(0)p ≤ κ

4
the inequality above turns into

ε

∫ ∞

0

ρ(s)〈B−1(upux), Aη(s)〉ds ≤ δ

4
‖η‖2M +

εκ

4
‖ux‖2. (4.8)

Collecting (4.5)–(4.8), the proof is finished. �

Remark 4.3. Observe that the constants α, β, γ can be explicitly calculated in
terms of the structural quantities of the problem, even in an optimal way.

We are now in a position to prove Theorem 4.1. First we consider the
energy identity (3.3) which, in light of (4.1), yields

d
dt

E +
δ

2
‖η‖2M +

1
2
Γ[η] ≤ 0.

Next, setting

Λε(t) = E(t) + Ψε(t)

and taking the sum of (4.4) with the inequality above, we obtain the estimate
(valid whenever εE(0)p ≤ γ)

d
dt

Λε +
εκ

4
‖ux‖2 +

δ

4
‖η‖2M +

(
1
2

− βε

)
Γ[η] ≤ 0.

Due to (2.1) and (4.3), it is apparent to see that fixing1

ε = min
{

1
2α

,
1
2β

,
δ

κ
,

γ

E(0)p

}

and calling

� =
κλ1

8(1 + λ1)
> 0,

the inequality
d
dt

Λε + �εΛε ≤ 0

holds. Hence, applying the Gronwall lemma and (4.3) once more, we infer that

E(t) ≤ 4E(0)e−�εt.

1 If E(0) = 0 we can take any ε.
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We now set

t0 =
log+(4E(0))

�ε
.

Note that t0, besides on |I|, μ, α, β, γ, depends also on E(0) and the exponent
p. However, it is clear that for every t ≥ t0

E(t) ≤ 1,

hence, by the semigroup property,

E(t) = ‖S(t)z0‖2H = ‖S(t − t0)S(t0)z0‖2H ≤ 4eωt0e−ωt, ∀t ≥ t0

for some positive ω, which now is independent of p and E(0). On the other
hand, in light of (3.4),

E(t) ≤ E(0)eωt0e−ωt, ∀t < t0.

In summary, defining

Qp(E(0)) = max{4, E(0)}eωt0 ,

the conclusion follows. �

5. Further remarks

I. Up to minor modifications, it is possible to allow the presence of (even
infinitely many) jumps in the memory kernel μ. Indeed, denoting with {sn}n≥1

the increasing sequence of discontinuity points of μ and setting

μn = μ(s−
n ) − μ(s+n ) ≥ 0,

we still have the energy identity (3.3) with

Γ[η] = −
∫ ∞

0

μ′(s)‖ηx(s)‖2 ds +
∑

n

μn‖ηx(sn)‖2 ≥ 0.

In turn, the conclusions of Lemma 4.2 and Theorem 4.1 remain true (see e.g.
[23]).

II. Condition (4.1) can be relaxed: Theorem 4.1 holds even if the kernel μ
fulfills for some C ≥ 1 and δ > 0 the weaker assumption

μ(t + s) ≤ Ce−δtμ(s), (5.1)

for every t ≥ 0 and almost every s ∈ R
+, provided that μ is not too flat (cf.

[11,23]).

III. In the linear case (i.e. when p = 0) exponential decay can be shown
within optimal assumptions on μ, by means of linear techniques (see [25]). In
this situation, besides (5.1), it is sufficient to assume that the kernel is not
completely flat, namely, the set

D = {s ∈ R
+ : μ′(s) < 0}

has positive Lebesgue measure.
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