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1. Introduction

We introduce δ-viscosity solutions for the nonlinear parabolic problem

ut − F (D2u) = 0 in Ω × (0, T ). (1)

We prove an estimate between viscosity solutions and δ-viscosity solutions of
(1) under the assumption that the nonlinearity F is uniformly elliptic (see
(F1) below). As a consequence, we find a rate of convergence for monotone
and consistent implicit finite difference approximations to (1). Both results
generalize the work of Caffarelli and Souganidis in [8,9], who consider the
time-independent case.

The nonlinearity F is a continuous function on Sn×n, where Sn×n is the
set of n × n real symmetric matrices endowed with the usual order and norm
(for X ∈ Sn×n, ||X|| = sup|v|=1 |Xv|). We make the following assumptions:

(F1) F is uniformly elliptic with constants 0 < λ ≤ Λ, which means that for
any X ∈ Sn×n and for all Y ≥ 0,

λ||Y || ≤ F (X + Y ) − F (X) ≤ Λ||Y ||;
and,

(F2) F (0) = 0.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-014-0286-x&domain=pdf
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We also assume:
(U1) Ω is a bounded subset of Rn.

The main result is an error estimate between viscosity solutions and δ-
viscosity solutions of (1). The definition of δ-viscosity solutions is in Sect. 2.2.
Next we present a statement of our main result that has been simplified for
the introduction; the full statement is in Sect. 6.

Theorem 1.1. Assume (F1), (F2) and (U1). Assume u is a viscosity solution
of (1) that is Lipschitz continuous in x and Hölder continuous in t. Assume
{uδ}δ>0 is a family of Hölder continuous δ-viscosity solutions of (1) that satisfy

uδ = u on the parabolic boundary of Ω × (0, T )

for all δ. There exist positive constants C and α that do not depend on δ such
that for all δ small enough,

||u − uδ||L∞(Ω×(0,T )) ≤ Cδα.

We remark that if u is the solution of a boundary value problem with
sufficiently regular boundary data, then the regularity conditions on u of The-
orem 1.1 are satisfied (see Remark 6.2 for more details). We make this an
assumption in order to avoid discussing boundary value problems and to keep
the setting as simple as possible.

The notion of δ-viscosity solutions was introduced by Caffarelli and
Souganidis in [8] as a tool for obtaining uniform estimates for viscosity solu-
tions. In [8], δ-viscosity solutions were used to establish an error estimate for
finite difference approximations of nonlinear uniformly elliptic equations. An
error estimate between viscosity and δ-viscosity solutions of uniformly ellip-
tic equations was obtained by Caffarelli and Souganidis in [9]. This was an
important step in establishing a rate for homogenization in random media [9].

The main challenge in obtaining an error estimate between viscosity and
δ-viscosity solutions, in both the elliptic and parabolic setting, is overcoming
the lack of regularity of the viscosity solution u. Indeed, the proof of the error
estimate in [8] is based on a regularity result [8, Theorem A], which says
that outside of sets of small measure, solutions of uniformly elliptic equations
have second-order expansions with controlled error. We prove a similar result
for solutions of equation (1). This is Theorem 3.2 of this paper, and it is an
essential part of our proof of Theorem 1.1.

But even once it is known that the solution u of (1) has second-order
expansions with controlled error, it is necessary to further regularize u and
the δ-viscosity solution uδ in order establish an estimate for their difference.
For this we use the classical inf- and sup- convolutions, along with another
regularization of inf-sup type, which we call x-sup- and x-inf- convolutions.
Both of these regularizations preserve the notions of viscosity and δ-viscosity
solution. Moreover, we show that the regularity we establish in Theorem 3.2
for solutions u of (1) is also enjoyed by the x-inf and x-sup convolutions of u
(Proposition 4.6).

In this paper we also study implicit finite difference approximations to
(1) and prove an error estimate between the solution u of (1) and approximate
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solutions to (1). We have simplified the notation in the introduction in order
to state this result here; see Sect. 7 for all the details about approximation
schemes and for the full statement of the error estimate.

We write the finite difference approximations as

Sh[u](x, t) = δ−
τ u(x, t) − Fh(δ2u(x, t)) = 0 in (Ω × (0, T )) ∩ E. (2)

Here E = hZn × h2
Z is the mesh of discretization, Sh[u] is the implicit finite

difference operator, and δ−
τ u and δ2u are finite difference quotients associated

to a function u. We assume:
(S1) if u1

h and u2
h are solutions of (2) with u1

h ≤ u2
h on the discrete boundary

of Ω × (0, T ), then u1
h ≤ u2

h in (Ω × (0, T )) ∩ E; and
(S2) there exists a positive constant K such that for all φ ∈ C3(Ω × (0, T ))

and all h > 0,

sup |φt − F (D2φ) − Sh[φ]|≤K(h + h||D3
xφ||L∞(Ω×(0,T ))+h2||φtt||L∞(Ω×(0,T ))).

Schemes that satisfy (S1) and (S2) are said to be, respectively, monotone and
consistent with an error estimate for F . We prove:

Theorem 1.2. Assume (F1), (F2) and (U1). Assume that Sh is a monotone
implicit approximation scheme for (1) that is consistent with an error estimate.
Assume u is a viscosity solution of (1) that is Lipschitz continuous in x and
Hölder continuous in t and that uh is a Hölder continuous solution of (2).
Assume that for each h > 0,

uh = u on the discrete boundary of Ω × (0, T ).

There exist positive constants C and α that do not depend on h such that for
every h small enough,

||u − uh||L∞((Ω×(0,T ))∩E) ≤ Chα.

The convergence of monotone and consistent approximations of fully non-
linear second order PDE was first established by Barles and Souganidis [5]. Kuo
and Trudinger later studied the existence of monotone and consistent approx-
imations for nonlinear elliptic and parabolic equations and the regularity of
the approximate solutions uh (see [21–25]). They showed, both in the elliptic
and in the parabolic cases, that if F is uniformly elliptic, then there exists a
monotone finite difference scheme Sh that is consistent with F , and that the
approximate solutions uh are uniformly equicontinuous. However, obtaining
an error estimate remained an open problem.

The first error estimate for approximation schemes was established by
Krylov in [18,19] for nonlinearities F that are either convex or concave, but
possibly degenerate. Krylov used stochastic control methods that apply in the
convex or concave case, but not in the general setting. Barles and Jakobsen
in [2–4] improved Krylov’s error estimates for convex or concave equations.
In [20] Krylov improved the error estimate to be of order h1/2, but still in
the convex/concave case. In addition, Jakobsen [15,16] and Bonnans et al. [6]
established error estimates for special equations or for special dimensions. The
first error estimate without a convexity or concavity assumption was obtained
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Caffarelli and Souganidis in [8] for nonlinear elliptic equations. To our knowl-
edge, Theorem 1.2 is the first error estimate for nonlinear parabolic equations
that are neither convex nor concave.

While this paper was in preparation, we learned of the preprint of Daniel
[12]. It contains a result [12, Theorem 1.2] that is similar to our Theorem 3.2.
His proof also uses methods similar to those of Caffarelli and Souganidis in [8,
Theorem A]. Theorem 3.2 is the only overlap between this paper and [12].

Our paper is structured as follows. In Sect. 2 we establish notation, give
the definition of δ-viscosity solutions, and state several known results. In Sect. 3
we prove Theorem 3.2, the regularity result that is essential for the rest of our
arguments. In Sect. 4 we discuss regularizations of inf-sup type and establish
Proposition 4.6, a version of Theorem 3.2 for x-sup and x-inf convolutions. In
Sect. 5 we prove a key estimate between viscosity solutions of (1) and suffi-
ciently regular δ-viscosity solutions of (1). Theorems 1.1 and 1.2 are straight-
forward consequences of this estimate. In Sect. 6 we give the precise statement
and proof of Theorem 1.1. Section 7 is devoted to introducing the necessary
notation and stating known results about approximation schemes. The pre-
cise statement and proof of the error estimate for approximation schemes is in
Sect. 8. We also include an appendix with known results about inf- and sup-
convolutions.

2. Preliminaries

In this section we establish notation, recall the definition of viscosity solutions
for parabolic equations, give the definition of δ-viscosity solutions, and recall
some known regularity results for solutions of (1).

2.1. Notation

Points in R
n+1 are denoted (x, t) with x ∈ R

n. The parabolic distance between
two points is

d((x, t), (y, s)) = (|x − y|2 + |s − t|)1/2.

We denote the usual Euclidean distance in R
n+1 by de((x, t), (y, s)) = (|x −

y|2 + |s − t|2)1/2. Throughout the argument we consider parabolic cubes,
denoted by

Qr(x, t) = [x − r, x + r]n × (t − r2, t],

and forward and backward cylinders,

Yr(x, t) = Br(x) × (t, t + r2] and Y −
r (x, t) = Br(x) × (t − r2, t],

where Br(x) = {y : |x − y| < r} is the open ball in R
n. We write Br, Qr, Yr

and Y −
r to mean Br(0), Qr(0), Yr(0) and Y −

r (0), respectively.
For Ω ⊂ R

n, the parabolic boundary of Ω × (a, b) is defined as

∂p(Ω × (a, b)) = (Ω × {a}) ∪ (∂Ω × (a, b)).

The time derivative of a function u is denoted by ut or ∂tu. The gradient
of u with respect to the space variable x = (x1, . . . , xn) is denoted by Du =
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(ux1 , . . . , uxn
), and the Hessian of u with respect to x is denoted by D2u. In

addition, we use u+ and u− to denote, respectively, the positive and negative
parts of a function u.

We say that a constant is universal if it is positive and depends only on
Λ, λ, and n.

We introduce notation for several families of paraboloids.

Definition 2.1. Let M > 0. We define:

(1) the class of convex paraboloids of opening M :

P+
M =

{
P (x, t) = c + l · x + mt +

M

2
|x|2 where l ∈ R

n, c,m ∈ R, |m| ≤ M

}
;

(2) the class of concave paraboloids of opening M :

P−
M = {−P (x, t)|P ∈ P+

M};

(3) the class of paraboloids of arbitrary opening:

P∞ =
{
P (x, t) = c + l · x + mt + x · QxT where l ∈ R

n, c,m ∈ R, Q ∈ Sn×n

}
;

(4) the set of polynomials that are quadratic in x and linear in t with the
only mixed term of the form a · xt:

P =
{
P (x, t)=c+l · x+mt+a · xt+x · QxT where l, a∈R

n, c,m∈R, Q∈Sn×n

}
.

Remark 2.2. We remark that if P (x, t) is a paraboloid in P∞, then Pt and
D2P are constants.

We will make use of the following seminorms, norms, and function spaces:

Definition 2.3. The class of continuous functions on U ⊂ R
n+1 is denoted

C(U). The class C2(U) is the set of functions φ that are differentiable in t and
twice differentiable in x, with φt ∈ C(U) and D2φ ∈ C(U).

Definition 2.4. For η ∈ (0, 1] and u ∈ C(Ω × (a, b)), we define:

[u]C0,η(Ω×(a,b)) = sup
(x,t),(y,s)∈Ω×(a,b)

|u(x, t) − u(y, s)|
d((x, t), (y, s))η

,

[u]C0,η
x (Ω×(a,b)) = sup

x,y∈Ω;t∈(a,b)

|u(x, t) − u(y, t)|
|x − y|η ,

[u]C0,η
t (Ω×(a,b)) = sup

t,s∈(a,b);x∈Ω

|u(x, t) − u(x, s)|
|t − s|η , and,

||u||C0,η(Ω×(a,b)) = ||u||L∞(Ω×(a,b)) + [u]C0,η(Ω×(a,b)).

Definition 2.5. For η ∈ (0, 1], we define:

C0,η(Ω × (a, b)) = {u ∈ C(Ω × (a, b)) : ||u||C0,η(Ω×(a,b)) < ∞},

C0,η
x (Ω × (a, b)) =

{
u ∈ C(Ω × (a, b)) : [u]C0,η

x (Ω×(a,b))+||u||L∞(Ω×(a,b)) <∞
}

.

We will also need the following notion of differentiability:
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Definition 2.6. For a constant K, we say that u satisfies D2u(x, t) ≥ KI
(resp. D2u(x, t) ≤ KI) in the sense of distributions if there exists a quadratic
polynomial

P (y) = c + p · y +
K|x − y|2

2
such that u(x, t) = P (x) and u(y, t) ≥ P (y) (resp. u(y, t) ≤ P (y)) for all
y ∈ Br(x), for some r > 0.

2.2. Viscosity and δ-viscosity solutions

We recall the definition of viscosity solutions for parabolic equations.

Definition 2.7. (1) A function u ∈ C(Ω × (0, T )) is a viscosity supersolution
of (1) if for all (x, t) ∈ Ω × (0, T ), any φ ∈ C2(Ω × (0, T )) with φ ≤ u on
Y −

ρ (x, t) for some ρ > 0 and φ(x, t) = u(x, t) satisfies

φt(x, t) − F (D2φ(x, t)) ≥ 0.

(2) A function u ∈ C(Ω × (0, T )) is a viscosity subsolution of (1) if for all
(x, t) ∈ Ω × (0, T ), any φ ∈ C2(Ω × (0, T )) with φ ≥ u on Y −

ρ (x, t) for
some ρ > 0 and φ(x, t) = u(x, t) satisfies

φt(x, t) − F (D2φ(x, t)) ≤ 0.

(3) We say that u ∈ C(Ω × (0, T )) is a viscosity solution of (1) if u is both a
sub- and a super- solution of (1).

Remark 2.8. In the above definitions, we require the test function φ to stay
above (or below) u on a backward cylinder Y −

ρ (x, t). However, this definition is
equivalent to the usual one, which requires the test function to stay above (or
below) u on a Euclidean open set around (x, t). This equivalence is proven by
Crandall et al. [10, Lemma 1.4] for Lp viscosity solutions. Their proof carries
over into our setting with no modifications.

See Section 8 of Crandall et al. [11] for further discussion of viscosity
solutions of parabolic equations.

We now introduce δ-viscosity solutions for (1), following the definition of
[8,9].

Definition 2.9. Fix δ > 0.
(1) A function v ∈ C(Ω × (0, T )) is a δ-viscosity supersolution of (1) if for

all (x, t) ∈ Ω × (0, T ) such that Y −
δ (x, t) ⊂ Ω × (0, T ), any P ∈ P∞ with

P ≤ v on Y −
δ (x, t) and P (x, t) = v(x, t) satisfies

Pt − F (D2P ) ≥ 0.

(2) A function v ∈ C(Ω × (0, T )) is a δ-viscosity subsolution of (1) if for all
(x, t) ∈ Ω × (0, T ) such that Y −

δ (x, t) ⊂ Ω × (0, T ), any P ∈ P∞ with
P ≥ v on Y −

δ (x, t) and P (x, t) = v(x, t) satisfies

Pt − F (D2P ) ≤ 0.

(3) We say v is a δ-viscosity solution of (1) if it is both a δ-viscosity sub- and
super- solution.
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From now on we will say “solution” to mean viscosity solution and “δ-
solution” to mean δ-viscosity solution.

From the definitions, it is clear that a viscosity solution of (1) is a δ-
solution of (1). The main difference between the definitions of viscosity and
δ-viscosity solution is that for v to be a δ-supersolution (resp. subsolution),
any test polynomial must stay below (resp. above) v on a set of fixed size.

2.3. Known results

We introduce the Pucci extremal operators, which are defined for constants
0 < λ ≤ Λ and X ∈ Sn×n by

M−
λ,Λ(X) = λ

∑
ei>0

ei + Λ
∑
ei<0

ei,

M+
λ,Λ(X) = Λ

∑
ei>0

ei + λ
∑
ei<0

ei,

where the ei are the eigenvalues of X (see Caffarelli and Cabre [7] and Wang
[26]). We also introduce the so-called upper and lower monotone envelopes
of a function, which play the role of the convex and concave envelopes in
the regularity theory of elliptic equations. We follow the notes of Imbert and
Silvestre in [14, Section 4] for our presentation of Definition 2.10, Lemma 2.11
and Proposition 2.12 below.

Definition 2.10. Let Ω be a convex subset of Rn and let u : Ω × (a, b) → R be
continuous.

(1) The lower monotone envelope of u is the largest function v : Ω×(a, b) → R

that lies below u and is non-increasing with respect to t and convex with
respect to x. It is often denoted by Γ(u).

(2) The upper monotone envelope of u is the smallest function v : Ω×(a, b) →
R that lies above u and is non-decreasing with respect to t and concave
with respect to x. It is often denoted by Γ̄(u).

We have the following representation formulas for the upper and lower
envelopes of u ([14, Section 4]):

Lemma 2.11. Assume u ∈ C(Y −
ρ ). Then

Γ(u)(x, t) = sup{ζ · x + h : ζ · y + h ≤ u(y, s) for all (y, s) ∈ Y −
ρ ∩ {s ≤ t}}

and

Γ̄(u)(x, t) = inf{ζ · x + h : ζ · y + h ≥ u(y, s) for all (y, s) ∈ Y −
ρ ∩ {s ≤ t}}.

The following fact will play a central role in our arguments. In Sub-
sect. A.1 of the Appendix, we explain how Proposition 2.12 follows from parts
of the proof of the parabolic version of the Alexandroff–Bakelman–Pucci esti-
mate as presented in [14, Section 4.1.2]. We refer the reader to [14, Section
4] for a history of the parabolic version of the Alexandroff–Bakelman–Pucci
estimate and the relevant references.
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Proposition 2.12. Assume u ∈ C(Y −
ρ ) is such that u ≥ 0 on ∂pY

−
ρ . Assume

that there exists a constant K so that [u]C0,1
t (Y −

ρ ) ≤ K and D2u(x, t) ≤ KI

in the sense of distributions for every (x, t) ∈ Y −
ρ . There exists a universal

constant C such that

sup
Y −

ρ

u− ≤ Cρ
n

n+1 |{u = Γ}| 1
n+1 K, (3)

where Γ is the lower monotone envelope of min(u, 0) extended by 0 to Y −
2ρ.

Next we state several regularity results. We will use the following interior
Hölder gradient estimate [27, Theorems 4.8 and 4.9].

Theorem 2.13. Assume (F1) and (F2). There exist universal constants α ∈
(0, 1) and C such that if u ∈ C(Q1) is a solution of ut − F (D2u) = 0 in Q1,
then ut ∈ C0,α(Q1) and Du ∈ C0,α(Q1) with

||Du||C0,α(Q1/2) + ||ut||C0,α(Q1/2) ≤ C(||u||L∞(Q1) + 1).

The following proposition follows from Theorem 2.13 by a standard
rescaling and covering argument.

Proposition 2.14. Assume (F1) and (F2). Assume that V is a subset of Ω ×
(0, T ) with d(V, ∂pΩ × (0, T )) > r. There exist universal constants α ∈ (0, 1)
and C such that if u ∈ C(Ω × (0, T )) is a solution of ut − F (D2u) = 0 in
Ω × (0, T ), then

r1+α[Du]C0,α(V ) + r||Du||L∞(V ) ≤ C(||u||L∞(Ω×(0,T )) + 1)

r2+α[ut]C0,α(V ) + r2||ut||L∞(V ) ≤ C(||u||L∞(Ω×(0,T )) + 1).

3. The regularity result

In this section, we establish the parabolic version of the regularity result [8,
Theorem A], which says that outside of sets of small measure, solutions of uni-
formly elliptic equations have second-order expansions with controlled error.

Definition 3.1. Given u ∈ C(Y1), we define the set ΨM (u, Y1) ⊂ Y1 by

ΨM (u, Y1) = {(x, t) ∈ Y1 : there exists P ∈ P such that for all

(y, s) ∈ Y1 ∩ {s ≤ t}, |u(y, s) − u(x, t) − P (y, s)| ≤
≤ nM(|x − y|3 + |x − y|2|t − s| + |x − y||t − s| + |t − s|2)}.

In order to state our result, we introduce another family of subsets of
R

n+1. We define

Kr(x, t) =
[
x − r

9
√

n
, x +

r

9
√

n

]n

×
(

t, t +
r2

81n

]
.

We denote Kr(0, 0) by Kr.
We prove the following growth estimate for |ΨM (u, Y1)|:
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Theorem 3.2. Assume F satisfies (F1) and (F2). Assume u is a solution of
ut − F (D2u) = 0 in Y1 and Du and ut exist and are continuous in Y1. There
exist universal constants C, M0 and σ such that for every M ≥ M0,

|K1 \ ΨM (u, Y1)| ≤ CM−σ
(
||Du||σL∞(Y1)

+ ||ut||σL∞(Y1)

)
. (4)

Remark 3.3. If u is a solution of ut − F (D2u) = 0 in Ω × (0, T ) and Y1 is
compactly contained in Ω × (0, T ), then u satisfies the hypotheses of Theorem
3.2 because, according to Proposition 2.14, Du and ut exist and are continuous
in Y1.

Remark 3.4. Suppose (x, t) ∈ ΨM (u, Y1) and P is the paraboloid given by
the definition of ΨM (u, Y1). If u is a viscosity solution of ut − F (D2u) = 0 in
Y1, then of course Pt(x, t) − F (D2P (x, t)) = 0. On the other hand, suppose
u is only a δ-solution of ut − F (D2u) = 0 in Y1, and (x, t) ∈ ΨM (u, Y1) with
Y −

δ (x, t) ⊂ Y1. In this case we cannot conclude that Pt(x, t)−F (D2P (x, t)) =
0. This is because in the definition of ΨM (u, Y1) we consider paraboloids P in
the class P, while in the definition of δ-solution we allow only paraboloids in
the smaller class P∞. In Corollary 3.7 we establish a version of Theorem 3.2
with P ∈ P∞ instead of P ∈ P.

An essential element of our proof is [26, Theorem 4.11], which says that
solutions of uniformly parabolic equations have first order expansions with
controlled error on large sets (see also [12, Section 3]). To state this result, we
recall the following definitions:

GM (u, Y1) = {(x, t) ∈ Y1 : there exists P ∈ P+
M

with P (x, t) = u(x, t) and P ≥ u on Y1 ∩ {s ≤ t}},
GM (u, Y1) = GM (−u, Y1), and

GM (u, Y1) = GM (u, Y1) ∩ GM (u, Y1).

We observe that if (x, t) ∈ GM (u, Y1), then there exists p ∈ R
n such that for

all (y, s) ∈ Y1 ∩ {s ≤ t},

|u(y, s) − u(x, t) − p · (y − x)| ≤ 1
2
M |x − y|2 + M |t − s|.

We now present [26, Theorem 4.11], with notation adapted for our setting:

Theorem 3.5. Assume (F1) and (F2). Assume that v is a solution of{
vt − M−(D2v) ≥ 0,
vt − M+(D2v) ≤ 0 (5)

in Y1. There exist universal constants C, σ, and M0 such that for any M ≥ M0,

|K1 \ GM (v, Y1)| ≤ CM−σ(||v||L∞(Y1))
σ.

The main idea of the proof of Theorem 3.2 is to apply the growth esti-
mate of Theorem 3.5 to the derivatives of u. Formally, upon differentiating
ut − F (D2u) = 0, we obtain that the derivatives uxi

and ut solve the linear
parabolic equation ∂tuxi

−tr(DF ·D2uxi
) = 0. Therefore, the estimates of The-

orem 3.5 apply to uxi
and ut, and from this the estimates on u are deduced.
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To carry out this plan, we will first use the following proposition [27, Theorem
4.6].

Proposition 3.6. Assume that u is a solution of ut − F (D2u) = 0 in Y1. Then
ut and uxi

, for i = 1, . . . , n, satisfy (5) in Y1.

Next we proceed with the proof of Theorem 3.2. We remark that a result
similar to [8, Theorem A] was established later, via similar methods, by Arm-
strong, Silvestre and Smart [1, Section 5]. Our proof is based on the arguments
in [8, Theorem A] and our presentation follows that of [1, Section 5].

Proof of Theorem 3.2. By Proposition 3.6, the derivatives uxi
for i = 1, . . . , n

and ut satisfy (5) in Y1. Therefore, by Theorem 3.5, for any M ≥ M0 the size
of the “bad sets” of the uxi

and of ut are controlled: we have

|K1 \ GM (uxi
, Y1)| ≤ CM−σ||Du||σL∞(Y1)

for i = 1, .., n,

|K1 \ GM (ut, Y1)| ≤ CM−σ||ut||σL∞(Y1)
, (6)

where C is a universal constant. We define the set GM to be the intersection
of the “good sets” of the derivatives of u:

GM = ∩n
i=1GM (uxi

, Y1) ∩ GM (ut, Y1).

The estimates of (6) imply the following bound for the size of complement of
GM :

|K1 \ GM | ≤ CM−σ
(
||Du||σL∞(Y1)

+ ||ut||σL∞(Y1)

)
, (7)

where C is a universal constant. To prove that the desired upper bound (4) on
the size of the complement of ΨM (u, Y1) holds, it will be enough to establish
the following relationship between GM and ΨM (u, Y1):

(GM ∩ K1) ⊂ (ΨM (u, Y1) ∩ K1). (8)

Indeed, we may use (8) and then the estimate (7) to obtain:

|K1 \ ΨM (u, Y1)| ≤ |K1 \ GM | ≤ CM−σ
(
||Du||σL∞(Y1)

+ ||ut||σL∞(Y1)

)
.

Let us now prove that (8) holds. To this end, fix (x, t) ∈ GM ∩ K1. The goal
is to show (x, t) ∈ Ψ(u, Y1) ∩ K1; in other words, to produce a polynomial P
that is the second order expansion of u at (x, t).

Because (x, t) ∈ GM , there exist p1, . . . , pn+1 ∈ R
n such that for i =

1, . . . , n and for all (y, s) ∈ Y1 ∩ {s ≤ t},

|uxi
(y, s) − uxi

(x, t) − pi · (y − x)| ≤ 1
2
M |x − y|2 + M |t − s|, and

|ut(y, s) − ut(x, t) − pn+1 · (y − x)| ≤ 1
2
M |x − y|2 + M |t − s|. (9)
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We point out that D2u(x, t) = (p1, . . . , pn) and Dut(x, t) = pn+1. We define
the n × n matrix Q by Qij = pj

i and define the paraboloid P ∈ P by

P (y, s) = Du(x, t) · (y − x) +
1
2
(y − x) · Q(y − x)T + (s − t)ut(x, t)

+
1
2
pn+1 · (y − x)(s − t). (10)

We will now show that this polynomial P is the second order expansion of u
at (x, t); more precisely, we will prove

|u(y, s)−u(x, t)−P (y, s)|≤nM(|x − y|3+|x − y|2|t−s|+|x−y||s − t|+|t−s|2)
for all (y, s) ∈ Y1 ∩ {s ≤ t}. (11)

Once (11) is established, we may conclude (x, t) ∈ Ψ(u, Y1)∩K1, and the proof
of the theorem will be complete.

To prove (11), let us fix any (y, s) ∈ Y1 ∩ {s ≤ t}. First, we express the
difference between u(y, s) and u(x, t) in the following way:

u(y, s) − u(x, t) =
∫ 1

0

d

dτ
u(x + τ(y − x), t + τ(s − t)) dτ.

Expanding the right-hand side of the previous line in terms of Du and ut we
find

u(y, s) − u(x, t) =
∫ 1

0

(y − x) · Du(x + τ(y − x), t + τ(s − t)) dτ+

+
∫ 1

0

(s − t)ut(x + τ(y − x), t + τ(s − t))dτ.

Now we subtract P (y, s) from both sides of the previous line. Using the defi-
nition of P (equation (10)) and rearranging yields,

u(y, s) − u(x, t) − P (y, s)

= (y−x) ·
∫ 1

0

(
Du(x+τ(y − x), t+τ(s − t)) − Du(x, t) − τQ(y − x)T

)
dτ+

+ (s − t)
∫ 1

0

ut(x + τ(y − x), t + τ(s − t)) − ut(x, t) − τpn+1 · (y − x) dτ.

We take the absolute value of both sides of the previous line and find

|u(y, s) − u(x, t) − P (y, s)|

≤|y − x|
∫ 1

0

(
n∑

i=1

|uxi(x+τ(y − x), t+τ(s−t))−uxi(x, t)−τpi · (y − x)|2 dτ

)1/2

+

+ |s − t|
∫ 1

0

|ut(x + τ(y − x), t + τ(s − t)) − ut(x, t) − τpn+1 · (y − x)| dτ.
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We use (9) to bound each term on the right-hand side of the previous line, and
obtain

|u(y, s) − u(x, t) − P (y, s)| ≤n|y − x|
∫ 1

0

1
2
Mτ2|x − y|2 + Mτ |t − s| dτ

+ |s − t|
∫ 1

0

1
2
Mτ2|x − y|2 + Mτ |t − s| dτ.

Integrating in τ and combining terms yields

|u(y, s)−u(x, t)−P (y, s)|≤nM(|x−y|3+|x−y||s−t|+|x − y|2|t−s| + |t − s|2).
Since (y, s) ∈ Y1 ∩ {s ≤ t} was arbitrary, we have established (11) and so the
proof of the theorem is complete. �

Corollary 3.7. Assume F satisfies (F1) and (F2). Assume u is a solution of
ut−F (D2u) = 0 in Yr(x̄, t̄) and Du and ut exist and are continuous in Yr(x̄, t̄).
There exists a subset ΨM (u, Yr(x̄, t̄)) of Yr(x̄, t̄) and a universal constant C
such that for any (x, t) ∈ ΨM (u, Yr(x̄, t̄)), there exists Q ∈ P∞ with

Qt − F (D2Q) = 0

and such that on Yr(x̄, t̄) ∩ {s ≤ t},

|u(y, s) − u(x, t) − Q(y, s)| ≤ nM

r2
(r|x − y|3 + |x − y|2|t − s| + |t − s|2)+

+
C

r
(M + ||ut||L∞(Yr(x̄,t̄)))|x − y|(t − s). (12)

Moreover,

|Kr(x̄, t̄) \ ΨM (u, Yr(x̄, t̄))| ≤ Crn+2

Mσ
(r−σ||Du||σL∞(Yr(x̄,t̄)) + ||ut||σL∞(Yr(x̄,t̄))).

(13)

Proof. We prove the statement for r = 1 and (x̄, t̄) = (0, 0). The general case
follows by translation and rescaling: the equation that u satisfies is translation
invariant, and given u that solves ut −F (D2u) = 0 in Yr, the rescaled function
û(x̂, t̂) = 1

r2 u(rx̂, r2t̂) solves the same equation in Y1. We omit the details
of the rescaling argument and proceed with the proof in the case r = 1 and
(x̄, t̄) = (0, 0).

Fix (x, t) ∈ ΨM (u, Y1). We define the paraboloid Q ∈ P∞ by Q(y, s) =
P (y, s)− 1

2pn+1 ·(y−x)(s−t), where P and pn+1 are as in the proof of Theorem
3.2. By the definition of Q, we have,

|u(y, s) − u(x, t) − Q(y, s)| ≤ |u(y, s)−u(x, t)−P (y, s)|+ 1
2
|pn+1||y − x||s − t|.

We use (11) to bound from above the first term on the right-hand side of the
previous line, and find, for all (y, s) ∈ Y1 ∩ {s ≤ t},

|u(y, s)−u(x, t)−Q(y, s)| ≤ nM(|x−y|3+|x−y||s−t|+|x−y|2|t − s|+|t−s|2)+
+

1
2
|pn+1||y − x||s − t|. (14)
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Let us now estimate |pn+1|. To this end, we use the second inequality in (9)
to obtain, for any (y, s) ∈ Y1 ∩ {s ≤ t},

|pn+1 · (y − x)| ≤ 1
2
M |x − y|2 + M |t − s| + 2||ut||L∞(Y1).

Let us evaluate the previous inequality at s = t and at a point y such that
|x − y| = 1

2 . This yields,

|pn+1| ≤ 1
4
M + 4||ut||L∞(Y1).

We use this to bound the last term on the right-hand side of (14). We also
rearrange so that both terms involving |y − x||s − t| are together. This yields
the bound (12) with r = 1 and (x̄, t̄) = (0, 0), and so the proof is complete. �

4. Two regularizations of inf- sup- type

This section is devoted to introducing and establishing the properties of two
regularizations of inf-sup type. In Subsect. 4.1 we recall the definitions of inf-
and sup- convolutions in both the space and time variables, which are quite
similar to those used in the regularity theory of elliptic equations, and to the
regularizations of [27, Section 4]. In the proof of our main result, Theorem 1.1,
we will use inf- and sup- convolutions to regularize the δ-solution uδ.

In Subsect. 4.2 we define regularizations of inf-sup type that we call x-inf
and x-sup convolutions. We will use them to regularize the viscosity solution
u in the proofs of Theorems 1.1 and 1.2.

In Subsect. 4.3, we prove that if u is a solution of ut − F (D2u) = 0
then the x-inf and x-sup convolutions of u enjoy regularity properties similar
to those established in Theorem 3.2 for u. This result is a very important
ingredient in our proofs of Theorems 1.1 and 1.2.

4.1. Regularization in both the space and time variables

We recall the definitions of inf- and sup- convolutions. We use the notation
v−

θ,θ, instead of the expected v−
θ , to distinguish these from the x-inf- and x-sup-

convolutions that we introduce in the next subsection.

Definition 4.1. For v ∈ C(Ω × (0, T )) and θ > 0, we define the inf-convolution
v−

θ,θ and the sup-convolution v+
θ,θ by

v−
θ,θ(x, t) = inf

Ω×(0,T )

{
v(y, s) +

|x − y|2
2θ

+
|t − s|2

2θ

}

and

v+
θ,θ(x, t) = sup

Ω×(0,T )

{
v(y, s) − |x − y|2

2θ
− |t − s|2

2θ

}
.

Definition 4.2. Given θ > 0, δ > 0 and v ∈ C(Ω × (0, T )), we define

Uθ,δ =
{
(x, t) ∈ Ω × (0, T ) : de((x, t), ∂p(Ω × (0, T ))) ≥ 2θ1/2||v||1/2

L∞(Ω×(0,T )) + δ
}

.
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We summarize the basic properties of inf- and sup- convolutions in Propo-
sition A.4 of the Appendix. One property that is particularly important and
useful to us is that taking inf- and sup- convolution preserves the notion of
δ-super and δ-sub solutions. We state this precisely in item (5) of Proposition
A.4.

4.2. Regularization in only the space variable

We now define the x-inf and x-sup convolutions.

Definition 4.3. For u ∈ C(Ω×(0, T )) and θ > 0, we define the x-sup convolution
u+

θ and x-inf-convolution u−
θ of u by

u+
θ (x, t) = sup

y∈Ω

{
u(y, t) − |x − y|2

2θ

}
and u−

θ (x, t) = inf
y∈Ω

{
u(y, t) +

|x − y|2
2θ

}
.

Definition 4.4. For u ∈ C0,1
x (Ω × (0, T )) and Ω̃ ⊆ Ω we define the subset Ω̃θ of

Ω̃ by

Ω̃θ =
{

x ∈ Ω̃ : inf
y∈∂Ω̃

|x − y| ≥ 2θ||Du||L∞(Ω×(0,T ))

}
.

In addition, for U = Ω̃× I where I ⊆ (0, T ) is an interval, we define the subset
Uθ of U by

Uθ = Ω̃θ × I.

Note that for the definition of Uθ to be meaningful, the size of U cannot
be too small compared to θ. Whenever we use this notation we make sure this
is not the case.

In addition, we denote Y θ
r (x̄, t̄) = (Yr(x̄, t̄))θ and Kθ

r (x̄, t̄) = (Kr(x̄, t̄))θ.
We will be using these families of sets quite frequently, so we write down their
definitions explicitly for the convenience of the reader:

Y θ
r (x̄, t̄) = B(x̄, r − 2θ||Du||L∞(Ω×(0,T ))) × (t̄, t̄ + r2]

Kθ
r (x̄, t̄) =

[
x̄ −

(
r

9
√

n
− 2θ||Du||L∞(Ω×(0,T ))

)
,

x̄ +
(

r

9
√

n
− 2θ||Du||L∞(Ω×(0,T ))

)]n

×
(

t̄, t̄ +
r2

81n

]
.

In the following proposition we state the facts about x-inf- and x-sup-
convolutions that we will use in this paper. Their proofs are very similar to
those in the elliptic case (see [9, Chapter 4] or [7, Proposition 5.3]) and we
omit them.

Proposition 4.5. Assume u ∈ C0,1
x (Ω × (0, T )). Then:

(1) If (x∗, t) is any point at which the infimum (resp. supremum) is achieved
in the definition of u−

θ (x, t) (resp. u+
θ (x, t)), then

|x − x∗| ≤ 2θ||Du||L∞(Ω×(0,T )).

Moreover, if (x, t) ∈ Uθ then (x∗, t) ∈ U .
(2) We have u−

θ (x, t) ≤ u(x, t) ≤ u+
θ (x, t) for all (x, t) ∈ Ω × (0, T ).
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(3) For all (x, t) ∈ Ωθ × (0, T ), we have

u+
θ (x, t) − 2θ||Du||2L∞(Ω×(0,T )) ≤ u(x, t) ≤ u−

θ (x, t) + 2θ||Du||2L∞(Ω×(0,T )).

(4) In the sense of distributions, D2u+
θ (x, t) ≥ −θ−1I and D2u−

θ (x, t) ≤ θ−1I
for all (x, t) ∈ Ω × (0, T ).

(5) If u is a subsolution of

ut − F (D2u) = c (15)

in Ω × (0, T ), then u+
θ is a subsolution of (15) in Ωθ × (0, T ). If u is a

supersolution of (15) in Ω × (0, T ), then u−
θ is a supersolution of (15) in

Ωθ × (0, T ).

4.3. Regularity of x-inf and x-sup convolutions

This subsection is devoted to the proof of Proposition 4.6, which states that the
extra regularity established in Theorem 3.2 for a solution u of ut−F (D2u) = 0
carries over to u+

θ and u−
θ .

Proposition 4.6. Assume (F1) and (F2). Suppose u ∈ C(Ω × (0, T )) is a solu-
tion of ut − F (D2u) = 0 in Ω × (0, T ). Assume Yr(x̄, t̄) ⊂ Ω × (0, T ) and

d(Yr(x̄, t̄), ∂p(Ω × (0, T ))) ≥ θ. (16)

There exist universal constants M0, σ, and C such that for every M ≥ M0,
there exists a set Ψ+,θ

M ⊂ Kθ
r (x̄, t̄) (resp. Ψ−,θ

M ⊂ Kθ
r (x̄, t̄)) such that for any

(x, t) ∈ Ψ+,θ
M (resp. (x, t) ∈ Ψ−,θ

M ), there exists a polynomial P ∈ P∞ such that
P (x, t) = 0,

Pt − F (D2P ) = 0, (17)

and if Y −
ρ (x, t) ⊂ Y θ

r (x̄, t̄), then for all (y, s) ∈ Y −
ρ (x, t), we have

u+
θ (y, s) − u+

θ (x, t) ≥ P (y, s) − nM
ρ

r
|x − y|2

− ρ

r

(
CM +

1 + ||u||L∞(Ω×(0,T ))

θ2

)
(t − s) (18)

(
resp. u−

θ (y, s) − u−
θ (x, t) ≤ P (y, s) + nM

ρ

r
|x − y|2

+
ρ

r

(
CM +

1 + ||u||L∞(Ω×(0,T ))

θ2

)
(t − s).

)

Moreover,

|Kθ
r (x̄, t̄) \ Ψ±,θ

M | ≤ Crn+2

Mσθn+σ
(r−σ + θ−σ)

(||u||L∞(Ω×(0,T )) + 1
)n+σ

. (19)

Outline of the proof of Proposition 4.6.
We prove that if the supremum in the definition of u+

θ (x, t) is achieved
at a point (x∗, t) that is contained in the “good set” ΨM (u) of u, then an
estimate similar to (18) holds at (x, t). We state this as Lemma 4.7 below.
This follows from Corollary 3.7 and the observation that if u is touched from
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below at (x∗, t) by some function φ, then u+
θ is touched by below at (x, t) by

a translate of φ. We make this observation precise in Lemma 4.11, which we
use in the proof of Lemma 4.7.

The previous discussion indicates that Ψ+,θ
M , the “good set” for u+

θ , should
be defined as the points (x, t) for which (x∗, t) is in the good set ΨM (u) of u.
To obtain a bound on the size of Ψ+,θ

M we thus consider a map that takes x∗ to
x and investigate what happens to the size of ΨM (u) under this map. For this
we need Lemma 4.8, which says that u is twice differentiable in x at any point
(x∗, t) where the supremum or infimum is achieved in the regularizations u+

θ

or u−
θ , and gives a two-sided estimate for D2u at such points.
Statement of lemmas that we use in the proof of Proposition 4.6

Lemma 4.7. Let Yr(x̄, t̄) ⊂ Ω × (0, T ) and let Ψ(u, Yr(x̄, t̄)) be the set given by
Corollary 3.7. Let us suppose that the supremum in the definition of u+

θ (x, t)
is achieved at (x∗, t) ∈ ΨM (u, Yr(x̄, t̄)). Then there exists a paraboloid P ∈ P∞
that satisfies (17) and such that, for all (y, s) ∈ Y θ

r (x̄, t̄) ∩ {s ≤ t},

u+
θ (y, s) − u+

θ (x, t) ≥ P (y, s) − nM

r2
(r|x − y|3 + |x − y|2|t − s| + |t − s|2)

− C
M + ||ut||L∞(Yr(x̄,t̄))

r
|x − y|(t − s). (20)

Lemma 4.8. Under the assumptions of Proposition 4.6, let (x, t) ∈ Y θ
r (x̄, t̄).

There exists a universal constant C such that if x∗ is any point where the supre-
mum (resp. infimum) is achieved in the definition of u+

θ (x, t) (resp. u−
θ (x, t)),

then u(y, t) is twice differentiable in y at x∗ with

−C(||u||L∞(Ω×(0,T )) + 1)θ−2I ≤ D2u(x∗, t) ≤ θ−1I

(
resp. − θ−1I ≤ D2u(x∗, t) ≤ C(||u||L∞(Ω×(0,T )) + 1)θ−2I.

)
We postpone the proof of Lemmas 4.7 and 4.8 and proceed with:

Proof of Proposition 4.6. We will give the proof for u+
θ ; the arguments for u−

θ

are similar. Fix M and, to simplify the notation, denote the set ΨM (u, Yr(x̄, t̄))
given by Corollary 3.7 by just ΨM . We define the set C by

C = {(x∗, t) : (x∗, t)is a point at which the supremum in the definition of

u+
θ (x, t) is achieved, for some (x, t) ∈ Y θ

r (x̄, t̄)
}

.

Item (1) of Proposition 4.5 implies C ⊂ Yr(x̄, t̄). For any (x∗, t) ∈ C, the map

y �→
(

u(y, t) − |x − y|2
2θ

)

has a local maximum at x∗, because the supremum in the definition of u+
θ (x, t)

is achieved at (x∗, t). Hence its derivative has a zero at x∗. Computing the
derivative and setting it equal to zero gives,

Du(x∗, t) +
(x − x∗)

θ
= 0.
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Rearranging this equality yields x = x∗ − θDu(x∗, t). We define the map
T : Ω × (0, T ) → R

n × (0, T ) by

T (y, t) = (y − θDu(y, t), t),

so that (x, t) = T (x∗, t). By Lemma 4.8, Du is Lipschitz on C; hence, the map
T is too. Let us denote by Dy,tT the matrix of derivatives of T in both the
space and time variables, and by DyT the matrix of derivatives of T in only
the space variable. We will now estimate the determinant of Dy,tT on C. We
observe that detDy,tT = det DyT . Let us fix (y, t) ∈ C. We use the definition
of the map T to express DyT in terms of D2u:

DyT (y, t) = I − θD2u(y, t).

We use Lemma 4.8 to bound −θD2u(y, t) from above and below and obtain,

0 ≤ DyT (y, t) ≤ I · Cθ−1(||u||L∞(Ω×(0,T )) + 1).

The left-most inequality in the previous line says DyT (y, t) is a non-negative
definite matrix. Hence, taking determinants preserves inequalities, and so we
find

0 ≤ det Dy,tT (y, t) ≤ Cθ−n(||u||L∞(Ω×(0,T )) + 1)n, (21)

where we have also used det DyT = det Dy,tT .
We define the set A by

A = T (C ∩ (Kr(x̄, t̄) \ ΨM )).

By the Area Formula ([13, Chapter 3]), we have

|A| ≤
∫

C∩(Kr(x̄,t̄)\ΨM )

|det Dy,tT (y, t)| dy dt.

We use the bound (21) on detDy,tT (y, t) and the bound (13) on |Kr(x̄, t̄)\ΨM |
of Corollary 3.7 to estimate the right-hand side of the previous line from above
and obtain,

|A| ≤ Crn+2

Mσ
(r−σ||Du||σL∞(Yr(x̄,t̄)) + ||ut||σL∞(Yr(x̄,t̄)))

(||u||L∞(Ω×(0,T )) + 1)n

θn
.

(22)

We define the set Ψ+,θ
M by

Ψ+,θ
M := Kθ

r (x̄, t̄) \ A.

We will now use Lemma 4.7 to prove that for each point (x, t) of Ψ+,θ
M there

exists P ∈ P∞ satisfying (17) and (18). To this end, let us fix (x, t) ∈ Ψ+,θ
M .

Let (x∗, t) be any point at which the supremum in the definition of u+
θ (x, t) is

achieved. We have (x∗, t) ∈ C. Since (x, t) ∈ Kθ
r (x̄, t̄), by item (1) of Proposition

4.5 we also have (x∗, t) ∈ Kr(x̄, t̄). In addition, since (x, t) = T (x∗, t), and
(x, t) /∈ A by the definition of Ψ+,θ

M , we find

T (x∗, t) = (x, t) /∈ A = T (C ∩ (Kr(x̄, t̄) \ ΨM )),
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where the second equality follows simply by recalling the definition of A. There-
fore, (x∗, t) /∈ C ∩ (Kr(x̄, t̄) \ ΨM ). Since we’ve already shown that (x∗, t) is
contained in C ∩ Kr(x̄, t̄), this implies (x∗, t) ∈ ΨM . Thus, we have

(x∗, t) ∈ Kr(x̄, t̄) ∩ ΨM .

Since (x∗, t) is a point at which the supremum in the definition of u+
θ (x, t) is

achieved, this means we are in exactly the situation of Lemma 4.7. Therefore,
we apply the lemma and conclude that there exists a paraboloid P ∈ P∞
satisfying (17) and such that the inequality (20) holds for all (y, s) ∈ Y θ

r (x̄, t̄)∩
{s ≤ t}. Finally, if the backward cylinder Y −

ρ (x, t) is contained in Y θ
r (x̄, t̄),

then for any (y, s) ∈ Y −
ρ (x, t) we have (y, s) ∈ Y θ

r (x̄, t̄) ∩ {s ≤ t} and so the
inequality (20) holds at (y, s). Moreover, we have |x − y| ≤ ρ and |t − s| ≤ ρ2.
Using this to bound the right-hand side of (20) from below, we obtain, for all
(y, s) ∈ Y −

ρ (x, t),

u+
θ (y, s) − u+

θ (x, t) ≥ P (y, s) − nM

r2
(rρ|x − y|2 + ρ2|t − s|)

− Cρ
M + ||ut||L∞(Yr(x̄,t̄))

r
(t − s).

By assumption we have ρ ≤ r; therefore, we have ρ2

r2 ≤ ρ
r . We use this to

estimate the right-hand side of the previous line from below, and rearrange so
that all the terms with (t − s) are together, to obtain, for all (y, s) ∈ Y −

ρ (x, t),

u+
θ (y, s)−u+

θ (x, t) ≥ P (y, s)−nM ρ
r |x − y|2− ρ

r

(
CM+||ut||L∞(Yr(x̄,t̄))

)
(t − s).

(23)

Since, by assumption, d(Yr(x̄, t̄), ∂pΩ × (0, T )) ≥ θ, Proposition 2.13 implies

||ut||L∞(Yr(x̄,t̄)) ≤ θ−2(||u||L∞(Ω×(0,T )) + 1)

and

||Du||L∞(Yr(x̄,t̄)) ≤ θ−1(||u||L∞(Ω×(0,T )) + 1).

We use these bounds in (22) and (23) to complete the proof. �

We now give the proofs of the two lemmas, starting with Lemma 4.8.
First, we need to establish the following basic fact about how parabolic vis-
cosity solutions relate to viscosity solutions in only x:

Lemma 4.9. If u is a Lipschitz in t viscosity solution of ut − F (D2u) = 0 in
Yr, then for any t ∈ (0, r2) the function x �→ u(x, t) satisfies, in the viscosity
sense,

M−(D2u(x, t)) ≤ ||ut||L∞(Yr) in Br,

M+(D2u(x, t)) ≥ −||ut||L∞(Yr) in Br.

Proof. We will check that u(·, t) is a subsolution; checking that u(·, t) is a
supersolution is analogous. Let us suppose that φ(y) ∈ C2(Br) touches u(y, t)
from above at x ∈ Br, so that

u(y, t) ≤ φ(y) for all y ∈ Br, with equality at y = x. (24)
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Since u is Lipschitz in t, we have

u(y, s) ≤ u(y, t) + ||ut||L∞(Yr)(t − s) for all y ∈ Br and for all s
≤ t, with equality at s = t.

Using the inequality (24) to bound the right-hand side of the previous line
from above yields that φ(y) + ||ut||L∞(Yr)(t − s) touches u(y, s) from above at
(x, t) in Br × (0, t]. Because u is a viscosity solution of ut − F (D2u) = 0, we
obtain

−||ut||L∞(Yr) − F (D2φ(x)) ≤ 0.

The uniform ellipticity of F implies

0 ≥ −||ut||L∞(Yr) − M+(D2φ(x)),

as desired. �

We also recall the Harnack inequality for elliptic equations (see [7, The-
orem 4.3]).

Theorem 4.10. Assume that u : Bs(0) ⊂ R
n → R satisfies u ≥ 0 in Bs(0) and,

for some positive constant c,

M−(D2u) ≤ c in Bs(0)

M+(D2u) ≥ −c in Bs(0).

There exits a universal constant C so that

sup
Bs/2(0)

u ≤ C

(
inf

Bs/2(0)
u + s2c

)
.

We are now ready to proceed with:

Proof of Lemma 4.8. We will give the proof for u+
θ (x, t); the argument for

u−
θ (x, t) is very similar.

Let x∗ be a point at which the supremum in the definition of u+
θ (x, t) is

achieved, so that

u(x∗, t) − |x − x∗|2
2θ

≥ u(y, t) − |x − y|2
2θ

for all y ∈ Ω. (25)

Therefore, as a function of y, u(y, t) is touched from above at x∗ by the convex
paraboloid Q(y), where

Q(y) = u(x∗, t) − |x − x∗|2
2θ

+
|x − y|2

2θ
.

Thus, we have a bound from above on D2u(x∗, t):

D2u(x∗, t) ≤ θ−1I.

Next we will show, using the Harnack inequality, that u(·, t) is also touched
from below at x∗ by a paraboloid with bounded opening, thus obtaining a
bound from below on D2u(x∗, t).
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There exists an affine function l(y) with l(x∗) = u(x∗, t) and such that

Q(y) = l(y) +
|y − x∗|2

2θ
.

There exists ρ > 0 such that Bρ(x∗) ⊂ Br(x̄). We fix any 0 < s < ρ and define
the function w(y) by

w(y) = l(y) +
s2

2θ
− u(y, t).

We will apply the Harnack inequality, Theorem 4.10, to w in Bs(x∗) once we
verify its hypotheses. First, we verify that w is non-negative on Bs(x∗). Let us
fix y ∈ Bs(x∗). We use the definition of w, the fact that u ≤ Q on Bs(x∗) and
the definition of Q, to obtain:

w(y) = l(y) +
s2

2θ
− u(y, t) ≥ l(y) +

s2

2θ
− Q(y) =

s2

2θ
− |y − x∗|2

2θ
≥ 0.

Next, by the properties of the extremal operators and Lemma 4.9, we see that
w satisfies

M−(D2w) = M−(−D2u) = −M+(D2u) ≤ ||ut||L∞(Yr(x̄,t̄)) in Bs(x∗),

M+(D2w) = M+(−D2u) = −M−(D2u) ≥ −||ut||L∞(Yr(x̄,t̄)) in Bs(x∗).

Therefore, the Harnack inequality implies that there exists a universal constant
C such that

sup
Bs/2(x∗)

w ≤ C

(
inf

Bs/2(x∗)
w + s2||ut||L∞(Yr(x̄,t̄))

)
. (26)

We evaluate w at x∗ and use that l(x∗) = u(x∗, t) to obtain a upper bound on
the infimum of w:

inf
Bs/2(x∗)

w ≤ w(x∗) = l(x∗) +
s2

2θ
− u(x∗, t) =

s2

2θ
.

We use this to bound the first term on the left-hand side of (26) from above
and thus obtain an upper bound on the supremum of w:

sup
Bs/2(x∗)

w ≤ Cs2(θ−1 + ||ut||L∞(Yr(x̄,t̄))).

Next we use this upper bound to estimate the difference between Q and u
from above. We use the definitions of Q and of w, and the estimate on the
supremum of w in the previous line, to find, for all y ∈ Bs/2(x∗),

Q(y)− u(y, t)= l(y)+
|y − x∗|2

2θ
− u(y, t)≤ w(y) ≤ Cs2(θ−1 + ||ut||L∞(Yr(x̄,t̄))).

Since this holds for all 0 < s < ρ, we have that (Q(·) − u(·, t)) is touched
from above at x∗ by a convex paraboloid of opening C(θ−1 + ||ut||L∞(Yr(x̄,t̄))).
Therefore,

D2Q(x∗) − D2u(x∗, t) ≤ C(θ−1 + ||ut||L∞(Yr(x̄,t̄))))I.

Rearranging the previous inequality and using D2Q(x∗) = θ−1I yields

D2u(x∗, t) ≥ −C(θ−1 + ||ut||L∞(Yr(x̄,t̄)))I. (27)
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Since assumption (16) of this proposition says that Yr(x̄, t̄) is distance θ away
from the boundary of Ω × (0, T ), Proposition 2.14 implies

||ut||L∞(Yr(x̄,t̄)) ≤ Cθ−2(||u||L∞(Ω×(0,T )) + 1).

We use this to bound the right-hand side of (27) from below and obtain the
desired estimate. �

Next, we give the proof of Lemma 4.7. We need the following lemma,
which we mentioned in the outline of the proof of Proposition 4.6.

Lemma 4.11. Let us suppose that the supremum in the definition of u+
θ (x, t) is

achieved at (x∗, t) ∈ Yr(x̄, t̄) ⊂ Ω × (0, T ). In addition, suppose that for some
φ ∈ C(Ω × (0, T )) we have

u(z, s) − u(x∗, t) ≥ φ(z, s) (28)

for all (z, s) ∈ Yr(x̄, t̄) ∩ {s ≤ t} and φ(x∗, t) = 0. Then, for all (y, s) ∈
Y θ

r (x̄, t̄) ∩ {s ≤ t},
u+

θ (y, s) − u+
θ (x, t) ≥ φ(y + x∗ − x, s).

Proof of Lemma 4.11. Since (x∗, t) is a point at which the supremum is
achieved in the definition of u+

θ (x, t), we have

u+
θ (x, t) = u(x∗, t) − |x − x∗|2

2θ
. (29)

Let (y, s) be any point in Y θ
r (x̄, t̄)∩{s ≤ t}. By item (1) of Proposition 4.5, we

have (y + x − x∗, s) ∈ Yr(x̄, t̄). In particular, we have (y + x − x∗) ∈ Ω, so we
may use (y + x∗ − x) as a “test point” in the definition of u+

θ (y, s). We obtain

u+
θ (y, s) ≥ u(y + x∗ − x, s) − |x − x∗|2

2θ
.

Subtracting the equality (29) from the above gives, for all y ∈ Y θ
r (x̄, t̄),

u+
θ (y, s) − u+

θ (x, t) ≥ u(y + x∗ − x, s) − u(x∗, t). (30)

Since (y+x∗ −x, s) ∈ Yr(x̄, t̄)∩{s ≤ t}, we may evaluate (28) at z = y+x∗ −x
to find,

u(y + x∗ − x, s) − u(x∗, t) ≥ φ(y + x∗ − x, s).

We use this to bound the right-hand side of (30) and obtain,

u+
θ (y, s) − u+

θ (x, t) ≥ φ(y + x∗ − x, s).

This holds for any (y, s) in Y θ
r (x̄, t̄) ∩ {s ≤ t}; hence the proof of the lemma is

complete. �

We now proceed with:
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Proof of Lemma 4.7. Since (x∗, t) ∈ ΨM (u, Yr(x̄, t̄)), Corollary 3.7 implies
that there exists a polynomial Q ∈ P∞ with Qt − F (D2Q) = 0 such that
for (z, s) ∈ Yr(x̄, t̄) ∩ {s ≤ t},

|u(z, s) − u(x∗, t) − Q(z, s)| ≤ nM

r2
(r|x∗ − z|3 + |x∗ − z|2|t − s| + |t − s|2)+

+ C
M + ||ut||L∞(Yr(x̄,t̄))

r
|x∗ − z|(t − s).

In particular, we have u(z, s) − u(x∗, t) ≥ φ(z, s) for all (z, s) ∈ Yr(x̄, t̄) ∩ {s ≤
t}, where we take φ to be

φ(z, s) = Q(z, s) − nM

r2
(r|x∗ − z|3 + |x∗ − z|2|t − s| + |t − s|2)−

− C
M + ||ut||L∞(Yr(x̄,t̄))

r
|x∗ − z|(t − s).

We note φ(x∗, t) = Q(x∗, t) = 0. Therefore, according to Lemma 4.11, we have,

u+
θ (y, s) − u+

θ (x, t) ≥ φ(y + x∗ − x, s) for all (y, s) ∈ Y θ
r (x̄, t̄) ∩ {s ≤ t}. (31)

Let us now use the definition of φ to obtain an alternate expression for the
right-hand side of (31):

φ(y + x∗−x, s) = Q(y + x∗ − x, s)− nM

r2
(r|x − y|3+|x − y|2|t−s| + |t − s|2)−

− C
M + ||u||L∞(Yr(x̄,t̄))

r
|x − y|(t − s).

Let us define the paraboloid P (y, s) ∈ P∞ by P (y, s) = Q(y−x+x∗, s). Using
this definition and the above expression for φ(y + x∗ − x, s) in the inequality
(31) gives that (20) holds for all (y, s) ∈ Y θ

r (x̄, t̄)∩{s ≤ t}. Finally, we observe
that P satisfies the equation (17): indeed, P is only a translate of Q, and
since Q ∈ P∞, we have that Qt(y, s) and D2Q(y, s) do not depend on (y, s).
Therefore, we have Pt − F (D2P ) = Qt − F (D2Q) = 0. �

5. A key estimate between solutions and sufficiently regular
δ-solutions

In this section we state and prove Proposition 5.1, a key part of the proofs of
the two main results, Theorems 1.1 and 1.2. Roughly, Proposition 5.1 says that
if w, u, and v are, respectively, a δ-subsolution, a solution and a δ-supersolution
of (33) that satisfy

w ≤ u ≤ v

on the parabolic boundary of a region, and v and w are sufficiently regular,
then we have

w − c̃δα̃ ≤ u ≤ v + c̃δα̃
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on the interior of the region. Once we have proven Proposition 5.1, we will
only need to use the basic properties of inf- and sup- convolutions to verify its
hypotheses and establish the two main results. We define the constant ζ by

ζ =
σ

2(4n + 3 + 3σ)
, (32)

where σ is the constant from Proposition 4.6. We remark that since σ is uni-
versal, so is ζ.

Proposition 5.1. Assume (F1), (F2). Assume that Ω′ satisfies (U1) and let
(a, b) be a subset of (0, T ) for some T > 0. We denote

U = Ω′ × (a, b).

Assume u ∈ C0,1
x (U) is a solution of

ut − F (D2u) = 0 (33)

in U . For δ ∈ (0, 1), define the quantity rδ by

rδ = 9
√

n(1 + ||u||L∞(U) + 2||Du||L∞(U))δζ

and the set Ũ by

Ũ =
{
(x, t) ∈ U : t ≤ b − r2

δ and d((x, t), ∂pU) > 2rδ

}
.

There exist universal constants α̃ and δ̃ and a positive constant c̃ that depends
on n, λ, Λ, diam Ω′, T , ||u||L∞(U) and ||Du||L∞(U) such that for all δ ≤ δ̃ and:

(1) for v ∈ C0,1(U) a δ-supersolution of (33) in U that satisfies
(a) D2v(x, t) ≤ δ−ζI in the sense of distributions for every (x, t) ∈ U ,
(b) [v]C0,1

t (U) ≤ 3Tδ−ζ , and
(c) sup∂pŨ (u − v) ≤ 0,

we have

sup
Ũ

(u − v) ≤ c̃δα̃;

(2) for w ∈ C0,1(U) a δ-subsolution of (33) in U with D2w(x, t) ≥ −δ−ζI
for every (x, t) ∈ U in the sense of distributions, [w]C0,1

t (U) ≤ 3Tδ−ζ and
sup∂pŨ (w − u) ≤ 0, we have

sup
Ũ

(w − u) ≤ c̃δα̃.

5.1. Outline

We outline the proof of part (1) of the Proposition; the proof of part (2) is
very similar. The main idea of the proof is to control the supremum of (u − v)
by the size of the contact set of (u − v) with the upper monotone envelope of
(u − v).

We first regularize u by x-sup convolution and obtain u+
δζ (see Definition

4.3). We then perturb u+
δζ by subtracting δ1/4t to obtain a strict sub-solution.
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We will bound sup(u+
δζ − δ1/4t − v). Since u+

δζ and v are sufficiently regular,
we are able to apply Proposition 2.12 and find

sup
Ũ

(u+
δζ − δ1/4t − c1δ

ζ − v) ≤ C|{u+
δζ − δ1/4t − c1δ

ζ − v = Γ̄}| 1
n+1 δ−Cζ ,

where Γ̄ is the upper monotone envelope of u+
δζ − δ1/4t − c1δ

ζ − v and C
and c1 are positive constants. This is Lemma 5.2 below. We will proceed by
contradiction and assume that supŨ (u+

δζ − δ1/4t − c1δ
ζ − v) is “large”. By the

estimate above, this implies that the size of the contact set {u+
δζ − δ1/4t −

c1δ
ζ − v = Γ̄} is large as well.

The key part of our argument is Proposition 4.6, which states that there
exists a large subset Ψ of U on which u+

δζ is very close to being a polynomial.
We use this proposition, together with the fact that the size of the contact set
is large, to find a point in the intersection of Ψ and the contact set. This is
Lemma 5.3 below. It follows from Proposition 4.6 by a covering argument.

Our last ingredient is the fact that if (x, t) is a point in the contact set
{u+

δζ − δ1/4t − c1δ
ζ − v = Γ̄} at which u+

δζ is touched from below by some φ,
then v is touched from below by φ at that point as well. This is Lemma 5.4
below. We use this fact, applied at the point (x, t) in the intersection of Ψ and
the contact set, to obtain the desired contradiction.

5.2. Proof of Proposition 5.1

Throughout the rest of this section, we will use C and Ci with i = 1, 2, . . ., to
denote positive constants that depend only n, λ, Λ, diam Ω′, T , ||u||L∞(U) and
||Du||L∞(U). For the proof of Proposition 5.1 we need three lemmas.

Lemma 5.2. Under the assumptions of Proposition 5.1, let x̄ ∈ R
n and ρ > 0

be such that Ũ ⊂ Y −
ρ (x̄, b − r2

δ). There exists a constant c1 > 0 that depends
only on ||Du||L∞(U) and a constant C1 so that

sup
∂pŨ

(u+
δζ − δ1/4t − v) ≤ c1δ

ζ , (34)

and

|{u+
δζ −δ1/4t−c1δ

ζ −v=Γ̄} ∩ Ũ | ≥ C1δ
2ζ(n+1)

(
sup

Ũ

(u+
δζ −δ1/4t−c1δ

ζ − v)

)(n+1)

,

(35)

where Γ̄ is the upper monotone envelope of (u+
δζ − δ1/4t − c1δ

ζ − v)+ extended
by 0 to Y −

2ρ(x̄, b − r2
δ).

Lemma 5.3. Under the assumptions of Proposition 5.1, there exists a positive
constant δ1 that depends only on n, a universal constant C̄, and a positive
constant c̄ that depends on n, λ, Λ, diam Ω′, ||u||L∞(U) and ||Du||L∞(U), such
that, if δ ≤ δ1 and C ⊂ Ũ with

|C| ≥ c̄δ3ζ(n+1),

there then there exists (x0, t0) ∈ C and a paraboloid P ∈ P∞ with
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(1) Y −
δ (x0, t0) ⊂ U ,

(2) P (x0, t0) = 0,
(3) Pt − F (D2P ) = 0, and
(4) for all (x, t) ∈ Y −

δ (x0, t0),

u+
δζ (x, t) − u+

δζ (x0, t0) ≥ P (x, t) − C̄δ1/2(|x − x0|2 + (t0 − t)). (36)

Lemma 5.3 follows from Proposition 4.6 and a covering argument. The
covering argument is slightly more involved than in the elliptic case because
of the need to avoid times t that are close to the terminal time T .

Lemma 5.4. Under the assumptions of Proposition 5.1, suppose there exists a
point (x0, t0) and a function φ(x, t) such that

(x0, t0) ∈ {u+
δζ − δ1/4t − c1δ

ζ − v = Γ̄} ∩ Ũ ,

where Γ̄ is as in Lemma 5.2, and
(1) Y −

δ (x0, t0) ⊂ U ,
(2) φ(x0, t0) = 0,
(3) for all (x, t) ∈ Y −

δ (x0, t0),

u+
δζ (x, t) − u+

δζ (x0, t0) ≥ φ(x, t). (37)

Then

φt(x0, t0) − F (D2φ(x0, t0)) ≥ δ1/4. (38)

In the situation of Lemma 5.4, we have that u+
δζ is a viscosity subsolution,

so we cannot directly deduce (38) from (37). The proof of the lemma uses that
(x0, t0) is in the contact set and the fact that v is a δ-supersolution.

We postpone the proofs of the lemmas and proceed with the proof of
Proposition 5.1.

Proof of Proposition 5.1. We will give the proof for part (1) of the proposition;
the proof of part (2) is very similar. Let c1 and C1 be the constants from Lemma
5.2 and let δ1, c̄ and C̄ be the constants from Lemma 5.3. Let us take

δ̃ = min
{

δ1,
1
2

(
C̄ (1 + λ/2)

)−2
}

. (39)

We point out that δ̃ is universal, because δ1 depends only on n and C̄ is
universal. Let us fix δ ≤ δ̃. We claim

sup
Ũ

(u+
δζ − δ1/4t − c1δ

ζ − v) ≤
(

c̄

C1

) 1
n+1

δζ . (40)

If (40) holds, then we obtain the desired bound on sup(u − v): indeed, since
u ≤ u+

δζ and t ≤ b ≤ T , we have,

sup
Ũ

(u − v) ≤ sup
Ũ

(u+
δζ − δ1/4t − c1δ

ζ − v) + δ1/4T + c1δ
ζ

≤
(

c̄

C1

) 1
n+1

δζ + δ1/4T + c1δ
ζ ≤ c̃δα̃,
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where c̃ = c1 +T +
(

c̄
C1

) 1
n+1

and α̃ = min{1/4, ζ}. Therefore, to complete the
proof of this proposition it will suffice to show that (40) holds. To this end, we
proceed by contradiction and assume

sup
Ũ

(u+
δζ − δ1/4t − c1δ

ζ − v) >

(
c̄

C1

) 1
n+1

δζ . (41)

By Lemma 5.2, we have the following lower bound on the size of the contact
set:

|{u+
δζ −δ1/4t−c1δ

ζ −v=Γ̄} ∩ Ũ | ≥ C1δ
2ζ(n+1)

(
sup
Ũ

(u+
δζ −δ1/4t−c1δ

ζ −v)

)(n+1)

.

We use (41) to bound the right-hand side of the previous line from below and
obtain,

|{u+
δζ − δ1/4t − c1δ

ζ − v = Γ̄} ∩ Ũ | ≥ c̄δ3ζ(n+1).

We now apply Lemma 5.3 with C = {u+
δζ − δ1/4t − c1δ

ζ − v = Γ̄} ∩ Ũ and
obtain that there exists a point (x0, t0) ∈ {u+

δζ − δ1/4t − c1δ
ζ − v = Γ̄} with

Y −
δ (x0, t0) ⊂ Ũ , (42)

and a paraboloid P ∈ P∞ with P (x0, t0) = 0,

Pt − F (D2P ) = 0, (43)

and

u+
δζ (x, t) − u+

δζ (x0, t0) ≥ P (y, s) − C̄δ1/2 · (|x0 − x|2 + (t0 − t)), (44)

where C̄ is a universal constant. We see that the hypotheses of Lemma 5.4
are satisfied, with φ(y, s) = P (y, s) − C̄δ1/2 · (|x0 − x|2 + (t0 − t)). Therefore,
applying Lemma 5.4 yields that inequality (38) holds. With our choice of φ,
(38) reads,

Pt + C̄δ1/2 − F

(
D2P − C̄δ1/2

2
I

)
≥ δ1/4

(we remark that since P ∈ P∞, we have that Pt and D2P are constant.) We
use the uniform ellipticity of F to obtain an upper bound for the left-hand
side of the previous line, and find

Pt + C̄δ1/2 − F (D2P ) + λ
C̄δ1/2

2
≥ δ1/4.

But, according to (43), we have Pt − F (D2P ) = 0, so we use this to simplify
the left-hand side of the previous line and obtain,

C̄δ1/2 (1 + λ/2) ≥ δ1/4.

Multiplying both sides by δ−1/2 we find,

C̄ (1 + λ/2) ≥ δ−1/2.
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Since we took δ ≤ δ̃, this inequality contradicts our choice of δ̃ in (39). There-
fore, we have obtained the desired contradiction to (41), so (40) must hold.
The proof of the proposition is thus complete. �

We now proceed with the proofs of Lemmas 5.2, 5.3 and 5.4.

Proof of Lemma 5.2. We first establish the estimate (34). To this end, by item
(3) of Proposition 4.5 and assumption (c) of Proposition 5.1 we have

sup
∂pŨ

(u+
δζ − δ1/4t − v) ≤ sup

∂pŨ

(u+
δζ − v) ≤ sup

∂pŨ

(u − v) + 2δζ ||Du||2L∞(U) ≤ c1δ
ζ ,

where c1 = 2||Du||2L∞(U). Let us define the function w on Y −
ρ (x̄, b − r2

δ) by

w(x, t) =

{
max{u+

δζ (x, t) − δ1/4t − v(x, t) − c1δ
ζ , 0} for (x, t) ∈ Ũ

0 on Y −
ρ (x̄, b − r2

δ) \ Ũ .

The previous estimate implies that w is continuous on Y −
ρ (x̄, b − r2

δ).
To establish the second assertion of the lemma, estimate (35), we seek to

apply Proposition 2.12 to −w. Since d(Ũ , ∂pU) = 2rδ, Proposition 2.14 implies
that u is differentiable in t in Ũ , with

||ut||L∞(Ũ) ≤ Cr−2
δ (||u||L∞(U) + 1) ≤ Cδ−2ζ .

Therefore, [u+
δζ ]C0,1

t (Ũ) ≤ Cδ−2ζ as well. Together with assumption (c) of
Proposition 5.1, this implies [w]C0,1

t (Ũ) ≤ Cδ−2ζ . In addition, assumption (a)
of Proposition 5.1 and the properties of x-sup convolutions (item (4) of Propo-
sition 4.5)) imply −D2w = D2(−u+

δζ +v) ≤ 2δ−ζI in the sense of distributions
on all of Ũ . Since w ≡ 0 outside of Ũ , the hypotheses of Proposition 2.12
hold with K = Cδ−2ζ . Applying Proposition 2.12 gives a bound on the supre-
mum of (−w)− in terms of the size of the contact set of −w with Γ, the lower
monotone envelope of min(−w, 0):

sup
Y −
2ρ(x̄,b−r2

δ)

(−w)− ≤ C|{−w = Γ}| 1
n+1 δ−2ζ .

It is easy to see Γ̄ ≡ −Γ, where Γ̄ is defined in the statement of this lemma,
and supY −

2ρ(x̄,b−r2
δ)(−w)− = supŨ w. Using this, together with the previous

estimate and the definition of w yields,

sup
Ũ

(u+
δζ − δ1/4t − c1δ

ζ − v) ≤ C|{u+
δζ − δ1/4t − c1δ

ζ − v = Γ̄} ∩ Ũ | 1
n+1 δ−2ζ .

Rearranging, we find that (35) holds. �

Proof of Lemma 5.3. Let us fix a subset C of Ũ that satisfies

|C| ≥ c̄δ3ζ(n+1), (45)

where the constant c̄ is specified in line (51) below, and depends only on n,
λ, Λ, diam Ω′, T , ||u||L∞(U) and ||Du||L∞(U). To simplify notation, for the
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(x, t)

(x0, t0)

Y −
δ (x0, t0)

Ỹrδ
(x, t)

K̃T
rδ

(x, t)

Figure 1. The sets involved in the proof of Lemma 5.3

remainder of this proof we denote the x-sup convolution u+
δζ by simply u+. In

addition, we need the following families of sets:

Ỹrδ
(x, t) := Y δζ

rδ
(x, t) = B

(
x, rδ − 2δζ ||Du||L∞(U)

) × (
t, t + r2

δ

]
,

K̃rδ
(x, t) := Kδζ

rδ
(x, t)

=
[
x − δζ(1 + ||u||L∞(U)), x + δζ(1 + ||u||L∞(U))

]n ×
(

t, t +
r2
δ

81n

]
,

K̃T
rδ

(x, t) :=
[
x − δζ(1 + ||u||L∞(U)), x + δζ(1 + ||u||L∞(U))

]n

×
(

t +
r2
δ

162n
, t +

r2
δ

81n

]
.

We point out that K̃T
rδ

(x, t) is the top half (in terms of t) of K̃rδ
(x, t). See

Fig. 1. We remark that there exists a constant δ1 that depends only on n such
that if δ ≤ δ1, then

if (x, t) ∈ Ũ and (x0, t0) ∈ K̃T
rδ

(x, t), then Y −
δ (x0, t0) ⊂ Ỹrδ

(x, t) ∩ U. (46)

(We point out that in order for (46) to hold, it is important that (x0, t0) is
contained in K̃T

rδ
(x, t), and not only in K̃rδ

(x, t).) We take δ ≤ δ1.
We will be applying Proposition 4.6. We first remark that although it

is stated in Ω × (0, T ), it holds in U = Ω′ × (a, b) as well, with no other
modifications.

We recall that Proposition 4.6 gives a lower bound on the size of
Ψ+,δ2ζ

M (u+), the set where u+ has second-order expansions from below. For the
rest of the argument we will denote Ψ+,δ2ζ

M (u+) simply by Ψ+
M . We will show

that for M large enough there exists a point in the intersection of Ψ+
M and C by

using the lower bounds on the sizes of C and Ψ+
M (the latter is proved in Propo-

sition 4.6). Since Proposition 4.6 bounds the size of the complement of Ψ+
M

inside of sets of the form K̃rδ
(x, t), we first cover Ũ by {K̃T

rδ
(x, t) : (x, t) ∈ Ũ}.

It is clear that there exits a finite collection {K̃T
rδ

(xj , tj) : (xj , tj) ∈ Ũ}s
j=1
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that covers Ũ , where s ≤ C0δ
−ζ(n+2), for C0 a constant that depends on

diam Ω′, T , and n. Since C ⊂ Ũ and the K̃T
rδ

(xj , tj) cover Ũ , there exists an i
such that

|C ∩ K̃T
rδ

(xi, ti)| ≥ |C|
s

.

We use (45) and the upper bound on s to estimate the right-hand side of the
previous line from below. We find,

|C ∩ K̃T
rδ

(xi, ti)| ≥ c̄δ3ζ(n+1)

C0δ−ζ(n+2)
=

c̄

C0
δζ(4n+5).

In view of the definition of Ũ , we have d((xi, ti), ∂pU) ≥ 2rδ and ti ≤ b − r2
δ ;

therefore, Yrδ
(xi, ti) ⊂ U and

d(Yrδ
(xi, ti), ∂pU) ≥ rδ > δζ .

Therefore, u satisfies the hypotheses of Proposition 4.6 in Yrδ
(xi, ti) with θ =

δζ , ρ = δ and r = rδ. Let M0 be the universal constant from Proposition 4.6.
Thus, for any M > M0, there exists a set Ψ+

M (the “good set” of u+) with

|K̃rδ
(xi, ti) \ Ψ+

M | ≤ C1r
n+2
δ

Mσδζ(n+σ)
(r−σ

δ + δ−ζσ)
(||u||L∞(U) + 1

)n+σ
, (47)

where C1 is a universal constant. We take

M =

(
2C1C0r

n+2
δ δ−ζ(n+σ)(r−σ

δ + δ−ζσ)(||u||L∞(U) + 1)n+σ

c̄δζ(4n+5)

)1/σ

+ M0.

We use our choice of M to bound the right-hand side of (47) from above, and
obtain

|K̃rδ
(xi, ti) \ Ψ+

M | <
c̄

C0
δζ(n+σ) = |C ∩ K̃T

rδ
(xi, ti)|.

Since we have K̃T
rδ

(xi, ti) ⊂ K̃rδ
(xi, ti), the previous inequality implies,

|K̃T
rδ

(xi, ti) \ Ψ+
M | < |K̃rδ

(xi, ti) \ Ψ+
M | < |C ∩ K̃T

rδ
(xi, ti)|.

Therefore, there exists a point (x0, t0) ∈ C ∩Ψ+
M ∩ K̃T

rδ
(xi, ti). Because of (46),

we have Y −
δ (x0, t0) ⊂ Ỹrδ

(x, t) ∩ U . Thus, by Proposition 4.6, there exists a
polynomial P ∈ P∞ such that

Pt − F (D2P ) = 0

and, on Y −
δ (x0, t0),

u+(x, t) − u+(x0, t0) ≥ P (y, s) − C2M
δ

rδ
|x − x0|2

−
(

δ

rδ
C2M +

δ

rδ

1 + ||u||L∞(U)

δ2ζ

)
(t0 − t), (48)

where C2 is a universal constant. We will now estimate the sizes of the coeffi-
cients of the error terms on the right-hand side of the previous line. We first
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observe that, by the definition of rδ, there exists a constant C3 that depends
on n, ||u||L∞(U) and ||Du||L∞(U) so that

δζ < rδ ≤ C3δ
ζ . (49)

Therefore,

M ≤ C4c̄
−1/σδ− ζ

σ (4n+3+2σ) + M0, (50)

where C4 depends on n, λ, Λ, diam Ω′, T , ||u||L∞(U), and ||Du||L∞(U). Let us
choose

c̄ = (C2C4)
σ

. (51)

We claim that, with this choice of c̄, we have the following two bounds on the
coefficients of the error terms in (48):

C2M
δ

rδ
≤ (1 + C2M0)δ1/2, (52)

and,

δ

rδ

1 + ||u||L∞(U)

δ2ζ
≤ δ1/2. (53)

Once these bounds are established, we may use them to bound the right-hand
side of (48) from below, and then take C̄ = 2 + C2M0 to complete the proof
of the lemma.

Let us first prove that (52) holds. Since rδ > δζ , we have

δ

rδ
≤ δ1−ζ .

We use this, together with (50), to obtain,

M
δ

rδ
≤ C4c̄

−1/σδ1−ζ−ζ
σ (4n+3+2σ)+M0δ

1−ζ =C4c̄
−1/σδ1−ζ

σ (4n+3+3σ) + M0δ
1−ζ .

Using our choice of ζ to simplify the exponent in the first term of the previous
line yields,

M
δ

rδ
≤ C4c̄

−1/σδ1/2 + M0δ
1−ζ .

In addition, since ζ ≤ 1/6 (which is clear from the definition of ζ), we have
1 − ζ ≥ 5/6 ≥ 1/2, so that δ1−ζ ≤ δ1/2. Therefore, we find

M
δ

rδ
≤ (C4c̄

−1/σ + M0)δ1/2.

Multiplying by C2 and using our choice of c̄ yields the estimate (52). We will
now establish (53). We have rδ > (1 + ||u||L∞(U))δζ . Thus, we obtain

δ

rδ

1 + ||u||L∞(U)

δ2ζ
<

δ

(1 + ||u||L∞(U))δζ

1 + ||u||L∞(U)

δ2ζ
= δ1−3ζ .

Next, we use ζ ≤ 1/6 to bound δ1−3ζ from above by δ1/2 and obtain (53). The
proof of the lemma is therefore complete. �
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Proof of Lemma 5.4. We recall the representation formula for the upper
monotone envelope of a function (Lemma 2.11):

Γ̄(w)(x0, t0) = inf{ζ · x0 + h : ζ · x + h ≥ w(x, t) for all (x, t)
∈ Y −

2ρ(x0, b − r2
δ) ∩ {t ≤ t0}}.

Since (x0, t0) is in the contact set of u+
δζ − δ1/4t − c1δ

ζ − v with its upper
monotone envelope, the representation formula implies that there exist ζ ∈ R

n

and h ∈ R such that

ζ · x0 + h = Γ̄(w)(x0, t0) = u+
δζ (x0, t0) − δ1/4t0 − c1δ

ζ − v(x0, t0)

and

ζ · x + h ≥ u+
δζ (x, t) − δ1/4t − c1δ

ζ − v(x, t)

for all x and for all t ≤ t0 (so in particular, for all points in Y −
δ (x0, t0)).

Rearranging the previous inequality we find, for all (x, t) ∈ Y −
δ (x0, t0),

v(x, t) ≥ u+
δζ (x, t) − δ1/4t − c1δ

ζ − ζ · x − h,

with equality holding at (x0, t0). Next, we use that u+
δζ is touched from below

at (x0, t0) by φ(x, t) (this is assumption (37) of this lemma) to bound the first
term on the right-hand side of the previous inequality from below. Thus we
find, for all (x, t) ∈ Y −

δ (x0, t0),

v(x, t) ≥ u+
δζ (x0, t0) + φ(x, t) − δ1/4t − c1δ

ζ − ζ · x − h, (54)

with equality at (x0, t0). By assumption, we have Y −
δ (x0, t0) ⊂ U . Since v is

a δ-supersolution of (33) on U and (54) holds on Y −
δ (x0, t0) with equality at

(x0, t0), we find

φt(x0, t0) − δ1/4 − F
(
D2φ(x0, t0)

) ≥ 0.

Thus the proof of the lemma is complete. �

6. Error estimate

In this section we give the precise statement and the proof of our main result.

Theorem 6.1. Assume (F1), (F2) and (U1). Assume u ∈ C0,η(Ω × (0, T )) ∩
C0,1

x (Ω × (0, T )) is a solution of

ut − F (D2u) = 0 in Ω × (0, T ) (55)

and assume {vδ}δ>0 is a family of δ-supersolutions (resp. δ-subsolutions) of
(55) such that, for some M < ∞ and for all δ > 0,

||vδ||C0,η(Ω×(0,T )) ≤ M (56)

and

u − vδ ≤ 0 (resp. vδ − u ≤ 0) on ∂p(Ω × (0, T )).
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There exist a universal constant δ̄, a constant ᾱ that depends on n, λ, Λ and
η, and a constant c̄ that depends on n, λ, Λ, diam Ω, T , M , ||u||C0,η(Ω×(0,T )),
and ||Du||L∞(Ω×(0,T )), such that for all δ ≤ δ̄,

sup
Ω×(0,T )

u − vδ ≤ c̄δᾱ

(
resp. sup

Ω×(0,T )

vδ − u ≤ c̄δᾱ

)
. (57)

Remark 6.2. The assumption u ∈ C0,η(Ω×(0, T ))∩C0,1
x (Ω×(0, T )) is satisfied

in the following situation. Assume (F1), (F2), (U1), and that ∂Ω is sufficiently
regular. Take g ∈ C1,α(∂p(Ω × (0, T ))). Then, according to the interior regu-
larity estimates of Theorem 2.13 and the boundary estimates of [27, Section
2], the solution u of the boundary value problem{

ut − F (D2u) = 0 in Ω × (0, T ),
u = g on ∂p(Ω × (0, T )),

is indeed Lipschitz continuous in x and Hölder continuous in t on all of Ω ×
(0, T ), with

||u||C0,η(Ω×(0,T )), ||Du||L∞(Ω×(0,T )) ≤ C,

where C depends on n, λ, Λ, ||g||C1,α(∂p(Ω×(0,T ))), diam Ω and the regularity
of ∂Ω.

Proof of Theorem 6.1. We give the proof of the bound on sup(u − vδ) in the
case that vδ is a δ-supersolution; the proof of the other case is very similar.
Let us take δ ≤ δ̃, where δ̃ is the universal constant given by Proposition 5.1.
To simplify notation, throughout the remainder of this proof we will use c and
ci with i = 0, 1, 2, . . ., to denote positive constants that depend only on n, λ,
Λ, diam Ω, T , M , ||u||C0,η(Ω×(0,T )), and ||Du||L∞(Ω×(0,T )).

We regularize vδ by taking inf-convolution: let v− denote (vδ)−
δζ ,δζ and let

U denote U δζ ,δ. For the convenience of the reader, we write down the definition
of U explicitly:

U =
{

(x, t) ∈ Ω × (0, T ) : de((x, t), ∂p(Ω×(0, T )))≥2δζ/2||vδ||1/2
L∞(Ω×(0,T ))+δ

}
.

We will apply part (1) of Proposition 5.1 to v− in U once we verify its hypothe-
ses. First, we see that U is of the form Ω′ × (a, b), where Ω′ satisfies (U1) and
(a, b) ⊂ (0, T ). Next, we use items (3) and (4) of Proposition A.4 with θ = δζ

and find that we have D2v− ≤ δ−ζI in U in the sense of distributions and
[v−]C0,1

t (U) ≤ 3Tδ−ζ . Therefore, v− satisfies assumptions (a) and (c) of Propo-
sition 5.1. Finally, item (5) of Proposition A.4 says that v− is a δ-supersolution
of (33) in U .

Now let rδ and Ũ be as in the statement of Proposition 5.1:

rδ = 9
√

n(1 + ||u||L∞(U) + 2||Du||L∞(U))δζ , and

Ũ =
{
(x, t) ∈ U : d((x, t), ∂pU) ≥ 2rδ, and t ≤ T − r2

δ

}
.
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Let us apply Proposition 5.1 with u−
(
sup∂pŨ (u − v−)

)
instead of just u itself

(this ensures that the hypothesis (c) is satisfied.) We conclude

sup
Ũ

(u − v−) ≤ c̃δα̃ + sup
∂pŨ

(u − v−). (58)

We will now use this estimate, the regularity properties of u and vδ, and the
fact that the distance between ∂pŨ and ∂p(Ω × (0, T )) is small to deduce the
bound (57).

First, we use the definitions of U , Ũ and rδ to estimate the distance
between ∂pŨ and ∂p(Ω × (0, T )):

d(Ũ , ∂p(Ω × (0, T ))) = inf
(x,t)∈Ũ

{d((x, t), ∂p(Ω × (0, T ))}

≤ 2rδ + 2δ
ζ
2 ||vδ||1/2

L∞(Ω×(0,T )) + δ ≤ c0δ
ζ/2, (59)

where the last inequality follows from the definition of rδ and since ζ
2 < ζ < 1.

Next, since v− ≤ vδ holds on Ω×(0, T ), and we have u ∈ C0,η(Ω×(0, T )),
vδ ∈ C0,η(Ω × (0, T )), and u ≤ vδ on ∂p(Ω × (0, T )), the estimate (59) implies
that there exists a constant c1 such that

sup
∂pŨ

(u − vδ) ≤ c1δ
ζη
2 (60)

and

sup
Ω×(0,T )

(u − vδ) ≤ sup
Ũ

(u − v−) + c1δ
ζη
2 . (61)

We use (58) to bound the first term on the right-hand side of (61) from
above and obtain,

sup
Ω×(0,T )

(u − vδ) ≤ c̃δα̃ + sup
∂pŨ

(u − v−) + c1δ
ζη
2 . (62)

Thus, to establish (57) it is left to bound the right-hand side of (62) from
above. To this end, item (2) of Proposition A.4 applied with θ = δζ , and the
assumption (56) of this theorem, imply, for all (x, t) ∈ U ,

v−(x, t) ≥ vδ(x, t) − [vδ]
2

2−η

C0,η(Ω×(0,T ))δ
ζη

2−η ≥ vδ(x, t) − M
2

2−η δ
ζη

2−η .

We apply this estimate with (x, t) ∈ ∂pŨ ⊂ U to obtain a bound from above
for the second term on the right-hand side of (62):

sup
∂pŨ

(u − v−) ≤ sup
∂pŨ

(u − vδ) + M
2

2−η δ
ζη

2−η .

We now use (60) to bound the first term on the right-hand side of the previous
line and obtain

sup
∂pŨ

(u − v−) ≤ c1δ
ζη
2 + M

2
2−η δ

ζη
2−η ≤ c2δ

ζη
2 .
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Next we use the previous line to bound the second term on the right-hand side
of (62) from above, and obtain

sup
Ω×(0,T )

(u − vδ) ≤ c̃δα̃ + c2δ
ζη
2 + c1δ

ζη
2 .

We thus take c̄ = c̃ + c2 + c1 and ᾱ = min{α̃, ζη
2 } to complete the proof of the

theorem. �

7. Discrete approximation schemes

We now present the error estimate for finite difference approximation schemes.
First, we introduce the necessary notation and assumptions, closely following
[8,25]. In the next section we give the full statement of the error estimate and
its proof. The space-time mesh is denoted by E:

E=hZn×h2
Z={(x, t) : x=(m1, . . . ,mn)h, t=mh2,where m,m1, . . . ,mn ∈Z}.

We fix some N > 1 and define the subset Y of E by

Y = {y ∈ hZn : 0 < |y| < hN}.

Next we introduce finite difference operators for a function u:

δ−
τ u(x, t) =

1
h

(u(x, t) − u(x, t − h2)),

δ2
yu(x, t) =

1
|y|2 (u(x + y, t) + u(x − y, t) − 2u(x, t)), and

δ2u(x, t) = {δ2
yu(x, t) : y ∈ Y }.

An implicit finite difference operator is an operator of the form

Sh[u](x, t) = δ−
τ u(x, t) − Fh(δ2u(x, t)),

where Fh : R
Y → R is locally Lipschitz. We denote points in R

Y by r =
(r1, . . . , r|Y |). We say an operator is monotone if it satisfies:
(S1) there exists a constant λ0 and Λ0 such that for all i = 1, . . . , |Y |,

λ0 ≤ ∂Fh

∂ri
≤ Λ0.

This is equivalent to the definition given in the introduction.
A scheme Sh is said to be consistent with F if for all φ ∈ C3(Ω × (0, T )),

sup |φt − F (D2φ) − Sh[φ]| → 0 as h → 0.

In [25, Section 4], it was shown that if a nonlinearity F satisfies (F1), then there
exists a monotone implicit scheme Sh that is consistent with ut −F (D2u) = 0,
and the constants λ0 and Λ0 depend only on n, λ and Λ. In [23], a monotone
and consistent approximation scheme for elliptic equations is explicitly con-
structed, and the construction in the parabolic case is analogous.

In order to obtain an error estimate, we need to make an assumption that
quantifies the above rate of convergence. As in [8], we assume:
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(S2) there exists a positive constant K such that for all φ ∈ C3(Ω × (0, T )),

sup |φt − F (D2φ) − Sh[φ]| ≤ K(h + h||D3
xφ||L∞(Ω×(0,T )) + h2||φtt||L∞(Ω×(0,T ))).

Schemes that satisfy (S2) are said to be consistent with an error estimate for
F in Ω × (0, T ) with constant K.

Given Ω × (0, T ) ⊂ R
n+1, we denote the mesh points (Ω × (0, T )) ∩ E by

Uh. We divide Uh into interior and boundary points relative to the operator
Sh. We define

U i
h = {p ∈ Uh : d(p, ∂pΩ × (0, T )) ≥ Nh}

to be the interior points and

Ub
h = Uh \ U i

h

to be the boundary points. Notice that Sh[u](x, t) depends only on u(x + y, s)
for 0 ≤ |y| < hN and for t − h2 ≤ s ≤ t.

The discrete Hölder seminorm of a function u on Uh is defined to be

[u]C0,η(Uh) = sup
p,q∈Uh

|u(p) − u(q)|
d(p, q)η

and the discrete Hölder norm is

||u||C0,η(Uh) = ||u||L∞(Uh) + [u]C0,η(Uh).

In [25, Section 4] it is shown that solutions of the discrete equation
Sh[vh] = 0 are uniformly equicontinuous. We summarize this result:

Theorem 7.1. Assume that Sh is an implicit monotone finite difference scheme
and that vh is a solution of Sh[vh] = 0. There exists a constant C that depends
only on n, λ0 and Λ0 such that for all h ∈ (0, 1),

||vh||C0,η(Ui
h) ≤ C.

7.1. Inf and sup convolutions for approximation schemes

Definition 7.2. Given θ > 0 and a mesh function v : Uh → R, we define the
inf- convolution v−

θ,θ and the sup- convolution v+
θ,θ of v at (x, t) ∈ Ω × (0, T )

by

v−
θ,θ(x, t) = inf

(y,s)∈Uh

{
v(y, s) +

|x − y|2
2θ

+
|t − s|2

2θ

}

and

v+
θ,θ(x, t) = sup

(y,s)∈Uh

{
v(y, s) − |x − y|2

2θ
− |t − s|2

2θ

}
.

Definition 7.3. Given θ > 0 and v ∈ C0,η(Uh), we introduce the quantity

ω(h, θ) = nh + 2θ1/2||v||L∞(Uh)

and the set

Uh
θ = {p ∈ Ω × (0, T ) : de(p, ∂p(Ω × (0, T ))) ≥ ω(h, θ) + Nh}.
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In the appendix we summarize the basic properties of inf- and sup- con-
volutions of mesh functions (see Proposition A.5).

It is a classical fact of the theory of viscosity solutions that if u is the
viscosity solution of ut − F (D2u) = 0 in Ω × (0, T ), then the sup-convolution
of u is a subsolution of the same equation. In the following proposition, we
establish a similar relationship between solutions vh of discrete equations and
δ-solutions of ut − F (D2u) = 0. This is a key step in establishing an error
estimate for discrete approximation schemes.

Proposition 7.4. Assume that Sh is a monotone and implicit scheme consistent
with an error estimate for F with constant K. Assume v ∈ C0,η(Uh).
(1) If v satisfies Sh[v] ≥ 0 in U i

h then v−
θ,θ is a δ-supersolution of

ut − F (D2u) = −Kh

in Uh
θ , with δ = Nh.

(2) If v satisfies Sh[v] ≤ 0 in U i
h, then v+

θ,θ is δ-subsolution of

ut − F (D2u) = Kh

in Uh
θ , with δ = Nh.

Proof. We give the proof of item (1); the proof of item (2) is analogous.
Let us suppose (x, t) ∈ Uh

θ is such that Y −
Nh(x, t) ⊂ Uh

θ and that P ∈ P∞
is such that

P ≤ v−
θ,θ on Y −

Nh(x, t), and P (x, t) = v−
θ,θ(x, t). (63)

We use (63) and the definition of the operators δ2
y and δ−

τ to obtain, for each
y with 0 < |y| ≤ hN ,

δ2
yP (x, t) ≤ δ2

yv−
θ,θ(x, t), and δ−

τ P (x, t) ≥ δ−
τ v−

θ,θ(x, t). (64)

(We remark that for this to hold, it is essential that P ≤ v on all of Y −
Nh(x, t).)

Now let (x∗, t∗) be a point at which the infimum is achieved in the definition
of v−

θ,θ(x, t). According to item (6) of Proposition A.5, we have

δ2
yv−

θ,θ(x, t) ≤ δ2
yv(x∗, t∗) and δ−

τ v−
θ,θ(x, t) ≥ δ−

τ v(x∗, t∗). (65)

We now use the first inequality in (65) to estimate the right-hand side of the
first inequality in (64) from above, and we use the second inequality in (65) to
estimate the right-hand side of the second inequality in (64) from below. We
find,

δ2
yP (x, t) ≤ δ2

yv(x∗, t∗), and δ−
τ P (x, t) ≥ δ−

τ v(x∗, t∗). (66)

Item (1) of Proposition A.5 yields (x∗, t∗) ∈ U i
h. Since v satisfies Sh[v] ≥ 0 in

U i
h, we obtain,

0 ≤ Sh[v](x∗, t∗) = δ−
τ v(x∗, t∗) − Fh(δ2v(x∗, t∗)).

Using (66) and the monotonicity of Fh to bound the right-hand side of the
previous line yields

0 ≤ δ−
τ P (x, t) − Fh(δ2P (x, t)). (67)
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We use that Sh is consistent with an error estimate and find,

|Pt(x, t) − F (D2P (x, t)) − (δ−
τ P (x, t) − Fh(δ2P (x, t)))| ≤ Kh.

Together with (67), this implies

Pt − F (D2P ) ≥ −Kh,

as desired. �

8. Error estimate for approximation schemes

In this section we give the precise statement and proof of Theorem 1.2.

Theorem 8.1. Assume (F1), (F2) and (U1). Assume u ∈ C0,η(Ω × (0, T )) ∩
C0,1

x (Ω × (0, T )) is a solution of

ut − F (D2u) = 0 (68)

in Ω× (0, T ). Assume that Sh is an implicit monotone scheme consistent with
an error estimate for (68) and that vh satisfies Sh[vh] ≥ 0 (resp. Sh[vh] ≤ 0)
in Uh for all h > 0. Assume that for some constant M < ∞ and for all h > 0,

||vh||C0,η(Ui
h) ≤ M

and

u − vh ≤ 0 (resp. u − vh ≥ 0) on Ub
h. (69)

There exists a constant h̄ that depends only on λ, Λ, n and N , a constant ᾱ
that depends on n, λ, Λ and η, and a constant c̄ that depends on n, N , λ, Λ,
diam Ω, T , K, M , ||u||C0,η(Ω×(0,T )), and ||Du||L∞(Ω×(0,T )), such that for all
h ≤ h̄,

sup
Uh

u − vh ≤ c̄hᾱ

(
resp. sup

Uh

vh − u ≤ c̄hᾱ

)
.

Remark 8.2. Suppose that u is the solution of the boundary value problem{
ut − F (D2u) = 0 in Ω × (0, T ),
u = g on ∂p(Ω × (0, T )),

and vh satisfies {Sh[vh] = 0 in U i
h,

vh = g on Ub
h,

where ∂Ω is sufficiently regular and g ∈ C1,α(Ω × (0, T )). Then, as explained
in Remark 6.2, u satisfies the hypotheses of Theorem 8.1, and vh satisfies the
hypotheses of Theorem 8.1 because of Theorem 7.1.

Proof of Theorem 8.1. We give the proof of the bound on sup(u − vh); the
proof of the other case is very similar. We will apply Proposition 5.1 with
δ = Nh. We define h̄ to be h̄ = δ̃N−1, where δ̃ is the universal constant given
by Proposition 5.1. To simplify notation, throughout the remainder of this
proof we will use c and ci with i = 0, 1, 2, . . . , to denote positive constants
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that depend only on n, N , λ, Λ, diam Ω, T , K, M , ||u||C0,η(Ω×(0,T )), and
||Du||L∞(Ω×(0,T )). In addition, c may change from line to line.

First we regularize vh by taking inf-convolution: we denote v− = (vh)−
hζ ,hζ

and Uh
hζ by U . For the convenience of the reader, we write down the definition

of U explicitly:

U =
{
(x, t) ∈ Ω × (0, T ) : d((x, t), ∂p(Ω × (0, T ))) ≥ ω(h, hζ) + Nh

}
,

and

ω(h, hζ) = nh + 2hζ/2||vh||L∞(Uh).

Then, according to item (5) of Proposition (7.4), v− is a δ-supersolution of

v−
t − F (D2v−) ≥ −Kh

in U . We point out that U is of the form Ω′ × (a, b), where Ω′ satisfies (U1).
Therefore, Proposition 5.1 holds in U . Since Proposition 5.1 applies to δ-
solutions with right-hand side 0, we have to perturb v−. We introduce

v(x, t) = v−(x, t) + Kht,

so that v is a δ-supersolution of (68) in U . Moreover, by items (4) and (5) of
Proposition A.5, v satisfies the regularity assumptions (a) and (c) of Proposi-
tion 5.1. Let rδ and Ũ be as in Proposition 5.1 (recall we are taking δ = Nh):

rδ = 9
√

n(1 + ||u||L∞(U) + 2||Du||L∞(U))(Nh)ζ , and

Ũ =
{
(x, t) ∈ U : d((x, t), ∂pU) ≥ 2rδ, and t ≤ T − r2

δ

}
.

We apply Proposition 5.1 to with u −
(
sup∂pŨ (u − v)

)
instead of u, so that

the hypothesis (c) of Proposition (5.1) is satisfied. We obtain the bound

sup
Ũ

(u − v) ≤ c(Nh)α̃ + sup
∂pŨ

(u − v).

By the definition of v, we have v− ≤ v ≤ v− + KhT on Ũ . We use this to
bound the left-hand side of the previous line from below and the right-hand
side of the previous line from above and find,

sup
Ũ

(u − v−)≤KhT + c(Nh)α̃+sup
∂pŨ

(u − v−)≤c1h
α̃+sup

∂pŨ

(u − v−), (70)

where the second inequality follows since α̃ ≤ 1. We will now deduce the
conclusion of the theorem from (70). This step is a bit more complicated than
the corresponding step in the proof of Theorem 6.1 because vh is a function on
the mesh Uh and not on all of Ω×(0, T ). By the definitions of U and Ũ , we have
the following estimate, which we’ll be applying frequently in the remainder of
the argument:

d(Ũ ,Ub
h) = inf

(x,t)∈Ũ
{d((x, t),Ub

h)} ≤ c(h + hζ/2 + hζ) ≤ c0h
ζ/2.
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We first bound supUh
(u−vh) from above. Since u and vh are Hölder-continuous,

and since v− ≤ vh holds on Uh, we have:

sup
Uh

(u − vh) ≤ sup
Ũ∩E

(u − vh) + c(d(Ũ ,Ub
h))η ≤ sup

Ũ∩E

(u − vh) + ch
ζη
2

≤ sup
Ũ∩E

(u − v−) + c2h
ζη
2 .

We next use (70) to estimate the first term on right-hand side of the previous
line from above. We find,

sup
Uh

(u − vh) ≤ c1h
α̃ + sup

∂pŨ

(u − v−) + c2h
ζη
2 . (71)

We will now establish the following upper bound for the middle term of right-
hand side of (71):

sup
∂pŨ

(u − v−) ≤ sup
Ub

h

(u − vh) + c3h
ζη
2 . (72)

To this end, let us fix some (x, t) ∈ ∂pŨ . Let (y, s) be a nearest mesh point to
(x, t) (recall that vh is only defined on the mesh E, and (x, t) need not be a
mesh point). By item (3) of Proposition A.5, we have a bound from below on
the difference between v−(x, t) and vh(y, s):

v−(x, t) ≥ vh(y, s) − Mω(h, hζ)η ≥ vh(y, s) − ch
ζη
2 , (73)

where the second inequality follows from the definition of ω. In addition, since
(x, t) ∈ ∂pŨ is “near” Ub

h and (y, s) is a nearest mesh point to h, we have that
(y, s) is “near” Ub

h too. Precisely, there exists a point (z, r) ∈ Ub
h with

d((y, s), (z, r)) ≤ nh + d(Ũ ,Ub
h) ≤ chζ/2.

We use this estimate and the fact that vh is Hölder-continuous to bound the
difference between vh(y, s) and vh(z, t) and obtain,

vh(y, s) ≥ vh(z, t) − ch
ζη
2 .

Using this to bound the right-hand side of (73), we find,

v−(x, t) ≥ vh(z, r) − ch
ζη
2 .

Using the previous estimate and the fact that u is also Hölder continuous and
d(Ũ ,Ub

h) ≤ c0h
ζ/2, we obtain

u(x, t) − v(x, t) ≤ u(z, r) − vh(z, r) + ch
ζη
2 ≤ sup

Ub
h

(u − vh) + c3h
ζη
2 ,

where the second inequality follows since (z, r) ∈ Ub
h. Since this holds for any

(x, t) ∈ ∂pŨ , we find that (72) holds as well. The assumption (69) says that
the first term on the right-hand side of (72) is non-positive. The estimate (72)
therefore becomes,

sup
∂pŨ

(u − v−) ≤ c3h
ζη
2 . (74)
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Using (74) to bound the right-hand side of (71) and taking c̄ = c1 + c2 + c3

and ᾱ = min{α̃, ζη
2 } completes the proof the theorem. �

Appendix A.

A.1. Proof of Proposition 2.12

We outline the proof Proposition 2.12, which is a slight modification of part of
the proof of the parabolic version of the ABP estimate in [14, Section 4.1.2].
We assume ρ = 1; the general case follows by rescaling.

As in [14, Section 4.1.2], we define the function GΓ : Y −
2 → R

n+1 by

GΓ(x, t) = (Γ(x, t) − x · DΓ(x, t),DΓ(x, t)).

Proposition 2.12 follows from the following three lemmas.

Lemma A.1. Suppose u is as in Proposition 2.12. Let M denote supY −
1

u−.
Then,

{(h, ξ) ∈ R
n+1 : |ξ| ≤ M

2
≤ −h ≤ M} ⊂ GΓ(Y −

1 ∩ {u = Γ}).

Lemma A.2. If Γ is C1,1 with respect to x and Lipschitz with respect to t, then
GΓ is Lipschitz in (x, t) and, for almost every (x, t) ∈ Y −

1 ,

det Dx,tGΓ = ∂tΓ det D2Γ.

Lemma A.3. Suppose u is as in Proposition 2.12. Then Γ is C1,1 with respect
to x and Lipschitz in t.

Lemma A.1 is very similar to [14, Lemma 4.13]—the latter is stated for u
a supersolution of ut − M−(D2u) ≥ f(x) in Y −

1 . However, it is easy to verify
that the proof of [14, Lemma 4.13] holds for a general continuous function u,
not only for supersolutions. Lemma A.2 is exactly [14, Lemma 4.4]. The proof
of Lemma A.3 is very similar to that of Lemma [14, Lemma 4.11], which states
that if u is a supersolution of ut − M−(D2u) ≥ f(x), then Γ is C1,1 in x and
Lipschitz in t. We explain the modifications needed to obtain Lemma A.3:

Proof of Lemma A.3. As in the proof of Lemma [14, Lemma 4.11], it will suf-
fice to show that there exists a constant K such that for all (x, t) ∈ Y −

1 , the
following holds:⎧⎨

⎩
ifP (y, s) = c + αt + p · x + x · XxT satisfies P (x, t) = Γ(x, t) and
P (y, s) ≤ Γ(y, s) for all (y, s) in a neighborhood of (x, t),
then α ≥ −K and X ≤ KI.

(75)

In the proof of [14, Lemma 4.11], the assumption that u is a supersolution
of ut − M−(D2u) ≥ f(x) is used only to show that (75) holds for (x, t) ∈
{u = Γ}. Thus, we need to verify (75) for such points. To this end, assume
(x, t) ∈ {u = Γ} and P (y, s) = c+αt+p ·x+x ·XxT satisfies P (x, t) = Γ(x, t)
and P (y, s) ≤ Γ(y, s) for all (y, s) in a neighborhood of (x, t). Since Γ is the
lower monotone envelope of min(u, 0) and (x, t) ∈ {u = Γ}, we have
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P (x, t) = u(x, t) and P (y, s) ≤ u(y, s) for all (y, s) in a neighborhood of (x, t).
(76)

Since we have D2u(x, t) ≤ KI in the sense of distributions, there exists a
paraboloid Q(x) of opening K that touches u(·, t) from above at x. Together
with (76), this implies that Q touches P (·, t) from above at x. Therefore,
X ≤ KI. In addition, (76) implies

|Pt(x, t)| ≤ [u]C0,1
t (Y −

1 ).

Since [u]C0,1
t (Y −

1 ) ≤ K, we obtain α = Pt(x, t) ≥ −K. Thus we’ve verified (75)
and the proof of the lemma is complete. �

Proof of Proposition 2.12. Lemma A.1, Lemma A.2 and the Area Formula [13,
Chapter 3], which applies to GΓ because of Lemma A.3, imply

CMn+1 = |{(h, ξ) ∈ R
n+1 : |ξ| ≤ M

2
≤ −h ≤ M}|

≤ |GΓ(Y −
1 ∩ {u = Γ})|

≤
∫

Y −
1 ∩{u=Γ}

|det Dx,tGΓ|

≤
∫

Y −
1 ∩{u=Γ}

−∂tΓ det D2Γ. (77)

Because Γ is non-increasing in t and convex in x, the Alexandroff theorem for
functions depending on x and t (see Krylov [17, Appendix 2]) implies that
there exists A ⊂ Y −

1 with |Y −
1 \ A| = 0 such that for every (x, t) ∈ A,

|Γ(y, s) − Γ(x, t) − DΓ(x, t) · (y − x) − (y − x) · D2Γ(x, t)(y − x)T

− ∂tΓ(x, t)(s − t)| ≤ o(|x − y|2 + |t − s|)
(in other words, Γ is twice differentiable almost everywhere on Y −

1 ). We claim

if (x, t) ∈ A ∩ {u = Γ}, then − ∂tΓ(x, t) det D2Γ(x, t) ≤ Kn+1. (78)

Let us fix (x, t) ∈ A ∩ {u = Γ}. We have

u(x, t) = Γ(x, t) and u(y, s) ≥ Γ(y, s) for all (y, s) in a neighborhood of (x, t).(79)

Since we have D2u(x, t) ≤ KI in the sense of distributions, we find that there
exists a paraboloid Q(x) of opening K that touches u(·, t) from above at x.
Therefore, Q touches Γ(·, t) from above at x. Thus, D2Γ(x, t) ≤ KI. Since Γ
is convex in x, we obtain D2Γ(x, t) ≥ 0. Therefore,

0 ≤ det D2Γ ≤ Kn.

In addition, (79) implies

|∂tΓ(x, t)| ≤ [u]C0,1
t (Y −

1 ).

Since [u]C0,1
t (Y −

1 ) ≤ K, we obtain ∂tΓ(x, t) ≥ −K. Since Γ is non-increasing in
t, we have ∂tΓ(x, t) ≤ 0. Together with the estimate on det D2Γ, this implies
that (78) holds. The bound (3) follows by using (78) to bound the right-hand
side of (77), recalling the definition of M = supY −

1
u−, and rearranging. �
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A.2. Inf and sup convolutions

In the following proposition we state the facts about inf- and sup- convolutions
that are used in this paper. Their proofs are very similar to those in the elliptic
case (see [9, Propositions 5.3 and 5.5] and [7, Lemma 5.2]) and we omit them.

Proposition A.4. Assume v ∈ C(Ω × (0, T )). Then:
(1) We have v−

θ,θ(x, t) ≤ v(x, t) ≤ v+
θ,θ(x, t) for all (x, t) ∈ Ω × (0, T ).

(2) If v ∈ C0,η(Ω × (0, T )), then for any (x, t) ∈ Uθ,δ,

v+
θ,θ(x, t)−[v]

2
2−η

C0,η(Ω×(0,T ))(2θ)
η

2−η ≤ v(x, t)≤v−
θ,θ(x, t) + [v]

2
2−η

C0,η(Ω×(0,T ))(2θ)
η

2−η .

(3) In the sense of distributions, D2v−
θ,θ(x, t) ≤ θ−1I and D2v+

θ,θ(x, t) ≥
−θ−1I for every (x, t) ∈ Uθ,δ.

(4) We have [v±
θ,θ]C0,1

t (Ω×(0,T )) ≤ 3Tθ−1.
(5) If v is a δ-supersolution of vt − F (D2v) = 0 in Ω × (0, T ), then v−

θ,θ is
a δ-supersolution of vt − F (D2v) = 0 in Uθ,δ. If v is a δ-subsolution of
vt−F (D2v) = 0 in Ω×(0, T ), then v+

θ,θ is a δ-subsolution of vt−F (D2v) =
0 in Uθ,δ.

A.3. Inf and sup convolutions of mesh functions

In the following proposition we summarize the facts that we need about inf
and sup convolutions of mesh functions.

Proposition A.5. Let us take θ > 0 and v ∈ C0,η(Uh). Then:
(1) If (x∗, t∗) is a point at which the infimum (resp. supremum) is achieved

in the definition of v−
θ,θ(x, t) (resp. v+

θ,θ(x, t)), then

de((x∗, t∗), (x, t)) ≤ ω(h, θ).

In particular, if (x, t) ∈ Uh
θ then (x∗, t∗) ∈ U i

h.
(2) We have v−

θ,θ(x, t) ≤ v(x, t) ≤ v+
θ,θ(x, t) for all (x, t) ∈ Uh.

(3) Assume (x, t) ∈ Ω × (0, T ) and (y, s) ∈ Uh is a closest mesh point to
(x, t). Then

v+
θ,θ(x, t) − ||v||C0,η(Uh)ω(h, θ)η ≤ v(x, t) ≤ v−

θ,θ(x, t) + ||v||C0,η(Uh)ω(h, θ)η.

(4) In the sense of distributions, D2v−
θ,θ(x, t) ≤ θ−1I and D2v+

θ,θ(x, t) ≥
−θ−1I for every (x, t) ∈ Uh

θ .
(5) We have [v±

θ,θ]C0,1
t (Ω×(0,T )) ≤ 3Tθ−1.

(6) If (x, t) ∈ Uh
θ is such that Y −

Nh(x, t) ⊂ Uh
θ and (x∗, t∗) is a point at which

the infimum (resp. supremum) is achieved in the definition of v−
θ,θ(x, t)

(resp. v+
θ,θ(x, t)), then

δ−
τ v−

θ,θ(x, t) ≥ δ−
τ v(x∗, t∗) and δ2

yv−
θ,θ(x, t) ≤ δ2

yv(x∗, t∗)

(resp. δ−
τ v+

θ,θ(x, t) ≤ δ−
τ v(x∗, t∗) and δ2

yv+
θ,θ(x, t) ≥ δ2

yv(x∗, t∗)).

The proofs of items (1)-(5) are very similar to the elliptic case (see Propo-
sition 2.3 of [8] and [7, Lemma 5.2]) so we omit them. We provide the proof of
item (6).
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Proof of item (6) of Proposition A.5. We will give the proof of the first
inequality; the proofs of the others are analogous. By the definition of the
discrete operator δ−

τ and the definition of (x∗, t∗), we have

δ−
τ v−

θ,θ(x, t) =
1
h

(
v−

θ,θ(x, t) − v−
θ,θ(x, t − h2)

)

=
1
h

(
v(x∗, t∗) +

|x − x∗|2
2θ

+
|t − t∗|2

2θ
− v−

θ,θ(x, t − h2)
)

.

We now estimate v−
θ,θ(x, t − h2) from above. Since (x, t) ∈ Uh

θ , item (1) of this
proposition implies (x∗, t∗) ∈ U i

h. In addition, since we have Y −
Nh(x, t) ⊂ Uh

θ ,
we find (x∗, t∗ −h2) ∈ Uh. Therefore, we may use (x∗, t∗ −h2) as a “test point”
in the definition of v−

θ,θ(x, t − h2) and obtain,

δ−
τ v−

θ,θ(x, t) ≥ 1
h

(
v(x∗, t∗) +

|x − x∗|2
2θ

+
|t − t∗|2

2θ

− v(x∗, t∗ − h2) − |x − x∗|2
2θ

− |t − t∗|2
2θ

)

= δ−
τ v(x∗, t∗),

where the equality follows from the definition of the operator δ−
τ . �
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