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1. Introduction. Statement of the main result

We work on the existence of strong solutions for the incompressible fluid with
shear thickening viscosity, especially, Ostwald-de Waele model (refer to [3]).
Ladyzhenskaya first worked on such a flow in [14].

Let Ω ⊂ R
3 be the whole space Ω = R

3, or the periodic domain Ω ≡
[0, 1]3. Let 0 < T < +∞. Set QT := Ω × (0, T ). We consider a non-Newtonian
incompressible fluid which is governed by the following system of PDE’s

div u = 0 in QT , (1.1)

ut + (u · ∇)u − div σ = f − ∇p in QT . (1.2)

Here, u = (u1, u2, u3)� denotes the unknown velocity of the fluid and p
the pressure. Furthermore, f = (f1, f2, f3) denotes a given external force. In
addition, in the second equation σ = (σij) denotes the deviatoric stress which
is defined by

σij = Sij(D(u)) (i, j = 1, 2, 3), D(u) =
1
2
(∇u + (∇u)�).
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Technology (2009-0088692),and by World Class University project (R31-2009-000-20007-0).
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We impose the following condition on S = (Sij) which is often called the
deviatoric stress tensor.

Sij = Sji, (symmetric) (1.3)

|Sij(ξ)| ≤ c1|ξ|q−1, i, j = 1, 2, 3, (growth) (1.4)

ν0|ξ|q−2|η|2 ≤ ∂Sij

∂ξkl
(ξ)ηklηij ≤ ν1|ξ|q−2|η|2, (coercivity) (1.5)

∃H : M3
sym → R : Sij(ξ) =

∂H

∂ξij
(ξ),

ν2|ξ|q ≤ H(ξ) ≤ ν3|ξ|q (potential) (1.6)

for all ξ, η ∈ M3
sym, where M3

sym stands for the vector space of all symmetric
3 × 3 matrices.

We complete the system (1.1)–(1.2) with the initial condition

u = u0 on Ω × {0}, (1.7)

and with the space periodic boundary condition when Ω = [0, 1]3. When the
periodic boundary condition is considered, we assume that the initial data and
the external force have average zeros, so that the velocity is also average zero.

The existence of weak solutions is shown in [14,15] with the periodic
boundary condition, and in [18] in the whole space. Only recently, the exis-
tence of weak solutions with the Dirichlet boundary condition is shown in
[10,21]. The existence of strong solutions is shown in [14] for q ≥ 11

5 with the
periodic boundary condition. The strong solution is obtained for q ≥ 9

4 when
the Laplacian term is added to σ or S in [16]. For 7

5 < q < 2, the short time
existence results of strong solutions with the periodic boundary condition are
obtained in [6,9]. For q = 2, the result is well known.

In this article, we have three directions. The first one is to show the short
time existence of strong solutions in case of shear thickening fluids q > 2. The
second one is to obtain a Serrin type regularity criterion, and the last one is
to obtain the Hausdorff dimension of the time singular set.

Serrin type regularity criteria for the Navier-Stokes flow (q = 2) have
been studied by many researchers, for example, [11,19,20]. Later, the two
component regularity criterion was studied in [7] for the vorticity. The two
component regularity for the velocity was done in [1] in 1997, which was pub-
lishded in [2], and the one component regularity criterion in [17]. And there
are more results in similar directions [5,8,12,13,22], etc. For non-Newtonian
fluids, such a regularity criterion is studied in [4] for shear thinning fluid.

Definition 1.1. Let u0 ∈ L2
σ(Ω) and let f ∈ Lq′

(0, T ;W−1, q′
(Ω)). We call

u ∈ L∞(0, T ;L2
σ(Ω)) ∩ Lq(0, T ;W1, q

0,σ (Ω)) a weak solution of (1.1)–(1.7) with
bounded energy, if
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∫
QT

−u · ϕtdxdt −
∫

QT

u ⊗ u : ∇ϕdxdt +
∫

QT

S(D(u)) : D(ϕ)dxdt

=
∫ T

0

〈f(t), ϕ(t)〉dt +
∫

Ω

u0 · ϕ(0)dx (1.8)

for all ϕ ∈ C∞(Q) with supp(ϕ) ⊂ Ω × [0, T ) and divx ϕ = 0, and there holds
the following energy inequality

1
2
‖u(t)‖2

2 +
∫ t

0

∫
Ω

σ : D(u)dxdτ ≤ 1
2
‖u0‖2

2 +
∫ t

0

∫
Ω

〈f(τ),u(τ)〉dτ (1.9)

for almost all t ∈ (0, T ).

In the above, q′ means the Hölder conjugate of q.

Definition 1.2. Let u0 ∈ W1, 2(Ω). We say that a weak solution u : QT → R
3

is a strong solution to (1.1)–(1.7) if

∇u ∈ L3(QT ) ∩ L∞(0, T ;Lq ∩ L2(Ω)),

ut ∈ L2(QT ), σ ∈ Lq′
(0, T ;W1, q′

loc (Ω)),

and there holds ∫
QT

|D(u)|q−2|∇D(u)|2dxdt < +∞. (1.10)

The aim of the present paper is to prove the short time existence of a
strong solution to the system (1.1)–(1.7) in the following sense:

Theorem 1.3. Assume q > 2. Let Ω be a periodic domain or the whole space.
Let u0 ∈ W1, 2(Ω) be divergence free, ∇u0 ∈ Lq(Ω), f ∈ L2(0, T ;L2(Ω)) and
∇f ∈ L3/2(0, T ;L3/2(Ω)). We also assume that u0 and f have average zero
when Ω is a periodic domain. Then there exists T0 with 0 < T0 ≤ T such that
a weak solution u to (1.1)−(1.7) becomes strong in the cylinder QT0 .

The proof is provided in Sect. 2.
The second and the third main results concern the regularity issue of

weak solutions, which are provided in Theorems 1.4 and 1.5. If we consider the
scaling invariance for the Eq. (1.2), the following scaling property of solutions
is satisfied:

uλ(x, t) = λu
(
λ

3−q
q−1 x, λ

2
q−1 t

)
, pλ(x, t) = λ2p

(
λ

3−q
q−1 x, λ

2
q−1 t

)
.

Therefore, a Serrin’s type condition for the gradient ∇u is given as

∇u ∈ Lβ, α
t, x ≡ Lβ(0, T ;Lα(Ω)), where

3(3 − q)
α

+
2
β

= 2.

In the next theorem, we show that weak solutions become strong if the above
condition is additionally assumed.
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Theorem 1.4. Let 2 < q < 11/5. Suppose that u is a weak solution to (1.2) in
QT . Assume further that ∇u ∈ Lβ, α

t, x (QT ) with 3(3−q)
α + 2

β ≤ 2 and α > 3(3−q)
2 .

Then u is a strong solution to (1.2) in QT .
For α = 3(3−q)

2 , for the regularity we need the smallness of the norm as
usual.

We estimate the Hausdorff dimension of the set of singular times.

Theorem 1.5. Let 2 < q < 11/5. Let Ω be a periodic domain [0, 1]3 and
u be a weak solution to (1.1)–(1.7). Assume f ∈ Lq′

(0, T ;W 1,q′
(Ω)). Then

there exists a closed set S ⊂ [0, T ], whose 2(11−5q)
22−15q+3q2 -dimensional Hausdorff

measure vanishes, such that u is continuous from [0, T ] \ S into V.

Remark 1.6. (1) In [4], the Serrin type regularity condition and the Haus-
dorff dimensions of the set of the time singularity were obtained. More
explicitly, the regularity condition for u is u ∈ Lβ,α

t,x (QT ), where

6
α

+
5q − 6

β
≤ 5q − 8 for

8
5

< q < 2,

and the Hausdorff dimension of the time singularity was 12−5q
5q−6 in [4].

(2) In [3] for 2 < q < 11/5 the Hausdorff dimension of the time singular set
was obtained as in Theorem 1.5, but for the proof the time independence
of f was assumed, which should be fixed as we did in the proof of Theorem
1.5 in Sect. 3.

2. Short time existence of strong solutions

In this section we prove Theorem 1.3. To do that, we first consider an approx-
imate system, and then, estimate the gradient of velocity.

2.1. Approximate solutions

In order to solve system (1.1)–(1.7) we proceed as in [10,21]. For given ε > 0
we define

Φε(τ) = Φ1(ετ), τ ∈ R,

where Φ1 ∈ C∞(R) denotes a cut-off function, such that 0 ≤ Φ1 ≤ 1 and
−2 ≤ Φ′

1 ≤ 0 in R, Φ1 ≡ 1 on (−∞, 1], Φ1 ≡ 0 in (2,+∞).
We use the notations ‖u‖β,α;QT

=
( ∫ T

0

( ∫
Ω

|u|αdx
)β/α

dt
)1/β , and

‖u‖α;QT
= ‖u‖α,α;QT

.
By using the well-known monotone operator theory together with

Banach’s fixed point theorem one gets a weak solution uε with
∂uε

∂t
∈ L2(QT )

to the following approximate system

div uε = 0,

uε,t + (uεΦε(|uε|) · ∇)uε − div σε = −∇pε + f
in QT , (2.1)
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together with initial condition (1.7), and also with the periodic boundary con-
dition when Ω = [0, 1]3. Here,

σε = εD(uε) + S(D(uε)) a. e. in QT .

Taking into account (1.4) and (1.5) together with Korn’s inequality we obtain
the a priori estimate

‖uε‖2
L∞(0,T ;L2) + ‖∇uε‖q

q ≤ c‖u0‖2
2 + c‖f‖2

2. (2.2)

By means of reflexivity and a standard compactness argument we can choose
a sequence (εm) such that εm → 0 and

uεm
⇀ u in Lq(0, T ;W1, q(Ω)), (2.3)

uεm

∗
⇀ u in L∞(0, T ;L2(Ω)), (2.4)

uεm
→ u in L2(QT ). (2.5)

As it has been proved in [16,21], u is a weak solution to (1.1)–(1.7) with
bounded energy.

(2). In view of (1.6) we have
∫

Qt

S(D(uε)) : D(uε,t)dxdτ =
∫

Qt

∂H

∂ξij
(D(uε))Dij(uε,t)dxdτ

=
∫ t

0

d

dt

∫
Ω

H(D(uε))dxdτ

=
∫

Ω

H(D(uε(t)))dx −
∫

Ω

H(D(u0))dx.

Once more making use of (1.6) this shows that1

‖uε,t‖2
2;QT ′ + ‖∇uε‖q

L∞(0,T ′;Lq(Ω))

≤ c‖∇u0‖q
q + c‖(uεΦε(|uε|) · ∇)uε‖2

2;QT ′ + ‖f‖2
2;QT ′

≤ cK2 + c

∫
QT ′

|uε|2|∇uε|2dxdt, (2.6)

where

K = ‖∇u0‖q/2
q + ‖∇u0‖2 + ‖f‖2;QT ′ .

for every 0 < T ′ ≤ T .
Since for q ≥ 11

5 , the regularity of solutions are known, we restrict the
case 2 < q < 11

5 .

1 Remark, by the definition of Φε we have uεΦε(|uε|) ≤ 2
ε
. Hence, owing to ∇uε ∈ Lq(QT )

there holds (uεΦε(|uε|) · ∇)uε ∈ L2(QT ).
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Lemma 2.1. Let uε be a solution to the approximate system. Then there holds

‖uε,t‖2
2;QT ′ + ‖∇uε‖q

∞,q;QT ′ +
∥∥∥|uε||∇uε|

∥∥∥2

2;QT ′

≤ c

(
K2 + K4qρ (T ′)(7q−12)υ‖∇u‖3q(4−q)υ

q,3q;QT ′

)
, (2.7)

where ρ = 7q−12
(5q+12)(q−2) and υ = 5q−6

(5q+12)(q−2) .

Proof. For the sake of notational simplicity we omit the subscript ε and write
u instead of uε.

Using Cauchy-Schwarz’s inequality, we get∫
QT ′

|u|2|∇u|2dxdt ≤ ‖u‖2
∞,4;QT ′ ‖∇u‖2

2,4;QT ′ .

With help of Hölder’s inequality along with Sobolev’s embedding theorem we
find

‖u(t)‖2
4;Ω ≤ c‖u(t)‖

7q−12
5q−6

2;Ω ‖∇u(t)‖
3q

5q−6
q;Ω a.e. t ∈ (0, T ).

Thus, the former inequality with the aid of the latter inequality implies∫
QT ′

|u|2|∇u|2dxdt ≤ c‖u‖
7q−12
5q−6

∞,2;QT
‖∇u‖

3q
5q−6
∞,q;QT ′ ‖∇u‖2

2,4;QT ′ .

Then, estimating the right hand side by the aid of (2.2) and (2.6) we get∫
QT ′

|u|2|∇u|2dxdt ≤ cK 7q−12
5q−6

(
K2 +

∫
|u|2|∇u|2

) 3
5q−6 ‖∇u‖2

2,4;QT ′ ,

so, using Young’s inequality we get∫
QT ′

|u|2|∇u|2dxdt ≤ c
(
K2 + K 7q−12

5q−9 ‖∇u‖
10q−12
5q−9

2,4;QT ′

)
. (2.8)

For convenience, we denote

μ =
7q − 12
5q − 9

, η =
5q − 6
5q − 9

.

Let θ ∈ (0, 1) and s ∈ (1, 2) such that

1 − θ

q
+

θ

3q
=

1
4
,

1 − θ

s
+

θ

q
=

1
2
.

Clearly,

θ =
12 − 3q

8
, 1 − θ =

3q − 4
8

, s =
q(3q − 4)
7q − 12

.

By means of Hölder’s inequality we get

‖∇u‖2,4;QT ′ ≤ ‖∇u‖1−θ
s,q;QT ′ ‖∇u‖θ

q,3q;QT ′ ≤ (T ′)
1−θ

s ‖∇u‖1−θ
∞,q;QT ′ ‖∇u‖θ

q,3q;QT ′ .

In view of 1−θ
s = 1

2 − θ
q = 7q−12

8q we see that

‖∇u‖2,4;QT ′ ≤ (T ′)
7q−12

8q ‖∇u‖
3q−4

8
∞,q;QT ′ ‖∇u‖

12−3q
8

q,3q;QT ′ .
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Inserting this inequality into (2.8) we get
∫

QT ′
|u|2|∇u|2dxdt ≤ c

(
K2 + Kμ (T ′)

μ(5q−6)
4q ‖∇u‖

η(3q−4)
4

∞,q;QT ′ ‖∇u‖
η(12−3q)

4
q,3q;QT ′

)
.

By using (2.6) and Young’s inequality we are led to
∫

QT ′
|u|2|∇u|2dxdt

≤ c

(
K2 + Kμ (T ′)

μ(5q−6)
4q

[
K2 +

∥∥|u| |∇u|∥∥2

2;QT ′

] η(3q−4)
4q

]
‖∇u‖

η(12−3q)
4

q,3q;QT ′

)

≤ c

(
K2 + K 4q(7q−12)

(5q+12)(q−2) (T ′)
(7q−12)(5q−6)
(5q+12)(q−2) ‖∇u‖

q(12−3q)(5q−6)
(5q+12)(q−2)

q,3q;QT ′

)
+

1
2

∥∥|u| |∇u|∥∥2

2;QT ′
,

therefore,
∫

QT ′
|u|2|∇u|2dxdt ≤ c

(
K2+K 4q(7q−12)

(5q+12)(q−2) (T ′)
(7q−12)(5q−6)
(5q+12)(q−2) ‖∇u‖

q(12−3q)(5q−6)
(5q+12)(q−2)

q,3q;QT ′

)
.

Finally, (2.7) follows from the last inequality by using (2.2). �

2.2. Gradient estimates of stress of the approximate solution

The aim of this section is to provide some important gradient estimates for
the stress σε = S(D(uε)), where uε denotes the solution of the approximate
system (2.1). In order to simplify notations throughout this section, instead of
uε, pε, σε, etc., we will write u, p, σ.

Since (u, p) is a weak solution to (2.1) and ut ∈ L2(QT ), we see that
(u, p) satisfies the following integral identity

∫ T ′

0

∫
Ω

ut · ϕdydt +
∫ T ′

0

∫
Ω

σ : Dϕdydt

= −
∫ T ′

0

∫
Ω

hε : ϕdydt +
∫ T ′

0

∫
Ω

p div ϕdydt +
∫ T ′

0

∫
Ω

f · ϕdydt

(2.9)

for all 0 < T ′ ≤ T and for all ϕ ∈ C∞(R,C∞
0 (R3)), or for all ϕ ∈ C∞(R4)

with the spatial periodic boundary condition if Ω = [0, 1]3, where

hε = ∇u · uΦε(|u|) a.e. in QT .

Let γ ∈ {1, 2, 3}. By eγ we denote the unit vector (1, 0, 0), (0, 1, 0), (0, 0, 1)
for γ = 1, 2, 3, respectively. Let Δhϕ denote the difference quotient

Δhϕ(y) =
ϕ(y + heγ) − ϕ(y)

h
, y ∈ R

3.
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Then, into (2.9) we inserting ϕ = −Δ−hΔhu, applying integration by parts
we get

1
2
‖Δhu(T ′)‖2

2;Ω +
∫

QT ′
Δhσ : ΔhDudydt

=
1
2
‖Δhu(0)‖2

2;Ω −
∫

QT ′
Δhhε : Δhudydt +

∫
QT ′

Δhf · Δhudydt. (2.10)

Estimating the right hand side of (2.10) we are led to∫
QT ′

Δhσ : ΔhDudydt ≤ 1
2
‖Δhu(0)ζ0‖2

2

+
∣∣∣∣
∫

QT ′
Δhhε : (Δhu)ζ2

0dydt

∣∣∣∣ +
∣∣∣∣
∫

QT ′
Δhf · Δhudydt

∣∣∣∣ (2.11)

We recall the product rules for the difference quotients.

Δh(fg) = Δhfg + f(· + heγ)Δhg,

Δ−h(fg) = Δ−hfg(· − heγ) + fΔ−hg, and

(Δ−hf)(· + heγ) = Δhf.

(2.12)

Now, by the fundamental theorem of calculus we calculate

Δhσ =
∫ 1

0

∂S
∂ξkl

(
D(u) + τhΔhD(u)

)
dτ ΔhDkl(u) a.e. in QT . (2.13)

Observing (1.5) we see that

Δhσ : ΔhD(u)

=
∫ 1

0

∂Sij

∂ξkl
(D(u) + τhΔhD(u))dτ ΔhDkl(u)ΔhDij(u)

≥ ν0

∫ 1

0

|(1 − τ)D(u) + τD(u(· + heγ))|q−2dτ |ΔhD(u)|2 + ε|ΔhD(u)|2

≥ 2−q−2ν0|D(u) + D(u(· + heγ))|q−2|ΔhD(u)|2 + ε|ΔhD(u)|2.
The inequality above together with (2.11) yields∫
QT ′

(
ε + |D(u) + D(u(· + heγ))|q−2

)|ΔhD(u)|2dydt

≤ c‖Δhu(0)‖2
2 + c

∣∣∣∣
∫

QT ′
Δhhε : Δhudydt

∣∣∣∣ + c

∣∣∣∣
∫

QT ′
Δhf · Δhudydt

∣∣∣∣.

(2.14)

On the other hand, from (2.13) along with (1.5) we estimate

|Δhσ| ≤ 2qν1

(
ε + |D(u) + D(u(· + heγ))|q−2

)
|ΔhD(u)| a. e. in QT .
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With help of Hölder’s inequality we find

‖Δhσ‖2
q′;QT ′ ≤ c

( ∫
QT ′

(
ε + |D(u)+D(u(·+heγ))|(q−2)

)q′

|ΔhD(u)|q′
dydt

) 2
q′

≤ K
2(q−2)

q
ε

∫
QT ′

(
ε + |D(u) + D(u(· + heγ))|q−2

)|ΔhD(u)|2dydt,

where

Kε = cε
q

q−2 + K.

Since Kε > 0 without loss of generality we may assume that ε
q

q−2 ≤ ‖u0‖2 ≤ K.
Therefore, in what follows we may replace Kε by K. Combining this inequality
with (2.14) and using Young’s inequality one obtains

‖Δhσ‖2
q′;QT ′ ≤ K 2(q−2)

q ‖∇u0‖2
2 + K 2(q−2)

q

∣∣∣∣
∫

QT ′
Δhhε : Δhudydt

∣∣∣∣
+ K 2(q−2)

q

∣∣∣∣
∫

QT ′
Δhf : Δhudydt

∣∣∣∣. (2.15)

In order to verify the regularity of hε we first mention that ∇u ∈
L∞(0, T ;Lq(Ω)) (owing to (2.6) and its related remark) and u ∈ L2(0, T ;W2, 2

(Ω)) along with Sobolev’s embedding theorem imply that ∇u ∈ L
6+2q

3 (QT ) ↪→
L3(QT ). In addition, using Hölder’s inequality we see that ∇u ∈ L6(0, T ;L

18q
12+q

(Ω)) ↪→ L6(0, T ;L2(Ω)). By means of Sobolev’s embedding theorem we get
u ∈ L6(QT ). This shows that

|∇hε| ≤ c|∇u|2 + c|u||D2u| ∈ L
3
2 (QT ).

Now, by means of reflexivity and Riesz–Fischer’s theorem we may pass to the
limit h → 0 on both sides of (2.14) and (2.15) to obtain

‖σyγ
‖2

q′;QT ′ ≤ K 2(q−2)
q

(
K2 +

∣∣∣∣
∫

QT ′
hε,yγ

: uyγ
dydt

∣∣∣∣ +
∣∣∣∣
∫

QT ′
fyγ

: uyγ
dydt

∣∣∣∣
)

,

(2.16)

and ∫
QT ′

|D(u)|q−2|(D(u))yγ
|2dydt ≤ K2 +

∣∣∣∣
∫

QT ′
hε,yγ

: uyγ
dydt

∣∣∣∣
+

∣∣∣∣
∫

QT ′
fyγ

· uyγ
dydt

∣∣∣∣. (2.17)

Finally, it remains to estimate the second integral on the right of (2.16)
and (2.17), respectively. For, we make use of the transformation formula of the
Lebesgue integral and get∫

QT ′
hε,yγ

: uyγ
dydt =

∫
QT ′

(
ui

xj
ujΦε(|u|)

)
xγ

ui
xγ

dxdt. (2.18)
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Calculating(
ui

xj
ujΦε(|u|)

)
xγ

= (ui
xγ

)xj
ujΦε(|u|) + ui

xj
(ujΦε(|u|))xγ

from (2.18) using integration by parts together with the transformation
formula of the Lebesgue integral we deduce∫

QT ′
hε,yγ

: uyγ
dydt = −1

2

∫
QT ′

|uyγ
|2uj

(
Φε(|u|))

yj
dydt

+
∫

QT ′
ui

yj
ui

yγ

(
ujΦε(|u|))

yγ
dydt.

From this identity and the inequality∣∣∣(ujΦε(|u|))yk

∣∣∣ ≤ c|∇u| a. e. in U+ × (0, T ),

we easily see that∣∣∣∣
∫ T ′

0

∫
Ω

hε,yγ
: uyγ

dydt

∣∣∣∣ ≤ c

∫
QT ′

|∇u|3dxdt + c

∫
QT ′

|∇u|2|u|dxdt

≤ c

∫
QT ′

|∇u|3dxdt + (T ′)
q−2
2q K 2

q

∥∥∥|u||∇u|
∥∥∥

2;QT ′
.

For the exterior force term,∣∣∣∣
∫

QT ′
fyγ

: uyγ
dydt

∣∣∣∣ ≤ c

∫
QT ′

|∇u|3dxdt + c

∫
QT ′

|∇f | 3
2 dxdt.

Inserting these estimates into (2.16) and (2.17) respectively we obtain

‖∇σ‖2
q′;QT ′ ≤ 2K 4(q−1)

q + c(T ′)
q−2

q

∫
QT ′

|u|2|∇u|2dxdt

+ K 2(q−2)
q

∫
QT ′

|∇u|3dxdt + K 2(q−2)
q ‖∇f‖ 3

2
3
2 ,QT ′

(2.19)

and∫
QT ′

|D(u)|q−2|∇D(u)|2dydt ≤ K2 + K 4
q + c(T ′)

q−2
q

∫
QT ′

|u|2|∇u|2dxdt

+ c

∫
QT ′

|∇u|3dxdt + ‖∇f‖ 3
2
3
2 ,QT ′

≡ M(T ′).

(2.20)

We use the following notations

J (T ′) ≡ ‖∇u‖q
q,3q:QT ′ ,

E(T ′) ≡ c
(K2 + ‖∇u‖q

∞,q;QT ′ +
∥∥|u| |∇u|∥∥2

2;QT ′

)
.

Clearly,∫ T ′

0

(∫
Ω

|Du|3qdy
) 1

3
dt ≤

∫
QT ′

∣∣∇|Du| q
2
∣∣2 ≤ q2

4

∫
QT ′

|D(u)|q−2|∇D(u)|2dydt.
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Thus, using Korn’s inequality and taking into account (2.20) get

J (T ′) ≤ cM(T ′).

Applying Hölder’s and Young’s inequalities one finds

‖∇u‖3
3;QT ′ ≤ (T ′)

5q−9
2q ‖∇u‖

3q−3
2

∞,q;QT ′ ‖∇u‖
9−3q

2
q,3q;QT ′

≤ (T ′)
5q−9
2q E(T ′)

3q−3
2q J (T ′)

9−3q
2q

≤ T ′E(T ′)
3q−3
5q−9 + δJ (T ′) (2.21)

for small number δ. Thus, we obtain

J (T ′) ≤ cM(T ′) ≤ (T ′)
q−2

q E(T ′) + T ′E(T ′)
3q−3
5q−9 + K2 + ‖∇f‖ 3

2
3
2 ,QT ′

. (2.22)

For simplicity, we use the notation K2
1 ≡ K2 + ‖∇f‖ 3

2
3
2 ,QT ′

.
According to Lemma 2.1 we deduce

E(T ′) ≤ c

(
K2 + K4qρ (T ′)(7q−12)υJ (T ′)3(4−q)υ

)
. (2.23)

Into the right of (2.23) inserting (2.22) we obtain

E(T ′) ≤ cK4qρ

(
(T ′)

2υ(2q2+3q−12)
q E(T ′)

−4(5q2−25q+24)
(5q+12)(q−2)

+ (T ′)4qυE(T ′)
2q(35q−52)(3−q)

(5q−9)(5q+12)(q−2)

)
E(T ′)

+ c

(
K

−2q2+108q−144
(5q+12)(q−2)

1 (T ′)(7q−12)υ + K2

)

≡ Ψ(T ′)E(T ′) + c

(
K

−2q2+108q−144
(5q+12)(q−2)

1 (T ′)(7q−12)υ + K2

)
.

Clearly, Ψ is an increasing and continuous function with Ψ(0) = 0. In
case Ψ(T ) ≤ 1

2 we put T∗ = T and there holds

E(T ) ≤ 2c

(
K

−2q2+108q−144
(5q+12)(q−2)

1 T (7q−12)υ + K2

)
≡ K2.

Otherwise, there exists T∗ ∈ (0, T ), such that

Ψ(T∗) =
1
2
.

Thus,

E(T∗) ≤ 2c

(
K

−2q2+108q−144
(5q+12)(q−2)

1 T
(7q−12)υ
∗ + K2

)
≤ K2.

In case T∗ ≤ 1, we have
1
2

= Ψ(T∗)

≤ cK4qρ T
2υ(2q2+3q−12)

q∗

(
K

−4(5q2−25q+24)
(5q+12)(q−2)

2 + K
2q(35q−52)(3−q)

(5q−9)(5q+12)(q−2)
2

)
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since
2υ(2q2 + 3q − 12)

q
≤ 4qυ.

This implies

T∗ ≥
[
2cK4qρ

(
K

−4(5q2−25q+24)
(5q+12)(q−2)

2 + K
2q(35q−52)(3−q)

(5q−9)(5q+12)(q−2)
2

)]− q(5q+12)(q−2)
2(5q−6)(2q2+3q−12)

.

(2.24)

On the contrary, if T∗ > 1 we get

T∗ ≥
[
2cK4qρ

(
K

−4(5q2−25q+24)
(5q+12)(q−2)

2 + K
2q(35q−52)(3−q)

(5q−9)(5q+12)(q−2)
2

)]− (5q+12)(q−2)
4q(5q−6)

. (2.25)

Thus, we have the following result.

Theorem 2.2. Let (uε,∇pε) be a solution to the approximate system (2.1).
Then

‖uε,t‖2;QT0
+ ‖∇uε‖∞,q;QT0

+ ‖∇uε‖q,3q;QT0
≤ cK2

for all 0 < ε < 1, where T0 is the minimum of (2.24) and (2.25). Furthermore,
we have from (2.19), (2.20) and (2.21) that

‖∇uε‖3;QT0
≤ cK2,∫

QT0

|D(uε)|q−2|∇D(u)|2dydt ≤ cK2,

‖∇σε‖q′;QT ′ ≤ cK2,

where c is independent of ε.

3. A regularity criteroin and time singularity

In this section, we first provide a regularity criterion like the Serrin condition
for the Navier-Stokes fluid, and then estimate the Hausdorff dimension of the
set of singular times.
Proof of Theorem 1.4. Like (2.10) taking ϕ = −Δ−hΔhu as a test function
and considering the divergence free property, we obtain

1
2

d

dt
‖Δhu‖2

2;Ω +
∫

Ω

Δhσ : ΔhDudy

= −
∫

Ω

((Δhu) · ∇u) · Δhudydt +
∫

Ω

Δhf · Δhudydt.

This yields
1
2

d

dt
‖Δhu‖2

2;Ω +
∫

Ω

|D(u) + D(u(· + heγ))|q−2|ΔhD(u)|2dy

≤
∫

Ω

|Δhu|2|∇u|dy +
∫

Ω

|Δhf | |Δhu|dy.
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On the other hand,

‖Δhσ‖2
q′;QT

≤ c

(∫
QT

|D(u) + D(u(· + heγ))|(q−2)q′ |ΔhD(u)|q′
dydt

) 2
q′

≤ c

(∫
QT

|D(u) + D(u(· + heγ))| (q−2)q′
2

2
2−q′ dydt

) 2
q′

2−q′
2

×
(∫

QT

|D(u) + D(u(· + heγ))|q−2|ΔhD(u)|2dydt

)

and

‖Δhσ‖2
q′;QT ′ ≤ K 2(q−2)

q ‖∇u0‖2
2 + K 2(q−2)

q

∣∣∣∣
∫

QT ′
Δhhε : Δhudydt

∣∣∣∣
+ K 2(q−2)

q

∣∣∣∣
∫

QT ′
Δhf : Δhudydt

∣∣∣∣. (3.1)

Now, passing to the limit, we obtain

d

dt
‖∇u‖2

2;Ω + 2
∫

Ω

|D(u)|q−2|∇D(u)|2dy ≤
∫

Ω

|∇u|3dy +
∫

Ω

|∇f | |∇u|dy,

and therefore, we have

d

dt
‖∇u‖2

2;Ω + 2
∫

Ω

|D(u)|3qdy ≤
∫

Ω

|∇u|3dy +
∫

Ω

|∇f | |∇u|dy.

On the other hand, we observe that

‖∇σ‖2
q′;QT

≤ K 2(q−2)
q

(
K2 +

∫
QT

|∇u|3dxdt + ‖∇f‖ 3
2
3
2 ,QT

)

and ∫
QT

|D(u)|q−2|∇D(u)|2dydt ≤ K2 + c

∫
QT

|∇u|3dxdt + ‖∇f‖ 3
2
3
2 ,QT

.

We use the following notations

J (T ) ≡ ‖∇u‖q
q,3q:QT

,

E(T ) ≡ c
(K2 + ‖∇u‖q

∞,q;QT
+

∥∥|u| |∇u|∥∥2

2;QT

)
.

By the Young and interpolation inequalities, we obtain

‖∇u‖3
3;Ω ≤ ‖∇u‖

6(α+q−3)
2α+3q−6
6(α+q−3)
2α+3q−7 ;Ω

‖∇u‖
3q

2α+3q−6
3q;Ω ≤ c‖∇u‖

6(α+q−3)
2α+3q−9
6(α+q−3)
2α+3q−7 ;Ω

+ ε‖∇u‖q
3q;Ω.

Using the interpolation inequality again, we have

‖∇u‖
6(α+q−3)
2α+3q−9
6(α+q−3)
2α+3q−7 ;Ω

≤ ‖∇u‖2
2;Ω‖∇u‖

2α
2α+3q−9
α;Ω .
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Thus, we obtain

J (T ) ≤ K2 + c

∫ T

0

‖∇u‖2
2;Ω‖∇u‖

2α
2α+3q−9
α;Ω dt + ‖∇f‖ 3

2
3
2 ,QT

≤ K2 + c sup
t

‖∇u‖2
2;Ω‖∇u‖Lβ,α

t,x (QT ) + ‖∇f‖ 3
2
3
2 ,QT

.

According to Lemma 2.1 we deduce

E(T ′) ≤ c

(
K2 + K4qρ (T ′)(7q−12)υJ (T ′)

(12−3q)(5q−6)
(5q+12)(q−2)

)
. (3.2)

Into the right of (3.2) inserting (2.22) we obtain

E(T ′) ≤ cK4qρ

(
(T ′)

2υ(2q2+3q−12)
q E(T ′)

−4(5q2−25q+24)
(5q+12)(q−2)

+ (T ′)4qυE(T ′)
2q(35q−52)(3−q)

(5q−9)(5q+12)(q−2)

)
E(T ′)

+ c

(
K

−2q2+108q−144
(5q+12)(q−2)

1 (T ′)(7q−12)υ + K2

)

≡ Ψ(T ′)E(T ′) + c

(
K

−2q2+108q−144
(5q+12)(q−2)

1 (T ′)(7q−12)υ + K2

)
.

Clearly, Ψ is an increasing and continuous function with Ψ(0) = 0. In
case Ψ(T ) ≤ 1

2 we put T∗ = T and there holds

E(T ) ≤ 2c

(
K

−2q2+108q−144
(5q+12)(q−2)

1 T (7q−12)υ + K2

)
≡ K2.

This estimate implies via following similar methods of Theorem 2.2 that u is
a strong solution to (1.2). We complete the proof.

We now estimate the Hausdorff dimension of the set of singular times.
The argument is similar to Theorem 4.2 in [3]. In [3] the exterior force term f
is independent of time t, but with this assumption there was a little error in
the proof, which can be fixed easily if we add the dependency of f on time t.
For the reader’s convenience, we present the whole estimates for the proof.
Proof of Theorem 1.5. We note that∫

Ω

|∇u|3dx =
∫

Ω

|∇u|(3−q)+ q(3q−5)
4 + 3q(3−q)

4 dx

≤
(∫

Ω

|∇u|2dx

) 3−q
2

(∫
Ω

|∇u|qdx

) 3q−5
4

(∫
Ω

|∇u|3qdx

) 3−q
4

≤ C

ε

(∫
Ω

|∇u|2dx

) 6−2q
3q−5

∫
Ω

|∇u|qdx + ε

(∫
Ω

|∇u|3qdx

) 1
3

.

Set

A ≡ 1 + ‖∇u‖2
2.
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Considering the inner product of (1.2) with

−Δ−hΔhu

A
6−2q
3q−5

,

using the difference quotient method as in the process obtaining (3.1) and
taking ε small, we have

3q − 5
2(5q − 11)

d

dt
A

5q−11
3q−5 +

C

A
6−2q
3q−5

∫
Ω

|D(u)|q−2|∇D(u)|2dx

≤ C

∫
Ω

|∇u|qdx +
C

A
6−2q
3q−5

∫
Ω

|∇f |q′
dx.

and
3q − 5

2(5q − 11)
d

dt
A

5q−11
3q−5 ≤ C

∫
Ω

|∇u|qdx +
C

A
6−2q
3q−5

∫
Ω

|∇f |q′
dx.

Let S be a singular time. Integrating from s to S, we obtain

3q − 5
2(11 − 5q)

[
A

5q−11
3q−5 (s) − A

5q−11
3q−5 (S)

]
≤ C

∫ S

s

∫
Ω

|∇u|qdxdt

+C

∫ S

s

∫
Ω

|∇f |q′
dxdt.

Since S is a singular time, with the aid of Theorem1.4, we note that∫
Ω

|∇u|2(S)dx = ∞,

and therefore, A
5q−11
3q−5 (S) = 0. Hence we have

3q − 5
2(11 − 5q)

(∫
Ω

|∇u(s)|2dx

) 5q−11
3q−5

≤ C

∫ S

s

∫
Ω

|∇u|qdxdt

+C

∫ S

s

∫
Ω

|∇f |q′
dxdt.

By Hölder’s inequality, we have
(∫

Ω

|∇u(s)|qdx

) 2(5q−11)
q(3q−5)

≤ C

∫ S

s

∫
Ω

|∇u|qdxdt + C

∫ S

s

∫
Ω

|∇f |q′
dxdt.

Setting

U(s) ≡
∫ S

s

∫
Ω

|∇u(τ)|qdxdτ,

and

F (s) ≡
∫ S

s

∫
Ω

|∇f(τ)|q′
dxdτ,

we have ∫
Ω

|∇u(t)|qdx = −U ′(t),
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and ∫
Ω

|∇f(t)|q′
dx = −F ′(t).

Thus, we obtain

(−U ′(t))
2(5q−11)
q(3q−5) ≤ CU(t) + CF (t),

and

(−U ′(t))
2(11−5q)
q(3q−5) ≥ C

U(t) + F (t)
.

Therefore, we have

−U ′(t)(U(t) + F (t))
q(3q−5)
2(11−5q) ≥ C.

Since −F ′(t) ≥ 0, we have
( − U ′(t) − F ′(t)

)(
U(t) + F (t)

) q(3q−5)
2(11−5q) ≥ C,

and
(
U ′(t) + F ′(t)

)(
U(t) + F (t)

) q(3q−5)
2(11−5q) ≤ −C.

Integrating from s to S, we have

(U(S) + F (S))
22−15q+3q2

2(11−5q) − (U(s) + F (s))
22−15q+3q2

2(11−5q) ≤ −C(S − s).

Since U(S) = F (S) = 0, we have

∫ S

s

∫
Ω

|∇u|qdxdt +
∫ S

s

∫
Ω

|∇f |q′
dxdt ≥ C(S − s)

2(11−5q)
22−15q+3q2 . (3.3)

Let

O ≡
{

t :
∫

Ω

|∇u|2dx < ∞
}

,

then O is right open. So O is the countable union of semi-open intervals, say,

O =
⋃

[ai, bi).

In particular, we set the open set

O1 =
⋃

(ai, bi),

then S ≡ [0, T ] \ O1 is closed and has Lebesgue measure zero. Let t ∈ (ai, bi).
Since we have local existence of the strong solution, we obtain

∑
(bi − ai)

2(11−5q)
22−15q+3q2 ≤ C

∫ T

0

∫
Ω

|∇u|qdxdt + C

∫ T

0

∫
Ω

|∇f |q′
dxdt < ∞.

For every ε > 0, we can choose a finite part Iε of I satisfying
∑
i/∈Iε

(bi − ai) ≤ ε,
∑
i/∈Iε

(bi − ai)
2(11−5q)

22−15q+3q2 ≤ ε.
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The set [0, T ] \ ⋃
i∈Iε

(ai, bi)is the union of finite number of mutually disjoint
closed intervals Bj , j = 1, 2, .., N . It is clear that

⋃N
j=1 Bj ⊃ S. Since (ai, bi)

are mutually disjoint, (ai, bi) is contained in one and only one interval Bi. We
denote Ij the set of i’s satisfying Bj ⊃ (ai, bi). It is clear that

Bj =

⎛
⎝ ⋃

i∈Ij

(ai, bi)

⎞
⎠ ⋃

(Bj ∩ S) , for all j.

Hence we have

diam Bj =
∑

(bi − ai) ≤ ε,

and
(

dH
2(11−5q)

22−15q+3q2

)
(S) ≤

N∑
j=1

(diam Bj)
2(11−5q)

22−15q+3q2

≤
N∑

j=1

⎛
⎝∑

i∈Ij

(bi − ai)

⎞
⎠

2(11−5q)
22−15q+3q2

≤
∑
i/∈Iε

(bi − ai)
2(11−5q)

22−15q+3q2 ≤ ε,

where dHk is the k-dimensional Hausdorff measure. Since ε is chosen arbitrary,
we complete the proof.
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