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Abstract. In this paper, we study a modified Leslie–Gower prey–predator
model with Crowley–Martin functional response. The stability and insta-
bility of the trivial and semi-trivial solutions was studied by analyzing
the eigenvalues of the linearized system. The existence, multiplicity and
uniqueness of positive steady state solutions were shown by using bifur-
cation theory, degree theory, energy estimate and asymptotic behavior
analysis. Furthermore, all results were characterized in parameter plane.
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1. Introduction

A prey–predator system that incorporates conservation of mass and division
of population rates of change into birth and death processes has the following
canonical form (see for instance [1,4]){

du
dt = ru(1 − u/K) − vp(u, v), t > 0,
dv
dt = εvp(u, v) − μv, t > 0,

(1.1)

where u(t) and v(t) represent the population density of prey and predator at
time t, respectively; r and K are the intrinsic growth rate and the carrying
capacity of the prey respectively; μ is the mortality rate of predator; ε is the
conversion efficiency (0 < ε < 1); p(u, v) is the consumption rate of prey by
a predator or the functional response of the predator, which includes Holling
types, ratio-dependent type, Beddington–DeAngelis type, Hassell–Varley type,
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Ivlev type, Watt type and so on (see [27, Appendix A] for a collection of prey–
predator models).

Another type of prey–predator model was first introduced by Leslie and
Gower in [32]. In which the authors replace the right term of the equation for
v in (1.1) by r2v(1 − v/u). By [32], the biological interpretation of this term
is that in the case of severe scarcity, v can switch over to other populations.
So this type of models do not follows the “mass conservation” principle. The
term −r2v2/u is called the Leslie–Gower term, which measures the loss in the
predator population due to rarity of its favorite food. Recently, there has been a
growing interest in the study of mathematical models incorporates a modified
version of Leslie–Gower functional response with Holling-type II functional
response [25]. This model can be written as follows (see [5])⎧⎨

⎩
du
dt = r1u

(
1 − u

K

) − auv
b+u , t > 0,

dv
dt = r2v

(
1 − v

u+c

)
, t > 0,

(1.2)

where r1, r2, a, b, c and K are all positive constant and u(t), v(t) represent
the population densities at time t. The Holling type II functional response
p(u) = a/(b + u) in (1.2) is classified as one of prey-dependent functional
response, it assumes that predators do not interfere with one another’s activi-
ties; thus competition among predators for food occurs only via the depletion of
prey. However, Crowley and Martin proposed a functional that can accommo-
date interference among predators (see [14]). This type of functional response
is classified as one of predator-dependent functional response, i.e. they are
functions of the abundance of both prey and predator due to predator inter-
ference. It is assumed that predator-feeding rate decreases by higher predator
density even when prey density is high, and therefore the effects of predator
interference on feeding rate remain important all the time whether an individ-
ual predator is handing or searching for a prey at a given instant of time. The
per capita feeding rate in this formulation is given by

p(u, v) =
mu

1 +Au+Bv +ABuv
,

where m,A and B are positive parameters that describe the effects of cap-
ture rate handling time and the magnitude of interference among predators,
respectively, on the feeding rate (see [17,37,38,50–52] for related works).

By take above considerations, Ali and Jazar [2] consider a prey–predator
model which incorporates a modified version of the Leslie–Gower with Crowley–
Martin functional response:⎧⎨

⎩
du
dt = a1u

(
1 − u

K

) − buv
(1+cu)(1+dv) , t > 0,

dv
dt = v

(
a2 − ev

u+f

)
, t > 0,

(1.3)

where u and v represent the population densities at time t; a1, a2, b, c, d, e, f
and K are positive constants, and their biological meaning are as follows: a1

and K are the intrinsic growth rate and the carrying capacity of prey popula-
tion u respectively. The constants b, c and d are the saturating Crowley–Martin
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type functional response parameters, in which c measures the magnitude of
interference among prey. Further, a2 describes the growth rate of predator v;
e is the maximum value which per capita reduction rate of v can attain, f
measure the extent to which environment provides protection to predator v.

On the other hand, the spatial component of ecological interactions has
been identified as an important factor in how ecological communities are
shaped, and understanding the role of space in challenging both theoretically
and empirically [42]. Empirical evidence suggests that the spatial scale and
structure of environment can influence population interactions [9]. By consid-
ering the above reasons, we consider the following reaction–diffusion equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ũt − d1Δũ = ãũ
(
1 − ũ

K

) − λ̃ũṽ
(1+c̃ũ)(1+d̃ṽ)

, x ∈ Ω, t > 0,

ṽt − d2Δṽ = ṽ
(
b̃− e2ṽ − μ̃ṽ

ũ+r̃

)
, x ∈ Ω, t > 0,

ũ = ṽ = 0, x ∈ ∂Ω, t > 0,
ũ(x, 0) = ũ0(x), ṽ(x, 0) = ṽ0(x), x ∈ Ω,

(1.4)

where Ω ⊂ R
N , N ≥ 1, is a bounded domain with smooth boundary ∂Ω;

d1, d2, ã, b̃, c̃, d̃,K, e2, λ̃, μ̃, and r̃ are positive constants. The problem (1.4)
models the interactions between a predator, with population density ṽ(x, t),
and a prey, with population density ũ(x, t), inhabiting the region Ω. The bio-
logical meanings of the parameters are

• d1 and d2 are the diffusion coefficients of prey u and predator v, respectively;
• ã denotes birth rate of prey, and b̃ denotes the birth rate of predator; K

is the carrying capacity of prey population ũ, e2 represents intra-specific
pressures of predator;

• the term λ̃ṽ/[(1 + c̃ũ)(1 + d̃ṽ)] is known as Crowley–Martin interactions,
in which λ̃ and d̃ describe the effects of capture rate handling time and c̃
describes the magnitude of interference among predators (see [17,37,38,50–
52]);

• the term μ̃ṽ/(ũ+r̃) is a modified version of Leslie–Gower functional response,
in which μ̃ is the maximum value which per capita reduction rate of ṽ can
attain, r̃ measure the extent to which environment provides protection to
predator ṽ (see [5]).

The homogeneous Dirichlet boundary condition “ũ = ṽ = 0 on ∂Ω” is some-
times said to correspond to a lethal boundary, which can be considered as such
a condition under which neither of the two species can exist on the bound-
ary (see [9, page 31] or [54]). The initial values ũ0(x) and ṽ0(x) are continuous
functions, which are assumed nonnegative and nontrivial. Comparing the reac-
tion terms between (1.3) and (1.4), we add a term −e2ṽ2, which is referred as
a “closure term”, describes either a self-limitation of the consumer, v, or the
influence of predation (see for example [46,57]).
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In this paper, we mainly consider the associated stationary problem:⎧⎪⎪⎨
⎪⎪⎩

−d1Δũ = ãũ
(
1 − ũ

K

) − λ̃ũṽ
(1+c̃ũ)(1+d̃ṽ)

, x ∈ Ω,

−d2Δṽ = ṽ
(
b̃− e2ṽ − μ̃ṽ

ũ+r̃

)
, x ∈ Ω,

ũ = ṽ = 0, x ∈ ∂Ω.

(1.5)

It is known that elliptic systems with homogeneous Dirichlet boundary
condition are usually more difficult to analyze, as shown in [8,10,11,16,18–
20,29,30,33,40,41] for several other diffusive ecological interaction models,
since the only possible constant steady state is (0, 0) and the ODE dynam-
ics is not embedded in the PDE models. There are more references for the
corresponding Neumann boundary value problems, which we do not list here
but refer to [9,21,43]. Problem (1.5) with e2 = d̃ = 0, i.e. the elliptic equa-
tion corresponding to (1.2), was studied in [55,56,58]. The existence of one
positive solution under some conditions on the parameters was shown in [55],
while the nonexistence of positive solutions in some other parameter regions
was also proved. Furthermore, the multiplicity and uniqueness of positive solu-
tions were studied in [58], and the existence of multiple steady state solutions
indicate the system can have possible bistable dynamics.

By rescaling as follows

u =
ã

d1K
ũ, a=

ã

d1
, λ=

d2λ̃

d1e2
, c=

d1Kc̃

ã
, d=

d2d̃

e2
,

v =
e2
d2
ṽ, b=

b̃

d2
, r=

ãr̃

d1K
, μ=

ãμ̃

d1Ke2r
,

we have the following system:⎧⎪⎪⎨
⎪⎪⎩

−Δu = u
(
a− u− λv

(1+cu)(1+dv)

)
, x ∈ Ω,

−Δv = v
(
b− v − μrv

u+r

)
, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(1.6)

The organization of the remaining part of the paper is as follows. The
stability of the trivial and semi-trivial solutions to (1.6) is studied in Sect. 2.
In Sect. 3, we consider the non-existence conditions of positive solutions to
(1.6). Section 4 is devoted to study the existence of positive solutions to (1.6).
In Sect. 5, we study the multiplicity of positive solutions of problem (1.6), and
the uniqueness of the positive solution under certain condition is studied in
Sect. 6. The conclusions are stated in Sect. 7. Finally, in Sect. 8, we list some
basic results which are used in this paper.

2. Stability analysis of the trivial and semi-trivial solutions

In this section we study the trivial and semi-trivial solutions of (1.6). Before
which, we will introduce some notations used in this paper, we use || · ||X as the
norm of Banach space X, 〈·, ·〉 as the duality pair of a Banach space X and its
dual space X∗. For a linear operator L, we use N(L) as the null space of L and
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R(L) as the range space of L, and we use L[w] to denote the image of w under
the linear mapping L. For a multilinear operator L, we use L[w1, w2, . . . , wk] to
denote the image of (w1, w2, . . . , wk) under L, and when w1 = w2 = · · · = wk,
we use L[w1]k instead of L[w1, . . . , w1]. For a nonlinear operator F, we use Fu

as the partial derivative of F with respect to u.
For each q ∈ C(Ω), let ρ1(q) be the principle eigenvalue of{−Δu+ q(x)u = au, x ∈ Ω,

u = 0, x ∈ ∂Ω. (2.1)

As is well known, the principal eigenvalue ρ1(q) is given by the following vari-
ational characterization:

ρ1(q) = inf
φ ∈ H1

0 (Ω)
‖φ‖L2(Ω) = 1

∫
Ω

(|∇φ|2 + q(x)φ2)dx. (2.2)

We denote ρ1(0) by ρ1 and let φ1(x) be the positive eigenfunction correspond-
ing to ρ1 with ‖φ1‖L2(Ω) = 1.

It is obvious that (1.6) has, in addition to the trivial steady state (0, 0),
two semi-trivial steady states

(θa, 0) if a > ρ1 and (0, θ∗
b ) if b > ρ1,

where θa is defined in Theorem 8.6 and θ∗
b := θb/(μ + 1), in which θb is the

unique positive solution of (8.3) with a replacing by b when b > ρ1.
In order to study the stability of the solutions to (1.6), we let (u(x, t),

v(x, t)) be the unique solution of the following problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut − Δu = u
(
a− u− λv

(1+cu)(1+dv)

)
, x ∈ Ω, t > 0

vt − Δv = v
(
b− v − μrv

u+r

)
, x ∈ Ω, t > 0

u = v = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, 	≡ 0, v(x, 0) = v0(x) ≥ 0, 	≡ 0, x ∈ Ω,

(2.3)

which is the evolutionary equation corresponding to (1.6). Clearly, (u(x, t),
v(x, t)) exists globally and (u(x, t), v(x, t)) > (0, 0) in Ω×(0,∞). The following
statements hold.

Theorem 2.1. Assume (u(x, t), v(x, t)) is the unique solution of (2.3). Then
the following conclusions hold.

(i) If a ≤ ρ1 and b ≤ ρ1, then (u(x, t), v(x, t)) converges to the trivial steady
state (0, 0) uniformly on Ω as t → ∞, while (0, 0) is unstable if a > ρ1

or b > ρ1.
(ii) Assume b > ρ1. Then the semi-trivial steady state (0, θ∗

b ) is asymptoti-
cally stable if a < ρ1( λθb

μ+1+dθb
), while it is unstable if a > ρ1( λθb

μ+1+dθb
).

Moreover, (u(x, t), v(x, t)) converges (0, θ∗
b ) as t → ∞ when a ≤ ρ1.

(iii) Assume a > ρ1. Then, if b ≤ ρ1, (u(x, t), v(x, t)) converges to the semi-
trivial steady state (θa, 0) uniformly on Ω as t → ∞, while (θa, 0) is
unstable if b > ρ1.
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Proof. Throughout the proof, we will use the notations in Theorem 8.7.
(i) By the first equation of (2.3),

ut − Δu ≤ u(a− u), (x, t) ∈ Ω × (0,∞), u = 0, (x, t) ∈ ∂Ω × (0,∞).

Then 0 ≤ u(x, t) ≤ u1
a(x, t) for (x, t) ∈ Ω×[0,∞) by using comparison principle

for parabolic equations. By Theorem 8.7, it follows from a ≤ ρ1 that u1
a(x, t)

converges to 0 uniformly on Ω as t → ∞. So u(x, t) converges to 0 uniformly
on Ω as t → ∞. Then for any ε > 0, there exists a constant T1 = T1(ε) � 1
such that u(x, t) ≤ ε in Ω × [T1,∞). By the second equation of (2.3),

vt − Δv ≤ v

[
b−

(
1 +

μr

r + ε

)
v

]
, (x, t) ∈ Ω × (T1,∞),

v = 0, (x, t) ∈ ∂Ω × (T1,∞).

In view of b ≤ ρ1, we conclude that v(x, t) converges to 0 uniformly on Ω as
t → ∞.

To study the instability of (0, 0), we use the linearization principle. The
stability of (0, 0) is determined by studying the following spectral problem:⎧⎨

⎩
−Δφ− aφ = ρφ, x ∈ Ω,
−Δψ − bψ = ρψ, x ∈ Ω,
φ = ψ = 0, x ∈ ∂Ω.

(2.4)

It is easy to see that both ρ1 − a and ρ1 − b are eigenvalues of (8.4), and at
least one of them is negative by the fact that a > ρ1 or b > ρ1, which implies
the instability of (0, 0).

(ii) By linearization principle, the stability of (0, θ∗
b ) is determined by

studying the following spectral problem:⎧⎪⎨
⎪⎩

−Δφ+
(

λθb

μ+1+dθb
− a

)
φ = ρφ, x ∈ Ω,

−Δψ − μ(θb)
2

r(μ+1)2φ+ (2θb − b)ψ = ρψ, x ∈ Ω,
φ = ψ = 0, x ∈ ∂Ω.

(2.5)

Let ρ be an eigenvalue of (2.5) and let (φ, ψ) be the corresponding eigenfunc-
tion.
1. Assume φ = 0, then ρ must be an eigenvalue of −Δ + (2θb − b)I with zero

Dirichlet boundary condition. Then Theorem 8.3 assures ρ > ρ1(θb−b) = 0.
2. If φ 	= 0, then ρ is an eigenvalue for the first equation of (2.5). The least

eigenvalue ρ∗ among such eigenvalues is given by

ρ∗ = ρ1

(
λθb

μ+ 1 + dθb
− a

)
= ρ1

(
λθb

μ+ 1 + dθb

)
− a.

Combining the above results one can prove that, if a < ρ1( λθb

μ+1+dθb
), then

all eigenvalues of (2.5) are positive, which implies the asymptotical stability
of (0, θ∗

b ). On the other hand, if a > ρ1( λθb

μ+1+dθb
), then (2.5) has a negative

eigenvalue, which implies the instability of (0, θ∗
b ).

Next we consider the globally asymptotical stability of (0, θ∗
b ) by using

a similar method as in (i). Since a ≤ ρ1, it follows from the proof of (i) that
u(x, t) converges to 0 uniformly on Ω as t → ∞. Then for any ε > 0, there
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exists a constant T2 = T2(ε) � 1 such that u(x, t) ≤ ε in Ω × [T1,∞). So, it
follows from the second equation of (2.3) that{

v[b− (1 + μ)v] ≤ vt − Δv ≤ v
[
b−

(
1 + μr

r+ε

)
v
]
, x ∈ Ω, t ≥ T2

u = v = 0, x ∈ ∂Ω, t ≥ T2.

Then it follows from comparison principle of parabolic equations that uδ1
b (x, t)

≤ v(x, t) ≤ uδ2
b (x, t) in Ω × [T2,∞), where

δ1 := 1 + μ, δ2 := 1 +
μr

r + ε
=

(1 + μ)r + ε

r + ε
.

By Theorem 8.7, uδ1
b (x, t) and uδ2

b (x, t) converges to θ∗
b (x) and (r+ ε)θb/[(μ+

1)r+ ε](x) uniformly on Ω as t → ∞, respectively. By letting ε → 0 and using
the fact that uδ1

b (x, t) ≤ v(x, t) ≤ uδ2
b (x, t), we obtain v(x, t) converges to θ∗

b (x)
uniformly on Ω as t → ∞.

The proof of (iii) is similar to the proof in the second part of (ii). So we
omit the details. �

In order to understand the meaning of Theorem 2.1, we define a function:

a = f(b) = ρ1

(
λθb

μ+ 1 + dθb

)
, b ≥ ρ1. (2.6)

Then f has the following properties:

Lemma 2.2. The function defined in (2.6) is a strictly increasing function of
class C1, which satisfies:

(i) f(ρ1) = ρ1, limb→∞ f(b) = ρ1 + λ
d , f

′(ρ1) = λ
μ+1 .

(ii) Assume λ ≥ μ+ 1, then

f(b) ≤
{
ϕ1(b), if ρ1 ≤ b < b#;
ϕ2(b), if b ≥ b#,

where b# := dρ1+
√

(dρ1)2+4dρ1(μ+1)

2d .
(iii) Assume λ < μ+ 1, then there exists a constant b∗ ∈ (ρ1,∞) such that

f(b) ≤
{
ϕ3(b), if ρ1 ≤ b < b∗;
ϕ2(b), if b ≥ b∗.

Here,

ϕ1(b) := ρ1 +
λ

μ+ 1
(b− ρ1), ϕ2(b) := ρ1 +

λb

μ+ 1 + bd
,

ϕ3(b) := b

[
1 −

(
1 − λ

μ+ 1

)(
1 − ρ1

b

)3

κ

]
,

where κ stands for the constant

κ = |Ω|−1

∫
Ω

ω3dx < 1,
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|Ω| denotes the measure of Ω and ω(x) is the positive eigenfunction correspond-
ing to ρ1 such that

max
x∈Ω

ω(x) = 1.

Proof. By Theorem 8.6, θb is a continuous and strictly increasing function
with respect to b such that limb→ρ+

1
θb = 0 uniformly in Ω and limb→∞ θb = ∞

uniformly in any compact subsets of Ω. Then it follows from Theorem 8.3 and
the fact that z �→ λz

μ+1+dz is strictly increasing that f(b) is a strictly increasing
function of class C1.

Proof of (i). Since

lim
b→ρ+

1

λθb

μ+ 1 + dθb
= 0 uniformly in Ω,

it follows from Theorem 8.3 that

f(ρ1) = lim
b→ρ+

1

f(b) = ρ1(0) = ρ1.

By variational characterization of the principal eigenvalue and the fact
that λθb

μ+1+dθb
≤ λ

d , we obtain

f(b) = inf
φ ∈ H1

0 (Ω)
‖φ‖L2(Ω) = 1

∫
Ω

(
|∇φ|2 +

λθb

μ+ 1 + dθb
φ2

)
dx

≤ inf
φ ∈ H1

0 (Ω)
‖φ‖L2(Ω) = 1

∫
Ω

(
|∇φ|2 +

λ

d
φ2

)
dx

= ρ1 +
λ

d
, (2.7)

which means

lim sup
b→∞

f(b) ≤ ρ1 +
λ

d
. (2.8)

Next we will prove lim infb→∞ f(b) ≥ ρ1 + λ
d . Let φb ∈ H1

0 (Ω) with
‖φb‖L2(Ω) = 1 be a positive function satisfying

f(b) =
∫

Ω

(
|∇φb|2 +

λθb

μ+ 1 + dθb
φ2

b

)
dx. (2.9)

Then it follows from (2.7) and (2.9) that

‖∇φb‖2
L2(Ω) = f(b) −

∫
Ω

λθb

μ+ 1 + dθb
φ2

bdx ≤ ρ1 +
λ

d
.

By the reflexive property of H1
0 (Ω), there exists a function φ∞ ∈ H1

0 (Ω)
with ‖φ∞‖L2(Ω) = 1 and a subsequence of {φb}b, denoted by {φb}b again, such
that ∇φb ⇀ ∇φ∞ weakly and φb → φ∞ strongly in L2(Ω).
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Then, by (2.9), weakly lower continuous of ‖ · ‖L2(Ω) and Lebesgue’s
dominated convergence theorem, we obtain

lim inf
b→∞

f(b) ≥
∫

Ω

(
|∇φ∞|2 +

λ

d
φ2

∞

)
dx ≥ ρ1 +

λ

d
. (2.10)

Thus, limb→∞ f(b) = ρ1 + λ/d follows from (2.8) and (2.10).
By Theorem 8.3, we have

f ′(b) =
∫

Ω

λ(μ+ 1)
(μ+ 1 + dθb)2

∂θb

∂b
φ2

bdx. (2.11)

It follows from [53, page 432] that
1. limb→ρ+

1
θb = 0 uniformly in Ω;

2. limb→ρ+
1
φb = φ1 strongly in H1

0 (Ω);

3. limb→ρ+
1

∂θb

∂b =
(∫

Ω
φ3

1dx
)−1

φ1 uniformly in Ω.

Then combining above facts and (2.11), f ′(ρ1) = λ/(μ+ 1) follows.
Proofs of (ii) and (iii). By variational characterization of the principal

eigenvalue and the fact that θb ≤ b, we obtain

f(b) = inf
φ∈H1

0 (Ω), φ�≡0
‖φ‖−2

L2(Ω)

(
‖∇φ‖2

L2(Ω) +
∫

Ω

λθb

μ+ 1 + dθb
φ2dx

)

≤ inf
φ∈H1

0 (Ω), φ�≡0
‖φ‖−2

L2(Ω)

(
‖∇φ‖2

L2(Ω) +
λb

μ+ 1 + bd

∫
Ω

φ2dx

)

≤ ρ1 +
λb

μ+ 1 + bd
= ϕ2(b). (2.12)

On the other hand,

f(b) = inf
φ∈H1

0 (Ω), φ�≡0
‖φ‖−2

L2(Ω)

(
‖∇φ‖2

L2(Ω) +
∫

Ω

λθb

μ+ 1 + dθb
φ2dx

)

≤ ‖θb‖−2
L2(Ω)

(
‖∇θb‖2

L2(Ω) +
λ

μ+ 1

∫
Ω

(θb)3dx
)
. (2.13)

It follows from −Δθb = θb(b− θb) and θb|∂Ω = 0 that∫
Ω

(θb)3dx ≤ b‖θb‖2
L2(Ω) − ‖∇θb‖2

L2(Ω). (2.14)

In view above inequality and (2.13), we get

f(b) ≤
(

1 − λ

μ+ 1

)
‖θb‖−2

L2(Ω)‖∇θb‖2
L2(Ω) +

λb

μ+ 1
. (2.15)

If λ ≥ μ+ 1, then it follows from Poincaré’s inequality and (2.15) that

f(b) ≤
(

1 − λ

μ+ 1

)
ρ1 +

λb

μ+ 1
= ϕ1(b). (2.16)

If λ < μ+ 1, it follows from (2.13) and (2.14) that

f(b) ≤ b−
(

1 − λ

μ+ 1

) ∫
Ω
(θb)3dx∫

Ω
(θb)2dx

.
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Figure 1. Illusions of the sets in Corollary 2.3. Left is the
case λ ≥ μ+ 1; right is the case λ < μ+ 1

By comparison principle (b− ρ1)ω(x) ≤ θb ≤ b for all x ∈ Ω. Then,

f(b) ≤ b

[
1 −

(
1 − λ

μ+ 1

)(
1 − ρ1

b

)3

κ

]
= ϕ3(b). (2.17)

By (2.12), (2.16) and (2.17), we get

f(b) ≤
{

min {ϕ1(b), ϕ2(b)} , if λ ≥ μ+ 1;

min {ϕ2(b), ϕ3(b)} , if λ < μ+ 1.

Since

min {ϕ1(b), ϕ2(b)} =

{
ϕ1(b), ρ1 ≤ b < b#;

ϕ2(b), b ≥ b#,

the conclusion (ii) follows.
By the methods developed by López-Gómez and Pardo San Gil [40],

functions a = ϕ2(b), b > ρ1 and a = ϕ3(b), b > ρ1 intersect only at one point
(a∗, b∗) ∈ (ρ1, ρ1 + λ/d) × (ρ1,∞) such that a∗ = ϕ2(b∗) = ϕ3(b∗) and

min{ϕ2(b), ϕ3(b)} =

{
ϕ3(b), if ρ1 ≤ b < b∗;

ϕ2(b), if b ≥ b∗.

Then the conclusion (iii) follows. �

Based on Lemma 2.2, we define five sets as follows (see Fig.1):

D1 := {(a, b) : 0 < a ≤ ρ1, 0 < b ≤ ρ1},
D2 := {(a, b) : 0 < a ≤ ρ1, b > ρ1},
D3 := {(a, b) : ρ1 < a < f(b), b > ρ1},
D4 := {(a, b) : a > f(b), b > ρ1},
D5 := {(a, b) : a > ρ1, 0 < b ≤ ρ1}. (2.18)

Then the following results follows from Theorem 2.1.
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Corollary 2.3. Let Di, i = 1, 2, . . . , 5 be the sets defined in (2.18). Then the
following results hold.
1. (0, 0) is globally asymptotically stable if (a, b) ∈ D1, while it is unstable if

(a, b) ∈ (0,∞) × (0,∞)\D1.
2. (0, θ∗

b ) is asymptotically stable if (a, b) ∈ D2 ∪D3; (0, θ∗
b ) is globally asymp-

totically stable if (a, b) ∈ D2, while (0, θ∗
b ) is unstable if (a, b) ∈ D4.

3. (θa, 0) is globally asymptotically stable if (a, b) ∈ D5, while it is unstable if
(a, b) ∈ D3 ∪D4 ∪ {(a, b) : a = f(b), b > ρ1}.

3. Non-existence of positive solutions

In this section we will study the results about the non-existence of positive
solutions to (1.6), and the main result of this section is as follows.

Theorem 3.1. Problem (1.6) has no positive solution if one of the following
conditions holds.
(i) a ≤ ρ1 or b ≤ ρ1;

(ii) b > ρ1 and a ≤ ρ1(2
√

λθb

c(μ+1+dθb)
) − 1

c .

In order to prove above theorem, we first give some a priori estimates of
positive solutions of (1.6).

Lemma 3.2. Assume a > ρ1 and b > ρ1. Let (u, v) be a positive solution of
(1.6). Then

u(x) ≤ θa < a and v(x) ≤ θb < b, x ∈ Ω.

Proof. It follows from (1.6) that

−Δu ≤ u(a− u), −Δv ≤ v(b− v), x ∈ Ω, u = v = 0, x ∈ ∂Ω.

Then the conclusion follows by comparison principle and Theorem 8.6. �

Proof of Theorem 3.1. Let (u, v) be a positive solution of problem (1.6).
(i) Taking L2(Ω)-inner product to the first equation of (1.6) leads to

‖∇u‖2
L2(Ω) =

∫
Ω

u2

(
a− u− λv

(1 + cu)(1 + dv)

)
dx < a‖u‖2

L2(Ω).

Note ‖∇u‖2
L2(Ω) ≥ ρ1‖u‖2

L2(Ω). Hence, if (1.6) has a positive solution, then a

must satisfy a > ρ1. This fact implies that (1.6) admits no positive solution for
a ≤ ρ1. Similarly, one can prove (1.6) admits no positive solution for b ≤ ρ1.

(ii) From the second equation of (1.6), we can derive

−Δv > v(b− (μ+ 1)v), x ∈ Ω, v = 0, x ∈ ∂Ω.

Then

v(x) >
1

μ+ 1
θb (3.1)

for x ∈ Ω by comparison principle.
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By the first equation of (1.6), we have

−Δu < u

(
a− u− λθb

c(1/c+ u)(μ+ 1 + dθb)

)

= u

(
a+

1
c

−
(
u+

1
c

+
λθb

c(1/c+ u)(μ+ 1 + dθb)

))

≤ u

(
a+

1
c

− 2

√
λθb

c(μ+ 1 + dθb)

)
,

which implies

ρ1

(
2

√
λθb

c(μ+ 1 + dθb)
− a− 1

c

)
< 0.

his fact implies that (1.6) admits no positive solution if (ii) holds. �

In order to understand the meaning of Theorem 3.1, we define a function:

a = g(b) = ρ1

(
2

√
λθb

c(μ+ 1 + dθb)

)
− 1
c
, b ≥ ρ1. (3.2)

Then g(b) satisfies the following properties.

Lemma 3.3. The function defined in (3.2) is a strictly increasing function of
class C1, which satisfies:

g(ρ1) = ρ1 − 1
c
, lim

b→∞
g(b) = ρ1 + 2

√
λ

cd
− 1
c
, g′(ρ1) = ∞. (3.3)

Furthermore,

(1) g(b) ≤ f(b), where f(b) is the function defined in (2.6);
(2) If d ≥ 4λc, then g(b) ≤ ρ1 for all b ≥ ρ1; and if d < 4λc, then there exists

a unique constant b# ∈ (ρ1,∞) such that

g(b)

⎧⎨
⎩
< ρ1, when b ∈ [ρ1, b#);
= ρ1, when b = b#;
> ρ1, when b > b#.

Proof. Similar to the proof of (i) in Lemma 2.2, we can get (3.3). Since

λθb

μ+ 1 + dθb
≥ 2

√
λθb

c(μ+ 1 + dθb)
− 1
c

⇔
(√

λθb

μ+ 1 + dθb
− 1√

c

)2

≥ 0.

Then (1) follows from Theorem 8.3. Finally, (2) follows by the fact that

ρ1 + 2

√
λ

cd
− 1
c

≤ ρ1 ⇔ d ≥ 4λc

and the monotone property of g(b). �

The following result follows from Theorem 3.1 and Lemma 3.3.
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Corollary 3.4. Let D1D2 and D5 be the sets defined in (2.18). Define a set D6

by

D6 := {(a, b) : b > b#, ρ1 < a ≤ g(b)}
for the case d < 4λc, where g(b) and b# are defined in Lemma 3.3. Then
(1.6) has no positive solution if (a, b) ∈ D1 ∪D2 ∪D5 for any λ, c, d > 0; and
(a, b) ∈ D1 ∪D2 ∪D5 ∪D6 for the case d < 4λc.

4. Existence of positive solutions

In this section, we will study the existence of positive solutions to prob-
lem (1.6) by degree theory which has been prepared in Sect. 8. Throughout
this section and next two sections, we will use the notations in Theorem 8.8
and

E := C0(Ω) × C0(Ω), where C0(Ω) is defined in Sect. 4. It is obvious
that E is a Banach space with the norm ‖(u, v)‖E = maxx∈Ω |u(x)| +
maxx∈Ω |v(x)|.
W = K ×K, where K := {u ∈ C0(Ω) : u(x) ≥ 0 for x ∈ Ω}.
D := {(u, v) ∈ W : u(x) ≤ a+ 1, v(x) ≤ b+ 1 for x ∈ Ω}.

We can see from Lemma 3.2 that all positive solutions of (1.6) lie in
the interior of D (= intD). In order to apply the degree theory, we choose a
sufficiently large number p such that

p+ a− u− λv

(1 + cu)(1 + dv)
> 0 and p+ b− v − μrv

u+ r
> 0

for (u, v) ∈ D. Define a mapping A in E by

A(u, v) = (−Δ + pI)−1

((
p+ a− u− λv

(1 + cu)(1 + dv)

)
u,

×
(
p+ b− v − μrv

u+ r

)
v

)
= ((−Δ + pI)−1(pu+ F (u, v)),

(−Δ + pI)−1(pv +G(u, v))), (4.1)

where

F (u, v) = u

(
a− u− λv

(1 + cu)(1 + dv)

)
, G(u, v) = v

(
b− v − μrv

u+ r

)
.

By (4.1) and the maximum principle for elliptic equations, A maps D
into W, and the strong maximum principle implies that A maps D \ (0, 0)
into the demi-interior of W (see [15,16]). Moreover, the regularity theory
for elliptic equations tells us that A is completely continuous in E. There-
fore, one can define the degree, degW(I − A, intD), for A with respect to W
because A has no fixed point on the boundary of D with respect to W by
Lemma 3.2
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Lemma 4.1. degW(I −A, intD) = 1.

Proof. For t ∈ [0, 1], we define a completely continuous mapping in E by

At(u, v) = (−Δ + pI)−1

((
p+ at− u− λv

(1 + cu)(1 + dv)

)
u,

×
(
p+ bt− v − μrv

u+ r

)
v

)
.

As in the study of A, one can show that At maps D into W and At has no
fixed point on the boundary of D with respect to W. Hence it follows from the
homotopy invariance that degW(I −At, intD) is independent of t ∈ [0, 1] (see
[3, Theorem 11.1]); so it follows from (0, 0) is the unique fixed point of A0 in
D that

degW(I −A, intD) = degW(I −A1, intD)
= degW(I −A0, intD) = indexW(A0, (0, 0)). (4.2)

Let A′
0(0, 0) be the Fréchet derivative of A0, which is given by A′

0(0, 0)(u, v) =
(−Δ + pI)−1(pu, pv). Observe that r(A′

0(0, 0)) = p
ρ1+p < 1. Then indexW(A0,

(0, 0)) = 1 is obtained by Theorem 8.8. Thus the conclusion follows from
(4.2). �

By Theorem 3.1, we assume a > ρ1 and b > ρ1 to study the existence
of positive solutions of (1.6), which means that (1.6) has one trivial solution
(0, 0) and two semi-trivial solutions (θa, 0) and (0, θ∗

b ). Next we will study the
index of the trial and semi-trivial solutions listed above.

Lemma 4.2. Let a > ρ1 and b > ρ1.
(i) indexW(A, (0, 0)) = 0 and indexW(A, (θa, 0)) = 0.

(ii) It holds that

⎧⎪⎨
⎪⎩

indexW(A, (0, θ∗
b )) = 0, if a > ρ1

(
λθb

μ+1+dθb

)
;

indexW(A, (0, θ∗
b )) = 1, if a < ρ1

(
λθb

μ+1+dθb

)
.

Proof. (i) We begin with the study of indexW(A, (0, 0)). A direct calculation
shows that

A′(0, 0)(u, v) = (−Δ + pI)−1((p+ a)u, (p+ b)v).

Clearly, W(0,0) = W and S(0,0) = {(0, 0)}; so that Ã′(0, 0) is identical with
A′(0, 0). Observe that

r(A′(0, 0)) = max
{
a+ p

ρ1 + p
,
b+ p

ρ1 + p

}
.

For a > ρ1 and b > ρ1, it is easy to see that A′(0, 0)y 	= y on W\{(0, 0)}
and that r(A′(0, 0)) = r(Ã′(0, 0)) > 1. Hence Theorem 8.8 yields indexW(A,
(0, 0)) = 0.

The proof of indexW(A, (θa, 0)) = 0 is similar to the proof of indexW(A, (0,
θ∗

b )) = 0; so we omit it and give the details of the computation of the index
for (0, θ∗

b ).
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(ii) After a series of calculations, one can show

A′(0, θ∗
b )(u, v) = (−Δ + pI)−1

((
p+ a− λθb

μ+ 1 + dθb

)
u,

μ(θb)2

r(μ+ 1)2
u+ (p+ b− 2θb)v

)
.

Define T1 and T2 by

T1 := (−Δ + pI)−1

(
p+ a− λθb

μ+ 1 + dθb

)
, T2 := (−Δ + pI)−1(p+ b− 2θb).

Since W(0,θ∗
b ) = K ×C0(Ω) and S(0,θ∗

b ) = {0} ×C0(Ω); so that we can identify
˜A′(0, θ∗

b ) with T1.
We will show by contradiction that I −A′(0, θ∗

b ) 	= 0 on W(0,θ∗
b )\{(0, 0)}

if

ρ1(κ) 	= 0 with κ =
λθb

μ+ 1 + dθb
.

Assume that there exists (ξ1, ξ2) ∈ W(0,θ∗
b )\{(0, 0)} such that A′(0, θ∗

b )(ξ1, ξ2)=
(ξ1, ξ2). If ξ1 = 0, then T2ξ2 = ξ2, which implies

−Δξ2 + (2θb − b)ξ2 = 0, x ∈ Ω, ξ = 0, x ∈ ∂Ω.

Therefore ξ2 = 0 by the fact that ρ1(2θb − b) > 0, which is a contradiction.
So ξ1 ∈ K must satisfy ξ1 	= 0 and T1ξ1 = ξ1. Hence it follows from the
Krein–Rutman theorem r(T1) = 1, which, together with Theorem 8.4, implies
ρ1(κ) = 0. This is also a contradiction. Thus we have shown I −A′(0, θ∗

b ) 	= 0
on W(0,θ∗

b )\{(0, 0)}.
We apply Theorem 8.8 to calculate the index of (0, θ∗

b ). In the case

a > ρ1(κ), Theorem 8.4 gives r(T1) > 1. Since ˜A′(0, θ∗
b ) is identical with T1, we

know that r( ˜A′(0, θ∗
b )) > 1. Then it follows from (8.8) that indexW(A, (0, θ∗

b )) =
0. Next, we consider the case a < ρ1(κ), which is equivalent to r(T1) < 1. Fur-
thermore, one can get r(T1) < 1 by the fact that ρ1(2θb − b) > 0. Then it
follows from [35, page 76] that

r(A′(0, θ∗
b )) = max{r(T1), r(T2)} < 1.

Hence it is sufficient to employ Theorem 8.8 to get indexW(A, (0, θ∗
b )) = 1. �

We are now ready to derive an existence result of positive steady states
for (1.6).

Theorem 4.3. If b > ρ1 and a > ρ1( λθb

μ+1+dθb
), then (1.6) admits at least one

positive solution.

Proof. We will prove this theorem by the degree theory. Assume on the con-
trary that (1.6) has no positive solution. It follows from the definition of degree
that

degW(I −A, intD) = indexW(A, (0, 0)) + indexW(A, (θa, 0))
+ indexW(A, (0, θ∗

b )) (4.3)
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By Lemma 4.1, the left-hand side of (4.3) is equal to 1. On the other hand,
Lemma 4.2 implies the right-hand side of (4.3) is equal to zero. This contradicts
to (4.3); so that (1.6) must possess at least one positive solution. �

Remark 4.4. In this remark, we give some biological interpretations of Theo-
rem 4.3. Firstly, we consider the second equation of (1.6) for any u ≥ 0, i.e.,
the following problem{

−Δv = v
(
b− v − μrv

u+r

)
, x ∈ Ω,

v = 0, x ∈ ∂Ω.
(4.4)

It follows from the Krein–Rutman theorem (see [22]) that v > 0 in Ω if and only
if b > ρ1. Furthermore, we get v ≥ θ∗

b := θb/(μ + 1) by comparison principle.
So, the growth rate b of predator v is larger than ρ1 in Theorem 4.3 ensures
they can survive no matter how little the prey u is. Moreover, we conjecture
there must be other food sources for predator v.

Secondly, we consider the first equation of (1.6) for any v ≥ θ∗
b since

b > ρ1, i.e., the following problem{−Δu+ λv
(1+cu)(1+dv)u = u (a− u) , x ∈ Ω,

u = 0, x ∈ ∂Ω.
(4.5)

Then u > 0 in Ω if and only if

a > ρ1

(
λv

(1 + cu)(1 + dv)

)
. (4.6)

Theorem 4.3 tells us if the growth rate a of prey u is greater than ρ1( λθb

μ+1+dθb
),

condition (4.6) is ensured. Furthermore, we can infer

ρ1

(
λθb

μ+ 1 + dθb

)
≥ ρ1

(
λv

(1 + cu)(1 + dv)

)
i.e.,

θbu <
μ+ 1
cd

and v ≤ θb(1 + cu)
μ+ 1 − cdθbu

,

which give the upper bounds of the positive solutions of problem (1.6).

By Lemma 2.2, Theorem 4.3 can be re-stated as follows.

Corollary 4.5. (1.6) admits at least one positive solution if (a, b) ∈ D4, where
D4 is defined in (2.18).

Remark 4.6. Corollaries 2.3 and 4.5 imply that (1.6) admits a positive solution
when both the trivial and semi-trivial solutions of (1.6) are unstable.

The next corollary is some specific inequalities to ensure the existence of
positive solution of problem (1.6), which follows from Lemma 2.2 and Theo-
rem 4.3.

Corollary 4.7. Problem (1.6) admits at least one positive solution if b > ρ1

and any one of the following conditions holds.
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Figure 2. Illusions of the sets in Corollary 4.8. Left is the
case d ≥ 4λc; right is the case d < 4λc. Here, b# is defined in

Lemma 3.3 and κ∗ = 2
√

λ
cd − 1

c

(i) λ ≥ μ+ 1 and a >
{
ϕ1(b), if ρ1 ≤ b < b#;
ϕ2(b), if b ≥ b#.

(ii) λ < μ+ 1 and a >
{
ϕ3(b), if ρ1 ≤ b < b∗;
ϕ2(b), if b ≥ b∗.

Here ϕi(b), i = 1, 2, 3, b# and b∗ were defined in Lemma 2.2.

At the end of this section, we make some comments on Sects. 4 and 5.
Firstly, we define some sets by using the notations in Lemmas 2.2 and 3.3 (see
Fig. 2).

G1 := {(a, b) : a > f(b), b > ρ1} = D4, where D4 is the set defined in (2.18).

G2 :=
{{(a, b) : a ≤ ρ1 or b ≤ ρ1}, if d ≥ 4λc;

{(a, b) : a ≤ ρ1 or b ≤ ρ1 or a ≤ g(b)}, if d < 4λc.

G3 :=
{{(a, b) : ρ1 < a ≤ f(b), b > ρ1}, if d ≥ 4λc;

{(a, b) : max{ρ1, g(b)} < a ≤ f(b)}, if d < 4λc. (4.7)

Then the following results follows from Theorems 3.1 and 4.3.

Corollary 4.8. Let Gi, i = 1, 2, 3, be the sets defined in (4.7). Then (1.6) admits
at least one positive solution if (a, b) ∈ G1, while it has no positive solution if
(a, b) ∈ G2.

5. Multiplicity of positive solutions

In Corollary 4.8, we have shown that (1.6) has a positive solution if (a, b) ∈ G1,
while it has no positive solution if (a, b) ∈ G2. However, the above result
gives no information on the existence or non-existence of positive solutions for
(a, b) ∈ G3. Our main interest is to know what happens if (a, b) ∈ G3, and we
will show that (1.6) may has at least two positive solution when (a, b) lie in
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some subset of G3. Throughout this section, we will fixed b > ρ1, and study
bifurcating solutions from (0, θ∗

b ) by regarding a as a bifurcation parameter.
By linearizing (1.6) at (0, θ∗

b ) = (0, θb/(μ + 1)), we obtain the following
eigenvalue problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Δφ+

(
a− λθb

μ+1+dθb

)
φ = ρφ, x ∈ Ω,

Δψ + μ
r

(
θb

μ+1

)2

φ+ (b− 2θb)ψ = ρψ, x ∈ Ω,

φ = ψ = 0, x ∈ ∂Ω.

(5.1)

A necessary condition for bifurcation is that the principal eigenvalue of (5.1)
is zero, which occurs if

a = ρ1

(
λθb

μ+ 1 + dθb

)
= f(b),

where f(b) is defined in Lemma 2.2. Let Φ be a unique positive solution of⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ΔΦ +
(
f(b) − λθb

μ+1+dθb

)
Φ = 0, x ∈ Ω,

Φ = 0, x ∈ ∂Ω,

Φ > 0, x ∈ Ω,

‖Φ‖L2(Ω) = 1.

(5.2)

We also define Ψ as the unique positive solution of⎧⎨
⎩−ΔΨ + (2θb − b)Ψ = μ

r

(
θb

μ+1

)2

Φ, x ∈ Ω,

Ψ = 0, x ∈ ∂Ω.
(5.3)

Here we have used the invertibility of −Δ + (2θb − b)I with zero Dirichlet
boundary condition since ρ1(2θb−b) > ρ1(θb−b) = 0. Furthermore, for p > N ,
set {

X :=
[
W 2,p(Ω) ∩W 1,p

0 (Ω)
]

×
[
W 2,p(Ω) ∩W 1,p

0 (Ω)
]
,

Y := Lp(Ω) × Lp(Ω).
(5.4)

By Sobolev’s theorem, X is continuously embedded into C1
0 (Ω)×C1

0 (Ω), where
C1

0 (Ω) = C1(Ω) ∩ C0(Ω).
With functions defined above, we have the following result regarding the

bifurcation solutions of (1.6) from (0, θ∗
b ) at a = f(b).

Lemma 5.1. Let b > ρ1 be fixed. Then positive solutions of (1.6) bifurcate from
a semi-trivial solution curve {(0, θ∗

b , a) : a > ρ1} if and only if a = f(b). More
precisely, there exists a positive number δ such that all positive solutions of
(1.6) near (0, θ∗

b , f(b)) ∈ X × R lie on a smooth curve

Γ1 = {(u, v, a) = (u(s), v(s), a(s)) : 0 < s < δ}
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with

u(s) = sΦ + sû(s) = sΦ +O(s2),
v(s) = θ∗

b + sΨ + sv̂(s) = θ∗
b + sΨ +O(s2),

a(s) = f(b) + sa1 +O(s2).

Here (û(s), v̂(s), a(s)) for 0 < s ≤ δ is a family of smooth functions with respect
to s satisfying (û(0), v̂(0), a(0)) = (0, 0, f(b)),

∫
Ω
û(s)Φdx = 0,

∫
Ω
v̂(s)Ψdx =

0, and

a1 =
∫

Ω

[(
1 − λcθb

μ+ 1 + dθb

)
Φ2 +

λ(μ+ 1)2

(μ+ 1 + dθb)2
Φ2Ψ

]
dx. (5.5)

Proof. Define a nonlinear mapping F : X × R �→ Y by

F(u, v, a) =
(

Δu+ F (u, v, a)
Δv +G(u, v)

)
,

where

F (u, v) = u

(
a− u− λv

(1 + cu)(1 + dv)

)
, G(u, v) = v

(
b− v − μrv

u+ r

)
.

From straightforward calculation, we obtain

F(u,v)(u, v, a)[ξ, η] =

⎛
⎝Δξ +

(
a− 2u− λv

(1+cu)2(1+dv)

)
ξ − λu

(1+cu)(1+dv)2 η

Δη + μrv2

(u+r)2 ξ +
(
b− 2v − 2μrv

u+r

)
η

⎞
⎠,

Fa(u, v, a) =
(
u
0

)
, Fa(u,v)(u, v, a)[ξ, η] =

(
ξ
0

)
,

F(u,v)(u,v)(a, u, v)[ξ, η]2

= 2

⎛
⎝

(
λcv

(1+cu)3(1+dv) − 1
)
ξ2 − λ

(1+cu)2(1+dv)2 ξη + λdu
(1+cu)(1+dv)3 η

2

− μrv2

(u+r)3 ξ
2 + 2μrv

(u+r)2 ξη −
(
1 + μr

u+r

)
η2

⎞
⎠ .

At (u, v, a) = (0, θ∗
b , f(b)), it is easy to see that the kernel

N(F(u,v)(0, θ∗
b , f(b))) = span{(Φ,Ψ)},

and the range

R(F(u,v)(0, θ∗
b , f(b))) =

{
(φ, ψ) ∈ Y :

∫
Ω

φ(x)Φ(x)dx = 0
}
.

Furthermore,

Fa(u,v)(0, θ∗
b , f(b))[Φ,Ψ] = (Φ, 0) 	∈ R(F(u,v)(0, θ∗

b , f(b)))

since
∫
Ω

Φ2dx = 1 	= 0. Then we can apply Theorem 8.1 to conclude the set of
positive solutions to (1.6) near (0, θ∗

b , f(b)). Moreover, by Theorem 8.1,

a1 = a′(0) = −〈�,F(u,v)(u,v)(0, θ∗
b , f(b))[Φ,Ψ]2〉

2〈�,Fa(u,v)(0, θ∗
b , f(b))[Φ,Ψ]〉 ,
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where � is a linear functional on Y defined as 〈�, (φ, ψ)〉 =
∫
Ω
φ(x)Φ(x)dx.

Thus, (5.5) follows. �
Lemma 5.2. For any a > ρ1, there is no positive solution of (1.6) bifurcating
from (θa, 0). Similarly, positive solutions of (1.6) cannot bifurcate from (0, 0).

Proof. By linearizing (1.6) at (θa, 0), we obtain the following eigenvalue prob-
lem: ⎧⎪⎪⎨

⎪⎪⎩
Δφ+ (a− 2θa)φ− λθa

1 + cθa
ψ = ρφ, x ∈ Ω,

Δψ + bψ = ρψ, x ∈ Ω,
φ = ψ = 0, x ∈ ∂Ω.

A necessary condition for bifurcation is that the principal eigenvalue of (5.1) is
zero, which occurs if b = ρ1. However, it follows from Theorem 2.1 that (θa, 0)
is globally asymptotically stable if a > ρ1 and b = ρ1, which means bifurcation
cannot happen at (θa, 0) when b = ρ1. The second conclusion can be obtained
by the same way. �

By Theorem 8.1, the curve Γ1 of bifurcating positive solutions is contained
in a connected component Σ of the set of positive solutions of (1.6). Our next
result is about Σ. To this end, we denote

P =
{
w ∈ C1

0 (Ω), w(x) > 0 for x ∈ Ω and
∂w

∂ν
(x) < 0 for x ∈ ∂Ω

}
, (5.6)

where ∂/∂ν denotes the outward normal derivative on ∂Ω.

Theorem 5.3. Let b > ρ1 be fixed. Then the global bifurcation curve Σ is
unbounded in X×R, where X is defined in (5.4). Moreover, Σ\{(0, θ∗

b , f(b))} =:
Σ̃ ⊂ P×P× [ρ1,∞) and [f(b),∞) ⊂ PrjaΣ, where PrjaΣ means the projection
of Σ on a-axis.

Proof. To conclude the conclusion, we only need to prove Σ̃ ⊂ P×P× [ρ1,∞)
and [f(b),∞) ⊂ PrjaΣ. Let (u(s), v(s), a(s)) be the bifurcation solutions got
in Theorem 5.1. It should be noted that a(s) ∈ [ρ1,∞) by Theorem 3.1 and
(u(s), v(s)) ∈ P × P for sufficiently small s > 0 because Φ and θ∗

b belong to P
by the strong maximum principle.

On the contrary, we suppose Σ̃ is not contained in P × P × [ρ1,∞).
Then the above arguments show that there exists a point (û, v̂, â) ∈ ∂(P ×
P) × [ρ1,∞), which is the limit of a sequence of points {(un, vn, an)}∞

n=1 ⊂
Σ̃ ∩ (P × P × [ρ1,∞)). Then û ∈ ∂P or v̂ ∈ ∂P.

If û ∈ ∂P, then û ≥ 0 for x ∈ Ω and either û(x0) = 0 for some x0 ∈ Ω or
∂û/∂ν(x0) = 0 for some x0 ∈ ∂Ω. Since û satisfies

−Δû = û

(
a− û− λv̂

(1 + cû)(1 + dv̂)

)
, x ∈ Ω, û = 0, x ∈ ∂Ω.

The strong maximum principle that û ≡ 0. Similarly, we can show v̂ ≡ 0 if
v̂ ∈ ∂P. Thus we the following three cases:

(i) (û, v̂) = (θa, 0) (ii) (û, v̂) = (0, θ∗
b ) (iii) (û, v̂) = (0, 0).
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By Lemma 5.2, (i) and (iii) cannot happen. Since (0, θ∗
b , f(b)) 	∈ Σ̃, (ii)

cannot happen. Thus, Σ̃ ⊂ P × P × [ρ1,∞).
Next we will prove [f(b),∞) ⊂ PrjaΣ. For any positive solution (u, v) of

(1.5), Lemma 3.2 gives 0 ≤ u ≤ a and 0 ≤ v ≤ b. Then the regularity theory
of elliptic equations ensure that there exists a positive constant C depending
only on a such that any (u, v, a) ∈ Σ̃ satisfies

‖u‖W 2,p(Ω) ≤ C and ‖v‖W 2,p(Ω) ≤ C.

This estimates together with the unboundedness of Σ implies [f(b),∞) ⊂
PrjaΣ. �

Let {(u(s), v(s), a(s))}0<s<δ be the family of positive solutions of (1.6)
got by Lemma 5.1. Next we will study the stability properties of this family.

Theorem 5.4. Let a1 and δ be defined in Lemma 5.1 and {(u(s), v(s), a(s))}0<s<δ

be the family of positive solutions of (1.6) got by Lemma 5.1. Then there exists
a constant δ̃ ∈ (0, δ] such that (u(s), v(s)) with 0 < s < δ̃ is asymptotically
stable is the bifurcation is supercritical (i.e., a1 > 0), while it is unstable if the
bifurcation is subcritical (i.e., a1 < 0).

Proof. We will apply Theorem 8.2 to prove this theorem. Throughout the
proof, we will use the notations in the proof of Lemma 5.1. In order to study
the stability, we consider the following eigenvalue problem⎧⎨

⎩L(s)
(
u(s)
v(s)

)
= �(s)

(
u(s)
v(s)

)
, x ∈ Ω,

u(s) = v(s) = 0, x ∈ ∂Ω,

where

L(s) = −F(u,v)(u(s), v(s), a(s))

=

⎛
⎝−Δ −

(
a(s) − 2u(s) − λv(s)

(1+cu(s))2(1+dv(s))

)
λu(s)

(1+cu(s))(1+dv(s))2

− μrv2(s)
(u(s)+r)2 −Δ −

(
b − 2v(s)− 2μrv(s)

u(s)+r

)
⎞
⎠.

Furthermore,

lim
s→0

L(s) =

⎛
⎝−Δ − f(b) + λθb

μ+1+dθb
0

−μ
r

(
θb

μ+1

)2

−Δ + 2θb − b

⎞
⎠ =: L0.

Since

ρ1

(
−f(b) +

λθb

μ+ 1 + dθb

)
= 0 and ρ1(2θb − b) > 0,

0 is the first eigenvalue of L0 with corresponding eigenfunction (Φ,Ψ). More-
over the real part of all other eigenvalues of L0 are positive and apart from 0.
By perturbation theory of linear operators [28], we know that there exists a
small constant δ1 ∈ (0, δ] such that for s ∈ (0, δ1),L(s) has a unique eigenvalue
�(s) such that lims→0 �(s) = 0 and all other eigenvalues of L(s) have positive
real part and apart from 0.
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Now we determine the sign of �(s) by using Theorem 8.2. Consider the
following eigenvalue problem⎧⎨

⎩−F(u,v)(0, θ∗
b , a)

(
φ(a)
ψ(a)

)
= m(a)

(
φ(a)
ψ(a)

)
, x ∈ Ω,

φ(a) = ψ(a) = 0, x ∈ ∂Ω.

Similar to the analysis for L(s), there exists a small constant δ2 ∈ (0, δ] such
that for |a−f(b)| < δ2, −F(u,v)(0, θ∗

b , a) has a unique eigenvaluem(a) such that
lima→f(b)m(a) = 0 and all other eigenvalues of −F(u,v)(0, θ∗

b , a) have positive
real part and apart from 0. Furthermore, m(a) is determined by the following
eigenvalue problem{−Δφ(a) + λθb

μ+1+dθb
φ(a) − aφ(a) = m(a)φ(a), x ∈ Ω,

φ(a) = 0, x ∈ ∂Ω.
(5.7)

Since m(f(b)) = 0 and φ(f(b)) = Φ, then by differentiating (5.7) with respect
to a at a = f(b) we obtain that{−Δχ+ λθb

μ+1+dθb
χ− f(b)χ− Φ = m′(f(b))Φ, x ∈ Ω,

χ = 0, x ∈ ∂Ω,
(5.8)

where χ = φ′(f(b)). Multiplying both sides of (5.8) and integrating the result
over Ω yields

m′(f(b))
∫

Ω

Φ2dx = −
∫

Ω

Φ2dx+
∫

Ω

(
−ΔχΦ +

λθb

μ+ 1 + dθb
χΦ − f(b)χΦ

)
dx

= −
∫

Ω

Φ2dx+
∫

Ω

χ

(
−ΔΦ +

λθb

μ+ 1 + dθb
Φ − f(b)Φ

)
dx

= −
∫

Ω

Φ2dx,

where the last equality follows from (5.2). So m′(f(b)) = −1. Since a1 	= 0,
then if follows from Theorem (8.2) that there exists a small positive constant
δ3 ≤ min{δ1, δ2} such that μ(s) 	= 0 for s ∈ (0, δ3) and

lim
s→0

�(s)
s

= −m′(f(a))a′(0) = a1.

Then there exists a positive constant δ̃ ≤ δ3 such that μ(s) has same sign with
a1 for s ∈ (0, δ̃), and the conclusion follows. �

Based on above preparations, we can give our multiplicity result as fol-
lows.

Theorem 5.5. Assume b > ρ1 be fixed. Let f(b) and a1 be defined in Lemma 2.2
and (5.5), respectively. If a1 < 0, then there exists a positive constant ε =
ε(b) < f(b) − ρ1 such that (1.6) has at least two positive solution if f(b) − ε <
a < f(b), and it has at least one positive solution if a ≥ f(b) − ε.

Proof. From Lemma 5.1, (1.6) has a curve Γ1 = {(u(s), v(s), a(s)) : 0 < s < δ}
of positive solutions near (0, θ∗

b , f(b)). Since a1 < 0, then a(s) < f(b) for s > 0
small. Assume on the contrary that (1.6) has a unique positive solution (û, v̂)
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u

a0 ρ1

ρ1

u=a

f(b)-ε f(b)

Figure 3. Bifurcation curve of u when a1 < 0

when a < f(b) but near f(b), then it is obvious that (û, v̂) = (u(s), v(s)), and
it is not degenerate by Theorem 5.4. Let A be the operator defined in (4.1)
and D be the region defined at the beginning Sect. 5, then I − A(u,v)(û, v̂) :
W(û,v̂) �→ W(û,v̂) is invertible. Since (û, v̂) is an interior point of D, it follows
from Theorem 8.8 that indexW(A, (û, v̂)) = ±1. Notice ρ1 < a < f(b) for s > 0
small and b > ρ1. It follows from Lemmas 4.1 and 4.2 that

1 = degW(I −A, intD)
= indexW(A, (0, 0)) + indexW(A, (θa, 0)) + indexW(A, (0, θ∗

b ))
+ indexW(A, (û, v̂)),= 0 + 0 + 1 ± 1,

which is a contradiction. Thus if a < f(b) and near f(b), (1.6) admits at least
two positive solutions. Then it follows from Theorem (5.3) that there exists
ε ∈ (0, f(b) − ρ1) such that PrjaΣ = [f(b) − ε,∞) (see Fig. 3), where Σ is the
global bifurcation got in Theorem 5.3, and the conclusion follows. �

Remark 5.6. Let’s make some Comments to Theorem 5.5.

1. Since Φ and Ψ are both independent of c, then

lim
c→∞

a1

c
= lim

c→∞

∫
Ω

[(
1
c

− λθb

μ+ 1 + dθb

)
Φ2 +

λ(μ+ 1)2

c(μ+ 1 + dθb)2
Φ2Ψ

]
dx

= −
∫

Ω

λθb

μ+ 1 + dθb
Φ2dx < 0.

So, a1 < 0 can be achieved if we fix λ, μ, d > 0, b > ρ1, and take c
large enough.

2. At the beginning of this section, we proposed a question, i.e., what happens if
(a, b) ∈ G3. Theorem 5.5 gives answer to this question in some extent. That
is problem (1.6) possesses at leat two positive solution when (a, b) ∈ G3 and
(a, b) near the curve {(a, b) : a = f(b), b > ρ1} under the condition a1 < 0,
where G3 is defined in (4.7).
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6. Uniqueness of positive solution

By Theorem 5.5, we obtain (1.6) has multiple solutions if a1 < 0. A natural
question is that if (1.6) has unique positive solution when a1 > 0 and (a, b) ∈
G1, where G1 is defined in (4.7). In this section, we will answer this question
in some extent. Note that a1, defined in (5.5), is positive if

(Cuni)c is small enough; or λ is small enough; or d is large enough.
In this section, we will show the uniqueness of positive solution to (1.6)

under the condition (Cuni). To this end, we first introduce some lemmas.
Consider the following problem:⎧⎪⎨

⎪⎩
−Δu+ λv

1+dvu = u(a− u), x ∈ Ω,

−Δv = v
(
b− v − μrv

u+r

)
, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(6.1)

Lemma 6.1. Assume b > ρ1 and a ≥ ρ1( λθb

1+dθb
). Then (6.1) has a unique

positive solution, which is denoted by (u∗, v∗).

Proof. First we consider the following problem for v ∈ C1(Ω):

−Δu+
λv

1 + dv
u = u (a− u), x ∈ Ω, u = 0, x ∈ ∂Ω. (6.2)

Then it follows from Theorem 8.5 that (6.2) has a unique positive solution if
a > ρ1

(
λv

1+dv

)
. So for an arbitrary function v ∈ C1(Ω), we define u(v) as a

function on Ω by

u(v) =

⎧⎪⎨
⎪⎩

0, if a ≤ ρ1

(
λv

1+dv

)
;

unique positive solution of problem (6.2), if a > ρ1

(
λv

1+dv

)
.

(6.3)

By [6] or [34, page 360], the following conclusions hold.

1. The mapping v �→ u(v) defined by (6.3) considered as a function from
C1(Ω) to C1(Ω) is continuous;

2. if v1 ≥ v2 in Ω, then u(v1) ≤ u(v2) in Ω.

Next, we consider the following problem

−Δv = v

(
b− v − μrv

u(v) + r

)
, x ∈ Ω, u = 0, x ∈ ∂Ω. (6.4)

Then it follows from Theorem 4.3 that (6.4) has a unique positive solution
by the properties of u(v) and the fact that b > ρ1, which we denote by v∗.
Furthermore, it is easy to see that v∗ < θb. Since

a ≥ ρ1

(
λθb

1 + dθb

)
>

(
λv∗

1 + dv∗

)
,

u∗ := u(v∗) is the unique positive solution of (6.2). Finally, the above analysis
shows that (u∗, v∗) is the unique positive solution of (6.1). �
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Fixed a > ρ1, let’s consider the following problem:

−Δv = v

(
b− v − μrv

θa + r

)
, x ∈ Ω, v = 0, x ∈ ∂Ω. (6.5)

By Theorem 8.5, the following result holds.

Lemma 6.2. Assume a, b > ρ1. Then (6.5) has a unique positive solution, which
is denoted by vθa

.

Based on above preparations, we can consider the asymptotic behavior
of positive solutions of (1.6), when c or μ or λ or d changes.

Lemma 6.3. The following results hold.

(i) Assume b > ρ1 and a ≥ ρ1( λθb

1+dθb
). Suppose (ui, vi) is a positive solution of

(1.6) with c = ci and ci → 0 as i → ∞, then (ui, vi) converges to (u∗, v∗)
uniformly as i → ∞, where (u∗, v∗) is got in Lemma 6.1. Furthermore, if

λ2a ≤ 1 or
μ2b3

r2
≤ μr

a+ r
+ 1, (6.6)

then there exists a positive constant τ1 such that any positive solution of
(1.6) is non-degenerate and linearly stable if c < τ1.

(ii) Assume a, b > ρ1. Suppose (ui, vi) is a positive solution of (1.6) with
λ = λi and λi → 0 as i → ∞, then (ui, vi) converges to (θa, vθa

) uniformly
as i → ∞, where vθa

is got in Lemma 6.2. Furthermore, there exists
a positive constant τ3 such that any positive solution of (1.6) is non-
degenerate and linearly stable if λ < τ3.

(iii) Assume a, b > ρ1. Suppose (ui, vi) is a positive solution of (1.6) with d =
di and di → ∞ as i → ∞, then (ui, vi) converges to (θa, vθa

) uniformly as
i → ∞, where vθa

is got in Lemma 6.2. Furthermore, there exists a positive
constant τ4 such that any positive solution of (1.6) is non-degenerate and
linearly stable if d > τ4.

Proof. We only give the proof of (i) since the proofs for others are similar.
Assume ci → 0 as i → ∞, and (ui, vi) is a positive solution of (1.6) with
c = ci. By Lemma 3.2, ‖ui‖L∞(Ω) ≤ a and ‖vi‖L∞(Ω) ≤ b and the upper
bounds are both independent of i (thus independent of ci), then

‖(ui, vi)‖C2+α(Ω)×C2+α(Ω) := ‖ui‖C2+α(Ω) + ‖vi‖C2+α(Ω), i = 1, 2, . . .

are uniformly bounded by regularity theory of elliptic equations [23] and
the fact that ci are uniformly bounded. Then there exits a subsequence of
{(ui, vi)}∞

i=1, relabeled by itself, and two nonnegative functions u, v ∈ C1+β(Ω)
with 0 < β < α such that (ui, vi) → (u, v) in C2+β(Ω) × C2+β(Ω) as i → ∞.
Then (u, v) must be a solution of (6.1). From strong maximum principle, we
know that each of u and v is either > 0 in Ω or ≡ 0 in Ω. So if we can show
that u, v > 0 in Ω, then the convergence result follows as the positive solution
of (6.1) is unique hence it must be the limit of the sequence {(ui, vi)}∞

i=1.
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To the contrary, we assume u ≡ 0, ‖ui‖L∞(Ω) → 0 as i → ∞, then v = 0
or v = θb/(μ+ 1). Let ui = ui/‖ui‖L∞(Ω), then ui satisfies{−Δui + λvi

(1+ciui)(1+dvi)
ui = ui(a− ui), x ∈ Ω,

ui = 0, x ∈ ∂Ω.

Similar to the arguments as above, ‖ui‖C2+α(Ω) are uniformly bounded, thus
there exists a subsequence of {ui}∞

i=1, relabeled by itself, and a nonnegative
function u ∈ C2+β(Ω) with 0 < β < α such that ui → u in C2+β(Ω). Obvi-
ously, ‖u‖L∞(Ω) = 1 and u satisfies{−Δu+ λv

1+dvu = au, x ∈ Ω,
u = 0, x ∈ ∂Ω.

Therefore, it follows from Krein–Rutman Theorem that

a = ρ1

(
λv

1 + dv

)
=

{
ρ1, if v = 0;
ρ1

(
λθb

μ+1+dθb

)
, if v = θb/(μ+ 1),

which again contradicts with the assumption that a ≥ ρ1( λθb

1+dθb
).

On the other hand, if we assume that v ≡ 0, then u = 0 or u = θa.
The same arguments as above show that there exits a nonnegative function
v ∈ C1+β(Ω) such that vi := vi/‖vi‖L∞(Ω) → v in C2+β(Ω) as i → ∞.
Furthermore, ‖v‖L∞(Ω) = 1 satisfies

−Δv = bv, x ∈ Ω, v = 0, x ∈ ∂Ω.

Therefore b = ρ1, which again contradicts with the assumption that b > ρ1.
Hence the limit (u, v) > (0, 0) must be the unique positive solution of (6.1).

Next we will study the stability result. To the contrary, we assume that
there exists a sequence {ci}∞

i=1 such that ci → 0 as i → ∞, ρi with Reρi ≤ 0
and (ξi, ηi) with ‖ξi‖L2(Ω) + ‖ηi‖L2(Ω) = 1 satisfying⎧⎪⎪⎨

⎪⎪⎩
−Δξi −

(
a − 2ui − λvi

(1+ciui)2(1+dvi)

)
ξi + λui

(1+ciui)(1+dvi)2
ηi = ρiξi x ∈ Ω,

−Δηi − μrv2
i

(ui+r)2
ξi −

(
b − 2vi − 2μrvi

ui+r

)
ηi = ρiηi, x ∈ Ω,

ξi = ηi = 0, x ∈ ∂Ω,

(6.7)

where (ui, vi) is a positive solution of (1.6) with c = ci. Multiplying (6.7)1 by
ξi and (6.7)2 by ηi, integrating the results over Ω, and then adding the results,
we obtain

ρi =
∫

Ω

(|∇ξi|2 + |∇ηi|2)dx︸ ︷︷ ︸
I1

+
∫

Ω

(
λvi

(1 + ciui)2(1 + dvi)
+ 2ui − a

)
|ξi|2dx︸ ︷︷ ︸

I2

+
∫

Ω

(
λui

(1 + ciui)(1 + dvi)2
ηiξi − μrv2

i

(ui + r)2
ξiηi

)
dx︸ ︷︷ ︸

I3

(6.8)

+
∫

Ω

(
2μrvi

ui + r
+ 2vi − b

)
|ηi|2dx︸ ︷︷ ︸

I4

. (6.9)
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Then by the fact that {(ui, vi)}∞
i=1 is uniformly bounded and Reρi ≤ 0,

we obtain

I1 = Reρi − I2 − I4 ≤ −I2 − I4 (6.10)

is uniformly bounded. So it follows from (6.8) and (6.10) that there exists a
constant C independent of i such that

|ρi|2 = (Reρi)2 + (Imρi)2 = (I1 + I2 + I4)2 + (I3)2 ≤ 2
4∑

j=1

(Ij)2 ≤ C.

So there exists a subsequence of {ρi}∞
i=1, doted by itself, such that limi→∞ ρi =

ρ with Reρ ≤ 0. Using the boundedness of {ρi}∞
i=1 and Lp-theory of elliptic

equations (see [23]), we get that form any p > N , {ξi}∞
i=1 and {ηi}∞

i=1 are uni-
formly bounded in W 2,p(Ω). Since W 2,p(Ω) is embedded in C1(Ω) compactly,
there exist subsequences of {xıi}∞

i=1 and {ηi}∞
i=1, denoted by themselves, such

that limi→∞ ξi = ξ and limi→∞ ηi = η in C1(Ω) and ‖ξ‖L2(Ω) + ‖η‖L2(Ω) = 1.
Letting i → ∞ in (6.7), we obtain (ρ, ξ, η) satisfies the following equation in
the sense of distribution⎧⎪⎪⎨

⎪⎪⎩
−Δξ −

(
a− 2u∗ − λv∗

1+dv∗

)
ξ + λu∗

(1+dv∗)2 η = ρξ x ∈ Ω,

−Δη − μr(v∗)2

(u∗+r)2 ξ −
(
b− 2v∗ − 2μrv∗

u∗+r

)
η = ρη, x ∈ Ω,

ξ = η = 0, x ∈ ∂Ω.

(6.11)

Since ξ, η ∈ C1(Ω), by the regularity theory of elliptic equations, we get ξ, η ∈
C2+α(Ω) for some α ∈ (0, 1) and (ρ, ξ, η) satisfies (6.11) in classical sense.

Since (u∗, v∗) is a positive solution of (6.1), it follows from Krein–Rutman
Theorem

a = ρ1

(
λv∗

1 + dv∗ + u∗
)

and b = ρ1

(
v∗ +

μrv∗

u∗ + r

)
. (6.12)

If ξ 	≡ 0 and η ≡ 0, by the first equation of (6.11) we have

Reρ ≥ ρ1

(
λv∗

1 + dv∗ + 2u∗ − a

)
> ρ1

(
λv∗

1 + dv∗ + u∗
)

− a = 0,

which contradicts to Reρ ≤ 0.
If ξ 	≡ 0, η 	≡ 0 and λ2a ≤ 1, by variational characterization of the

principal eigenvalue and the first equation of (6.11), we have

Reρ ≥ inf
φ∈S

∫
Ω

(
|∇φ|2 +

(
λv∗

1+dv∗ + 2u∗ − a
)
φ2 + λu∗

(1+dv∗)2 ηφ
)
dx∫

Ω
φ2dx

, (6.13)

where

S =

{
φ ∈ H1

0 (Ω) :
∫

Ω

(
λu∗

(1 + dv∗)2
φ

)2

= 1

}
.
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Since ‖η‖L2(Ω) ≤ 1 and φ ∈ S, we obtain

∫
Ω

λu∗

(1 + dv∗)2
ηφdx ≥ −

[∫
Ω

η2dx

]1/2
[∫

Ω

(
λu∗

(1 + dv∗)2
φ

)2

dx

]1/2

≥ −
[∫

Ω

(
λu∗

(1 + dv∗)2
φ

)2

dx

]1/2

= −
∫

Ω

(
λu∗

(1 + dv∗)2
φ

)2

dx. (6.14)

So, it follows (6.13), (6.14), λ2a ≤ 1, and u∗ < a that

Reρ ≥ ρ1

(
u∗

(
1 − λ2u∗

(1 + dv∗)4

)
+

(
λv∗

1 + dv∗ + u∗ − a

))

> ρ1

(
u∗ (

1 − λ2a
)

+
(

λv∗

1 + dv∗ + u∗ − a

))

≥ ρ1

(
λv∗

1 + dv∗ + u∗
)

− a = 0,

which contradicts to Reρ ≤ 0.
If ξ 	≡ 0, η 	≡ 0 and μr

a+r + 1 ≥ μ2b3

r2 , then it follows from the second
equation of (6.11) and the similar analysis as above, one can get

Reρ ≥ ρ1

(
v∗

(
μr

u∗ + r
+ 1 − μ2r2(v∗)3

(u∗ + r)4

)
+

(
μrv∗

u∗ + r
+ v∗ − b

))

> ρ1

(
u∗

(
μr

a+ r
+ 1 − μ2b3

r2

)
+

(
μrv∗

u∗ + r
+ v∗ − b

))

≥ ρ1

(
μrv∗

u∗ + r
+ v∗

)
− b = 0,

which contradicts to Reρ ≤ 0.
If ξ ≡ 0 and η 	≡ 0, by the second equation of (6.11) we have

Reρ ≥ ρ1

(
2μrv∗

u∗ + r
+ 2v∗ − b

)
> ρ1

(
μrv∗

u∗ + r
+ v∗

)
− b = 0,

which contradicts to Reρ ≤ 0.
The above analysis shows (i) holds. �

Base on Lemma 6.3, we can state our first uniqueness result as follows.

Theorem 6.4. The following results hold.
(i) Suppose b > ρ1 and a ≥ ρ1( λθb

1+dθb
) are fixed parameters such that (6.6)

holds, then there exists a constant δ1 > 0 such that when 0 < c < δ1, the
problem (1.6) has a unique positive solution which is locally asymptoti-
cally stable.

(ii) Suppose b > ρ1 and a > ρ1 are fixed parameters, then there exists a
constant δ3 > 0 such that when 0 < λ < δ3, the problem (1.6) has a
unique positive solution which is locally asymptotically stable.
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(iii) Suppose b > ρ1 and a > ρ1 are fixed parameters, then there exists a
constant δ4 > 0 such that when d > δ4, the problem (1.6) has a unique
positive solution which is locally asymptotically stable.

Proof. Note that

1. ρ1( λθb

μ+1+dθb
) < ρ1( λθb

1+dθb
) and

2. ρ1( λθb

μ+1+dθb
) → ρ1 when λ → 0 or d → ∞.

Then existence of a positive solution easily follows from Theorem 4.3. Hence
we only need to show the uniqueness and local stability. Recall that A is the
operator defined in (4.1) and D is the region that positive solutions lie in.
By the compactness, G has at most finitely many positive fixed points in the
region D. We denote all the positive fixed points of A in D by (ui, vi) for
i = 1, 2, . . . , �. From Lemma 6.3, we have indexW(A, (ui, vi)) = 1. According
to the additive property of Leray–Schauder degree, we get

1 = degW(I −A, intD)
= indexW(A, (0, 0)) + indexW(A, (θa, 0)) + indexW(A, (0, θ∗

b ))

+
�∑

i=1

indexW(A, (ui, vi)) = 0 + 0 + 0 + �.

Hence � ≡ 1, which asserts the uniqueness. The local stability has been proved
in Lemma 6.3. �

Next, we will give some specific conditions to ensure the uniqueness of
positive solution of (1.6) for N = 1. Consider the following problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−u′′ = u

(
a− u− λv

(1+cu)(1+dv)

)
, 0 < x < L,

−v′′ = v
(
b− v − μrv

u+r

)
, 0 < x < L,

u(0) = u(L) = v(0) = v(L) = 0,

(Pλ)

where L is a positive constant and ′′ := d/dx2 = Δ.
Firstly, we will introduce some lemmas to get the uniqueness result.

Lemma 6.5. Assume

[(λc− d)b− 1](a+ r) ≤ μr. (6.15)

Let (u0, v0) be an arbitrary positive solution of (Pλ) then the linearized sys-
tem of (Pλ) at (u0, v0) has only the trivial solution (Pλ). Hence any positive
solution of (Pλ) is not degenerate.

Proof. The linearized system of (Pλ) at (u0, v0) is⎧⎪⎪⎨
⎪⎪⎩

−φ′′ + L1φ = Aψ, 0 < x < L,

−ψ′′ + L2ψ = Bφ, 0 < x < L,

φ(0) = φ(L) = ψ(0) = ψ(L) = 0,
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where

L1 = 2u0 +
λv0

(1 + cu0)2(1 + dv0)
− a, L2 = 2v0 +

2μrv0
u0 + r

− b,

A = − λu0

(1 + cu0)(1 + dv0)2
< 0, B =

μrv2
0

(u0 + r)2
> 0.

Since (u0, v0) is a positive solution of (1.6), it follows from the Krein–Rutman
Theorem that

ρ1

(
u0 +

λv0
(1 + cu0)(1 + dv0)

− a

)
= 0 and ρ1

(
v0 +

μrv0
u0 + r

− b

)
= 0.

(6.16)

By the second equation of (Pλ), one can show v0 < (a+r)b/(a+r+μr), which
together with (6.15) leads to

2u0 +
λv0

(1 + cu0)2(1 + dv0)
− a > u0 +

λv0
(1 + cu0)(1 + dv0)

− a.

Then it follows from (6.16) and Theorem 8.3 that ρ1(Li) > 0, i = 1, 2.
Let X and Y be the Banach spaces defined in (5.4), and define a linear

operator � = (�1,�2) : X �→ Y, where �i = −′′ +Li, i = 1, 2. Let P be the
set defined in (5.6), and let �−1

i be the inverse operator of �i. It is obvious
that �−1

i is compact and strictly order-preserving operators with respect to P.
Moreover �−1

i (P\{0}) ⊂ intP. In this settings, we can show that φ = ψ = 0
using a similar proof as in [10,39], which completes the proof. �

A perturbation argument can be used to show that if (Pλ) has exactly
one positive solution, which is assumed to be non-degenerate, then (Pλ+ε) also
has exactly one positive solution provided ε is small enough. For that purpose,
we state the following lemma. Since the proof is basically same as [10, Lemma
5.4], we omit its proof.

Lemma 6.6. Assume (6.15) holds and (Pλ) has exactly one positive solution
(u0, v0), which is not degenerate. Then there exists ε0 = ε0(λ) > 0 such
that for every ε ∈ (−ε0, ε0), problem (Pλ+ε) has exactly one positive solution
(u(ε), v(ε)). Moreover (u(0), v(0)) = (u0, v0) and the mapping ε �→ (u(ε), v(ε)),
from (−ε0, ε0) to P × P, is of class C1, where P is defined in (5.6).

Next let’s make some analysis of the condition (6.15). It is obvious that
(6.15) holds if λc ≤ d or b ≤ b0 and λc > d, where b0 := 1/(λc− d). For b > b0
and λc > d, we define a function a = h(b) by

a = h(b) =
μr

(λc− d)b− 1
− r; (6.17)

then (6.15) holds if and only if a ≤ h(b). Obviously, h(b) is a smooth strictly
decreasing function such that

lim
b→b0

h(b) = ∞, lim
b→∞

h(b) = −∞, h(b1) = 0, (6.18)

where b1 = (μ+ 1)/(λc− d).
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Figure 4. Illusions of the sets in Theorem 6.7 when λc > d
and b > b0. Left is the case b0 < ρ1 and (6.19) holds; middle
is the case b0 = ρ1; right is the case b0 > ρ1

In order to state the uniqueness result, we make some discussions on f(b)
and h(b), where f(b) is defined in (2.6). It is easy to see f(b) and h(b) intersect
at only one point (a, b) = (h(b∗#), b∗#) for b∗# ∈ (ρ1,∞) if and only if b0 ≥ ρ1

or b0 < ρ1 and h(ρ1) > ρ1. It is easy to show that h(ρ1) > ρ1 is equivalent to

μ > [(λc− d)ρ1 − 1]
(ρ1

r
+ 1

)
. (6.19)

Let G = {(a, b) : a, b satisfy (6.15)} ∩ G1, where G1 is defined in (4.7).
With the notations introduced above and the analysis given above, we can see
that (see Figs. 4, 5)

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1, if λc ≤ d;
G1, if λc > d and b ≤ b0;
{(a, b) : f(b) < a ≤ h(b), ρ1 < b < b∗

#}, if λc > d, b0 < ρ1 and (6.19) holds;

{(a, b) : f(b) < a ≤ h(b), ρ1 < b < b∗
#}, if λc > d and b0 = ρ1;

{(a, b) : a > f(b), ρ1 < b ≤ b0}
∪{(a, b) : f(b) < a ≤ h(b), b0 < b < b∗

#},
if λc > d and b0 > ρ1;

∅, otherwise.

(6.20)

By Lemma 6.2, (P0) has exactly one positive solution (θa, vθa
) if a > ρ1 and

b > ρ1. Then it follows from Lemmas 6.5 and 6.6, we can state the following
uniqueness result. Again the proof is similar to [10, Theorem 5.1], thus we omit
its proof.

Theorem 6.7. Let G be the set defined in (6.20). Then problem (Pλ) has a
unique positive solution if G 	= ∅ and (a, b) ∈ G.

Compared with Theorem 6.4, Theorem 6.7 has some specific inequalities
to ensure the existence of a unique positive solution. We remark that G 	= ∅,
when c is small or λ is small or d is large, which is consistent with the conditions
in Theorem 6.4.

7. Conclusions

In this paper, we study the existence, multiplicity and uniqueness results for
the steady state equations (1.6) of a modified Leslie–Gower predator model
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Figure 5. Numerical simulation of the system (2.3) with
N = 1, Ω = (0, 3π), parameters a = 0.7, b = 4, r =
λ = μ = 1, c = 100 and d = 0.001, and initial values
u0(x) = 0.02 sin(x/3), v0(x) = 0.3 sin(x/3). As t → ∞, the
solution converges to the semi-trivial steady state solution
(0, θ∗

b (x))

Figure 6. Numerical simulation of the system (2.3) with
N = 1, Ω = (0, 3π), parameters a = 0.7, b = 4, r =
λ = μ = 1, c = 100 and d = 0.001, and initial values
u0(x) = 0.03 sin(x/3), v0(x) = 0.3 sin(x/3). As t → ∞, the
solution converges to a positive steady state solution

with Crowley–Martin functional responses. To illustrate the multiplicity results
shown in Sect. 6, we show an example of numerical simulation in Figs. 5 and 6.
We consider the one-dimension spatial domain Ω = (0, 3π), so the principal
eigenvalue ρ1 = 1/9 ≈ 0.11. For parameters we choose a = 0.7, b = 4, r = λ =
μ = 1, c = 100 and d = 0.001, so a > ρ1 and b > ρ1 are satisfied, and following
the Remark 5.6 and uniqueness results in Sect. 7, we choose c, λ and μ much
larger and d much smaller, one can indeed show that a1 < 0. In Fig. 5, we
use initial condition u0(x) = 0.02 sin(x/3), v0(x) = 0.3 sin(x/3), and in Fig. 6,
we use initial values u0(x) = 0.03 sin(x/3) and the same v0. Then one can
see that a small difference in the initial prey populations triggers a drastic
difference of asymptotic fates, and it indeed shows that there exits two stable
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Figure 7. Illusions of the sets in the conclusions for the case
a1 < 0 where a1 is defined in (5.5). Left is the case d ≥ 4λc;
right is the case d < 4λc. Here, f(b) is defined in Lemma 2.2,
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asymptotic states in this case. The existence of at least two stable steady state
has profound impact on the ecological conservation, as a sudden collapse of
the ecosystem is more likely to occur in such systems (see [26,45,47]).

Next we summarize the results got in this paper. First we state the
results about stability, existence, non-existence and multiplicity (see Fig. 7).
Let D1,D2 and D5 be the sets defined in (2.18), G1 be the set defined in (4.7),
and define sets Hi, i = 1, 2, 3, as follows:

H1 :=
{{(a, b) : b > ρ1, f(b) − ε(b) < a < f(b)}, if a1 < 0;

∅, otherwise,

H2 :=

⎧⎪⎪⎨
⎪⎪⎩

{(a, b) : b > ρ1, ρ1 < a ≤ f(b) − ε(b)}, if d ≥ 4λc and a1 < 0;
{(a, b) : b > ρ1, ρ1 < a < f(b), if d ≥ 4λc and a1 ≥ 0;
{(a, b) : max{ρ1, g(b)} < a ≤ f(b) − ε(b)}, if d < 4λc and a1 < 0;
{(a, b) : max{ρ1, g(b)} < a < f(b)}, if d ≥ 4λc and a1 ≥ 0,

H3 :=
{∅, if d ≥ 4λc;

{(a, b) : b > b#, ρ1 < a ≤ g(b)}, if d < 4λc, (7.1)

where f(b) and g(b) are defined in (2.2) and (3.3), respectively; ε(b) is the
constant got in Theorem 5.5 when a1 < 0 and a1 is defined in (5.5); b# is
defined in Lemma 3.3. Then (see Corollaries 2.3, 3.4, 4.8, and Theorem 5.5),
1. (0, 0) is globally asymptotically stable if (a, b) ∈ D1, while it is unstable if

(a, b) ∈ (0,∞) × (0,∞)\D1.
2. (0, θ∗

b ) is asymptotically stable if (a, b) ∈ D2 ∪ H1 ∪ H2 ∪ H3; (0, θ∗
b ) is

globally asymptotically stable if (a, b) ∈ D2, while (0, θ∗
b ) is unstable if

(a, b) ∈ G1.
3. (θa, 0) is globally asymptotically stable if (a, b) ∈ D5, while it is unstable

if (a, b) ∈ H1 ∪H2 ∪H3 ∪G1 ∪ {(a, b) : a = f(b), b > ρ1}.
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4. Problem (1.6) has no positive solution if (a, b) ∈ D1 ∪D2 ∪D5 ∪H3.
5. Problem (1.6) has at least one positive solution if (a, b) ∈ D1 ∪ H1, and

(1.6) has at least two positive solutions if (a, b) ∈ H1.
In all, we divide the region {(a, b) : a > 0, b > 0} into different subre-

gions, and discuss the existence and multiplicity results for the steady state
equations (1.6). We have studied the existence and non-existence positive solu-
tions for (1.6) in all subregions but H2. So there is an open question:

Does problem (1.6) has a positive solution if (a, b) ∈ H2?
The uniqueness result has been discussed when (a, b) ∈ G1 in Sect. 7.

The result for N ≥ 1 can be found in Theorem 6.4; while for N = 1, we can
character the result in (a, b)-plane: problem (1.6) with N = 1 has a unique
positive solution if (a, b) ∈ G, where G is defined in (6.20). Compared with
the existence result, we have only discuss a little about the uniqueness even
for N = 1. So there is another open question:

Does problem (1.6) has a unique positive solution ifN = 1, λc > d, b > b0,
and (a, b) ∈ G1 \G? Here b0 = 1/(λc− d).

8. Appendix

In this part we list the well-known facts which are used in this paper.
First we recall some well-known abstract bifurcation theorems. Consider

an abstract equation

F(u, a) = 0,

where F : X×R → Y is a nonlinear differential mapping, and X,Y are Banach
spaces such that X is continuously embedding in Y. The following bifurcation
and stability theorems were obtained in [12,13,44] (see also [48,49]).

Theorem 8.1. Let U be a neighborhood of (u0, a0) in X×R, and let F : U → Y
be a twice continuously differentiable mapping. Assume that F(u0, a) = 0 for
all (u0, a) ∈ U . At (u0, a0), F satisfies

dimN(Fu(u0, a0)) = codimR(Fu(u0, a0)) = 1.

and

Fau(u0, a0)[w0] 	∈ R(Fu(u0, a0)).

Here N(Fu(u0, a0)) = span{w0}. Let Z be the complement of span{w0} in X.
Then the solution set of F(u, a) = 0 near (u0, a0) consists precisely of the curves
u = u0 and Γ := {(u(s), a(s)) : s ∈ I = (−ε, ε)}, where a : I → R, z : I → Z
are C1 functions such that u(s) = u0 + sw0 + sz(s), a(0) = a0, z(0) = 0, and

a′(0) = −〈�,Fuu(u0, a0)[w0, w0]〉
2〈�,Fau(u0, a0)[w0]〉 ,

where � ∈ Y∗ satisfies R(Fu(u0, a0)) = {φ ∈ Y : 〈�, φ〉 = 0}. Moreover
if in addition, Fu(u, a) is a Fredholm operator for all (u, a) ∈ U , then the
bifurcation curve Γ is contained in Σ, which is a connected component of S,
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where S := {(u, a) ∈ U : F(u, a) = 0, u 	= u0}; and either Σ is not compact in
U , or Σ contains a point (u0, a∗) with a∗ 	= a0.

Theorem 8.2. Assume that all assumptions in Theorem 8.1 are satisfied, and
let {u(s), a(s)} be the solution curve in Theorem 8.1. Then there exists C2

function m : (a0 − ε, a0 + ε) → R, z : (a0 − ε, a0 + ε) → X, � : (−δ, δ) → R,
and w : (−δ, δ) → X such that

Fu(u0, a)z(a) = m(a)z(a), a ∈ (a0 − ε, a0 + ε),

Fu(u(s), a(s))w(s) = �(s)w(s), s ∈ (−δ, δ),
where m(a0) = �(0) = 0, z(a0) = w(0) = w0. Moreover, near s = 0 the
functions �(s) and −sa′(s)m′(a0) have the same zeros and, whenever �(s) 	= 0,
the same sign. More precisely,

lim
s→0

−sa′(s)m′(a0)
�(s)

= 1.

The principal eigenvalue ρ1(q) defined in (2.2) has some useful properties
as follows (see [31, Proposition A.1] or [53, Proposition 1.1]).

Theorem 8.3. The following conclusions hold.
(i) If qi ∈ C(Ω) (i = 1, 2) satisfy q1 ≥ q2 and q1 	≡ q2, then ρ1(q1) > ρ1(q2).
(ii) For qn ∈ C(Ω) and q ∈ C(Ω), let φn ∈ H1

0 (Ω) and φ ∈ H1
0 (Ω) be the

corresponding eigenfunctions of (2.1) satisfying ‖φn‖L2(Ω) = ‖φ‖L2(Ω) =
1, where n ∈ N. If limn→∞ ‖qn − q‖L∞(Ω) = 0, then limn→∞ ρ1(qn) =
ρ1(q) and limn→∞ φn = φ strongly in H1

0 (Ω).
(iii) Let (k, �) be an open interval and assume that a mapping α → qα is

continuously differentiable from (k, �) to C(Ω) with respect to supremum
norm. If φα ∈ H1

0 (Ω) with ‖φα‖L2(Ω) = 1 is the unique positive eigen-
function corresponding to ρ1(qα), then α → ρ1(qα) is continuously differ-
entiable from (k, �) to R and

d

dα
ρ1(qα) =

∫
Ω

∂qα
∂α

φ2
αdx.

Let p be a sufficiently large constant such that p − q(x) > 0 for any
x ∈ Ω. Define a bounded linear operator T : C0(Ω) → C0(Ω) by u = Tv =
(−Δ + pI)−1(p − q(x))v, where u ∈ C0(Ω) := {u ∈ C(Ω) : u|∂Ω = 0} is the
unique solution of the following problem{−Δu+ pu = (p− q(x))v, x ∈ Ω,

u = 0, x ∈ ∂Ω. (8.1)

Denote r(T ) be the spectral radius of T . Then the relationship between ρ1(q)
and r(T ) can be given as follows (see [16, Proposition 1] or [36, Lemmas 2.1
and 2.3]).

Theorem 8.4. Let q ∈ C(Ω) and let p be a sufficiently large number such that
p > q(x) for any x ∈ Ω. Then we have

(i) ρ1(q) > 0 if and only if r((−Δ + pI)−1(p− q(x))) < 1;
(ii) ρ1(q) < 0 if and only if r((−Δ + pI)−1(p− q(x))) > 1;
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(iii) ρ1(q) = 0 if and only if r((−Δ + pI)−1(p− q(x))) = 1.

Consider the following equation

− Δu+ q(x)u = uf(u), x ∈ Ω, u = 0, x ∈ ∂Ω, (8.2)

where q(x) ∈ C(Ω), f : [0,∞) �→ R is a strictly decreasing function of class
C1 and there exists a positive constant C such that f(u) < 0 for u ∈ [C,∞).
Then the following results hold (see [7]).

Theorem 8.5. Problem (8.2) has no positive solution if f(0) ≤ ρ1(q), while it
has a unique positive solution if f(0) > ρ1(q).

In particular, we consider the following steady-state problem for logistic
equation with linear diffusion⎧⎨

⎩
−Δu = u(a− u), x ∈ Ω,
u ≥ 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(8.3)

where a is a positive constant and Ω ⊂ R
N is a bounded open set with smooth

boundary ∂Ω. Then the following results are well known (see [16, Lemma 1]
and [24, Propositions 6.1-6.4]).

Theorem 8.6. Let ρ1 := ρ1(0) be the constant defined in (2.2). Then the fol-
lowing conclusions hold.

(i) If a ≤ ρ1, then (8.3) has no nontrivial solutions.
(ii) If a > ρ1, then there exists a unique positive solution θa of (8.3) such

that θa is strictly increasing with respect to a and 0 < θa < a for every
x ∈ Ω.

(iii) lima→ρ+
1
θa = 0 uniformly in Ω. More precisely,

θa =
(∫

Ω

φ3
1dx

)−1

(a− ρ1)φ1 + o(a− ρ1) as a → ρ+
1 .

(iv) lima→∞ θa = ∞ and lima→∞ θa/a = 1 uniformly in K, where K is any
compact subset of Ω.

(v) a → θa is a C1-mapping from (ρ1,∞) to C0(Ω) := {u ∈ C(Ω) : u|∂Ω = 0}
and ∂θa

∂a > 0 in Ω. More precisely,

∂θa

∂a
= (−Δ + (2θa − a)I)−1θa,

where (−Δ+(2θa−a)I)−1 denotes the inverse operator of −Δ+(2θa−a)I
with zero Dirichlet boundary condition.

Next, we consider the following semi-linear parabolic equation related to
(8.3): ⎧⎪⎨

⎪⎩
ut − Δu = u(a− bu), x ∈ Ω, t > t0 ≥ 0
u = 0, x ∈ ∂Ω t > t0,

u(x, t0) ≥ 0, 	≡ 0, x ∈ Ω,
(8.4)
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where a and b are positive constants. It is well-known that (8.4) has a unique
nonnegative solution, which we denoted by ub

a(x, t). Obviously, ub
a(x, t) > 0 in

Ω × (t0,∞) and the following conclusions hold (see [7]).

Theorem 8.7. ub
a(x) converges to 0 uniformly on Ω if a ≤ ρ1, while it converges

to θa

b (x) uniformly on Ω if a > ρ1.

Finally we summarize the index theory on a positive cone, which has
been developed by Amann [3] and Dancer [15,16] to study positive solutions
for nonlinear elliptic equations.

Let E be a real Banach space and let W be a closed convex set in E. We
use the notation following the paper of Dancer [15]. Let y be any element of
W and define Wy by

Wy := {x ∈ E : y + γx ∈ W for some γ > 0},
which is also a convex set. Define

Sy = Wy ∩ (−Wy) for y ∈ W,

which is also a closed subspace of E. Assume that T : E → E is a compact
linear operator such that

T (Wy) ⊂ Wy.

It is easy to say Sy is invariant under T . This fact implies that T induces a
compact linear mapping T̃ from E\Sy into itself. We denote by W̃y an image
of Wy under the quotient mapping E → E\Sy. Since T (Wy) ⊂ Wy, it follows
that T̃W̃y ⊂ W̃y.

LetA : W → W be a compact and Fréchet differentiable mapping. Denote
by A′(x) the Fréchet derivative of A at x ∈ W. Let y ∈ W be any fixed point
of A, and assume that A′(y) is compact. By [15, §2,lemma 1], A′(y) maps Wy

into itself. Then one can define Leray-Schauder degree degW(I − A,U, 0) for
any open subset U in W if A has no fixed points on ∂U . For each isolated fixed
y ∈ W, indexW(A, y) means degW(I − A,N(y), 0), where N(y) is a suitable
neighborhood of y in W. Moreover, it is known that, if degW(I − A, 0) 	= 0,
then A has at least one fixed point in U .

We know given an index formula which is essentially due to Dancer [15].

Theorem 8.8. Let y ∈ W be a fixed point of A. If (I − A′(y))x 	= 0 for every
x ∈ Wy\{0}, then

(i) indexW(A, y) = 0 if r(Ã′(y)) > 1;
(ii) indexW(A, y) = 1 if r(A′(y)) < 1.
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des données chronologiques en écologie. PhD thesis, INAPG (AgroParisTech)
(1998)
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