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Abstract. In this paper, we deal with the following sublinear elliptic sys-
tem: {

−Δu+ u+ |∇u|2 = a(x)|v|p + f, x ∈ R
N ,

−Δv + v + |∇v|2 = b(x)|u|q + g, x ∈ R
N ,

where 0 < p < 1 and 0 < q < 1. Under suitable assumptions on the terms
a, b, f and g and by using the Schauder fixed point theorem, we obtain
a solution for an approximated system. The limit of the approximated
solutions is a nonnegative solution.
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1. Introduction

In this paper, we are concerned with the existence of solutions of the following
system: {

−Δu+ u+ |∇u|2 = a(x)|v|p + f, x ∈ R
N ,

−Δv + v + |∇v|2 = b(x)|u|q + g, x ∈ R
N ,

(1.1)

Our main hypotheses are cited below:
(H1) 0 < p < 1, 0 < q < 1, N > 2.
(H2) a(x) , b(x) ≥ 0, a.e. in R

N , a ∈ Lr(RN ) ∩ L∞(RN ), b ∈ Ls(RN ) ∩
L∞(RN ),

where r =
2

1 − p
and s =

2
1 − q

.

(H3) We suppose also that f, g ≥ 0, f, g �= 0 and f, g ∈ L2(RN ) ∩
L∞(RN ).
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The study of semilinear systems in the whole space R
N has received

much attention recently. See, for example, [1–12]. Benrhouma [1] studied the
existence of solutions of the following system:{−Δu+ u = α

α+βa(x)|v|β |u|α−2u in R
N

−Δv + v = β
α+βa(x)|u|α|v|β−2v in R

N
(1.2)

With the help of the Nehari manifold and the linking theorem, the author
proved the existence of at least two solutions of (1.2). Chen [3] studied the
existence of multiple positive solutions of the system:{

Δu = a(|x|)g(v), x ∈ R
N ,

Δv = b(|x|)f(u), x ∈ R
N ,

(1.3)

Costa [4] studied the existence of solutions of the system:{−Δu+ a(x)u = f(x, u, v), x ∈ R
N ,

−Δv + b(x)v = g(x, u, v), x ∈ R
N ,

(1.4)

By using a variant of the generalised Moutain-Pass theorem [13], the author
proved the existence of a nontrivial solution of (1.4). The supersolution and
subsolution method is used by Kawano and Kusano [10] to establish the exis-
tence of infinitely positive entire solutions of the semilinear system:{

Δu+ f(x, u, v) = 0, x ∈ R
N ,

Δv + g(x, u, v) = 0, x ∈ R
N ,

(1.5)

Similar results have been proved for quasilinear or semilinear elliptic system
in bounded domains, we can for instance cite [14–20]. Other works for single
equation (see [21–28] and the references therein ). A good survey on the ex-
istence results for quasilinear elliptic equations with quadratic growth in the
gradient can be found in [26–28]. By contrast, it seems to us that very few re-
sults are known on the quasilinear or semilinear elliptic system with gradient
term in R

N . We can quote [29–31].
Miao and Yang [29] established the existence of infinitely positive bounded

entire solutions of the following system:{
div

(|∇u|p−2∇u) + f(x, u, v) = 0, x ∈ R
N ,

div
(|∇v|p−2∇v) + g(x, u, v) = 0, x ∈ R

N
. (1.6)

where the functions f and g are, among other assumptions, locally Lipschitz
continuous in u and v which is not the case in system (1.1). Zhang and Liu
[30] studied the existence and the nonexistence of entire positive solutions for
the system: {

Δu+ |∇u| = p(|x|)f(u, v), x ∈ R
N ,

Δv + |∇v| = q(|x|)g(u, v), x ∈ R
N ,

. (1.7)

with the imposed conditions on the potential functions p and q are not satisfied
in our case. Ghergu and Ràdulescu [31] studied the existence of explosive
solutions for the system:
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{
Δu+ |∇u| = p(|x|)f(v), x ∈ R

N ,

Δv + |∇v| = q(|x|)g(u), x ∈ R
N ,

. (1.8)

In the present work, we are interested in finding the existence of a nonnegative
solution of (1.1) [ie: (u, v) is nonnegative if u ≥ 0 and v ≥ 0 a.e.]. Using a priori
estimates technique and through an approximation process we will be able to
show the existence of a nonnegative and nontrivial solution of (1.1). Applying
the Schauder fixed point theorem we prove the existence of a solution (un, vn)
of an approximated system and we show that (un, vn) converges to a non-
negative solution of (1.1). The main difficulty to deal with the approximated
systems consists in the boundedness of (un) and (vn) in L∞(RN ) which can
not be solved by the arguments of Stampacchia [32]. In fact, these arguments
are only used for bounded domains. Moreover, to prove the almost everywhere
convergence of ∇un and of ∇vn, we give a technique which is different of the
one often used [21,26,27,33,34]. Our main result is in the following

Theorem 1.1. Assume (H1) − (H3) hold. Then the system (1.1) has at least
one nonnegative solution.

We divide this paper into three sections. In Sect. 2, we establish the
existence of a solution of an approximated system and we give some useful
properties of this solution. In Sect. 3, we prove the Theorem 1.1. We should
proceed by steps.

We introduce the Banach space H = H1(RN )×H1(RN ) equipped by the
norm

‖(u, v)‖ =
(
‖u‖2

H1(RN ) + ‖v‖2
H1(RN )

) 1
2

We say that (u, v) is a weak solution pair of the system (1.1), if (u, v) ∈ H and∫
RN

(∇u∇ϕ+ uϕ+ ∇v∇ψ + vψ + |∇u|2ϕ+ |∇v|2ψ)
dx

−
∫

RN

((a(x)vp + f)ϕ+(b(x)uq + g)ψ) dx=0 ∀(ϕ,ψ)∈C∞
c (RN )×C∞

c (RN ).

2. The approximated quasilinear systems

We devote this section to study a sequence of approximated systems to (1.1).
We consider the following approximated system:⎧⎪⎨

⎪⎩
−Δu+ u+ |∇u|2

1+ 1
n |∇u|2 = a(x) |v|p

1+ 1
n |v|p + f, x ∈ Bn

−Δv + v + |∇v|2
1+ 1

n |∇v|2 = b(x) |u|q
1+ 1

n |u|q + g, x ∈ Bn

(2.1)

where Bn =
{
x ∈ R

N , |x| < n
}
.

Lemma 2.1. Assume (H1) − (H3) hold. Then, there exists (un, vn) ∈ Hn =
H1

0 (Bn) ×H1
0 (Bn) which is a solution pair of (2.1).
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Proof. To prove it, we define the function Ln : Hn → L2(Bn) × L2(Bn) by

Ln(u, v)

=
(

− |∇u|2
1 + 1

n |∇u|2 + a(x)
|v|p

1 + 1
n |v|p + f,− |∇v|2

1 + 1
n |∇v|2 + b(x)

|u|q
1 + 1

n |u|q + g

)

First, observe that Ln is continuous on Hn. Indeed, let (uk, vk) be a se-
quence in Hn which converges to (u, v) in Hn as k → ∞. Which implies,
by a subsequence, that uk(x) → u(x), ∇uk(x) → ∇u(x), vk(x) → v(x) and
∇vk(x) → ∇v(x) a.e. in Bn.

By virtue of Lebesgue’s dominated convergence theorem, we deduce that∫
Bn

∣∣∣∣ |∇uk|2
1 + 1

n |∇uk|2 − |∇u|2
1 + 1

n |∇u|2 − a(x)
( |vk|p

1 + 1
n |vk|p − |v|p

1 + 1
n |v|p

)∣∣∣∣
2

dx → 0

as k → ∞
and∫

Bn

∣∣∣∣ |∇vk|2
1 + 1

n |∇vk|2 − |∇v|2
1 + 1

n |∇v|2 − b(x)
( |uk|q

1 + 1
n |uk|q − |u|q

1 + 1
n |u|q

)∣∣∣∣
2

dx → 0

as k → ∞.

It follows that, Ln is continuous.
Let E = L2(Bn) × L2(Bn). If we equipped E with the norm

‖(u, v)‖E = ‖u‖L2(Bn) + ‖v‖L2(Bn) ,

it becomes a Banach space. Define the following function

S : E → Hn

(u, v) �−→ (
(−Δ + I)−1(u), (Δ + I)−1(v)

)
where (−Δ + I)−1 is the inverse of the sum of the Laplacian operator and
identity function. We see that the solutions of (2.1) are just the fixed points of
the composition S ◦Ln. By classical arguments, the operator S is compact and
hence the composition of it with the continuous operator Ln is also compact.
On the other hand, we have

‖Ln(u, v)‖E =
∥∥∥∥− |∇u|2

1 + 1
n |∇u|2 + a(x)

|v|p
1 + 1

n |v|p + f

∥∥∥∥
L2(Bn)

+
∥∥∥∥− |∇v|2

1 + 1
n |∇v|2 + b(x)

|u|p
1 + 1

n |u|p + g

∥∥∥∥
L2(Bn)

≤ (2n+ n|a|∞ + n|b|∞)
√
meas(Bn) + ‖f‖2 + ‖g‖2 .

where meas(Bn) is the Lebesgue’s measure of Bn.
Therefore, by the continuity of S, there exits R > 0 such that

‖S ◦ Ln(u, v)‖n < R, ∀ (u, v) ∈ Hn.

In particular, the compact operator S◦Ln maps the ball in Hn centered at zero
and with radius R into itself. Which implies, by the Schauder fixed theorem,
the existence of a fixed point (un, vn) ∈ Hn of S ◦Ln that is a solution of (2.1).
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Notice that we can extend un and vn by zero outside ofBn, which provides
that (un, vn) ∈ H1(RN ) ×H1(RN ). �

Lemma 2.2. The functions un and vn are nonnegative,

(i.e. un(x) ≥ 0, and vn(x) ≥ 0 a.e. in R
N ,∀ n ≥ 1).

Proof. For t ∈ R, we denote by t+ = max(t, 0) and t− = min(t, 0).
Taking into account that (un, vn) is a solution of (2.1) and putting

(u−
n exp (−un), 0) as test function, we get∫

{x∈Bn, un≤0}
|∇un|2 exp (−un)dx+

∫
Bn

|u−
n |2 exp (−un)dx

+
∫

Bn

(
1

1 + 1
n |∇un|2 − 1

)
u−

n |∇un|2 exp (−un)dx

=
∫

Bn

(
a(x)|vn|p
1 + 1

n |vn|p + f

)
u−

n exp (−un)dx ≤
∫

Bn

fu−
n exp (−un)dx.

Having in mind that∫
Bn

(
1

1 + 1
n |∇un|2 − 1

)
u−

n |∇un|2 exp (−un)dx ≥ 0,

we deduce that∫
Bn

|u−
n |2 exp (−un)dx ≤

∫
Bn

fu−
n exp (−un)dx ≤ 0.

It leads to

u−
n = 0 a.e. in R

N , ∀ n ≥ 1.

By the same argument used above, we prove that

vn ≥ 0 a.e. in R
N , ∀ n ≥ 1.

Now, we are going to prove that un and vn are uniformly bounded in H1(RN )∩
L∞(RN ). �

Lemma 2.3. The sequences un and vn are uniformly bounded in H1(RN ) ∩
L∞(RN ).

Proof. Taking into account that (un, vn) is a solution of (2.1), putting (un, 0)
as test function and having in mind that un ≥ 0 a.e. in Bn, we get∫

RN

(|∇un|2 + |un|2)dx ≤
∫

RN

a(x)vp
nundx+

∫
RN

fundx

≤ ‖un‖2 ‖vn‖p
2 ‖a‖r + ‖f‖2 ‖un‖2

≤ ‖un‖H1(RN ) ‖vn‖p
H1(RN ) ‖a‖r + ‖f‖2 ‖un‖H1(RN )

≤ ‖(un, vn)‖p+1 ‖a‖r + ‖f‖2 ‖(un, vn)‖ (2.2)

where r is defined as in (H2). Also, taking (0, vn) as test function, we get∫
RN

(|∇vn|2 + |vn|2)dx ≤ ‖(un, vn)‖q+1 ‖b‖s + ‖g‖2 ‖(un, vn)‖. (2.3)
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where s is defined as in (H2). Combining (2.2) and (2.3), we obtain that

‖(un, vn)‖2 ≤ ‖(un, vn)‖p+1 ‖a‖r + ‖(un, vn)‖q+1 ‖b‖s + (‖f‖2 + ‖g‖2) ‖(un, vn)‖
Since p+ 1, q + 1 < 2, then (un, vn) is uniformly bounded in H, which yields
that (un) and (vn) are uniformly bounded in H1(RN ). �

To prove the a priori estimate in L∞(Bn). Choose M > 0, taking into
account that (un, vn) is a solution of (2.1) and putting ((un + vn −M)+,
(un + vn −M)+) as test function.∫

Dn

(|∇un|2 + 2∇un∇vn + |∇vn|2)dx+
∫

Bn

(un + vn)(un + vn −M)+dx

+
∫

Bn

(un + vn −M)+
( |∇un|2

1 + 1
n |∇un|2 +

|∇vn|2
1 + 1

n |∇vn|2
)
dx

=
∫

Bn

(
a(x)

vp
n

1+ 1
nv

p
n

+b(x)
uq

n

1+ 1
nu

q
n

)
(un + vn −M)+dx

+
∫

Bn

(f + g)(un + vn −M)+dx,

where Dn = {x ∈ Bn, un + vn −M ≥ 0}. By the previous equality we get∫
Bn

(un + vn)(un + vn −M)+dx

≤
∫

Bn

(a(x)vp
n + b(x)uq

n + f + g)(un + vn −M)+dx

≤
∫

Bn

(
1
2
(un + vn) + c1(a(x))

1
1−p

)
(un + vn −M)+

+
∫

Bn

(
c2(b(x))

1
1−q + f + g

)
(un + vn −M)+,

which implies that,

1
2

∫
Bn

(un+vn)(un+vn −M)+dx

≤
∫

Bn

(c1(a(x))
1

1−p +c2(b(x))
1

1−q + f+g)(un + vn −M)+dx

and
1
2

∫
Bn

|(un+vn −M)+|2dx

≤
∫

Bn

(c1(a(x))
1

1−p +c2(b(x))
1

1−q +f+g− 1
2
M)(un + vn −M)+dx.

Since a, b, f and g are in L∞(RN ), then for M large enough we get∫
Bn

|(un + vn −M)+|2dx ≤ 0.
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So, (un + vn −M)+ = 0 a.e. in Bn. It leads, by Lemma 2.2, to

un ≤ M and vn ≤ M a.e. in R
N , ∀ n ≥ 1.

3. Main result

In this section we study the strongly convergence of the approximated solution
(un, vn).

Since un and vn are uniformly bounded inH1(RN ), then there exist u and
v in H1(RN ) such that up to a subsequence un ⇀ u and vn ⇀ v in H1(RN ),
un(x) → u(x) and vn(x) → v(x) a.e. in R

N . By the almost convergence of un

and vn, we get that u and v are nonnegative functions.
We need the following lemma to prove that un and vn converge to u and

v respectively in H1(Ω), for every bounded domain Ω in R
N .

Lemma 3.1. Assume (H1) − (H3) hold, then for every ψ ∈ C∞
0 (RN ) such that

ψ ≥ 0, we have

lim
n→∞

∫
RN

|∇(un − u)|2ψdx = 0 and lim
n→∞

∫
RN

|∇(vn − v)|2ψdx = 0

Proof. In the literature, to the author’s knowledge, few results are known on
the strong convergence of the gradients of solutions to elliptic equations. We
can, for example, quote [21,26,27,33,34]. In these works the proofs are based
on the following functions

Tk(s) =
{
s if |s| ≤ k,
k s

|s| if |s| ≥ k
, Gk(s) = s− Tk(s), ϕγ(s)=s exp(γs2), s∈R

where k > 0 and γ is a suitable constant. In the present work we should prove,
in two steps, that

lim
n→∞

∫
RN

|∇(un − u)|2ψdx = 0, ∀ ψ ∈ C∞
0 (RN )

�
Step 1 limn→∞

∫
RN |∇(un − u)−|2ψdx = 0, ∀ ψ ∈ C∞

0 (RN ), ψ ≥ 0.

Proof. Let ψ ∈ C∞
0 (RN ) such that ψ ≥ 0. There exists n0 ∈ N such that

supp(ψ) ⊂ Bn for any n ≥ n0. Choosing n ≥ n0, taking into account that
(un, vn) is a solution of (2.1) and putting ((un − u)−ψ e−un , 0) as test function.
We get∫

RN

∇un∇(un − u)−ψ e−undx+
∫

RN

(un − u)−∇un∇ψ e−undx

−
∫

RN

(un − u)−ψ|∇un|2 e−undx+
∫

RN

un(un − u)−ψ e−undx

+
∫

RN

|∇un|2
1 + 1

n |∇un|2 (un − u)−ψ e−undx

=
∫

RN

(
a(x)

vp
n

1 + 1
nv

p
n

+ f

)
(un − u)−ψ e−undx. (3.1)
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Adding and subtracting
∫

RN ∇u∇(un − u)−ψ e−undx to (3.1) and having in
mind that∫

RN

(
1

1 + 1
n |∇un|2 − 1

)
(un − u)−ψ|∇un|2 e−undx ≥ 0,

we derive that∫
RN

|∇(un−u)−|2ψ e−undx+
∫

RN

∇u∇(un − u)−ψ e−undx

+
∫

RN

(un − u)−∇un∇ψ e−undx+
∫

RN

un(un − u)−ψ e−undx

≤
∫

RN

(
a(x)

vp
n

1 + 1
nv

p
n

+ f

)
(un − u)−ψ e−undx (3.2)

On the other hand, we have∫
RN

∇u∇(un − u)−ψ e−undx

=
∫

RN

∇u∇ (
(un − u)− e−un

)
ψdx+

∫
RN

∇u∇un(un − u)− e−unψdx(3.3)

By the weak convergence of ((un − u)− e−un) to 0 in H1(RN ), we obtain∫
RN

∇u∇ (
(un − u)− e−un

)
ψdx → 0. (3.4)

Using Lemma 2.3, Hölder inequality and by the Lebesgue dominated conver-
gence theorem, we get∣∣∣∣
∫

RN

∇u∇un(un − u)− e−unψdx

∣∣∣∣ ≤ C

(∫
RN

|∇u|2|(un − u)−|2ψ2dx

) 1
2

→ 0.

(3.5)

Combining (3.3)–(3.5), we infer that∫
RN

∇u∇(un − u)−ψ e−undx → 0. (3.6)

Likewise, we have∣∣∣∣
∫

RN

(un − u)−∇un∇ψ e−undx

∣∣∣∣ ≤ C

(∫
RN

|(un − u)−|2|∇ψ|2dx
) 1

2

→ 0,

∣∣∣∣
∫

RN

un(un − u)−ψ e−undx

∣∣∣∣ ≤ C1

(∫
RN

|(un − u)−|2ψ2dx

) 1
2

→ 0.

(3.7)

and ∣∣∣∣
∫

RN

(
a(x)

vp
n

1 + 1
nv

p
n

+ f

)
(un − u)−ψ e−undx

∣∣∣∣
≤ (|a|∞Mp + |f |∞)

∫
RN

|(un − u)−|ψdx → 0, (3.8)

where M is defined in the proof of Lemma 2.3. �
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Moreover we have

e−M

∫
RN

|∇(un − u)−|2ψdx ≤
∫

RN

|∇(un − u)−|2ψ e−undx, (3.9)

Combining (3.2), (3.6)–(3.9), we deduce that

lim
n→∞

∫
RN

|∇(un − u)−|2ψdx = 0, ∀ ψ ∈ C∞
0 (RN ), ψ ≥ 0

Step 2 limn→∞
∫

RN |∇(un − u)+|2ψdx = 0, ∀ ψ ∈ C∞
0 (RN ), ψ ≥ 0.

Proof. Let ψ ∈ C∞
0 (RN ) such that ψ ≥ 0. There exists n1 ∈ N such that

supp(ψ) ⊂ Bn for any n ≥ n1. Choosing n ≥ n1, taking into account that
(un, vn) is a solution of (2.1) and putting ((un − u)+ψ, 0) as test function. We
get∫

RN

∇un∇(un − u)+ψdx+
∫

RN

(un − u)+∇un∇ψdx+
∫

RN

un(un − u)+ψdx

+
∫

RN

|∇un|2
1+ 1

n |∇un|2 (un − u)+ψdx=
∫

RN

(
a(x)

vp
n

1+ 1
nv

p
n

+ f

)
(un − u)+ψdx.

(3.10)

Adding and subtracting
∫

RN ∇u∇(un − u)+ψdx to (3.10),
we derive that∫

RN

|∇(un − u)+|2dx+
∫

RN

∇u∇(un − u)+ψdx+
∫

RN

(un − u)+∇un∇ψdx

+
∫

RN

un(un − u)+ψdx ≤
∫

RN

(
a(x)

vp
n

1 + 1
nv

p
n

+ f

)
(un − u)+ψdx. (3.11)

By the weak convergence of (un − u)+ to 0 in H1(RN ), we get∫
RN

∇u∇(un − u)+ψdx → 0. (3.12)

By the Lebesgue dominated convergence theorem, we obtain∫
RN

un(un − u)+ψdx → 0 and
∫

RN

(
a(x)

vp
n

1 + 1
nv

p
n

+ f

)
(un − u)+ψdx → 0.

(3.13)

Also, we have∣∣∣∣
∫

RN

(un − u)+∇un∇ψdx
∣∣∣∣ ≤ C2

(∫
RN

|(un − u)+|2|∇ψ|2dx
) 1

2

→ 0. (3.14)

Combining (3.11)–(3.14), we infer that

lim
n→∞

∫
RN

|∇(un − u)+|2ψdx = 0, ∀ ψ ∈ C∞
0 (RN ), ψ ≥ 0.

Follow the same technique used above and in two steps, we obtain

lim
n→∞

∫
RN

|∇(vn − v)|2ψdx = 0, ∀ ψ ∈ C∞
0 (RN ), ψ ≥ 0

�
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Proof of Theorem 1.1 completed: Let (ϕ,ψ) ∈ C∞
0 (RN )×C∞

0 (RN ), there
exists n2 ∈ N such that

Supp(ϕ) ⊂ Bn and Supp(ψ) ⊂ Bn, ∀ n ≥ n2.

Choosing n ≥ n2, taking into account that (un, vn) is a solution of (2.1) and
putting (ϕ,ψ) as test function, we obain∫

RN

(
∇un∇ϕ+ unϕ+ ∇vn∇ψ + vnψ +

ϕ|∇un|2
1 + 1

n |∇un|2 +
ψ|∇vn|2

1 + 1
n |∇vn|2|

)
dx

=
∫

RN

((
a(x)

vp
n

1 + 1
nv

p
n

+ f

)
ϕ+

(
b(x)

uq
n

1 + 1
nu

q
n

+ g

)
ψ

)
dx. (3.15)

By the weak convergence of un and vn to u and v respectively in H1(RN ), we
get ∫

RN

(∇un∇ϕ+ unϕ+ ∇vn∇ψ + vnψ) dx

→
∫

RN

(∇u∇ϕ+ uϕ+ ∇v∇ψ + vψ) dx. (3.16)

By the Lebesgue dominated convergence theorem, we deduce that∫
RN

a(x)vp
nϕ

1 + 1
nv

p
n
dx →

∫
RN

a(x)vpϕdx. (3.17)

and ∫
RN

b(x)uq
nψ

1 + 1
nu

q
n
dx →

∫
RN

b(x)uqψdx. (3.18)

Using Lemma 3.1 and extracting a subsequence there exist F ∈ L2(supp(ϕ))
and G ∈ L2(supp(ψ)) such that{∇un(x) → ∇u(x) and ∇vn(x) → ∇v(x) a.e.

|∇un| ≤ |F | and |∇vn| ≤ |G| .

Then, by virtue of Lebesgue’s dominated convergence theorem, we get∫
RN

ϕ|∇un|2
1 + 1

n |∇un|2 dx →
∫

RN

|∇u|2ϕdx (3.19)

and ∫
RN

ψ|∇vn|2
1 + 1

n |∇vn|2|dx →
∫

RN

|∇v|2ψdx. (3.20)

Passing to the limit in (3.15) and combining (3.16)–(3.20), we get∫
RN

(∇u∇ϕ+ uϕ+ ∇v∇ψ + vψ + |∇u|2ϕ+ |∇v|2ψ)
dx

−
∫

RN

((a(x)vp + f)ϕ+ (b(x)uq + g)ψ) dx = 0 ∀(ϕ,ψ) ∈ C∞
c (RN ) × C∞

c (RN ).

Besides, u and v are nonnegative functions and f and g are nontrivial functions,
so (u, v) is a weak nonnegative and nontrivial solution of the system (1.1).
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