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Abstract. We consider a nonlinear partial differential control system de-
scribing phase transitions taking account of hysteresis effects. The con-
trol constraint is given by a multivalued mapping with nonconvex closed
bounded values in a finite dimensional space depending on the phase
variables. Existence of solutions and topological properties of the set of
admissible “trajectory-control” pairs are discussed in detail.
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1. Introduction

In the space-time cylinder ΩT := [0, T ] × Ω, where Ω ⊂ R
N is a bounded

Lipschitzian domain and T > 0 is a fixed final time, we consider the system

wt + ∂IK(v)(w) � g(v, w) − ψ(v, w) − F (w), (1.1)
cwt + dvt − Δv = a(v, w) + b(v, w)u, (1.2)
v(x, 0) = v0(x), w(x, 0) = w0(x), (1.3)

with boundary condition
∂v

∂n
= 0 on [0, T ] × ∂Ω, (1.4)

subject to the control constraint

u ∈ U(t, x, v, w) on ΩT , (1.5)

where K(v) = [f∗(v), f∗(v)] is a possibly degenerate interval in R, the symbol
∂IK(v) denotes the subdifferential of its indicator function, c, d are given pos-
itive constants, f∗, f

∗, g, a, b, ψ, F are given functions satisfying Hypothesis 1
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below, (v0, w0) are given initial conditions, and U is a multivalued mapping
with closed bounded values in R satisfying Hypothesis 2 below. Note that the
differential inclusion (1.1) is related to the so-called generalized play, see [1].

We consider also alternative control constraints to (1.5) in the form

u ∈ co U(t, x, v, w) on ΩT , (1.6)
u ∈ ext co U(t, x, v, w) on ΩT , (1.7)

where the symbol “co” stands for the convex hull of a set, and “ext” is the
collection of all extreme points of a set. Since U(t, x, v, w) is a closed bounded
set in R, the set co U(t, x, v, w) is a closed interval, and ext coU(t, x, v, w)
contains two points.

A system similar to (1.1)–(1.4) without control u has been studied by
many authors. We refer the reader to the references [2,3] for the physical
interpretation and an extensive bibliography on the phenomena described by
this system. When f∗(v) = −1, f∗(v) = +1, for instance, a system of the form

γ(v, w)wt + ∂I[−1,1](w) � L(v − vc)
Lwt + cvt − Δv = h(v, w, x, t)

}
in ΩT , (1.8)

with unknown state variables v (the absolute temperature) and w (the or-
der parameter, or phase variable) can be derived from general thermodynamic
principles as a model for phase transitions as proposed by Visintin in [4,5] un-
der the name relaxed Stefan problem. In this model, L (latent heat), c (specific
heat capacity), and vc (critical temperature) are positive material constants,
γ(v, w) > 0 is the relaxation time characterizing the phase transition speed
in the phase dynamics equation for different values of the state variables, and
h(v, w, x, t) is a variable heat source density in the energy balance equation.

The hysteresis character of phase transition processes has been repeat-
edly pointed out in the literature starting from [6], and the potential of specific
hysteresis techniques has been exploited for solving more complex phase tran-
sition systems, e.g. with mechanical interaction as in [7]. Problem (1.1)–(1.2)
can also be interpreted in this framework. The right hand side of Eq. (1.1) is
obtained by dividing the first equation of (1.8) by the relaxation time under
suitable (mild) assumptions on the nonlinearity. A possible optimization of the
phase transition process can be achieved in a natural way by a partial control
of the heat sources in the energy balance equation. This is why the control
variable u appears only on the right hand side of Eq. (1.2).

Note that differential inclusions of the type (1.1) are not just particular
examples of hysteresis relations. It was proved in [8, Theorem 2.7.7] that every
scalar return point memory hysteresis operator can be represented by first
order differential inclusions with a one-parameter family of indicator functions.

The majority of works on systems with hysteresis have been mainly fo-
cused on existence, uniqueness and long time behavior of solutions. Along with
the articles [2,3] of this type we also mention the works [9–11]. In all these
works it was assumed that ψ(v, w) ≡ 0, F (w) ≡ 0, b(v, w) ≡ 0, the function
a(v, w) is bounded, the functions f∗ and f∗ describing the hysteresis region
are also bounded. The only exception is the work [12] in which the system is
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given by Eqs. (1.1), (1.8) with ψ(v, w) ≡ 0, F (w) ≡ 0, and the functions f∗,
f∗ have the form

f∗(r) = αr + β∗, f∗(r) = αr + β∗, α > 0, β∗ < β∗, r ∈ R. (1.9)

Note however that the hysteresis region in this case though unbounded
is of a very special type.

When it comes to control systems with hysteresis their study is at an
initial stage. An interesting from the authors’ point of view work [13] in this
direction deals with the system described by Eqs. (1.1), (1.8) with ψ(v, w) ≡ 0,
F (w) ≡ 0, the functions f∗, f∗ given by (1.9) and the control h(t, x). In this
work the problem of minimization of the integral over T of the sum of squares
of norms of the functions v − vg, w −wg and h with values in the space L2(Ω),
where vg, wg are given functions, was considered. An approximating system
was constructed by approximating the subdifferential ∂Iv(w) by smooth func-
tions and relations between solutions of the initial and approximating systems
were studied. Necessary optimality conditions were obtained for the approxi-
mating system.

In recent works [14,15] a control system with hysteresis described by two
ordinary differential equations with nonconvex constraints depending on the
phase variables was investigated. In the first work the authors studied the
existence of solutions and relations between solutions of the initial system and
the system with convexified control constraints. In the second one the problem
of minimization of an integral functional with nonconvex in control integrant
and relationships between the solutions of this problem and the solutions of
the problem of minimization of the convexified with respect to the control
integrant over the solutions of the system with convexified constraints were
considered.

Given numerous applications, it seems natural and necessary, in addition
to the problems treated in [14,15], to consider for systems with hysteresis
especially for those described by partial differential questions all the questions
traditionally considered for control systems of other classes. The present work
starts these investigations.

In this article we study the following problems:

a) existence of solutions and, in case when the control constraints do not de-
pend on the phase variables, uniqueness and continuous data dependence
of trajectories;

b) closedness of the solution sets of the system (1.1)–(1.4) with the con-
straints (1.6) and (1.7);

c) the property of being an absolute retract and arc-wise connectedness of
the solution sets of the system (1.1)–(1.4) with the constraints (1.6) and
(1.7).

The existence and uniqueness results alone extend the existing literature
[2,3, and others] to the case of unbounded nonlinearities and unbounded hys-
teresis domains, which have not been considered before. Moreover, we prove
the existence of more regular solutions than in these works.
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The article is organized as follows. In Sect. 2 we recall some notions we use
in the rest of the paper and give the assumptions on the data of the problem we
consider. Section 3 states the main results of the paper (Theorems 3.2, 3.3) and
auxiliary theorems (Theorems 3.5, 3.6) necessary to prove the main results. In
Sect. 4 we construct the time discretization of our system with ψ(v, w) ≡ 0
and a fixed control u, and study some of its properties. In Sect. 5 we obtain
a priori estimates for the solutions of the time discrete system independent
of the discretization parameter, which allows us in Sect. 6 to show that the
solutions of the discretized system converge to a solution of the initial system
with ψ(v, w) ≡ 0 and a fixed u. In Sect. 7 we prove Theorems 3.5 and 3.6 giving
the existence of our system with a fixed u and the continuous dependence of
the solutions on the initial conditions and the control. Section 8 is devoted
to construction of the multivalued Nemytskii operator associated with our
problem and investigation of properties of its fixed points. Finally, in Sect. 9
we prove our main results (Theorems 3.2 and 3.3).

2. Main notations, definitions and assumptions

Let (X, | · |X) be a Banach space, T = [0, T ] an interval of the real line with
Lebesgue measure μ and σ-algebra Σ of μ-measurable subsets of T .

In what follows we use the following notations: cbX is the family of all
nonempty closed bounded subsets from X. We denote by co A the convex hull
of a set A ⊂ X, and by co A the closed convex hull of A. The collection of all
extreme points of a closed convex bounded set A ⊂ X is denoted by extA as
above. If A ⊂ X, then

|A|X = sup {|y|X ; y ∈ A}.

By dX(y,A) we mean the distance from the point y to the set A ⊂ X, and by
DX(·, ·) the Hausdorff distance on the space cbX.

For the space X with its topological dual X ′ the symbol ω-X means that
the space X is endowed with the weak σ(X,X ′) topology, and ω∗-X ′ that the
space X ′ is endowed with the weak σ(X ′,X) topology called the weak-star
topology. For subsets A ⊂ X and B ⊂ X ′ the symbols ω-A and ω∗-B denote
that the sets A and B are endowed with the topologies induced by those of
the spaces ω-X and ω∗-X ′.

By C(T ,X) we denote the space of all continuous functions from T to
X with the topology of uniform convergence on T .

A subset A of a Hausdorff topological space Y is called a retract if there
exists a continuous map q : Y → A such that q(y) = y, y ∈ A. Such a map q
is called a retraction of Y onto A.

A subset A of Y is called an absolute retract if for each separable metric
space Z, each closed subset B of Z, and each continuous map q : B → A there
exists a continuous extension of q onto Z taking values in A [16].

A set A is said to be arc-wise connected if two arbitrary points x0 and x1

in this set can be connected by an arc [16]. Recall that an arc in A connecting
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the points x0 and x1 is the homeomorphic image of the interval [0, 1] under
some mapping σ : [0, 1] → A such that σ(0) = x0, σ(1) = x1.

A multivalued mapping F : Y → cb X is called DX -continuous, if it is
continuous from Y to the metric space (cb X,DX(·, ·)).

Let (E ,A) be a measurable space. A set F of measurable functions from
E to X is called decomposable if for any v, w ∈ F and any E ∈ A we have
vχE + wχE\E ∈ F , where χE denotes the characteristic function of the set E.

A multivalued mapping F : E → X is called measurable if F−1(V ) =
{τ ∈ E ; F (τ) ∩ V �= ∅} ∈ A for any closed set V ⊂ X.

Let H be a Hilbert space with norm | · |H and scalar product 〈·, ·〉H .
A function ϕ : H → R = (−∞,+∞] is called proper if its effective domain
dom ϕ = {x ∈ H; ϕ(x) < +∞} is nonempty. We denote by Γ0(H) the set of
all functions ϕ : H → R which are proper, convex, and lower semicontinuous.
For a function ϕ ∈ Γ0(H), we denote by ∂ϕ(x) its subdifferential at the point
x, which is defined by the variational inequality

∂ϕ(x) = {h ∈ H; 〈h, y − x〉H ≤ ϕ(y) − ϕ(x) ∀y ∈ H}.

It is known [17] that ∂ϕ is a maximal monotone operator, dom ∂ϕ ⊂ dom ϕ
and dom ∂ϕ = dom ϕ, where the bar stands for the closure in H and dom ∂ϕ
is the domain of ∂ϕ.

In the sequel L0(E) is the space of measurable functions from E to R,
X = L1(Ω), X2 = X × X with the norm |(x, y)|X2 = |x|X + |y|X , H = L2(Ω).
As usual, we identify the space L0(ΩT ) with the space L0(T , L0(Ω)). The
same identification applies to the spaces L1(ΩT ), L1(T , L1(Ω)) and L2(ΩT ),
L2(T , L2(Ω)). We denote the norm of a function h ∈ Lp(Ω), 1 ≤ p ≤ ∞, by
the symbol |h|p.

Let H1(Ω) and H2(Ω) be the Sobolev spaces W 1,2(Ω), W 2,2(Ω), respec-
tively. Denote by V the space H1(Ω). The norm on V is defined as follows:

|v|V = 〈v, v〉1/2
V ,

where 〈v, w〉V = 〈v, w〉H + q(v, w),

q(v, w) =
∫

Ω

〈∇v(x),∇w(x)〉RN dx, v, w ∈ V. (2.1)

Identifying H with its dual space, we obtain V ↪→ H ↪→ V ′ with dense,
continuous and compact imbeddings.

Consider a linear continuous operator L : V → V ′:

〈Lv, w〉 = q(v, w), v, w ∈ V, (2.2)

where 〈·, ·〉 is the bilinear form establishing the duality between V and V ′ and
q(v, w) is defined by (2.1). The mapping

−ΔN : D(−ΔN ) ⊂ H → H (2.3)

denotes the restriction of the operator L onto the subspace of the space V,
consisting of the elements v for which the inclusion Lv ∈ H holds. It is known
[2] that

D(−ΔN ) = {v ∈ H2(Ω); ∂v/∂n = 0 in H1/2(∂Ω)}
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and

−ΔNv = −Δv for all v ∈ D(−ΔN ),

where ∂/∂n is the derivative in the direction of the outward normal to ∂Ω. As
usually, |∇v|2H =

∑N
i=1 |Div|2H , v ∈ V.

Problem (1.1)–(1.4) is considered under the following hypotheses.

Hypothesis 2.1. The following assumptions hold throughout the paper:
(i) f∗, f

∗ : R → R, a, b, g : R2 → R are locally Lipschitz continuous in all
variables with linear growth, that is, there exists a constant G > 0 such
that

|f∗(v)| + |f∗(v)| + |g(v, w)| + |a(v, w)| + |b(v, w)|
≤ G(1 + |v| + |w|) ∀(v, w) ∈ R

2;

Moreover, f∗, f
∗ are nondecreasing, f∗(v) ≤ f∗(v) for all v ∈ R.

(ii) F : R → R is nondecreasing and locally Lipschitz, F (0) = 0, ψ : R2 → R

is locally Lipschitz, w ψ(v, w) ≥ 0 for all v, w, and there exists k1 > 0
such that ψ(v, w) = 0 for |v| ≥ k1;

(iii) v0 ∈ L∞(Ω) ∩ V , w0 ∈ L∞(Ω), w0(x) ∈ K(v0(x)) a.e. on Ω,

|v0|∞ ≤ r, r > 0. (2.4)

In connection with the constraint (1.5), we assume the following.

Hypothesis 2.2. The mapping U : T × Ω × R × R → cbR has the following
properties:

(i) The mapping (t, x) → co U(t, x, v, w), v, w ∈ R, is measurable;
(ii) There exists a function k ∈ L1(T ,R+) such that

DR(co U(t, x, v1, w1), co U(t, x, v2, w2)) ≤ k(t)(|v1 − v2| + |w1 − w2|) (2.5)

a.e. on ΩT , (vi, wi) ∈ R, i = 1, 2;
(iii) There exists R > 0 such that for all (v, w) ∈ R × R we have

|U(t, x, v, w)|R ≤ R a.e. on ΩT , R > 0. (2.6)

3. Main results

Let Hypothesis 2 (i), (ii) hold. Using the statement e) of [18, Theorem 3.5], it is
easy to show that for any measurable functions v, w : Ω → R the multivalued
mapping (t, x) → co U(t, x, v(x), w(x)) is measurable and has closed values.
Then from [18, Theorem 5.6] it follows that there exists a sequence fn : T ×Ω →
R, n ≥ 1, of measurable functions such that

co U(t, x, v(x), w(x)) =
{

∞
∪

n=1
fn(t, x)

}
, (t, x) ∈ T × Ω,

where the bar stands for the closure in R.
From Fubini’s theorem we infer that for a.e. t ∈ T each function x →

fn(t, x), n ≥ 1, is measurable. Therefore, according to Theorem 5.6 in [18] for
a.e. t ∈ T the multivalued mapping x → co U(t, x, v(x), w(x)) is measurable.
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Consequently, if Hypothesis 2 holds, we can consider a multivalued mapping
(t, v, w) → Γ(t, v, w):

Γ(t, v, w) = {u ∈ H; u(x) ∈ co U(t, x, v(x), w(x)) a.e. on Ω}, (3.1)

whose values are convex decomposable compact subsets of ω-H. Then, we
can define the mapping ext Γ(t, v, w), which according to Corollary 5.2 in [19]
satisfies the equality

ext Γ(t, v, w) = {u ∈ H; u(x) ∈ ext co U(t, x, v(x), w(x)) a.e. on Ω}. (3.2)

From the Krein–Milman theorem it follows that

ext co U(t, x, v(x), w(x)) ⊂ U(t, x, v(x), w(x)).

Then the multivalued mapping

U(t, v, w) = {u ∈ H; u(x) ∈ U(t, x, v(x), w(x)) a.e. on Ω} (3.3)

has as its values nonempty closed decomposable bounded subsets of the space
H. Since

ext Γ(t, v, w) ⊂ U(t, v, w) ⊂ Γ(t, v, w),

we have co U(t, v, w) = Γ(t, v, w). From this equality and (3.1) we obtain

co U(t, v, w) = {u ∈ H; u(x) ∈ co U(t, x, v(x), w(x)) a.e. on Ω}. (3.4)

From Hypothesis 1 it follows that, keeping our notations, we may consider
the functions f∗, f

∗, F acting from R to R and the functions a, b, g, ψ acting
from R

2 to R as functions from H to L0(Ω) and from H × H to L0(Ω),
respectively.

Let IK(v) be the indicator function of the set

K(v) = {w ∈ H; w(x) ∈ K(v(x)) a.e. on Ω}, (3.5)

v ∈ H and ∂IK(v)(w) be its subdifferential at the point w ∈ H.

Definition 3.1. A triple {v, w, u} is called a solution of the control system
(1.1)–(1.4) with the constraint (1.5) on the control u, if

w ∈ W 1,2(T ,H), v ∈ W 1,2(T ,H) ∩ C(T , V ) ∩ L2(T ,H2(Ω)), u ∈ L2(T ,H),
(3.6)

and

w′ + ∂IK(v)(w) � g(v, w) − ψ(v, w) − F (w) in H a.e. on T , (3.7)

cw′ + dv′ − ΔNv = a(v, w) + b(v, w)u in H a.e. on T , (3.8)
w(0) = w0, v(0) = v0 in H, (3.9)
u(t) ∈ U(t, v(t), w(t)) in H a.e. on T , (3.10)

where U(t, v, w) is the multivalued mapping defined by the formula (3.3), and
the prime over w and v denotes derivative with respect to t.
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Solutions of the control system (1.1)–(1.4) with the control constraints
(1.6) and (1.7) are defined similarly by changing the inclusion (3.10) by the
inclusions

u(t) ∈ co U(t, v(t), w(t)) inH a.e. on T , (3.11)
u(t) ∈ ext co U(t, v(t), w(t)) inH a.e. on T , (3.12)

respectively.
If a triple {v, w, u} is a solution of the system (1.1)–(1.4) with the con-

trol constraints (1.5), then {v, w} is called the trajectory corresponding to the
control u, which we will denote as {v(u), w(u)}. Therefore, a solution of the
system (1.1)–(1.4), (1.5) is the pair {(v(u), w(u)), u} consisting of the trajec-
tory (v(u), w(u)) and the control u. We denote by RU (v0, w0) the set of all
solutions of the control system (1.1)–(1.4), (1.5). The symbols Rco U (v0, w0)
and Rext co U (v0, w0) denote the sets of all solutions of the systems (1.1)–(1.4),
(1.6) and (1.1)–(1.4), (1.7), respectively.

The main purpose of this work is to prove the following results.

Theorem 3.2. Let Hypotheses 1, 2 hold. Then the set Rext co U (v0, w0) is non-
empty, the following inclusions are valid

Rext co U (v0, w0) ⊂ RU (v0, w0) ⊂ Rco U (v0, w0) (3.13)

and the inequality

|v(u)|L∞(ΩT ) + |w(u)|L∞(ΩT ) + |v′(u)|L2(T ,H)

+ |w′(u)|L2(T ,H) + |ΔNv(u)|L2(T ,H) + |∇v(u)|L∞(T ,H) ≤ C(R, r) (3.14)

is true for all {v(u), w(u), u} ∈ Rco U (v0, w0), where C(R, r) is some constant
depending on the constants R, r appearing in the inequalities (2.4), (2.6).

Theorem 3.3. Let Hypotheses 1, 2 hold. Then the sets Rext co U (v0, w0) and
Rco U (v0, w0) are closed, arc-wise connected absolute retracts in the space
C(T ,H)× C(T ,H) × L2(T ,H).

Corollary 3.4. If Hypothesis 2 (i) holds also for the mapping U(t, x, v, w), then
the statement of Theorem 3.2 is also valid for the set RU (v0, w0).

In order to prove Theorems 3.2, 3.3 we need to consider the system of
Eqs. (3.7)–(3.9) with

u ∈ SR, (3.15)
where

SR = {u ∈ L2(T ,H); |u(t, x)| ≤ R a.e. on ΩT }. (3.16)
This system of equations is called the dominating system. The set of

all solutions {(v(u), w(u)), u} of the dominating system (3.7)–(3.9), (3.15) is
denoted by R(v0, w0).

The following results will serve as a basis of the proofs of Theorems 3.2,
3.3.

Theorem 3.5. Let Hypothesis 1 hold. Then for any u ∈ SR, there exists a
unique solution {v(u), w(u)} of the system (3.7)–(3.9). Moreover, for each el-
ement {(v(u), w(u)), u} ∈ R(v0, w0), the inequality (3.14) is true.
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Theorem 3.6. Let Hypothesis 1 hold. Then there exists a constant L∗(R, r) > 0
such that for any (vi

0, w
i
0), i = 1, 2, satisfying Hypothesis 1 (iii), the following

inequality holds

|(v(u1) − v(u2))|X(t) + |(w(u1) − w(u2))|X(t)

≤ L∗(R, r)
(

|v1
0 − v2

0 |X + |w1
0 − w2

0|X +
∫ t

0

|u1 − u2|X(τ) dτ

)
, t ∈ T ,

(3.17)

for all solutions {(v(ui), w(ui)), ui} ∈ R(vi
0, w

i
0), i = 1, 2, of the dominating

system.

4. Time discretization of the dominating system

In this section, we first consider the case ψ(v, w) = 0. In the sequel the con-
stants which will appear in inequalities and depend on the constants R and r
from the inequalities (2.4), (2.6) will be denoted, for simplicity, by letters with
the upper index ∗.

Let {rn}∞
n=1 be an increasing sequence of integers, and let τn = T/rn.

Let R > 0 be fixed, and let {uj ; j = 1, . . . , rn} be a given sequence such that
uj ∈ L∞(Ω), |uj | ≤ R a.e. on Ω for all j = 1, . . . , rn. We define the time
discrete counterpart of (3.7)–(3.9) as the elliptic system in Ω

wj = QK(vj)(wj−1 + τn(gj−1 − F (wj))), (4.1)
c

τn
(wj − wj−1) +

d

τn
(vj − vj−1) − Δvj = aj−1 + bj−1uj , (4.2)

∂vj

∂n
= 0 on ∂Ω (4.3)

for j = 1, . . . , rn and for unknowns vj , wj , with initial conditions v0, w0 as in
Hypothesis 1 (iii), and with the notation

gj−1 = g(vj−1, wj−1), aj−1 = a(vj−1, wj−1), bj−1 = b(vj−1, wj−1), (4.4)

where for a fixed v ∈ R, QK(v) : R → K(v) is the projection onto K(v) defined
as

ξ = QK(v)(z) ⇔

⎧⎨
⎩

ξ = z if z ∈ K(v),
ξ = f∗(v) if z < f∗(v),
ξ = f∗(v) if z > f∗(v).

(4.5)

The relation ξ = QK(v)(z) admits an equivalent variational characteriza-
tion

ξ = QK(v)(z) ⇔
{

ξ ∈ K(v),
(z − ξ)(ξ − y) ≥ 0 ∀y ∈ K(v). (4.6)

This is in turn equivalent to the inclusion

z ∈ ξ + ∂IK(v)(ξ). (4.7)
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Since for any v, w ∈ H, w ∈ dom IK(v) the equality ∂IK(v)(w) = {h ∈
H; h(x) ∈ ∂IK(v(x))(w(x)) a.e. on Ω} holds, Eq. (4.1) can also be stated as
a natural discretization of (3.7) with ψ(v, w) = 0 in the form

1
τn

(wj − wj−1) + F (wj) + ∂IK(vj)(wj) � g(vj−1, wj−1). (4.8)

We start with an easy lemma.

Lemma 4.1. Let Hypothesis 1 hold, and let ϕ, v ∈ R and τ > 0 be given. Then
the equation

w = QK(v)(ϕ − τF (w))

has a unique solution w ∈ R. If moreover

wi = QK(vi)(ϕi − τF (wi)), i = 1, 2

for some v1, ϕ1, v2, ϕ2, then

(w1 − w2)(v1 − v2) ≥ −|ϕ1 − ϕ2| |v1 − v2|, (4.9)

|w1 − w2| ≤ |ϕ1 − ϕ2| + max{|f∗(v1) − f∗(v2)|, |f∗(v1) − f∗(v2)|}. (4.10)

Proof. For given v, ϕ, the function θ(w) = w−QK(v)(ϕ−τF (w)) is increasing,
θ(±∞) = ±∞, hence there exists a unique w such that θ(w) = 0. Let now
ϕ1 ∈ R and v1 > v2 be given, and set

ŵ2 = QK(v2)(ϕ1 − τF (ŵ2)).

We prove that

(w1 − ŵ2)(v1 − v2) ≥ 0, (4.11)

|w1 − ŵ2| ≤ max{|f∗(v1) − f∗(v2)|, |f∗(v1) − f∗(v2)|}. (4.12)

To this end, we distinguish the cases
(a) ϕ1 − τF (w1) > f∗(v1). Then w1 = f∗(v1) ≥ f∗(v2) ≥ ŵ2. Furthermore,

ϕ1 > τF (w1)+w1 ≥ τF (ŵ2)+ ŵ2, hence w1 − ŵ2 = f∗(v1)−f∗(v2), and
(4.11)–(4.12) follow.

(b) ϕ1 − τF (w1) < f∗(v1). Then w1 = f∗(v1). If now ŵ2 > v1, then ϕ1 <
τF (w1) + w1 < τF (ŵ2) + ŵ2, hence ŵ2 = f∗(v2) ≤ f∗(v1) = w1, which is
a contradiction. We thus have 0 ≤ w1 − ŵ2 ≤ f∗(v1) − f∗(v2), which we
wanted to prove.

(c) ϕ1 − τF (w1) ∈ K(v1). Then ϕ1 = w1 + τF (w1). If now ŵ2 > w1, then
ϕ1 < ŵ2 + τF (ŵ2), and we obtain ŵ2 = f∗(v2) ≤ f∗(v1) ≤ w1, which is
a contradiction. Hence, ŵ2 ≤ w1. If ŵ2 < w1, then ϕ1 > ŵ2 + τF (ŵ2),
so that ŵ2 = f∗(v2), w1 ≤ f∗(v1), hence 0 < w1 − ŵ2 ≤ f∗(v1) − f∗(v2),
and the proof of (4.11)–(4.12) is complete.

It follows from (4.6) that for ξ1 = QK(v)(z1), ξ2 = QK(v)(z2), we have (ξ1 −
ξ2)(z1 − z2) ≥ (ξ1 − ξ2)2. We now apply this inequality to the case z1 =
ϕ1 − τF (ŵ2), z2 = ϕ2 − τF (w2), v = v2, ξ1 = ŵ2, ξ2 = w2, and obtain

(ŵ2 − w2)(ϕ1 − ϕ2)≥τ(F (ŵ2) − F (w2))(ŵ2 − w2) + (ŵ2 − w2)2 ≥(ŵ2 − w2)2.

We complete the proof of Lemma 4.1 combining this inequality with (4.11)–
(4.12). �
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The solution of (4.1)–(4.3) will be constructed by induction. Given
vj−1, wj−1 ∈ L∞(Ω), we see from (4.11)–(4.12) that Eq. (4.1) defines a func-
tion wj = fj(x, vj), which is nondecreasing and locally Lipschitz in vj . Hence,
(4.2)–(4.3) is a semilinear monotone elliptic equation of the form

c

τn
fj(x, vj) +

d

τn
vj − Δvj = hj−1, (4.13)

∂vj

∂n
= 0 on ∂Ω (4.14)

with a right hand hj−1 ∈ L∞(Ω), hence it admits a unique solution vj ∈ V [20].
In Proposition 5.2 below we prove that vj , wj belong to L∞(Ω). In order to
do so, we need the following auxiliary result which will enable us to construct
supersolutions and subsolutions to (4.1)–(4.3).

Lemma 4.2. Let j ≥ 1 and numbers 0 < γ0 ≤ γ1 ≤ · · · ≤ γj−1, 0 < vinc
0 ≤

vinc
1 ≤ · · · ≤ vinc

j−1, winc
0 ≤ winc

1 ≤ · · · ≤ winc
j−1 be given, winc

0 ∈ K(vinc
0 ),

γ0 > |F (winc
0 )|. Let vinc

j , winc
j satisfy the system

1
τn

(winc
j − winc

j−1) + F (winc
j ) + ∂IK(vinc

j )(w
inc
j ) � γj−1, (4.15)

c

τn
(winc

j − winc
j−1) +

d

τn
(vinc

j − vinc
j−1) = Cγj−1, (4.16)

with some C > 2c. Then vinc
j ≥ vinc

j−1, winc
j ≥ winc

j−1.

Proof. Assume first vinc
j < vinc

j−1. Then, by (4.16), winc
j > winc

j−1. If now 1
τn

(winc
j −

winc
j−1) + F (winc

j ) − γj−1 > 0, then winc
j = f∗(vinc

j ) ≤ f∗(vinc
j−1) ≤ winc

j−1, which is
a contradiction. We thus necessarily have 1

τn
(winc

j −winc
j−1)+F (winc

j )−γj−1 ≤ 0,
hence

1
τn

(winc
j − winc

j−1) ≤ γj−1 − F (winc
j ) ≤ γj−1 − F (winc

0 ) ≤ 2γj−1.

By virtue of (4.16) we have

d

τn
(vinc

j − vinc
j−1) ≥ (C − 2c)γj−1 > 0,

which is a contradiction. Thus, we have proved that vinc
j ≥ vinc

j−1.
We now prove that winc

j ≥ winc
j−1. To this aim, we distinguish again two

cases.
(a) winc

j−1 = f∗(vinc
j−1). Then winc

j ≥ f∗(vinc
j ) ≥ f∗(vinc

j−1) = winc
j−1.

(b) winc
j−1 > f∗(vinc

j−1).
(b1) If j = 1, then

1
τn

(winc
1 − winc

0 ) + F (winc
1 ) − F (winc

0 ) + ∂IK(vinc
1 )(w

inc
1 ) � γ0 − F (winc

0 ) ≥ 0,

and if winc
1 < winc

0 , then winc
1 = f∗(vinc

1 ) ≥ f∗(vinc
0 ) ≥ w0, which is

a contradiction.
(b2) If j > 1 and γj−1 − F (winc

j ) ≥ 0, we argue as in (b1).
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(b3) If j > 1 and γj−1−F (winc
j ) < 0, we notice first that ∂IK(vinc

j−1)
(winc

j−1)
∩(−∞, 0) = ∅ by hypothesis (b). By induction hypothesis, we have
winc

j−1 ≥ winc
j−2. From (4.15) for j replaced with j − 1 we thus obtain

γj−2 − F (winc
j−1) ≥ 0. This yields 0 ≤ γj−1 − γj−2 < F (winc

j−1) −
F (winc

j ), hence winc
j ≥ winc

j−1 and Lemma 4.2 is proved. �

We also have the symmetric result

Lemma 4.3. Let j ≥ 1 and numbers 0 < γ0 ≤ γ1 ≤ · · · ≤ γj−1, 0 > vdec
0 ≥

vdec
1 ≥ · · · ≥ vdec

j−1, wdec
0 ≥ wdec

1 ≥ · · · ≥ wdec
j−1 be given, wdec

0 ∈ K(vdec
0 ),

γ0 > |F (wdec
0 )|. Let vdec

j , wdec
j satisfy the system

1
τn

(wdec
j − wdec

j−1) + F (wdec
j ) + ∂IK(vdec

j )(w
dec
j ) � −γj−1, (4.17)

c

τn
(wdec

j − wdec
j−1) +

d

τn
(vdec

j − vdec
j−1) = −Cγj−1, (4.18)

with some C > 2c. Then vdec
j ≤ vdec

j−1, wdec
j ≤ wdec

j−1.

This is easily obtained from Lemma 4.2, replacing vdec
j by −vinc

j , wdec
j

by −winc
j , F (wdec

j ) by −F (−winc
j ), f∗(vdec

j ) by −f∗(−vinc
j ), and f∗(vdec

j ) by
−f∗(−vinc

j ).
Let us come back now to system (4.1)–(4.3). The linear growth condition

in Hypothesis 1 (i) together with (4.4) and the inclusion wj−1 ∈ K(vj−1) imply
that

|gj−1| + |aj−1| + |bj−1| ≤ G(|vj−1| + |wj−1| + 1)
≤ G(|vj−1| + G(|vj−1| + 1) + 1). (4.19)

For B = G(1 + G) we thus have

max{|gj−1|, |aj−1|, |bj−1|} ≤ B(|vj−1| + 1). (4.20)

We now choose a constant CR > 2c which will be specified later, and con-
sider auxiliary difference equations for supersolutions v�

j , w
�
j and subsolutions

v�
j , w

�
j

w�
j = QK(v�

j)
(w�

j−1 + τn(g∗
j−1 − F (w�

j))), (4.21)

c

τn
(w�

j − w�
j−1) +

d

τn
(v�

j − v�
j−1) = CRg∗

j−1, (4.22)

w�
j = QK(v�

j)
(w�

j−1 − τn(g∗
j−1 + F (w�

j))), (4.23)

c

τn
(w�

j − w�
j−1) +

d

τn
(v�

j − v�
j−1) = −CRg∗

j−1 (4.24)

with the choice g∗
j−1 = B(max{|v�

j−1|, |v�
j−1|} + 1), and with initial conditions

v�
0 ≥ |v0|∞, w�

0 = f∗(v�
0), v�

0 ≤ −|v0|∞, w�
0 = f∗(v�

0). The constant B is possibly
taken larger in order to guarantee that g∗

0 ≥ max{|F (w�
0)|, |F (w�

0)|}.
The solutions of (4.21)–(4.22) and (4.23)–(4.24) are constructed by in-

duction. Assume for instance that v�
0, . . . , v

�
j−1 and w�

0, . . . , w
�
j−1 are already



Vol. 22 (2015) A control problem in phase transition modeling 525

known. By Lemma 4.1, Eq. (4.21) defines w�
j as a nondecreasing locally Lip-

schitz continuous function of v�
j . Hence, (4.22) is of the form fj(v

�
j) = hj with

a locally Lipschitz continuous increasing superlinear function fj , which neces-
sarily admits a unique solution. The argument is similar for (4.23)–(4.24).

Notice that by (4.8), Eq. (4.21) is of the form (4.15), and (4.23) is of the
form (4.17). Hence, by Lemmas 4.2, 4.3, the sequences v�

j , w
�
j are nondecreasing,

and v�
j , w

�
j are nonincreasing. We therefore have

0 ≤ d

τn
(v�

j − v�
j−1) ≤ CRg∗

j−1, (4.25)

0 ≥ d

τn
(v�

j − v�
j−1) ≥ −CRg∗

j−1. (4.26)

Similar inequalities are also valid for w�
j , w

�
j . In particular,

d

τn
((v�

j − v�
j) − (v�

j−1 − v�
j−1)) ≤ CRB((v�

j−1 − v�
j−1) + 1). (4.27)

c

τn
((w�

j − w�
j) − (w�

j−1 − w�
j−1)) ≤ CRB((v�

j−1 − v�
j−1) + 1). (4.28)

The inequality (4.27) is a discrete Gronwall type inequality of the form cj −
cj−1 ≤ ατn(cj−1 + 1) which admits the upper bound cj ≤ (c0 + 1)ejατn − 1 ≤
(c0 + 1)eTα − 1 for j = 1, . . . , rn. Since v�

0 ≥ |v0|∞, v�
0 ≤ −|v0|∞, according to

(2.4), (4.27) there exists a constant C∗ > 0 independent of the discretization
parameter n such that

−C∗ < v�
j < 0 < v�

j < C∗, (4.29)

−C∗ < w�
j ≤ w�

j < C∗ (4.30)

for all j = 0, 1, . . . , rn.

5. Estimates

We start with a discrete counterpart of the celebrated Hilpert inequality , the
original version of which can be found in [20]. We denote by H : R → {0, 1}
the Heaviside function, that is, H(z) = 1 if z > 0, H(z) = 0 if z ≤ 0.

Lemma 5.1. Let (4.1) hold for some vj−1, vj , wj−1, wj ∈ R, and let v∗ ∈ R and
w∗ ∈ K(v∗), w∗ �= wj be arbitrary. Then we have

(wj − wj−1 − τn(gj−1 − F (wj)))H(wj − w∗) (5.1)
≤ (wj − wj−1 − τn(gj−1 − F (wj)))H(vj − v∗),

−(wj − wj−1 − τn(gj−1 − F (wj)))H(w∗ − wj) (5.2)
≤ −(wj − wj−1 − τn(gj−1 − F (wj)))H(v∗ − vj).

Proof. We distinguish the cases
(a) wj−1+τn(gj−1−F (wj)) ∈ K(vj). Then wj −wj−1−τn(gj−1−F (wj)) = 0

and the assertion holds trivially.
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(b) wj−1 +τn(gj−1 −F (wj)) > f∗(vj). Then wj = f∗(vj), hence wj −wj−1 −
τn(gj−1 − F (wj)) < 0. If now wj > w∗, then (wj − wj−1 − τn(gj−1 −
F (wj)))H(wj −w∗) = −|wj −wj−1−τn(gj−1−F (wj))|, and (5.2) follows.
Furthermore, the left hand side of (5.3) vanishes and the right hand side
is nonnegative, hence (5.3) holds as well. Consider now the case wj < w∗.
Then f∗(vj) = wj < w∗ ≤ f∗(v∗), hence H(wj − w∗) = H(vj − v∗) = 0,
H(w∗ − wj) = H(v∗ − vj) = 1, and both (5.2), (5.3) follow.

(c) wj−1 + τn(gj−1 − F (wj)) < f∗(vj). Then wj = f∗(vj), wj − wj−1 −
τn(gj−1 − F (wj)) > 0, and we argue as in (b). �

Proposition 5.2. Let Hypothesis 1 hold, and let (vj , wj) be the solution of (4.1)–
(4.3). Then for every n ∈ N, every j = 0, 1, . . . , rn, and a.e. x ∈ Ω, we have,
for a suitable choice of CR, that

v�
j ≤ vj(x) ≤ v�

j , w�
j ≤ wj(x) ≤ w�

j .

In particular, the time discrete approximations are uniformly bounded with
respect to the sup-norm.

Proof. We only prove the upper bound, the other case is fully symmetric. We
proceed by induction, assuming that the bound is already proved for j −1. By
Lemma 5.1, we have for wj(x) �= w�

j that

(wj − wj−1 − τn(gj−1 − F (wj)))H(wj − w�
j)

≤ (wj − wj−1 − τn(gj−1 − F (wj)))H(vj − v�
j), (5.3)

−(w�
j − w�

j−1 − τn(g∗
j−1 − F (w�

j)))H(wj − w�
j)

≤ −(w�
j − w�

j−1 − τn(g∗
j−1 − F (w�

j)))H(vj − v�
j). (5.4)

Summing up the above inequalities, we obtain

1
τn

((wj − w�
j) − (wj−1 − w�

j−1))H(wj − w�
j)

+(g∗
j−1 − gj−1)H(wj − w�

j) + (F (wj) − F (w�
j))H(wj − w�

j)

≤ 1
τn

((wj − w�
j) − (wj−1 − w�

j−1))H(vj − v�
j)

+(g∗
j−1 − gj−1)H(vj − v�

j) + (F (wj) − F (w�
j))H(vj − v�

j), (5.5)

whenever wj(x) �= w�
j . We now subtract (4.22) from (4.2) and obtain

c

τn
((wj − w�

j) − (wj−1 − w�
j−1)) +

d

τn
((vj − v�

j) − (vj−1 − v�
j−1)) − Δ(vj − v�

j)

= aj−1 + bj−1uj − CRg∗
j−1. (5.6)

We have by hypothesis wj−1 ≤ w�
j−1, vj−1 ≤ v�

j−1, gj−1 ≤ g∗
j−1 a.e. Further-

more, by monotonicity of F , we have

(F (wj) − F (w�
j))H(wj − w�

j) ≥ (F (wj) − F (w�
j))H(vj − v�

j).
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It thus follows from (5.5) for wj(x) �= w�
j that

1
τn

(wj − w�
j)H(wj − w�

j)

≤ 1
τn

((wj − w�
j) − (wj−1 − w�

j−1))H(vj − v�
j) + (g∗

j−1 − gj−1)H(vj − v�
j),

(5.7)

and testing (5.6) by H(vj − v�
j) yields that

c

τn
((wj − w�

j) − (wj−1 − w�
j−1))H(vj − v�

j) +
d

τn
(vj − v�

j)H(vj − v�
j)

≤ Δ(vj − v�
j)H(vj − v�

j) +
(
aj−1 + bj−1uj − CRg∗

j−1

)
H(vj − v�

j). (5.8)

Let Ω0
j ⊂ Ω be the set of all x ∈ Ω such that wj(x) = w�

j . For a.e. x ∈ Ω0
j

we have by (5.8) that

d

τn
(vj − v�

j)H(vj − v�
j) − Δ(vj − v�

j)H(vj − v�
j)

≤ (aj−1 + bj−1uj − CRg�
j−1)H(vj − v�

j). (5.9)

For x ∈ Ω\Ω0
j we add (5.8) to (5.7) multiplied by c, and obtain

c

τn
(wj − w�

j)H(wj − w�
j) +

d

τn
(vj − v�

j)H(vj − v�
j) − Δ(vj − v�

j)H(vj − v�
j)

≤ (aj−1 − cgj−1 + bj−1uj − (CR − c)g∗
j−1)H(vj − v�

j). (5.10)

We have by hypothesis that |aj−1|+ c|gj−1|+ |bj−1uj | ≤ (1+ c+R)g∗
j−1.

Hence, choosing CR ≥ 1 + 2c + R, we have for a.e. x ∈ Ω that

c

τn
(wj − w�

j)
+ +

d

τn
(vj − v�

j)
+ − Δ(vj − v�

j)H(vj − v�
j) ≤ 0, (5.11)

where (·)+ denotes the positive part. We further have∫
Ω

−Δ(vj − v�
j)H(vj − v�

j) dx ≥ 0. (5.12)

Indeed, this is obvious if we replace the Heaviside function H by its
regularization Hδ with a positive parameter δ, which is defined as

Hδ(z) =

⎧⎨
⎩

1 for z ≥ δ,
z/δ for z ∈ (0, δ),
0 for z ≤ 0.

Letting δ tend to 0, we obtain (5.12). We conclude that∫
Ω

(
c

τn
(wj − w�

j)
+ +

d

τn
(vj − v�

j)
+

)
dx ≤ 0, (5.13)

which completes the proof of Proposition 5.2. �

The next result manifests an “almost monotone” and “almost Lipschitz”
dependence of wj on vj .



528 P. Krejč́ı, A. A. Tolstonogov and S. A. Timoshin NoDEA

Lemma 5.3. There exists a constant M∗ > 0 such that for all j = 1, . . . , rn we
have

(wj − wj−1)(vj − vj−1) ≥ −τnM∗|vj − vj−1|, (5.14)
|wj − wj−1| ≤ M∗(τn + |vj − vj−1|). (5.15)

Proof. We trivially have wj−1 = QK(vj−1)(wj−1). Hence, it suffices to apply
Lemma 4.1 with w1 = wj−1, v1 = vj−1, ϕ1 = wj−1, w2 = wj , v2 = vj ,
ϕ2 = wj−1 − τn(gj−1 − F (wj)), the upper bound for |vj |, |wj | from Proposi-
tion 5.2, the inequalities (4.29), (4.30) and the (local) Lipschitz continuity of
the nonlinearities. �
Proposition 5.4. Let the assumptions of Proposition 5.2 hold. Then there exists
a constant C∗

1 independent of n such that

1
τn

rn∑
j=1

|vj − vj−1|22 ≤ C∗
1 , (5.16)

|∇vj |22 ≤ C∗
1 ∀j = 0, 1, . . . , rn, (5.17)

1
τn

rn∑
j=1

|wj − wj−1|22 ≤ C∗
1 , (5.18)

τn

rn∑
j=1

|Δvj |22 ≤ C∗
1 . (5.19)

Proof. We multiply (4.2) by vj − vj−1 and integrate over Ω. It follows from
Lemma 5.3 and from Proposition 5.2 that

d

τn
(vj − vj−1)2 − Δvj(vj − vj−1) ≤ C∗

2 |vj − vj−1|,

with some constant C∗
2 > 0 independent of n. Hence, by Cauchy–Schwarz

inequality,
d

τn
(vj − vj−1)2 − 2Δvj(vj − vj−1) ≤ τnC∗

3 ,

with some constant C∗
3 > 0 independent of n. Integrating over Ω, summing up

over j, and using the elementary inequality∫
Ω

−Δvj(vj − vj−1) dx =
∫

Ω

∇vj · (∇vj − ∇vj−1) dx ≥ 1
2
(|∇vj |22 − |∇vj−1|22),

we easily obtain (5.16)–(5.17). Inequality (5.18) then follows from Lemma 5.3
and Proposition 5.2, and (5.19) is obtained directly from (4.2), (5.16), and
(5.18) by comparison. �

6. Passage to the limit

Let u ∈ SR. For a.e. x ∈ Ω, we can define

uj(x) =
1
τn

∫ jτn

(j−1)τn

u(t, x) dt, j = 1, . . . , rn.
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We now let n tend to infinity and prove that the solutions to (4.1)–(4.3) con-
verge in a suitable sense to a solution of (3.7)–(3.9) with ψ(v, w) = 0.

With the sequences {vj}, {wj}, we associate the piecewise linear and
piecewise constant interpolates for x ∈ Ω and t ∈ [(j − 1)τn, jτn) by the
formula

v(n)(t, x) = vj−1(x) +
1
τn

(t − (j − 1)τn)(vj − vj−1), (6.1)

v̄(n)(t, x) = vj(x), (6.2)

v(n)(t, x) = vj−1(x), (6.3)

for j = 1, . . . , rn, continuously extended to t = T , and similarly for w(n), w̄(n),
w(n), and ū(n). Propositions 5.2 and 5.4 yield the estimates∫ T

0

(
|v(n)

t (t)|22 + |w(n)
t (t)|22

)
dt ≤ C∗

0 , (6.4)

∫ T

0

|Δv(n)(t)|22 dt ≤ C∗
0 , (6.5)

sup ess
t∈(0,T )

|∇v(n)(t)|22 ≤ C∗
0 , (6.6)

sup ess
(t,x)∈ΩT

(|v(n)(t, x)| + |w(n)(t, x)|) ≤ C∗
0 , (6.7)

for some C∗
0 > 0.

From (4.2), (4.3) and Theorem 3.4.3 in [21] we infer that for each t ∈ T
we have v̄(n)(t) ∈ H2(Ω). Therefore, ΔN v̄(n)(t) = Δv̄(n)(t), t ∈ T and the
Eq. (4.2) with the boundary condition will be written in the form

c(w(n))′ + d(v(n))′ − ΔN v̄(n)

= a(v(n), w(n)) + b(v(n), w(n))ū(n) in H a.e. on T , (6.8)

From (6.1) it directly follows that

sup ess
(t,x)∈ΩT

|v̄(n)(t, x)| ≤ C∗
0 (6.9)

Now from Theorem 3.4.3 in [21] and (6.5), (6.9) we see that

|v̄(n)|L2(T ,H2(Ω)) ≤ C∗
4 , n ≥ 1, (6.10)

for some C∗
4 > 0.

From (6.4), (6.7) it follows that v(n), w(n) ∈ W 1,2(T ,H) ∩ L∞(ΩT ). By
compact embedding V ↪→ H and (6.4)–(6.7), (6.10) there exists a subsequence
(still indexed by n) and elements v, w ∈ W 1,2(T ,H)∩L∞(ΩT )∩L2(T ,H2(Ω))
such that

v̄(n) → v weakly in L2(T ,H2(Ω)) (6.11)

ΔN v̄(n) → ΔNv weakly in L2(T ,H) (6.12)

v(n) → v strongly in C(T ,H) (6.13)
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v(n) → v weakly in W 1,2(T ,H) and weakly* in L∞(T , V ) ∩ L∞(ΩT )
(6.14)

w(n) → w weakly in W 1,2(T ,H) and weakly* in L∞(ΩT ) (6.15)

ū(n) → u weakly* in L∞(ΩT ) and strongly in L2(ΩT ). (6.16)

By virtue of (4.6), the relation (4.1) can be equivalently rewritten as

w̄(n) ∈ K(v̄(n)) a. e. , (6.17)

(g(v(n), w(n)) − F (w̄(n)) − w
(n)
t )(w̄(n) − y) ≥ 0 a. e. ∀y ∈ K(v̄(n)). (6.18)

We can choose in (6.18) in particular y = QK(v̄(n))(w̄(m)) for some m �= n.
Let L∗ be the Lipschitz constant of all nonlinearities in the domain |v| ≤
C∗

0 , |w| ≤ C∗
0 (cf. (6.7)). We then have |w̄(m)−QK(v̄(n))(w̄(m))| ≤ L∗|v̄(n)−v̄(m)|

a.e., hence

(w(n)
t + F (w̄(n)) − g(v(n), w(n)))(w̄(n) − w̄(m))

≤ L∗|w(n)
t + F (w̄(n)) − g(v(n), w(n))||v̄(n) − v̄(m)|.

Interchanging the roles of m and n, we obtain

(w(m)
t + F (w̄(m)) − g(v(m), w(m)))(w̄(m) − w̄(n))

≤ L∗|w(m)
t + F (w̄(m)) − g(v(m), w(m))||v̄(n) − v̄(m)|.

The sum of the two inequalities now yields the estimate

(w(n)
t − w

(m)
t )(w̄(n) − w̄(m)) + (F (w̄(n)) − F (w̄(m)))(w̄(n) − w̄(m))

≤ L∗(|v(n) − v(m)| + |w(n) − w(m)|)|w̄(n) − w̄(m)|
+(|w(n)

t | + |w(m)
t | + C∗

5 )|v̄(n) − v̄(m)| (6.19)

with some constant C∗
5 > 0. We have for a.e. (t, x) ∈ ΩT the inequality

(w(n)
t − w

(m)
t )(w̄(n) − w̄(m)) ≥ 1

2
∂

∂t
(w(n) − w(m))2

−(|w(n)
t | + |w(m)

t |)(|w̄(n) − w(n)| + |w̄(m) − w(m)|). (6.20)

Moreover, for t ∈ [(j − 1)τn, jτn), we have |w̄(n) − w(n)|(t) ≤ |wj − wj−1|
and |v̄(n) − v(n)|(t) ≤ |vj − vj−1|, hence, according to (5.16)

∫ T

0

|w̄(n) − w(n)|22(t) dt ≤ τnC∗
6 ,

∫ T

0

|v̄(n) − v(n)|22(t) dt ≤ τnC∗
6 , (6.21)

C∗
6 > 0, with similar estimates for w(n), v(n). Set

δmn(t) = |w̄(n) − w(n)|2(t) + |v̄(n) − v(n)|2(t) + |w(n) − w(n)|2(t)
+|v(n) − v(n)|2(t) + |w(m) − w(m)|2(t) + |v(m) − v(m)|2(t)
+|w̄(m) − w(m)|2(t) + |v̄(m) − v(m)|2(t) + |v(n) − v(m)|2(t).
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It thus follows from (6.19), (6.20) for a.e. t ∈ (0, T ) that

d
dt

|w(n) − w(m)|22(t) ≤ 2L∗|w(n) − w(m)|22(t)

+ C∗
7δmn(t)(1 + |w(n)

t |2(t) + |w(m)
t |2(t)) (6.22)

with some constant C∗
7 > 0 independent of n and m. The Gronwall argument,

Hölder’s inequality, and (6.4) yield

|w(n) − w(m)|22(t) ≤ C∗
8 e2L∗T

(∫ T

0

|δmn(t)|2 dt

)1/2

(6.23)

with some constant C∗
8 > 0. By (6.21), the L2-norm of δmn is small for large

n,m, and we conclude that w(n)(t) is a Cauchy sequence for each t ∈ T .
From (6.4) it follows that the sequence w(n), n ≥ 1 is equicontinuous on T .
Hence, according to the Arzela–Ascoli theorem the sequence w(n) converges in
C(T ,H). Using (6.15) we obtain

w(n) → w in C(T ,H). (6.24)

Denote by SC∗
0
(Ω) and SC∗

0
(ΩT ) the sets

SC∗
0
(Ω) = {v ∈ H; |v(x)| ≤ C∗

0 a.e. on Ω}, (6.25)

and

SC∗
0
(ΩT ) = {v ∈ L2(T ,H); |v(t, x)| ≤ C∗

0 a.e. on ΩT }, (6.26)

respectively. From Hypothesis 1 (i) it follows that for any v ∈ SC∗
0
(Ω) the set

K(v) defined in (3.5) is a nonempty convex weakly compact subset of the space
H and the inequality

DH(K(v1),K(v2)) ≤ L∗|v1 − v2|H , v1, v2 ∈ SC∗
0
(Ω) (6.27)

holds, where DH is the Hausdorff metric on the space cb H. Let

K∗(v) = {w ∈ L0(T ,H); w(t) ∈ K(v(t)) a.e. on T }, v ∈ SC∗
0
(ΩT ). (6.28)

From (6.27) we see that for any v ∈ SC∗
0
(ΩT ) the set K∗(v) is a nonempty

convex weakly compact subset of the space L2(T ,H) and the inequality

DL2(T ,H)(K∗(v1),K∗(v2)) ≤ L∗|v1 − v2|L2(T ,H), v1, v2 ∈ SC∗
0
(ΩT ) (6.29)

holds.
It is well known that if v ∈ SC∗

0
(ΩT ) and w ∈ K∗(v), then

∂IK∗(v)(w) = {h ∈ L2(T ,H); h(t) ∈ ∂IK(v(t))(w(t)) a.e. on T }, (6.30)

where IK∗(v) is the indicator function of the set K∗(v).
Let v be a function satisfying (6.13). From (6.7) it follows that v ∈

SC∗
0
(ΩT ). Let y ∈ K∗(v) be an arbitrary point and y(n) = prK∗(v(n)) y be the

projection of the point y onto the set K∗(v(n)). Using (6.7), (6.8) we obtain
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w̄(n) ∈ K∗(v̄(n)), (6.31)

〈g(v(n), w(n)) − F (w̄(n)) − w(n)′
, w̄(n) − y(n)〉L2(T ,H)

=
∫

T
〈g(v(n)(t), w(n)(t)) − F (w̄(n)(t)) − w(n)′

(t), w̄(n)(t) − y(n)(t)〉H dt,

(6.32)

where 〈·, ·〉L2(T ,H) is the scalar product in L2(T ,H).
From (6.28) and the fact that y ∈ K∗(v) we infer that

|y − y(n)|L2(T ,H) ≤ L∗|v − v(n)|L2(T ,H). (6.33)

Passing to the limit in (6.31), (6.32) and taking into account (6.21) and similar
inequalities for w(n), v(n), (6.13), (6.14), (6.24), (6.29), (6.32) we obtain

w ∈ K∗(v), (6.34)
〈g(v, w) − F (w) − w′, w − y〉L2(T ,H) ≥ 0. (6.35)

Since y ∈ K∗(v) is arbitrary, from (6.34), (6.35) it follows that

g(v, w) − F (w) − w′ ∈ ∂IK∗(v)(w). (6.36)

Using (6.30) we have

w′ + ∂IK(v)(w) � g(v, w) − F (w) in H a.e. on T . (6.37)

Analogously, passing to the limit in (6.8) and taking into account (6.14), (6.15),
(6.12), (6.16) and similar inequalities for w(n), v(n), we obtain (3.8) for ψ = 0.
On the space H consider the function

ϕ(v) =

{ 1
2
|v|2H +

1
2
|∇v|2H , if v ∈ V ;

+∞, if v ∈ H \V.

Then ϕ ∈ Γ0(H) and [13]

dom ∂ϕ = D(−ΔN ), (6.38)
∂ϕ(v) = v − ΔNv. (6.39)

From (3.8), (6.38), (6.39) it follows that

− cw′ − dv′ + v + a(v, w) + b(v, w)u ∈ ∂ϕ(v) in H a.e on T . (6.40)

Since v ∈ W 1,2(T ,H) and

−cw′ − dv′ + v + a(v, w) + b(v, w)u ∈ L2(T ,H),

from (6.40) and Lemma 3.3 in [17] we infer that the function

t → ϕ(v(t)) =
1
2
|v(t)|2H +

1
2
|∇v(t)|2H

is absolutely continuous. Hence, the function

t → |v(t)|V = (|v(t)|2H + |∇v(t)|2H)1/2 (6.41)

is continuous. Therefore, the set {v(t); t ∈ T } is bounded in the space V and,
thus, relatively compact in H. Since the imbedding H ↪→ V ′ is dense and the
function v(t) is continuous from T to H, it is continuous from T to V with
weak* topology. Consequently, from (6.41) we infer that the function t → v(t)
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is continuous from T to V . Hence, v ∈ W 1,2(T ,H) ∩ C(T , V ) ∩ L2(T ,H2(Ω))
and w ∈ W 1,2(T ,H) according to (6.11), (6.14), (6.15).

Thus, the system (3.7)–(3.9), (3.15) with ψ = 0 has a solution {(v(u),
w(u)), u}.

Obviously, according to (6.4)–(6.7) we have

|v′(u)|2L2(T ,H) + |w′(u)|2L2(T ,H) ≤ C∗
0 , (6.42)

|Δv(u)|2L2(T ,H) ≤ C∗
0 , (6.43)

|∇v(u)|L∞(T ,H) ≤ C∗
0 , (6.44)

(|v(u)| + |w(u)|)L∞(ΩT ) ≤ C∗
0 . (6.45)

Therefore, the existence of solution of the system (3.7)–(3.9), (3.15) and the
estimate (3.14) are proved in case of ψ = 0.

7. Proofs of Theorems 3.5 and 3.6

We proceed again by comparison. First, we add a purely technical assumption

f∗(0) ≤ 0 ≤ f∗(0). (7.1)

Of course, this can easily be obtained by shifting the functions f∗, f∗, and
w by the constant 1

2 (f∗(0) − f∗(0)), with corresponding modifications of the
nonlinearities.

Second, by (4.21)–(4.22), (4.23)–(4.24), we have that the differences
1
τn

|v�
j −v�

j−1|, 1
τn

|v�
j −v�

j−1|, 1
τn

|w�
j −w�

j−1|, 1
τn

|w�
j −w�

j−1|, are all bounded inde-
pendently of n and j. The piecewise linear interpolates v�(n), w�(n), v�(n), w�(n)

defined as in (6.1) form therefore a bounded sequence in W 1,∞(0, T ). Select-
ing suitable weakly-* convergent subsequences and passing to the limit as in
(6.17)–(6.23), we obtain functions v�, w�, v�, w� as solutions to the systems

ẇ� + F (w�) + ∂IK(v�)(w
�) � B(max{|v�|, |v�|} + 1), (7.2)

cẇ� + dv̇� = CRB(max{|v�|, |v�| + 1), (7.3)

v�(0) = v�
0, w�(0) = f∗(v�

0), (7.4)

ẇ� + F (w�) + ∂IK(v�)(w
�) � −B(max{|v�|, |v�|} + 1), (7.5)

cẇ� + dv̇� = −CRB(max{|v�|, |v�|} + 1), (7.6)

v�(0) = v�
0, w�(0) = f∗(v�

0), (7.7)

where we choose v�
0 ≥ max{k1, |v0|∞}, v�

0 ≤ −max{k1, |v0|∞}, and the con-
stant B sufficiently large, B ≥ max{|F (w�

0)|, |F (w�
0)|}, such that the counter-

part of (4.20)

max{|g(v, w)|, |a(v, w)|, |b(v, w)|} ≤ B(|v| + 1) (7.8)

holds for all v ∈ R and w ∈ K(v).
The functions v�, w� are nondecreasing, positive, and bounded in [0, T ],

v�, w� are nonincreasing, negative, and bounded in [0, T ]. They do not depend
on ψ, and this will play a substantial role in the proof of Theorem 3.5.
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The argument will be based on another variant of the Hilpert inequality,
cf. [20].

Proposition 7.1. Let g1, v1 ∈ L∞(T ) be given, and let w1 be the solution in T
of the differential inclusion

ẇ1(t) + F (w1(t)) + ∂IK(v1(t))(w1(t)) � g1(t). (7.9)

Let w2 ∈ K(v2) for some v2, w2. Then for a.e. t ∈ T such that w1(t) �= w2 we
have

(ẇ1 + F (w1) − g1)H(w1 − w2) ≤ (ẇ1 + F (w1) − g1)H(v1 − v2), (7.10)

−(ẇ1 + F (w1) − g1)H(w2 − w1) ≤ −(ẇ1 + F (w1) − g1)H(v2 − v1).
(7.11)

Proof. The statement is obvious if ẇ1(t) + F (w1)(t) − g1(t) = 0, as well as
if ẇ1(t) + F (w1)(t) − g1(t) > 0 and w1(t) < w2. Assume now that ẇ1(t) +
F (w1)(t)−g1(t) > 0 and w1(t) > w2. The only problem may occur if v1(t) < v2.
Then we have w1(t) = f∗(v1(t)) ≤ f∗(v2) ≤ w2, which is a contradiction.
Similarly, everything is clear if ẇ1(t) + F (w1)(t) − g1(t) < 0 and w1(t) > w2.
In the case ẇ1(t) + F (w1)(t) − g1(t) < 0 and w1(t) < w2, v1(t) > v2 we obtain
similarly w1(t) = f∗(v1(t)) ≥ f∗(v2) ≥ w2, that is, a contradiction again. �

Corollary 7.2. Let gα, vα ∈ L∞(T ), α = 1, 2 be given, and let wα be the
solution in T of the differential inclusion

ẇα(t) + ∂IK(vα(t))(wα(t)) � gα(t). (7.12)

Then for a.e. t ∈ T we have

(ẇ1 − ẇ2)(t) sign(w1 − w2)(t) ≤ (ẇ1 − ẇ2)(t) sign(v1 − v2)(t) + 2|g1 − g2|(t).
(7.13)

Proof. It follows from Proposition 7.1 and from the formula sign(z) = H(z)−
H(−z) that

(ẇ1(t) + F (w1)(t) − g1(t)) sign(w1(t) − w2(t))
≤ (ẇ1(t) + F (w1)(t) − g1(t)) sign(v1(t) − v2(t)) (7.14)

whenever w1(t) �= w2(t). Interchanging the indices 1 and 2 and summing the
resulting inequalities, we obtain (7.13) for all t such that w1(t) �= w2(t). For
a.e. t ∈ T we have the implication

w1(t) = w2(t) ⇒ ẇ1(t) = ẇ2(t),

hence (7.13) holds for a.e. t ∈ T . �

Proof. (Proof of Theorem 3.5) Consider the truncated system

w′ + ∂IK(v)(w) � g(v, w) − ψM (v, w) − F (w) in H a.e. on T , (7.15)

cw′ + dv′ − ΔNv = a(v, w) + b(v, w)u in H a.e. on T , (7.16)

v(0) = v0, w(0) = w0 in H, (7.17)
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with u ∈ SR, where M > 0 is a fixed cutoff parameter, and

ψM (v, w) =

⎧⎨
⎩

ψ(v, w) for |w| ≤ M,
ψ(v,M) for w > M,
ψ(v,−M) for w < −M.

(7.18)

The function ψM is bounded and Lipschitz continuous. Indeed, by Hypoth-
esis 1 (ii) we have |ψM (v, w)| ≤ max{|ψ(v̂, ŵ)|; |v̂| ≤ k1, |ŵ| ≤ M} for all
(v, w) ∈ R

2. Hence, the function g̃ := g − ψM satisfies Hypothesis 1 (i), and
the existence of a solution (v, w) for every fixed M > 0 with the regularity as
in Theorem 3.5 is established in Sect. 6. It is clear that (v, w) satisfy

wt + ∂IK(v)(w) � g(v, w) − ψM (v, w) − F (w) a.e. on ΩT , (7.19)

cwt + dvt − Δv = a(v, w) + b(v, w)u a.e. on ΩT , (7.20)

v(x, 0) = v0(x), w(x, 0) = w0(x) a.e. on Ω. (7.21)

We now repeat the procedure from the proof of Proposition 5.2, subtract
(7.2) from (7.19), and test the difference by H(w−w�) to obtain a counterpart
of (5.5) in the form

(wt − w�
t)H(w − w�) + (F (w) − F (w�))H(w − w�)

+(g∗ − g(v, w) + ψM (v, w))H(w − w�)

≤ (wt − w�
t)H(v − v�) + (F (w) − F (w�))H(v − v�)

+(g∗ − g(v, w) + ψM (v, w))H(v − v�), (7.22)

whenever w(t, x) �= w�(t), where we denote g∗ = B(max{|v�|, |v�|} + 1). By
hypothesis, we have ψM (v, w)H(w−w�) ≥ 0, ψM (v, w)H(v−v�) = 0, (F (w)−
F (w�))H(w − w�) − (F (w) − F (w�))H(v − v�) ≥ 0, hence

(wt − w�
t)H(w − w�) + (g∗ − g(v, w))H(w − w�)

≤ (wt − w�
t)H(v − v�) + (g∗ − g(v, w))H(v − v�). (7.23)

If v(t, x) ≤ v�(t), then g∗(t) − g(v, w)(t, x) ≥ 0, and (7.22) yields

(wt − w�
t)H(w − w�) ≤ (wt − w�

t)H(v − v�) + (g∗ − g(v, w))H(v − v�).
(7.24)

If v(t, x) > v�(t), then g∗(t) − g(v, w)(t, x) ≤ B(v(t, x) − v�(t)), and we have

(wt − w�
t)H(w − w�) ≤ (wt − w�

t)H(v − v�) + B(v − v�)

+ (g∗ − g(v, w))H(v − v�). (7.25)

Combining (7.24) with (7.25) we obtain

(wt − w�
t)H(w − w�) ≤ (wt − w�

t)H(v − v�) + B(v − v�)+

+ (g∗ − g(v, w))H(v − v�), (7.26)

whenever w(t, x) �= w�(t).
We further subtract (7.3) from (7.16) and test the difference by H(v−v�),

to obtain
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c(wt − w�
t)H(v − v�) + d(vt − v�

t)H(v − v�) − Δ(v − v�)H(v − v�)

≤ (a(v, w) + b(v, w)u − CRg∗)H(v − v�). (7.27)

Set Ω0
T = {(t, x) ∈ ΩT : w(t, x) = w�(t)}. For a.e. (t, x) ∈ Ω0

T we have
wt(t, x) = w�

t(t), and, as a consequence of (7.27),

d(vt − v�
t)H(v − v�) − Δ(v − v�)H(v − v�)

≤ (a(v, w) + b(v, w)u − CRg∗)H(v − v�). (7.28)

For (t, x) ∈ Ω\Ω0
T , we multiply (7.26) by c and add the result to (7.28) to

obtain

c(wt − w�
t)H(w − w�) + d(vt − v�

t)H(v − v�) − Δ(v − v�)H(v − v�)

≤ cB(v − v�)+ + (a(v, w) + b(v, w)u − cg(v, w) − (CR − c)g∗)H(v − v�).

(7.29)

We now argue as in (7.26), choosing CR as in (5.10): For v(t, x) ≤ v�(t),
the right hand side of (7.29) vanishes. For v(t, x) > v�(t) we have a(v, w) +
b(v, w)u − cg(v, w) − (CR − c)g∗ ≤ B(CR − R − 2c − 1)(v − v�). We now put
together (7.28) with (7.29), and find a constant BR independent of t and M
such that for a.e. (t, x) ∈ Ω we have

c(wt − w�
t)H(w − w�) + d(vt − v�

t)H(v − v�)

−Δ(v − v�)H(v − v�) ≤ BR(v − v�)+. (7.30)

Integrating over Ω and using (5.12), we obtain

c
d
dt

∫
Ω

(w − w�)+(t, x) dx + d
d
dt

∫
Ω

(v − v�)+(t, x) dx

≤ BR

∫
Ω

(v − v�)+(t, x) dx. (7.31)

The standard Gronwall argument yields v(t, x) ≤ v�(t) w(t, x) ≤ w�(t)
a.e. in ΩT . We similarly prove that v(t, x) ≥ v�(t) w(t, x) ≥ w�(t) a.e. In
particular, both v and w admit bounds in L∞(ΩT ) which are independent
of M . Taking M sufficiently large, we see that the constraint in (7.18) is
never active, and the solution of (7.15), (7.16) with u ∈ SR is the desired
solution of (3.7)–(3.9), (3.15) from Theorem 3.5. Uniqueness is obtained as a
by-product below in the proof of Theorem 3.6. The inequality (3.14) follows
from the uniqueness of a solution of the system (3.7)–(3.9), (3.15) and from
the inequalities (6.42)–(6.45). �

Proof. (Proof of Theorem 3.6) We test the difference

c(w1 − w2)t + d(v1 − v2)t − Δ(v1 − v2)

= a(v1, w1) + b(v1, w1)u1 − a(v2, w2) − b(v2, w2)u2

by sign(v1 − v2). Using Corollary 7.2 and an inequality analogous to (5.12),
we obtain for a.e. t that
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c
d
dt

|w1 − w2|X(t) + d
d
dt

|v1 − v2|X(t)

≤ (3 + R)L∗(|w1 − w2|X(t) + |v1 − v2|X(t)) + C∗
8 |u1 − u2|X(t)

with a constant C∗
8 . The statement of Theorem 3.6 (and, in particular, unique-

ness of solution to system (3.7)–(3.9), (3.15)) follows from the Gronwall argu-
ment. �

8. Nemytskii multivalued operator and properties of its fixed
points

Let

S0
R = {u ∈ L0(T , L0(Ω)); |u(t, x)| ≤ R a.e. on ΩT }.

Lemma 8.1. The topologies of the spaces L1(T , L1(Ω)) and L2(T , L2(Ω)) co-
incide on the set S0

R.

Proof. Indeed, for u1, u2 ∈ S0
R, we have by the Hölder inequality that

∫
ΩT

|u1 − u2|(t, x) dt dx ≤
(

|ΩT |
∫

ΩT

|u1 − u2|2(t, x) dt dx

)1/2

≤
(

2R|ΩT |
∫

ΩT

|u1 − u2|(t, x) dt dx

)1/2

,

where |ΩT | denotes the Lebesgue measure of ΩT , and the assertion follows.
�

In what follows we denote by S1
R the set S0

R equipped with the topology
of the space L1(T ,X).

We can consider the mappings co U(t, v, w) and ext co U(t, v, w) defined
by the equalities (3.1) and (3.2) as mappings defined on T ×X×X, X = L1(Ω).
Their values are closed decomposable bounded subsets not only of the space
H = L2(Ω), but also of the space X = L1(Ω). In the sequel, when we consider
the mappings co U(t, v, w) and ext co U(t, v, w) with values in the space X we
denote them as co U1(t, v, w) and ext co U1(t, v, w), respectively.

Lemma 8.2. Let Hypothesis 2 hold. Then the mappings t → co U1(t, v, w),
t → ext co U1(t, v, w) are measurable for v, w ∈ X, and satisfy the inequalities

DX(co U1(t, v1, w1), co U1(t, v2, w2))
≤ k(t)(|v1 − v2|X + |w1 − w2|X), (8.1)

DX(ext co U1(t, v1, w1), ext co U1(t, v2, w2))
≤ k(t)(|v1 − v2|X + |w1 − w2|X), (8.2)

a.e. on T for (vi, wi) ∈ X, i = 1, 2.
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Proof. Since the values of the mapping coU(t, x, v, w), v, w ∈ R are intervals
of the real line R, the set ext co U(t, x, v, w) consists of the boundary points of
the set co U(t, x, v, w). Hence, from (2.5) and Hypothesis 2 it follows that the
mapping t → ext co U(t, x, v, w) is measurable and

DR(ext co U(t, x, v1, w1), ext co U(t, x, v2, w2)) ≤ k(t)(|v1 − v2| + |w1 − w2|)
(8.3)

a.e. on ΩT , (vi, wi) ∈ R, i = 1, 2. Fix z ∈ X. Then according to [19, Proposi-
tion 4.1],

dX(z, ext co U1(t, v, w)) =
∫

Ω

dR(z(x), ext co U(t, x, v(x), w(x))) dx.

Since for z ∈ L1(Ω) the function (t, x) → dR(z(x), ext co U(t, x, v(x),
w(x)) is an element of the space L1(ΩT ), from Fubini’s theorem it follows
that the function t → dX(z, ext co U1(t, v, w)) is measurable for any z ∈
X. Then according to Theorem 3.5 from [18] the multivalued mapping t →
ext co U1(t, v, w)) is measurable. Using [19, Proposition 4.2], we obtain

DX(ext co U1(t, v1, w1), ext co U1(t, v2, w2))

≤
∫

Ω

DR(ext co U(t, x, v1(x), w1(x)), ext co U(t, x, v2(x), w2(x))) dx. (8.4)

Now the inequality (8.2) follows from the inequalities (8.3), (8.4). The measur-
ability of the mapping t → co U(t, v, w) and the inequality (8.1) are similarly
proved. �

Let F be the operator which with each u ∈ S1
R associates the unique

solution (v(u), w(u)) of the system (3.7)–(3.9), i.e.

(v, w) = F(u), u ∈ S1
R. (8.5)

According to (3.17) for v1
0 = v2

0 , w1
0 = w2

0 we have

|F(u1) − F(u2))|X(t) ≤ L∗
∫ t

0

|u1 − u2|X(τ) dτ. (8.6)

As above, we denote by Q[−R,R] the projection of R onto the interval [−R,R].
Then, for u ∈ L1(T ,X) the function

ū(t, x) = Q[−R,R](u(t, x)) (8.7)

is an element of the space L1(T ,X). Let

F̄(u) = F(ū), u ∈ L1(T ,X). (8.8)

Then, F̄(u) is an extension of the operator F(u) from the set S1
R to the entire

space L1(T ,X), which with each u ∈ L1(T ,X) associates the unique solution
of the system (3.7)–(3.9). From (8.7), (8.6), (8.8) it follows that

|F̄(u1) − F̄(u2)|X(t) ≤ L∗
∫ t

0

|u1 − u2|X(τ) dτ, (8.9)

u1, u2 ∈ L1(T ,X).
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For any u ∈ L1(T ,X) let

φext(u) = {f(t) ∈ L1(T ,X); f(t) ∈ ext co U(t, F̄(u)(t)) a.e. on T }, (8.10)
φco(u) = {f(t) ∈ L1(T ,X); f(t) ∈ co U(t, F̄(u)(t)) a.e. on T }. (8.11)

From (8.9) it follows that the operator F̄ is continuous from L1(T ,X)
to C(T ,X2) and thus to L1(T ,X2). Consequently, according to Lemma 8.2
the mappings t → ext co U(t, F̄(u)(t)) and t → co U(t, F̄(u)(t)) are measurable
with closed values in X. Hence, from (8.10), (8.11) and properties of measur-
able multivalued mappings it follows that the sets φext(u), φco(u) are non-
empty bounded closed decomposable subsets of the space L1(T ,X). Usually,
the mappings u → φext(u), u → φco(u) are called the multivalued Nemytskii
operators.

On the space L1(T ,X) consider the scalar function

P (u) =
∫

T
ρ(t, u(t)) dt (8.12)

with

ρ(t, u) = exp
(

−2L∗
∫ t

0

k(τ) dτ

)
|u|, (8.13)

where L∗ is the constant from the inequality (3.17) (or (8.9)) and k(t) is the
function from the inequality (2.5). It is clear that P (u) is a norm equivalent
to the norm of the space L1(T ,X). Denote by DP (·, ·) the Hausdorff metric
on the space cb L1(T ,X) generated by the metric P (u).

Theorem 8.3. Let Hypotheses 1 and 2 hold. Then the following inequalities are
valid:

DP (φext(u1), φext(u2)) ≤ 1
2
P (u1 − u2), (8.14)

DP (φco(u1), φco(u2)) ≤ 1
2
P (u1 − u2). (8.15)

These inequalities are proved by repeating verbatim the proofs of similar
inequalities in [22, Theorem 2.1] or [23, Theorem 4.1] using the integration by
parts, the inequalities (8.9), (8.1), (8.2) and (8.12), (8.13).

Denote by Fixφext and Fixφco the sets of all fixed points of the operators
φext and φco, respectively.

Theorem 8.4. Let Hypotheses 1 and 2 hold. Then
(i) the sets Fixφext and Fixφco are nonempty;
(ii) the sets Fixφext and Fixφco are closed arc-wise connected absolute re-

tracts in the space L2(T ,H).

Proof. According to Theorem 8.1 all the assumptions of Theorem 3.1 from [24]
are valid for the operators φext and φco. From this latter theorem it follows
that Fixφext �= ∅ and Fixφco �= ∅.

From Theorem 4.1 and Corollary 4.1 from [24] the sets Fix φext and
Fixφco are closed arc-wise connected absolute retracts in the space L1(T ,X).
Since Fixφext ⊂ Fixφco ⊂ S0

R, the statements of the theorem now follow from
Lemma 8.1. �
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9. Proofs of Theorems 3.2 and 3.3

According to Theorem 3.3, for any {(v(u), w(u)), u} ∈ R(v0, w0), u ∈ S0
R

inequality (3.14) takes place. Therefore,

(v(u)(t), w(u)(t)) ∈ S0
C × S0

C , t ∈ T , u ∈ S0
R, (9.1)

where

S0
C = {z ∈ L0(Ω); |z(x)| ≤ C(R, r) a.e. on Ω},

and C(R, r) is the constant from inequality (3.14). From inequalities (8.5),
(8.6) it follows that the operator F is continuous from S1

R to C(T ,X2). Sim-
ilarly to Lemma 8.1, we can prove that the topologies of the spaces L1(Ω)
and L2(Ω) coincide on the set S0

C . Then, from (9.1) and Lemma 8.1 we infer
that F is continuous from SR to C(T ,H) × C(T ,H), where SR is the set
(3.16). From (8.8) we see that the operators F and F̄ coincide on the set SR.
Since Fixφext,Fixφco ⊂ S0

R, from the definition of solutions of the control
system (1.1)–(1.4) with the control constraints (1.6) and (1.7), (3.7)–(3.9),
(3.11),(3.12) and (8.5), (8.8), (8.10), (8.11) it follows that {(v(u), w(u)), u} ∈
Rext co U (v0, w0) if and only if

(v(u), w(u)) = F(u), u ∈ Fixφext. (9.2)

Similarly, {(v(u), w(u)), u} ∈ Rco U (v0, w0) if and only if

(v(u), w(u)) = F(u), u ∈ Fixφco. (9.3)

Now, the nonemptiness of the set Rext co U follows from the statement (i) of
Theorem 8.2 and equality (9.2), the nonemptiness of the sets RU , Rco U follows
from the inclusions (3.13). Since

Rext co U (v0, w0) ⊂ RU (v0, w0) ⊂ Rco U (v0, w0) ⊂ R(v0, w0),

the inequality (3.14) follows from Theorem 3.3. Theorem 3.2 is thus proved.
Theorem 3.2 follows from the statement (ii) of Theorem 8.2, (9.2), (9.3)

and the continuity of the mapping F from SR to C(T ,H).
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