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Abstract. We consider the Cauchy problem for systems of semilinear wave
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infinity if the Cauchy data are sufficiently small, smooth and compactly-
supported.
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1. Introduction and the main result

We consider the Cauchy problem for a system of semilinear wave equations in
two space dimensions:

�u = F (∂u), (t, x) ∈ (0,∞) × R
2 (1.1)

with

u(0, x) = εf(x), (∂tu)(0, x) = εg(x), x ∈ R
2, (1.2)

where u = (uj)1≤j≤N is an R
N -valued unknown function of (t, x) ∈ [0,∞)×R

2,
� = ∂2

t − Δx = ∂2
t − ∂2

1 − ∂2
2 , and ∂u = (∂auj)0≤a≤2,1≤j≤N with the notation

∂0 = ∂t =
∂

∂t
, ∂1 =

∂

∂x1
, ∂2 =

∂

∂x2
.
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For simplicity, we always suppose that f = (fj)1≤j≤N and g = (gj)1≤j≤N be-
long to C∞

0 (R2;RN ), and that ε is positive and sufficiently small. The nonlinear
term F (∂u) =

(
Fj(∂u)

)
1≤j≤N

is assumed to be a quadratic smooth function
around ∂u = 0: To be more precise, we assume that F ∈ C∞(R3N ;RN ) and

F (∂u) = F q(∂u) + F c(∂u) + O(|∂u|4)
in a neighborhood of ∂u = 0, where the quadratic nonlinear term F q(∂u) =(
F q

j (∂u)
)
1≤j≤N

and the cubic nonlinear term F c(∂u) =
(
F c

j (∂u)
)
1≤j≤N

are
given by

F q
j (∂u) =

N∑

k,l=1

2∑

a,b=0

Bab
jkl(∂auk)(∂bul),

F c
j (∂u) =

N∑

k,l,m=1

2∑

a,b,c=0

Cabc
jklm(∂auk)(∂bul)(∂cum)

with some real constants Bab
jkl and Cabc

jklm. In order to state our conditions, we
define the reduced nonlinearity

F q,red(ω, Y ) =
(
F q,red

j (ω, Y )
)
1≤j≤N

and F c,red(ω, Y ) =
(
F c,red

j (ω, Y )
)
1≤j≤N

by

F q,red
j (ω, Y ) =

N∑

k,l=1

2∑

a,b=0

Bab
jklωaωbYkYl,

F c,red
j (ω, Y ) =

N∑

k,l,m=1

2∑

a,b,c=0

Cabc
jklmωaωbωcYkYlYm (1.3)

for Y = (Yj)1≤j≤N ∈ R
N and ω = (ω1, ω2) ∈ S

1, with the convention ω0 = −1.
It is known that the Cauchy problem (1.1)–(1.2) admits a unique global

solution for small initial data if F (∂u) = O(|∂u|4) near ∂u = 0; however this
is not true when we consider general cubic or quadratic nonlinearity. Thus
the cubic nonlinearity is critical for small data global existence in two space
dimensions, and we need some structural restriction on quadratic and cubic
parts of F to obtain global solutions for small initial data. Alinhac [2] proved
that if the null condition (or the quadratic null condition)

F q,red(ω, Y ) = 0, (ω, Y ) ∈ S
1 × R

N (1.4)

and the cubic null condition

F c,red(ω, Y ) = 0, (ω, Y ) ∈ S
1 × R

N (1.5)

are satisfied, then the Cauchy problem (1.1)–(1.2) admits a unique global so-
lution for small ε. More precisely, only the case of single quasi-linear equations
is treated in [2], but we can easily adopt the method in [2] to the system (1.1)
(see [9]). It is also known that the null condition (1.4) without (1.5) implies the
so-called almost global existence for (1.1)–(1.2). For the related results con-
cerning the quadratic and cubic null conditions in two space dimensions, we
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refer the readers to [3,6,8,11–14]. The (quadratic) null condition was originally
introduced by Klainerman [20] as a sufficient condition for small data global
existence in three space dimensions (see also Christodoulou [5]); the cubic null
condition is not needed then, because the critical nonlinearity is quadratic in
three space dimensions.

Concerning single wave equations with cubic nonlinearity in two space
dimensions, Agemi [1] introduced another structural condition being weaker
than the cubic null condition, and conjectured that the small data global exis-
tence would follow from his condition. Let N = 1 and F q(∂u) ≡ 0 for a while.
Then F c,red has the form F c,red(ω, Y ) = P (ω)Y 3 with a polynomial P of cubic
order. Agemi’s condition is:

P (ω) ≥ 0, ω ∈ S
1. (1.6)

Observe that (1.6) is equivalent to

Y F c,red(ω, Y ) ≥ 0, (ω, Y ) ∈ S
1 × R, (1.7)

and that the cubic null condition (1.5) implies (1.7). The Agemi conjecture was
solved independently by Hoshiga [10] and Kubo [21]: Namely, for (1.1)–(1.2)
with N = 1 and F q(∂u) ≡ 0, it was proved that (1.6) implies global existence
of solutions for small ε. For example, the Agemi condition (1.6) is satisfied
for the nonlinearity F (∂u) = −(∂tu)3, but the cubic null condition is violated
for this nonlinearity. Asymptotic behavior of global solutions under the Agemi
condition (1.6) was studied in [21] and improved in [18]. In particular, it was
proved in [18] that the energy of the global solution u decreases to zero as
t → ∞ if the inequality in (1.6) is strict, i.e.,

P (ω) > 0, ω ∈ S
1. (1.8)

In other words, F satisfying (1.8) serves as a nonlinear dissipation (at least
for small data). A typical example satisfying (1.8) is F (∂u) = −(∂tu)3, for
which P (ω) = 1. It should be emphasized that the general theory of nonlinear
dissipation in Mochizuki and Motai [24] does not cover the case of �u =
−(∂tu)3 in two space dimensions (see also [26] and the references cited therein
for the theory of nonlinear dissipation).

In this paper, we will unify two global existence results mentioned above:
One is the global existence result under the quadratic and cubic null conditions
(1.4)–(1.5) in [2]; another is the result under the Agemi condition (1.6) and
F q(∂u) ≡ 0 in [10,21]. We will also investigate a condition, corresponding
to (1.8), to ensure that the nonlinearity works as nonlinear dissipation for
systems.

Now we would like to introduce our condition:

(Ag) There is an N × N -matrix valued continuous function A = A(ω) on S
1

such that A(ω) is a positive-definite symmetric matrix for each ω ∈ S
1,

and that

Y · A(ω)F c,red(ω, Y ) ≥ 0, (ω, Y ) ∈ S
1 × R

N ,

where the symbol · denotes the standard inner product in R
N .
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Here and in what follows, R
N -vectors are always regarded as column

vectors. Observe that the cubic null condition (1.5) implies (Ag) with A(ω) =
IN , where IN is the N ×N identity matrix. Observe also that (Ag) with N = 1
coincides with the Agemi condition (1.6), because we have (1.7), and A(ω) in
(Ag) plays no essential role when N = 1. Thus we may say that the condition
(Ag) is the Agemi condition for systems.

Theorem 1.1. Suppose that the quadratic null condition (1.4) and the condition
(Ag) are satisfied. Then, for any f, g ∈ C∞

0 (R2;RN ), there exists a positive
constant ε0 such that the Cauchy problem (1.1)–(1.2) admits a unique global
C∞-solution u for (t, x) ∈ [0,∞) × R

2 if ε ∈ (0, ε0].

Remark 1.2. For systems (1.1) with cubic nonlinearity, another kind of exten-
sion of the cubic null condition is studied in [15]. There is no inclusion between
the condition in [15] and the condition (Ag) here.

In [17], systems of semilinear wave equations with quadratic nonlinearity
in three space dimensions are studied, and a sufficient condition, which is
weaker than the null condition, for small data global existence is obtained.
Our condition (Ag) above can be viewed as a two space dimensional version of
the condition in [17]. Theorem 1.1 can be proved by a method similar to [17]
(and also to [18]). However, we need some modification to treat the quadratic
nonlinearity by using a generalized energy estimate due to Alinhac [2,4] (see
Lemma 2.5 below). Theorem 1.1 will be proved in Sect. 3.

Now we turn our attention to the decay of the energy. We define the
energy norm ‖u(t)‖E by

‖u(t)‖E =

(
1
2

∫

R2

2∑

a=0

|∂au(t, x)|2dx

)1/2

.

Theorem 1.3. In addition to (1.4) and (Ag), we assume that

Y · A(ω)F c,red(ω, Y ) �= 0, (ω, Y ) ∈ S
1 × (RN\{0}). (1.9)

Let u be the global solution to (1.1)–(1.2) whose existence is guaranteed by
Theorem 1.1. For any δ > 0, there exists a positive constant C such that

‖u(t)‖E ≤ Cε

(1 + ε2 log(t + 2))
1
4−δ

, t ≥ 0,

provided that ε is sufficiently small.

If N = 1 and F q(∂u) ≡ 0, the assumption in Theorem 1.3 is nothing but
(1.8). Although the expression is slightly different, we can easily check that the
energy decay rate in [18] coincides with the above rate. In [18], the decay of
the energy was obtained as a corollary to a general theorem on the pointwise
asymptotics of the global solutions under the condition (1.6). Explicit solv-
ability of some related ordinary differential equations plays an essential role
in the derivation of the asymptotics in [18]. It seems quite difficult to apply
this method to our system, because we need to solve a related system of ODEs
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explicitly. Therefore we take another approach to analyze solutions to the re-
lated system of ODEs without solving it explicitly. Theorem 1.3 will be proved
in Sect. 4.

Remark 1.4. Under the assumption of Theorem 1.3, we also have an enhanced
pointwise decay estimate for ∂u. See (4.3) below.

Remark 1.5. In [18], single but complex-valued wave equations with cubic
gauge-invariant semilinear terms are treated in fact, and the complex version of
(1.6) was considered. However, the results on global existence and the energy
decay in [18] are easily recovered by our results here, by rewriting a single
equation of a complex-valued unknown as a two-component system of real
unknowns through the standard identification of C with R

2.

Remark 1.6. For closely related results on nonlinear Schrödinger equations
and nonlinear Klein–Gordon equations, see [16,19], respectively.

We conclude this section by giving some examples satisfying our condi-
tions (1.4), (Ag) and (1.9). Throughout this paper, we will use the following
convention on implicit constants: The expression f =

∑′
λ∈Λ gλ means that

there exists a family {Cλ}λ∈Λ of constants such that f =
∑

λ∈Λ Cλgλ.

Example 1.7. (Quadratic terms satisfying the null condition (1.4)) It is well
known that the null condition (1.4) is satisfied if and only if

F q
j (∂u) =

∑′

1≤k,l≤N

Q0(uk, ul) +
∑′

1≤k,l≤N
0≤a,b≤2

Qab(uk, ul), (1.10)

where the null forms Q0 and Qab are given by

Q0(φ, ψ) =(∂tφ)(∂tψ) − (∇xφ) · (∇xψ), (1.11)

Qab(φ, ψ) =(∂aφ)(∂bψ) − (∂bφ)(∂aψ), 0 ≤ a, b ≤ 2 (1.12)

(see [20] for instance). Similarly to (1.10), it is also known that the cubic null
condition (1.5) is satisfied if and only if

F c
j (∂u) =

∑′

1≤k,l,m≤N
0≤c≤2

(∂cum)Q0(uk, ul) +
∑′

1≤k,l,m≤N
0≤a,b,c≤2

(∂cum)Qab(uk, ul)

(see [13] for example). These nonlinear terms can be added freely without
affecting the conditions (Ag) or (1.9).

Example 1.8. (Cubic terms satisfying the condition (Ag)) We begin with sim-
ple examples satisfying (Ag). When N = 1, F c(∂u) = −(∂tu)3 is an example
of the cubic terms satisfying (Ag) and (1.9), as we have mentioned above. Next
we focus on the case of two-component systems (i.e., N = 2). Consider

F c(∂u) =
(

F c
1 (∂u)

F c
2 (∂u)

)
=

(−a(∂tu1)3 + b(∂tu1)(∂tu2)2

−(∂tu2)3

)

with a ≥ 0 and b ∈ R, whose reduced nonlinearity is

F c,red(ω, Y ) =
(

aY 3
1 − bY1Y

2
2

Y 3
2

)
.



606 S. Katayama, A. Matsumura and H. Sunagawa NoDEA

• If a = 0 and b ≤ 0, we have

Y · F c,red(ω, Y ) = −bY 2
1 Y 2

2 + Y 4
2 ≥ 0, (ω, Y ) ∈ S

1 × R
2,

whence the condition (Ag) is satisfied with A(ω) = I2.
• If a > 0, then the conditions (Ag) and (1.9) are satisfied for all b ∈ R.

Indeed, by choosing A(ω) =
(

1 0
0 1 + (2a)−1|b|2

)
, we have

Y · A(ω)F c,red(ω, Y ) =
a

2
Y 4

1 + Y 4
2 +

(√
a

2
Y 2

1 −
√

1
2a

|b|Y 2
2

)2

+ (|b| − b)Y 2
1 Y 2

2 .

Example 1.9. (A cubic term satisfying (Ag) and (1.9) with a non-diagonal
weight) We give a bit less trivial example. Let N = 2 and consider

F c(∂u) =
(

F c
1 (∂u)

F c
2 (∂u)

)

with

F c
1 (∂u) = − (∂tu1)3 − (∂tu2)3 − 1

2

(
(∂1u1)2 − (∂1u2)2

)(
∂2u1 − ∂2u2

)
,

F c
2 (∂u) =(∂tu1)3 − 3(∂tu1)2(∂tu2)

+
1
2

(
(∂1u1)(∂2u1) − (∂1u2)(∂2u2)

)(
∂1u1 − ∂1u2

)
,

whose reduced nonlinearity is

F c,red(ω, Y ) =
(

Y 3
1 + Y 3

2 − ω2
1ω2(Y 2

1 − Y 2
2 )(Y1 − Y2)/2

−Y 3
1 + 3Y 2

1 Y2 + ω2
1ω2(Y 2

1 − Y 2
2 )(Y1 − Y2)/2

)
.

By choosing

A(ω) = 4
(

2 − ω2
1ω2 1 − ω2

1ω2

1 − ω2
1ω2 2 − ω2

1ω2

)
= 2

(
1 1
1 −1

)(
3 − 2ω2

1ω2 0
0 1

) (
1 1
1 −1

)
,

we get

Y · A(ω)F c,red(ω, Y )

=
(
Y1 + Y2 Y1 − Y2

)
(

3 − 2ω2
1ω2 0

0 1

)

×
(

(Y1 + Y2)3 − (Y1 − Y2)3

(Y1 − Y2)3 + (3 − 2ω2
1ω2)(Y1 + Y2)(Y1 − Y2)2

)

= (3 − 2ω2
1ω2)(Y1 + Y2)4 + (Y1 − Y2)4.

Observing that 3 − 2ω2
1ω2 ≥ 1 for ω ∈ S

1, we see that (Ag) and (1.9) are
satisfied for this cubic nonlinearity.
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2. Preliminaries

2.1. Commuting vector fields

In this subsection, we recall basic properties of the vector fields associated with
the wave equation. In what follows, we denote several positive constants by C
which may vary from one line to another. For y ∈ R

d with a positive integer
d, the notation 〈y〉 = (1 + |y|2)1/2 will be often used.

We introduce

S := t∂t +
2∑

j=1

xj∂j , L1 := t∂1 + x1∂t, L2 := t∂2 + x2∂t, Ω := x1∂2 − x2∂1,

and we set

Γ = (Γ0,Γ1, . . . ,Γ6) := (S,L1, L2,Ω, ∂0, ∂1, ∂2).

With a multi-index α = (α0, α1, . . . , α6) ∈ Z
7
+, we write Γα = Γα0

0 Γα1
1 . . . Γα6

6 ,
where Z+ denotes the set of non-negative integers. For a smooth function
ψ = ψ(t, x) and a non-negative integer s, we define

|ψ(t, x)|s =
∑

|α|≤s

|Γαψ(t, x)|, ‖ψ(t)‖s =
∑

|α|≤s

‖Γαψ(t, ·)‖L2(R2).

It is easy to see that [�, Lj ] = [�,Ω] = [�, ∂a] = 0 for j = 1, 2 and a = 0, 1, 2,
where [A,B] = AB − BA for operators A and B. We also have [�, S] = 2�.
Therefore for any α = (α0, α1, . . . , α6) ∈ Z

7
+ and a smooth function ψ, we have

�Γαψ = Γ̃α�ψ, (2.1)

where Γ̃α = (Γ0 + 2)α0Γα1
1 . . . Γα6

6 . We can check that

[Γa,Γb] =
∑′

0≤c≤6

Γc, [Γa, ∂b] =
∑′

0≤c≤2

∂c.

Hence for any α, β ∈ Z
7
+, and any non-negative integer s, there exist positive

constants Cα,β and Cs such that

|ΓαΓβψ(t, x)| ≤ Cα,β |ψ(t, x)||α|+|β|,

C−1
s |∂ψ(t, x)|s ≤

∑

0≤a≤2

∑

|γ|≤s

|∂aΓγψ(t, x)| ≤ Cs|∂ψ(t, x)|s (2.2)

for any smooth function ψ.
For x ∈ R

2, we use the polar coordinates r = |x| and ω = |x|−1x, so
that x = rω and ∂r =

∑2
j=1(xj/|x|)∂j . We put ∂± := ∂t ± ∂r and D± :=

2−1(∂r ± ∂t). We also introduce

ω̂ := (−1, ω1, ω2).

Remark that

D+ =
1

2(t + r)

(
S + ω1L1 + ω2L2

)
, (2.3)



608 S. Katayama, A. Matsumura and H. Sunagawa NoDEA

which implies a gain of (t + r)−1 in D+ with the aid of Γ’s. Writing ∂j in the
polar coordinates, we get

|(∂j − ωj∂r)ψ(t, x)| ≤1
r
|Ωψ(t, x)| =

1
t + r

|(Ω + ω1L2 − ω2L1)ψ(t, x)|

≤C
|Γψ(t, x)|

t + r
, j = 1, 2 (2.4)

for a smooth function ψ. Since ∂t = −D− + D+ and ∂r = D− + D+, it follows
from (2.3) and (2.4) that

|∂ψ(t, x) − ω̂D−ψ(t, x)| ≤ C〈t + r〉−1|Γψ(t, x)|. (2.5)

Now we summarize a couple of useful lemmas which will be needed in
the subsequent sections.

Lemma 2.1. Let ΛT := {(t, x) ∈ [0, T )×R
2; |x| ≥ t/2 ≥ 1}. There is a positive

constant C such that∣
∣
∣|x|1/2∂ψ(t, x) − ω̂D−

(|x|1/2ψ(t, x)
)∣∣
∣ ≤ C〈t + |x|〉−1/2|ψ(t, x)|1

for (t, x) ∈ ΛT and ψ ∈ C1([0, T ) × R
2).

Lemma 2.2. (i) Let ψ be a smooth solution to

�ψ(t, x) = G(t, x), (t, x) ∈ (0, T ) × R
2

with initial data ψ = ∂tψ = 0 at t = 0. Then there exists a universal
positive constant C, which is independent of T , such that

〈t + |x|〉1/2|ψ(t, x)| ≤ C
∑

|α|≤1

∫ t

0

‖ΓαG(τ, ·)‖L1(R2)

〈τ〉1/2
dτ (2.6)

for (t, x) ∈ [0, T ) × R
2.

(ii) Let ψ0 be a smooth solution to �ψ0(t, x) = 0 for (t, x) ∈ (0, T ) × R
2

satisfying ψ0(0, x) = (∂tψ
0)(0, x) = 0 for |x| ≥ R with some R > 0. Then

there is a positive constant CR, depending only on R, such that

〈t + |x|〉1/2|ψ0(t, x)| ≤ CR‖ψ0(0)‖2, (t, x) ∈ [0, T ) × R
2. (2.7)

Lemma 2.3. For any non-negative integer s, there exists a positive constant
Cs such that

|∂ψ(t, x)|s ≤ Cs〈t − |x|〉−1|ψ(t, x)|s+1, (t, x) ∈ [0, T ) × R
2

for any ψ ∈ Cs+1([0, T ) × R
2).

Lemma 2.1 is a consequence of (2.5). See [18] for its proof. The estimate
(2.6) in Lemma 2.2 is often called Hörmander’s L1–L∞ estimate, which is
proved in [7]. The estimate (2.7) for t > 1 is an easy consequence of (2.6)
and the energy identity via the cut-off argument, while (2.7) for 0 ≤ t ≤ 1
follows from the energy identity and the Sobolev embedding theorem (see [23]
for example). Lemma 2.3 is due to Lindblad [22]; only the case of three space
dimensions is treated in [22], but the two-dimensional case can be similarly
proved (see [18] for instance).
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2.2. The null condition and the generalized energy estimate

First we recall the estimates for quadratic terms satisfying the null condition
(1.4). Using (2.5), we have

|Q0(φ, ψ)| +
2∑

a,b=0

|Qab(φ, ψ)| ≤ C〈t + r〉−1(|∂φ| |Γψ| + |Γφ| |∂ψ|), (2.8)

where Q0 and Qab are the null forms defined by (1.11) and (1.12). Since
Γα

(
Q0(φ, ψ)

)
or Γα

(
Qab(φ, ψ)

)
for any α ∈ Z

7
+ can be written as a linear

combination of Q0(Γβφ,Γγψ) and Qcd(Γβφ,Γγψ) with |β| + |γ| ≤ |α| and
0 ≤ c, d ≤ 2, (1.10) and (2.8) yield the following lemma (see [20] for the
details):

Lemma 2.4. Suppose that (1.4) is satisfied. For s ∈ Z+, we have

|F q(∂u)|s ≤ C〈t + |x|〉−1
(|∂u||Γu|s + |∂u|[s/2]|Γu|s−1 + |Γu|[s/2]|∂u|s

)

with a positive constant C. Here, | · |−1 is regarded as 0.

We must make use of this enhanced decay to treat F q in the energy
estimate. However, if we use Lemma 2.4 in the standard energy inequality, we
need some estimate for |Γu|s which does not follow from the standard energy
inequality. To overcome this difficulty, we use a generalized energy inequality
due to Alinhac [2,4]. We introduce

Z = (Z1, Z2) =
(

x1

|x|∂t + ∂1,
x2

|x|∂t + ∂2

)
.

Lemma 2.5. Let T ∈ (0,∞]. Suppose that ψ = ψ(t, x) is a smooth function
satisfying

�ψ(t, x) = G(t, x), (t, x) ∈ (0, T ) × R
2.

For any ρ > 1, there is a positive constant C, depending only on ρ, such that

‖∂ψ(t)‖2
L2(R2) +

∫ t

0

(∫

R2

|Zψ(τ, y)|2
〈τ − |y|〉ρ

dy

)
dτ

≤ C‖∂ψ(0)‖2
L2(R2) + C

∫ t

0

(∫

R2
|G(τ, y)(∂tψ)(τ, y)| dy

)
dτ

for t ∈ [0, T ).

For the convenience of the readers, we will give the proof of this lemma
in the appendix.

Next we introduce an auxiliary notation related to the operator Z. For a
non-negative integer s and a smooth function ψ, we put

|ψ(t, x)|Z,s =
2∑

k=1

∑

|α|≤s

|ZkΓαψ(t, x)|.
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Observing that

S = x1Z1 + x2Z2 + (t − |x|)∂t,

Lk = |x|Zk + (t − |x|)∂k, k = 1, 2,

Ω = x1Z2 − x2Z1,

we can easily obtain the following lemma:

Lemma 2.6. For s ∈ Z+, we have

|Γψ(t, x)|s ≤ C|x| |ψ(t, x)|Z,s + 〈t − |x|〉|∂ψ(t, x)|s
with a positive constant C.

As a consequence, we have the following:

Corollary 2.7. Suppose that (1.4) is satisfied. For s ∈ Z+, we have

|F q(∂u)|s ≤ C
(|∂u||u|Z,s + |∂u|[s/2]|u|Z,s−1

)
+ C〈t + |x|〉−1|u|[s/2]+1|∂u|s

with a positive constant C. Here, | · |Z,−1 is regarded as 0.

Proof. By Lemmas 2.6 and 2.3, we have

|∂u||Γu|s ≤ C〈t + |x|〉|∂u||u|Z,s + C〈t − |x|〉|∂u||∂u|s
≤ C〈t + |x|〉|∂u||u|Z,s + C|u|1|∂u|s

as well as

|∂u|[s/2]|Γu|s−1 ≤ C〈t + |x|〉|∂u|[s/2]|u|Z,s−1 + C〈t − |x|〉|∂u|[s/2]|∂u|s−1

≤ C〈t + |x|〉|∂u|[s/2]|u|Z,s−1 + C|u|[s/2]+1|∂u|s−1.

The desired inequality follows immediately from them and Lemma 2.4. �
2.3. The profile equation

Let 0 < T ≤ ∞, and let u be the solution to (1.1)–(1.2) on [0, T ) × R
2. We

suppose that

supp f ∪ supp g ⊂ BR (2.9)

for some R > 0, where BM = {x ∈ R
2; |x| ≤ M} for M > 0. Then, from the

property of finite propagation, we have

suppu(t, ·) ⊂ Bt+R, 0 ≤ t < T. (2.10)

Now we put r = |x|, ω = (ω1, ω2) = x/|x| so that

r1/2�φ = ∂+∂−(r1/2φ) − 1
4r3/2

(
4Ω2 + 1

)
φ. (2.11)

We define U = (Uj)1≤j≤N by

U(t, x) := D−
(
r1/2u(t, x)

)
, (t, x) ∈ [0, T ) × (R2 \ {0}) (2.12)

for the solution u of (1.1). In view of Lemma 2.1, the asymptotic profile as
t → ∞ of ∂u should be given by ω̂U/r1/2, because we can expect |u(t, x)|1 → 0
as t → ∞. Also it follows from (2.11) that

∂+U(t, x) = − 1
2t

F c,red
(
ω,U(t, x)

)
+ H(t, x), (2.13)
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where F c,red(ω, Y ) is defined by (1.3), and H = H(t, x) is given by

H = − 1
2

(
r1/2F (∂u) − 1

t
F c,red(ω,U)

)
− 1

8r3/2

(
4Ω2 + 1

)
u. (2.14)

As Lemma 2.8 below indicates, H can be regarded as a remainder when (1.4) is
satisfied. For these reasons, we call (2.13) the profile equation associated with
(1.1), which plays an important role in our analysis.

We also need an analogous equation for Γαu with a multi-index α ∈ Z
7
+.

For this purpose, we put

U (α)(t, x) := D−
(
r1/2Γαu(t, x)

)
. (2.15)

Since �(Γαu) = Γ̃α (F (∂u)), we deduce from (2.11) that

∂+U (α) = − 1
2t

Gα(ω,U, U (α)) + Hα (2.16)

for |α| ≥ 1, where Gα = (Gα,j)1≤j≤N and Hα are given by

Gα,j

(
ω,U, U (α)

)
=

N∑

k=1

∂F c,red
j

∂Yk
(ω,U)U (α)

k

and

Hα(t, x) = − 1
2

(
r1/2Γ̃α

(
F (∂u)

) − 1
t
Gα

(
ω,U, U (α)

))

− 1
8r3/2

(
4Ω2 + 1

)
Γαu, (2.17)

respectively.
We close this section with preliminary estimates for H and Hα, in terms

of the solution u, near the light cone. We put

ΛT,R := {(t, x) ∈ [0, T ) × R
2; 1 ≤ t/2 ≤ |x| ≤ t + R}.

Note that we have

〈t + |x|〉−1 ≤ |x|−1 ≤ 2t−1 ≤ 3(1 + t)−1 ≤ 3(〈R〉 + 2)〈t + |x|〉−1

for (t, x) ∈ ΛT,R. In other words, the weights 〈t + |x|〉−1, (1 + t)−1, |x|−1 and
t−1 are equivalent to each other in ΛT,R. For s ∈ Z+, we also introduce an
auxiliary notation | · |�,s by

|φ(t, x)|�,s := |∂φ(t, x)|s + 〈t + |x|〉−1|φ(t, x)|s+1. (2.18)

Lemma 2.8. Suppose that the null condition (1.4) is satisfied. There is a posi-
tive constant C, which is independent of T , such that

|H(t, x)| ≤ Ct−1/2(1 + t|∂u|2 + |u|�,0)|u|�,0|u|1 + Ct−3/2|u|2 (2.19)
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for (t, x) ∈ ΛT,R, provided that sup(t,x)∈ΛT,R
|∂u(t, x)| is small enough. Also,

for s ≥ 1, there is a positive constant Cs,not depending on T , such that
∑

|α|=s

|Hα(t, x)| ≤Cst
1/2|∂u|3s−1 + Cst

−1/2(1 + t|∂u|2s + |u|�,s)|u|�,s|u|s+1

+ Cst
−3/2|u|s+2 (2.20)

for (t, x) ∈ ΛT,R, provided that sup(t,x)∈ΛT,R
|∂u(t, x)|[s/2] is small enough.

Proof. Let (t, x) = (t, rω) ∈ ΛT,R in what follows. We put

F h(∂u) = F (∂u) − (
F q(∂u) + F c(∂u)

)
,

so that we have F h(∂u) = O(|∂u|4) for small ∂u.
First we consider the estimate for H. We decompose it as follows:

H = − 1
2

(
r1/2F (∂u) − r−1F c,red(ω,U)

)
− t − r

2rt
F c,red(ω,U)

− 1
8r3/2

(
4Ω2 + 1

)
u.

It is easy to see that the third term can be dominated by Ct−3/2|u|2. To
estimate the second term, we note that

|U | ≤ r1/2|D−u| +
C

〈t + r〉1/2
|u| ≤ Cr1/2|u|�,0

and that

〈t − r〉|U | ≤ Ct1/2

(
〈t − r〉|∂u|0 +

〈t − r〉
〈t + r〉 |u|0

)
≤ Ct1/2|u|1,

where we have used Lemma 2.3 to get the last inequality. Then we obtain

|t − r|
rt

|F c,red(ω,U)| ≤ Ct−1〈t − r〉|U | · (r−1/2|U |)2 ≤ Ct−1/2|u|1|u|2�,0.

As for the the first term, we deduce from Lemmas 2.4 and 2.1 that

|r1/2F (∂u) − r−1F c,red(ω,U)|
≤ |r1/2F q(∂u)| + |r1/2F h(∂u)| + |r1/2F c(∂u) − r−1F c,red(ω,U)|
≤ Ct−1/2|u|1|∂u| + Ct1/2|∂u|4

+
C

r

∑

k,l,m

∑

a,b,c

∣
∣
∣(r1/2∂auk)(r1/2∂bul)(r1/2∂cum)−(ωaUk)(ωbUl)(ωcUm)

∣
∣
∣

≤ Ct−1/2|u|1|u|�,0 + Ct1/2|∂u|2|u|�,0|u|1
+ C

(|∂u| + r−1/2|U |)2|r1/2∂u − ω̂U |
≤ Ct−1/2(1 + t|∂u|2 + |u|�,0)|u|�,0|u|1.
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Summing up, we arrive at (2.19). Next we turn to the estimate for Hα with
|α| = s ≥ 1. We set F̃ c

α = (F̃ c
α,j)1≤j≤N with

F̃ c
α,j =

N∑

k,l,m=1

2∑

a,b,c=0

Cabc
jklm

{
(Γα∂auk)(∂bul)(∂cum) + (∂auk)(Γα∂bul)(∂cum)

+ (∂auk)(∂bul)(Γα∂cum)
}

to split Hα into the following form:

Hα = − r1/2

2
Γ̃α

(
F q(∂u) + F h(∂u)

) − r1/2

2

(
Γ̃α(F c(∂u)) − F̃ c

α

)

− 1
2

(
r1/2F̃ c

α − r−1Gα

)
− t − r

2rt
Gα − 1

8r3/2

(
4Ω2 + 1

)
Γαu.

The second term can be estimated by Ct1/2|∂u|3s−1, since it consists of a linear
combination of the terms having the form

r1/2(Γβ∂auk)(Γγ∂bul)(Γδ∂cum)

with k, l,m ∈ {1, . . . , N}, a, b, c ∈ {0, 1, 2}, and |β|, |γ|, |δ| ≤ s − 1. Other
four terms can be treated in the same way as in the previous case; they are
dominated by

Ct−1/2(1 + t|∂u|2s + |u|�,s)|u|�,s|u|s+1 + Ct−3/2|u|s+2.

Therefore we obtain (2.20) as desired. �

3. Proof of the small data global existence

The argument of this section is almost parallel to that of Section 5 in [17],
where quadratic semilinear systems of wave equations in R

3 are considered.
However, the argument becomes slightly more complicated because we are
considering lower dimensional case here.

Let u(t, x) be a smooth solution to (1.1)–(1.2) on [0, T0) ×R
2 with some

T0 ∈ (0,∞]. For 0 < T ≤ T0, we put

e[u](T ) = sup
(t,x)∈[0,T )×R2

(
〈t + |x|〉(1/2)−μ|u(t, x)|k+1

+ 〈t + |x|〉1/2〈t − |x|〉1−μ|∂u(t, x)|
+ 〈t + |x|〉(1/2)−ν〈t − |x|〉1−μ|∂u(t, x)|k

)

with some μ, ν > 0 and a positive integer k. We also put

e[u](0) = lim
T→+0

e[u](T ).

Observe that there is a positive constant ε1 such that 0 < ε ≤ ε1 implies
e[u](0) ≤ √

ε/2, because we have e[u](0) = O(ε).
The main step in the proof of Theorem 1.1 is to show the following:
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Proposition 3.1. Let k ≥ 4, 0 < μ < 1/10 and 0 < (8k + 7)ν ≤ μ. There exist
positive constants ε2 and M , which depend only on k, μ and ν, such that

e[u](T ) ≤ √
ε (3.1)

implies

e[u](T ) ≤ Mε, (3.2)

provided that 0 < ε ≤ ε2 and 0 < T ≤ T0.

Once the above proposition is obtained, the small data global existence
for (1.1)–(1.2) can be derived by the standard continuity argument: Let T ∗ be
the supremum of such T ∈ (0,∞) that the Cauchy problem (1.1)–(1.2) admits
a unique classical solution u ∈ C∞([0, T )×R

2;RN ), and assume that T ∗ < ∞.
Then, it follows from the standard blow-up criterion (see, e.g., [25]) that

lim sup
t→T ∗−0

(‖u(t, ·)‖L∞(R2) + ‖∂u(t, ·)‖L∞(R2)

)
= ∞. (3.3)

On the other hand, by setting

T∗ = sup
{
T ∈ [0, T ∗) ; e[u](T ) ≤ √

ε
}

,

we can see that Proposition 3.1 yields T∗ = T ∗, provided that ε is small enough.
Indeed, if T∗ < T ∗, then we have e[u](T∗) ≤ √

ε, and Proposition 3.1 implies
that

e[u](T∗) ≤ Mε ≤
√

ε

2
for 0 < ε ≤ min

{
ε1, ε2, 1/(4M2)

}
(note that we have T∗ > 0 for ε ≤ ε1).

Then, by the continuity of the mapping [0, T ∗) � T �→ e[u](T ), we can take
δ > 0 such that e[u](T∗ + δ) ≤ √

ε, which contradicts the definition of T∗, and
we conclude that T∗ = T ∗.

In particular, we have e[u](T ∗) ≤ √
ε. This implies that (3.3) never occurs

for small ε. In other words, we must have T ∗ = ∞, that is, the solution u exists
globally for small data. This completes the proof of Theorem 1.1.

From this proof, we see that

e[u](∞) ≤ √
ε (3.4)

holds for the global solution u with small ε, and Proposition 3.1 again yields

e[u](∞) ≤ Mε. (3.5)

Proof of Proposition 3.1. In what follows, we always suppose that 0 ≤ t < T ,
and that 0 < ε ≤ 1. Let R be the constant satisfying (2.9). Recall that we also
have (2.10) for the solution u. The proof of Proposition 3.1 will be divided into
several steps.

Step 1: Basic energy estimates.
We set

El(t) =
1
2
‖∂u(t)‖2

l +
1
2

∫ t

0

(∫

R2

|u(τ, y)|2Z,l

〈τ − |y|〉1+μ
dy

)

dτ.
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The goal of this step is to establish the following estimates:

El(t)1/2 ≤ Cε〈t〉C∗
√

ε+2lν (3.6)

for l ∈ {0, 1, . . . , 2k+1}, where the constant C∗ is to be fixed. Let 0 ≤ l ≤ 2k+1.
In the sequel, we will use the following conventions:

|∂u|−1 = 0, |u|Z,−1 = 0, ‖∂u‖−1 = 0, E−1(t) = 0.

From (2.1), (2.2) and Lemma 2.5, we get

El(t) ≤ C1,l‖∂u(0)‖2
l + C1,l

∫ t

0

(∫

R2

∣
∣F

(
∂u(τ, y)

)∣∣
l
|∂u(τ, y)|ldy

)
dτ, (3.7)

where C1,l is a positive constant depending only on l. It follows from (3.1) that

|F (∂u) − F q(∂u)|l ≤Cl

(
|∂u|2|∂u|l + |∂u|2[l/2]|∂u|l−1

)

≤Clε〈t〉−1|∂u|l + Clε〈t〉2ν−1|∂u|l−1 (3.8)

with a positive constant Cl depending only on l. By Corollary 2.7, we also
have

|F q(∂u)|l ≤ Cl

√
ε〈t〉−1/2〈t − r〉μ−1 (|u|Z,l + 〈t〉ν |u|Z,l−1)

+ Cl

√
ε〈t〉μ−(3/2)|∂u|l. (3.9)

Since μ − 1 ≤ −(1 + μ)/2, we deduce from (3.8) and (3.9) that

|F (∂u)|l|∂u|l ≤|F q(∂u)|l|∂u|l + |F (∂u) − F q(∂u)|l|∂u|l
≤Cl

√
ε〈t − r〉−(1+μ)/2 (|u|Z,l + 〈t〉ν |u|Z,l−1) · 〈t〉−1/2|∂u|l

+ Cl

√
ε〈t〉−1|∂u|2l

+ Clε
3/4〈t〉(4ν−1)/2|∂u|l−1 · ε1/4〈t〉−1/2|∂u|l

≤Cl

√
ε

|u|2Z,l

〈t − r〉1+μ
+ Cl

√
ε〈t〉−1|∂u|2l

+ Cl

√
ε〈t〉2ν

|u|2Z,l−1

〈t − r〉1+μ
+ Clε

3/2〈t〉4ν−1|∂u|2l−1.

By integrating with respect to (t, x), and choosing ε suitably small, we get

C1,l

∫ t

0

(∫

R2

∣
∣F

(
∂u(τ, y)

)∣∣
l
|∂u(τ, y)|ldy

)
dτ

≤ 1
2
El(t) + C2,l

√
ε

∫ t

0

(1 + τ)−1‖∂u(τ)‖2
l dτ + C2,l

√
ε(1 + t)2νEl−1(t)

+ C2,lε
3/2

∫ t

0

(1 + τ)4ν−1‖∂u(τ)‖2
l−1dτ (3.10)

with a positive constant C2,l depending only on l.
Now we put C∗ = 2max0≤l≤2k+1 C2,l.
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We are going to prove (3.6) by induction on l. In the case of l = 0, it follows
from (3.7) and (3.10) that

E0(t) ≤ Cε2 + C∗
√

ε

∫ t

0

(1 + τ)−1‖∂u(τ)‖2
0dτ

≤ Cε2 + 2C∗
√

ε

∫ t

0

(1 + τ)−1E0(τ)dτ,

whence the Gronwall lemma implies

E0(t) ≤ Cε2(1 + t)2C∗
√

ε.

This shows (3.6) for l = 0. Next we assume that (3.6) holds for some l ∈
{0, 1, . . . , 2k}. Then it follows from (3.7) and (3.10) that

El+1(t) ≤Cε2 + C∗
√

ε

∫ t

0

(1 + τ)−1‖∂u(τ)‖2
l+1dτ

+ C∗
√

ε(1 + t)2νEl(t) + C∗ε3/2

∫ t

0

(1 + τ)4ν−1‖∂u(τ)‖2
l dτ

≤Cε2 + 2C∗
√

ε

∫ t

0

(1 + τ)−1El+1(τ)dτ + Cε5/2(1 + t)2C∗
√

ε+4lν+2ν

+ Cε7/2

∫ t

0

(1 + τ)2C∗
√

ε+4(l+1)ν−1dτ

≤Cε2 + 2C∗
√

ε

∫ t

0

(1 + τ)−1El+1(τ)dτ + Cε5/2(1 + t)2C∗
√

ε+4(l+1)ν ,

which yields

El+1(t) ≤ Cε2(1 + t)2C∗
√

ε + Cε5/2(1 + t)2C∗
√

ε+4(l+1)ν

≤ Cε2(1 + t)2C∗
√

ε+4(l+1)ν .

This means that (3.6) remains true when l is replaced by l + 1, and (3.6) has
been proved for all l ∈ {0, 1, . . . , 2k + 1}.

Step 2: Rough pointwise estimates.

From now on, we assume that ε ≤ (ν/C∗)2. Then, since we have k ≥ 4,
it follows from (3.6) with l = 2k + 1 that

Ek+5(t)1/2 ≤ E2k+1(t)1/2 ≤ Cε〈t〉(4k+3)ν .

Observing that 2(4k + 3)ν ≤ μ − ν and [(k + 5)/2] ≤ k, we get
∥
∥
∥
∣
∣F

(
∂u(t)

) − F q
(
∂u(t)

)∣∣
k+5

∥
∥
∥

L1
≤ C

∥
∥|∂u(t)|[(k+5)/2]

∥
∥

L∞‖∂u(t)‖2
k+5

≤
(
Cε1/2〈t〉ν−(1/2)

)(
Cε2〈t〉2(4k+3)ν

)

≤ Cε5/2〈t〉μ−(1/2),
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which yields

∫ t

0

∥
∥
∥
∣
∣F

(
∂u(τ)

) − F q
(
∂u(τ)

)∣∣
k+5

∥
∥
∥

L1

〈τ〉1/2
dτ ≤Cε5/2

∫ t

0

〈τ〉μ−1dτ

≤Cε5/2〈t〉μ. (3.11)

On the other hand, it follows from Corollary 2.7 that

|F q(∂u)|k+5 ≤C
√

ε
(
〈t〉ν−(1/2)〈t − r〉(3μ−1)/2

)
〈t − r〉−(μ+1)/2|u|Z,k+5

+ C
√

ε〈t〉μ−(3/2)|∂u|k+5.

Recalling (2.10), we deduce from the Schwarz inequality that

∫ t

0

∥
∥
∥
∣
∣F q

(
∂u(τ)

)∣∣
k+5

∥
∥
∥

L1

〈τ〉1/2
dτ

≤ C
√

ε

(∫ t

0

〈τ〉2ν−2
∥
∥〈τ − | · |〉(3μ−1)/2

∥
∥2

L2(Bτ+R)
dτ

)1/2

Ek+5(t)1/2

+ C
√

ε

∫ t

0

〈τ〉μ−2‖1‖L2(Bτ+R)‖∂u(τ)‖k+5dτ

≤ Cε3/2
(
〈t〉(3μ+2ν)/2+(4k+3)ν + 〈t〉μ+(4k+3)ν

)

≤ Cε3/2〈t〉3μ. (3.12)

By (3.11), (3.12) and Lemma 2.2, we have

〈t + |x|〉1/2|u(t, x)|k+4 ≤CR‖u(0)‖k+6 + C

∫ t

0

∥
∥|F (∂u(τ))|k+5

∥
∥

L1

〈τ〉1/2
dτ

≤Cε + Cε3/2〈t〉3μ

≤Cε〈t + |x|〉3μ,

that is,

|u(t, x)|k+4 ≤ Cε〈t + |x|〉3μ−(1/2) (3.13)

for (t, x) ∈ [0, T ) × R
2.

Since [(k + 3)/2] ≤ k, we see from Lemmas 2.4 and 2.3 that

|F q(∂u)|k+3 ≤C〈t + r〉−1 (|∂u|k|Γu|k+3 + |Γu|k|∂u|k+3)

≤C〈t + r〉−1〈t − r〉−1|u|k+1|u|k+4

≤Cε3/2〈t + r〉4μ−2〈t − r〉−1

≤Cε3/2〈t〉5μ−2〈t − r〉−1−μ.
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Hence we get

∫ t

0

∥
∥
∥
∣
∣F q

(
∂u(τ)

)∣∣
k+3

∥
∥
∥

L1

〈τ〉1/2
dτ ≤Cε3/2

∫ t

0

〈τ〉5μ−(5/2)‖〈τ − | · |〉−1−μ‖L1(Bτ+R)dτ

≤Cε3/2

∫ t

0

〈τ〉5μ−(3/2)dτ

≤Cε3/2, (3.14)

because 5μ − (3/2) < −1. Now it follows from (3.11), (3.14) and Lemma 2.2
that

〈t + |x|〉1/2|u(t, x)|k+2 ≤CR‖u(0)‖k+4 + C

∫ t

0

∥
∥|F (∂u(τ))|k+3

∥
∥

L1

〈τ〉1/2
dτ

≤Cε + Cε3/2〈t〉μ

≤Cε〈t + |x|〉μ.

In other words, we obtain

|u(t, x)|k+2 ≤ Cε〈t + |x|〉μ−(1/2) (3.15)

for (t, x) ∈ [0, T ) × R
2. By Lemma 2.3, we also have

|∂u(t, x)|k+1 ≤ Cε〈t + |x|〉μ−(1/2)〈t − |x|〉−1 (3.16)

for (t, x) ∈ [0, T ) × R
2.

Step 3: Estimates for |∂u(t, x)|k away from the light cone.

Now we put Λc
T,R :=

(
[0, T ) × R

2
) \ ΛT,R. In the case of t/2 < 1 or

|x| < t/2, we see that

〈t − |x|〉 ≤ 〈t + |x|〉 ≤ C〈t − |x|〉.
On the other hand, it follows from (2.10) that u(t, x) = 0 if |x| > t+R. Hence
(3.16) implies

sup
(t,x)∈Λc

T,R

〈t + |x|〉1/2〈t − |x|〉1−μ|∂u(t, x)|k

≤ sup
(t,x)∈Λc

T,R

〈t + |x|〉(3/2)−μ|∂u(t, x)|k ≤ Cε. (3.17)

Step 4: Estimates for |∂u(t, x)| near the light cone.

Let (t, x) ∈ ΛT,R. We may assume T ≥ 2, because ΛT,R is empty for
T < 2. Remember that t−1, r−1, 〈t〉−1 and 〈t + r〉−1 are equivalent to each
other in ΛT,R.

We define U , U (α), H, Hα and | · |�,s as in the previous section [see (2.12),
(2.14), (2.15), (2.17) and (2.18)]. We see from (3.15) and (3.16) that

|u(t, x)|�,k ≤ Cεtμ−1/2〈t − |x|〉−1. (3.18)
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By (2.2), (3.15) and Lemma 2.1, we have

t1/2|∂u(t, x)|l ≤C
∑

|α|≤l

∣
∣ |x|1/2∂Γαu(t, x)

∣
∣

≤C
∑

|α|≤l

|U (α)(t, x)| + Cεtμ−1 (3.19)

for l ≤ k. Also, it follows from (3.1), (3.15), (3.18) and Lemma 2.8 that

|H(t, x)| ≤ Cε2t2μ−(3/2)〈t − |x|〉−1 + Cεtμ−2

≤ Cεt2μ−(3/2)〈t − |x|〉−μ−(1/2). (3.20)

Next we put

Σ =
{

(t, x) ∈ [0,∞) × R
2; |x| ≥ t

2
= 1 or |x| =

t

2
≥ 1

}

and we define t0,σ = max{2,−2σ}. What is important here is that the half
line {(t, (t + σ)ω); t ≥ 0} meets Σ at the point (t0,σ, (t0,σ + σ)ω) for each fixed
(σ, ω) ∈ R × S

1, so that

ΛT,R =
⋃

(σ,ω)∈(−T/2,R]×S1

{(t, (t + σ)ω) ; t0,σ ≤ t < T} .

We also remark that

C−1〈σ〉 ≤ t0,σ ≤ C〈σ〉, σ ≤ R (3.21)

with a positive constant C depending only on R. When (t, x) ∈ Σ, we have
tμ ≤ C〈t − |x|〉μ. So it follows from (2.2), (3.18) and Lemma 2.1 that

∑

|α|≤k

|U (α)(t, x)| ≤Ct1/2|u(t, x)|�,k

≤Cε〈t − |x|〉μ−1, (t, x) ∈ Σ ∩ ΛT,R. (3.22)

Let A be the matrix in the condition (Ag). Since A is positive-definite
and continuous on S

1, we can find a positive constant M0 such that

M−1
0 |Y |2 ≤ Y · A(ω)Y ≤ M0|Y |2, (ω, Y ) ∈ S

1 × R
N . (3.23)

Now we define

V (t;σ, ω) = U
(
t, (t + σ)ω

)
(3.24)

for 0 ≤ t < T and (σ, ω) ∈ R×S
1. In what follows, we fix (σ, ω) ∈ (−T/2, R]×S

1

and write V (t) for V (t;σ, ω). Then, since the profile equation (2.13) is rewritten
as

∂V

∂t
(t) = (∂+U)

(
t, (t + σ)ω

)
= − 1

2t
F c,red

(
ω, V (t)

)
+ H

(
t, (t + σ)ω

)
(3.25)
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for t0,σ < t < T , it follows from the condition (Ag) that

∂

∂t

(
V (t) · A(ω)V (t)

)
= 2V (t) · A(ω)

∂V

∂t
(t)

= 2V (t) · A(ω)
(

− 1
2t

F c,red
(
ω, V (t)

)
+ H

(
t, (t + σ)ω

)
)

≤ 2V (t) · A(ω)H
(
t, (t + σ)ω

)

≤ C
√

V (t) · A(ω)V (t)
∣
∣H(t,

(
t + σ)ω

)∣∣ (3.26)

for t0,σ < t < T . We also note that (3.22) for k = 0 can be interpreted as

|V (t0,σ)| =
∣
∣U

(
t0,σ, (t0,σ + σ)ω

)∣∣ ≤ Cε〈σ〉μ−1. (3.27)

We deduce from (3.20), (3.21), (3.23), (3.26) and (3.27) that

|V (t)| ≤
√

M0

√
V (t) · A(ω)V (t)

≤ C

(√
V (t0,σ) · A(ω)V (t0,σ) +

∫ t

t0,σ

∣
∣H

(
τ, (τ + σ)ω

)∣∣ dτ

)

≤ Cε〈σ〉μ−1 + Cε〈σ〉−μ−(1/2)

∫ t

t0,σ

τ2μ−(3/2)dτ

≤ Cε〈σ〉μ−1
{
1 + (〈σ〉/t0,σ)(1/2)−2μ

}

≤ Cε〈σ〉μ−1 (3.28)

for t ≥ t0,σ, where C is independent of ε, σ and ω. (3.28) implies

|U(t, x)| = |V (t; |x| − t, x/|x|)| ≤ Cε〈t − |x|〉μ−1, (t, x) ∈ ΛT,R.

Finally, in view of (3.19) with l = 0, we obtain

sup
(t,x)∈ΛT,R

〈t + |x|〉1/2〈t − |x|〉1−μ|∂u(t, x)| ≤ Cε. (3.29)

Step 5: Estimates for |∂u(t, x)|k near the light cone.
For a nonnegative integer s, we set

U (s)(t, x) :=
∑

|β|≤s

|U (β)(t, x)|.

Let 1 ≤ |α| ≤ k and (t, x) ∈ ΛT,R. By (3.19) we get

|∂u(t, x)||α|−1 ≤ Ct−1/2U (|α|−1)(t, x) + Cεtμ−3/2. (3.30)

It follows from (3.15), (3.16), (3.18), (3.30) and Lemma 2.8 that

|Hα(t, x)| ≤C(1 + ε2t2μ + εtμ−(1/2))ε2t2μ−(3/2)〈t − |x|〉−1

+ Cεtμ−2 + Cε3t3μ−4 + Ct−1
(U (|α|−1)(t, x)

)3

≤Cεt4μ−(3/2)〈t − |x|〉−3μ−(1/2) + Ct−1
(U (|α|−1)(t, x)

)3
. (3.31)

We put

V (α)(t;σ, ω) = U (α)
(
t, (t + σ)ω

)



Vol. 22 (2015) Semilinear wave equation with dissipative structure 621

for 0 ≤ t < T and (σ, ω) ∈ (−∞, R] × S
1. We fix (σ, ω) ∈ (−T/2, R] × S

1 and
write V (α)(t) for V (α)(t;σ, ω). Then (2.16) is rewritten as

∂V (α)

∂t
(t) = − 1

2t
Gα

(
ω, V (t), V (α)(t)

)
+ Hα

(
t, (t + σ)ω

)

for t0,σ < t < T . Hence by (3.28) and (3.31) we obtain

∂

∂t

∣
∣V (α)(t)

∣
∣2 ≤C

t
|V (t)|2∣∣V (α)(t)

∣
∣2 + 2

∣
∣Hα

(
t, (t + σ)ω

)∣∣
∣
∣V (α)(t)

∣
∣

≤2C∗ε2

t

∣
∣V (α)(t)

∣
∣2

+ C
(
εt4μ−(3/2)〈σ〉−3μ−(1/2) + t−1

(V(|α|−1)(t)
)3

) ∣
∣V (α)(t)

∣
∣,

where

V(s)(t)
(
= V(s)(t;σ, ω)

)
:=

∑

|β|≤s

∣
∣V (β)(t;σ, ω)

∣
∣,

and C∗ is a positive constant independent of α. Therefore it follows from (3.21)
and (3.22) that

t−C∗ε2 |V (α)(t)| ≤t−C∗ε2

0,σ

∣
∣V (α)(t0,σ)

∣
∣

+ Cε〈σ〉−3μ−(1/2)

∫ t

t0,σ

τ−C∗ε2+4μ−(3/2)dτ

+ C

∫ t

t0,σ

τ−C∗ε2−1
(V(|α|−1)(τ)

)3
dτ

≤Cε〈σ〉μ−1 + C

∫ t

2

τ−C∗ε2−1
(V(|α|−1)(τ)

)3
dτ.

By this inequality for 1 ≤ |α| ≤ l and (3.28), we have

t−C∗ε2V(l)(t) ≤ Cε〈σ〉μ−1 + C

∫ t

2

τ−C∗ε2−1
(V(l−1)(τ)

)3
dτ

for l ∈ {1, . . . , k}. Using this inequality, we can show inductively that

V(l)(t) ≤ Cε〈σ〉μ−1t3
l−1C∗ε2

(3.32)

for t0,σ ≤ t < T and l ∈ {1, . . . , k}. Indeed, we already know that

V(0)(t) = |V (t)| ≤ Cε〈σ〉μ−1

by (3.28). Hence we have

t−C∗ε2V(1)(t) ≤ Cε〈σ〉μ−1 + Cε3〈σ〉3μ−3

∫ ∞

2

τ−C∗ε2−1dτ ≤ Cε〈σ〉μ−1,
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which implies (3.32) for l = 1. Next we suppose that (3.32) is true for some
l ∈ {1, . . . , k − 1}. Then we have

t−C∗ε2V(l+1)(t) ≤Cε〈σ〉μ−1 + Cε3〈σ〉3μ−3

∫ t

2

τ (3l−1)C∗ε2−1dτ

≤Cε〈σ〉μ−1t(3
l−1)C∗ε2

,

which yields (3.32) with l replaced by l +1. Hence (3.32) for l ∈ {1, . . . , k} has
been proved.

By (3.19) and (3.32) with l = k, we have

|∂u(t, x)|k ≤ Cε〈t + |x|〉−1/2+3k−1C∗ε2〈t − |x|〉−1+μ, (t, x) ∈ ΛT,R.

Finally we take ε so small that 3k−1C∗ε2 ≤ ν. Then we obtain

sup
(t,x)∈ΛT,R

〈t + |x|〉1/2−ν〈t − |x|〉1−μ|∂u(t, x)|k ≤ Cε. (3.33)

The final step.
By (3.15), (3.17), (3.29) and (3.33), we can find two positive constants

ε2 and M such that (3.2) holds for 0 < ε ≤ ε2. This completes the proof of
Proposition 3.1. �

4. Proof of the energy decay

Before we proceed to the proof of Theorem 1.3, we introduce a useful lemma.

Lemma 4.1. Let C0 > 0, C1 ≥ 0, p > 1, q > 1 and t0 ≥ 2. Suppose that Φ(t)
satisfies

dΦ
dt

(t) ≤ −C0

t
|Φ(t)|p +

C1

tq

for t ≥ t0. Then we have

Φ(t) ≤ C2

(log t)p∗−1

for t ≥ t0, where p∗ is the Hölder conjugate of p (i.e., 1/p + 1/p∗ = 1), and

C2 =
1

log 2

(
(log t0)p∗

Φ(t0) + C1

∫ ∞

2

(log τ)p∗

τ q
dτ

)
+

(
p∗

C0p

)p∗−1

.

Remark 4.2. Special cases of this lemma have been used in Section 4 of [16]
and Section 5 of [19] less explicitly.

Proof. It follows from the Young inequality that

|Φ(t)| =
(
κ(log t)|Φ(t)|p

) 1
p ·

(
1

(κ log t)p∗−1

) 1
p∗

≤ κ

p
(log t)|Φ(t)|p +

1
p∗(κ log t)p∗−1

for κ > 0. By choosing κ = C0p/p∗, we have
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p∗ (log t)p∗−1

t
Φ(t) ≤ (log t)p∗ C0

t
|Φ(t)|p +

(
p∗

C0p

)p∗−1 1
t
,

whence
d

dt

(
(log t)p∗

Φ(t)
)

= (log t)p∗ dΦ
dt

(t) + p∗ (log t)p∗−1

t
Φ(t)

≤ (log t)p∗
{

dΦ
dt

(t) +
C0

t
|Φ(t)|p

}
+

(
p∗

C0p

)p∗−1 1
t

≤ C1
(log t)p∗

tq
+

(
p∗

C0p

)p∗−1 1
t
.

Integration with respect to t implies

(log t)p∗
Φ(t) ≤ (log t0)p∗

Φ(t0) + C1

∫ t

t0

(log τ)p∗

τ q
dτ +

(
p∗

C0p

)p∗−1

log
(

t

t0

)

≤ C2 log t,

from which we deduce the desired inequality. �

Now we are ready to finish the proof of Theorem 1.3. Note that all the
estimates in the proof of Proposition 3.1 are valid with T = ∞, because of
(3.4). Let the assumptions of Theorem 1.3 be fulfilled. The conditions (Ag)
and (1.9) imply

min
|Y |=1, ω∈S1

Y · A(ω)F c,red(ω, Y ) > 0.

Hence, in view of (3.23), we can choose C0 > 0 such that

Y · A(ω)F c,red(ω, Y ) ≥ C0(Y · A(ω)Y )2, (ω, Y ) ∈ S
1 × R

N .

For (t, x) ∈ ΛT,R, we fix σ = |x| − t, ω = x/|x| and set Φ(t) = V (t) · A(ω)V (t)
with V (t) = V (t;σ, ω) defined by (3.24). By (3.20), (3.25) and (3.28), we get

dΦ
dt

(t) = 2V (t) · A(ω)
dV

dt
(t) ≤ −C0

t
(Φ(t))2 +

C ′ε2〈σ〉−3/2

t(3/2)−2μ

for t ≥ t0,σ (cf. (3.26)), where C ′ is a positive constant independent of t, σ, ω
and ε. Therefore we can apply Lemma 4.1 to obtain

Φ(t) ≤ Cσ,ω

log t
, t ≥ t0,σ (4.1)

with

Cσ,ω =
1

log 2

(
(log t0,σ)2Φ(t0,σ) + C ′ε2〈σ〉−3/2

∫ ∞

2

(log τ)2

τ (3/2)−2μ
dτ

)
+

1
C0

.

By (3.21) and (3.27), we can find a positive constant C3, not depending on ε,
σ, ω and T , such that Cσ,ω ≤ C3 for all (σ, ω) ∈ (−T/2, R] × S

1. Hence (3.23)
and (4.1) lead to

|V (t;σ, ω)| ≤
√

M0Φ(t) ≤ C√
log t

, t ≥ t0,σ,

which, together with (3.17) and (3.19), yields
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|∂u(t, x)| ≤ Ct−1/2(log t)−1/2, (t, x) ∈ [2,∞) × R
2. (4.2)

By (3.5) and (4.2), we have

|∂u(t, x)| ≤ Ct−1/2 min
{
(log t)−1/2, ε(R + |t − |x||)μ−1

}
(4.3)

for (t, x) ∈ [2,∞) × R
2.

Given δ > 0, we put δ0 = min{δ, 1/37} and ρ(t; ε) = (ε2 log t)(1/2)+2δ0 .
We choose μ = 4δ0/(1 + 4δ0) in the definition of e[u](T ). Let t ≥ 2. For small
ε > 0 we have 0 < ρ(t; ε) < t, and we get 0 < t + R − ρ(t; ε) ≤ t + R. Then it
follows from (2.10) that

‖u(t)‖2
E =

1
2

∫

|x|≤t+R

|∂u(t, x)|2dx = I1 + I2,

where

I1 =
1
2

∫

|x|≤t+R−ρ(t;ε)

|∂u(t, x)|2dx,

I2 =
1
2

∫

t+R−ρ(t;ε)≤|x|≤t+R

|∂u(t, x)|2dx.

Note that we have t−1r ≤ t−1(t + R) ≤ 1 + R/2 for 0 ≤ r ≤ t + R, and
0 < ρ(t; ε) ≤ R + t − r ≤ R + |t − r| for 0 ≤ r ≤ t + R − ρ(t; ε). By using the
polar coordinates, we deduce from (4.3) that

I1 ≤Cε2

∫ t+R−ρ(t;ε)

0

t−1(R + |t − r|)2μ−2rdr

≤Cε2

∫ t+R−ρ(t;ε)

0

(R + t − r)2μ−2dr

≤Cε2ρ(t; ε)2μ−1 =
Cε2

(ε2 log t)(1/2)−2δ0
,

as well as

I2 ≤ C

∫ t+R

t+R−ρ(t;ε)

t−1(log t)−1rdr ≤ C(log t)−1ρ(t; ε) =
Cε2

(ε2 log t)(1/2)−2δ0
.

On the other hand, we get

‖u(t)‖2
E ≤ Cε2

∫ t+R

0

t−1
(
R + |t − r|)2μ−2

rdr ≤ Cε2

∫ ∞

−∞
〈σ〉2μ−2dσ ≤ Cε2.

Summing up, we have

‖u(t)‖2
E ≤ Cε2

(
1 + ε2 log t

)(1/2)−2δ0
≤ Cε2

(
1 + ε2 log t

)(1/2)−2δ

for t ≥ 2, which completes the proof of Theorem 1.3.
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Appendix A. Proof of Lemma 2.5

First we put

η(t, x) =
∫ |x|−t

−∞

dz

〈z〉ρ
, (t, x) ∈ R × R

2.

Then we can easily check that

1 ≤ eη(t,x) ≤ exp
(∫

R

dz

〈z〉ρ

)
< ∞ (A.1)

and that

(∂tη)|∂ψ|2 − 2(∇xη) · (∇xψ)∂tψ =
−|Zψ|2

〈t − |x|〉ρ
.

Next, as in the usual energy integral method, we compute
d

dt

(∫

R2
eη|∂ψ|2dx

)

=
∫

R2

(
eη(∂tη)|∂ψ|2 + 2eη

{
(∂tψ)(∂2

t ψ) + (∇xψ) · (∇x∂tψ)
})

dx

= 2
∫

R2
eη(�ψ)(∂tψ)dx +

∫

R2
eη

{
(∂tη)|∂ψ|2 − 2(∇xη) · (∇xψ)∂tψ

}
dx

= 2
∫

R2
eηG∂tψdx −

∫

R2
eη |Zψ|2

〈t − |x|〉ρ
dx.

By the integration with respect to t, we have
∫

R2
eη(t,x)|∂ψ(t, x)|2dx +

∫ t

0

∫

R2
eη(τ,x) |Zψ(τ, x)|2

〈τ − |x|〉ρ
dxdτ

=
∫

R2
eη(0,x)|∂ψ(0, x)|2dx + 2

∫ t

0

∫

R2
eη(τ,x)G(τ, x)(∂tψ)(τ, x)dxdτ.

With the aid of (A.1), we arrive at the desired estimate.
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