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Abstract. In this article, we study the Fučik spectrum of the fractional
Laplace operator which is defined as the set of all (α, β) ∈ R

2 such that

(−Δ)su = αu+ − βu− in Ω
u = 0 in R

n\Ω.

}

has a non-trivial solution u, where Ω is a bounded domain in R
n with

Lipschitz boundary, n > 2s, s ∈ (0, 1). The existence of a first nontrivial
curve C of this spectrum, some properties of this curve C, e.g. Lipschitz
continuous, strictly decreasing and asymptotic behavior are studied in
this article. A variational characterization of second eigenvalue of the
fractional eigenvalue problem is also obtained. At the end, we study a
nonresonance problem with respect to the Fučik spectrum.
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1. Introduction

The Fučik spectrum of fractional Laplace operator is defined as the set of all
(α, β) ∈ R

2 such that{
(−Δ)su = αu+ − βu− in Ω
u = 0 on R

n\Ω.

has a non-trivial solution u, where s ∈ (0, 1) and (−Δ)s is the fractional
Laplacian operator defined as

(−Δ)su(x) = −1
2

∫
Rn

u(x + y) + u(x − y) − 2u(x)
|y|n+2s

dy for all x ∈ R
n.

In general, we study the Fučik spectrum of an equation driven by the non-local
operator LK which is defined as

LKu(x) =
1
2

∫
Rn

(u(x + y) + u(x − y) − 2u(x))K(y)dy for all x ∈ R
n,

where K : R
n \ {0} → (0,∞) satisfies the following:
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(i) mK ∈ L1(Rn), where m(x) = min{|x|2, 1},

(ii) There exist λ > 0 and s ∈ (0, 1) such that K(x) ≥ λ|x|−(n+2s),

(iii) K(x) = K(−x) for any x ∈ R
n \ {0}.

In case K(x) = |x|−(n+2s), LK is the fractional Laplace operator −(−Δ)s.
The Fučik spectrum of the non-local operator LK is defined as the set∑

K of (α, β) ∈ R
2 such that

−LKu = αu+ − βu− in Ω
u = 0 in R

n\Ω.

}
(1.1)

(1.1) has a nontrivial solution u. Here u± = max(±u, 0) and Ω ⊂ R
n is a

bounded domain with Lipshitz boundary. For α = β, the Fučik spectrum of
(1.1) becomes the usual spectrum of

−LKu = λu in Ω
u = 0 in R

n\Ω.

}
(1.2)

Let 0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · denote the distinct eigenvalues of (1.2). It
is proved in [22] that the first eigenvalue λ1 of (1.2) is simple, isolated and can
be characterized as follows

λ1 = inf
u∈X0

{∫
Q

(u(x) − u(y))2K(x − y)dxdy :
∫

Ω

u2 = 1
}

.

The author also proved that the eigenfunctions corresponding to λ1 are of
constant sign. We observe that

∑
K clearly contains (λk, λk) for each k ∈ N

and two lines λ1×R and R×λ1.
∑

K is symmetric with respect to the diagonal.
In this paper we will prove that the two lines R × λ1 and λ1 × R are isolated
in

∑
K and give a variational characterization of the second eigenvalue λ2 of

−LK .
When s = 1, the fractional Laplacian operator becomes the usual Laplace

operator. The Fučik spectrum was introduced by Fučik (1976) who studied
the negative Laplacian in one dimension with periodic boundary conditions,
and by Dancer [6]. The Fučik spectrum in the case of Laplacian, p-Laplacian
equation with Dirichlet, Neumann and Robin boundary condition has been
studied by many authors [2–5,8,9,12,15,16,18–20]. A nonresonance problem
with respect to Fučik spectrum is also discussed in many papers [4,14,15]. To
the best of our knowledge, no work has been done to find the Fučik spectrum
for non-local operators. Recently a lot of attention is given to the study of
fractional and non-local operator of elliptic type due to concrete real world
applications in finance, thin obstacle problem, optimization, quasi-geostrophic
flow etc [21,23–25]. Here we use a similar approach to find the Fučik spectrum
as the one used in [4].

In [21], Servadei and Valdinoci discussed the Dirichlet boundary value
problem in case of fractional Laplacian using the Variational techniques. We
also use similar variational techniques to find

∑
K . Due to non-localness of
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the fractional Laplacian, the space (X0, ‖.‖X0) is introduced by Servadei. We
introduce this space as follows:

X =

{
u| u : R

n → R is measurable, u|Ω ∈ L2(Ω) and (u(x) − u(y))

×
√

K(x − y) ∈ L2(Q)

}
,

where Q = R
2n \ (CΩ × CΩ) and CΩ := R

n \ Ω. The space X is endowed with
the norm defined as

‖u‖X = ‖u‖L2(Ω) +
(∫

Q

|u(x) − u(y)|2K(x − y)dxdy

) 1
2

.

Then we define

X0 = {u ∈ X : u = 0 a.e. in R
n \ Ω}

with the norm

‖u‖X0 =
(∫

Q

|u(x) − u(y)|2K(x − y)dxdy

) 1
2

is a Hilbert space. Note that the norm ‖.‖X0 involves the interaction between
Ω and R

n \ Ω.

Remark 1.1. (i) C2
c (Ω) ⊆ X0, X ⊆ Hs(Ω) and X0 ⊆ Hs(Rn), where Hs(Ω)

denotes the usual fractional Sobolev space endowed with the norm

‖u‖Hs(Ω) = ‖u‖L2 +
(∫

Ω×Ω

(u(x) − u(y))2

|x − y|n+2s
dxdy

) 1
2

.

(ii) The embedding X0 ↪→ L2∗
(Rn) = L2∗

(Ω) is continuous, where 2∗ = 2n
n−2s .

To see the details of these embeddings, one can refer [10,21].

Definition 1.2. A function u ∈ X0 is a weak solution of (1.1), if for every
v ∈ X0, u satisfies∫

Q

(u(x) − u(y))(v(x) − v(y))K(x − y)dxdy = α

∫
Ω

u+vdx − β

∫
Ω

u−vdx.

Weak solutions of (1.1) are exactly the critical points of the functional
J : X0 → R defined as

J(u) =
1
2

∫
Q

(u(x) − u(y))2K(x − y)dxdy − α

2

∫
Ω

(u+)2dx − β

2

∫
Ω

(u−)2dx.

Then J is Fréchet differentiable in X0 and

〈J ′(u), φ〉 =
∫

Q

(u(x) − u(y))(φ(x) − φ(y))K(x − y)dxdy

−α

∫
Ω

u+φdx − β

∫
Ω

u−φdx.
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The paper is organized as follows: In Sect. 2 we construct a first nontrivial
curve in

∑
K , described as (p + c(p), c(p)). In Sect. 3 we prove that the lines

λ1 × R and R × λ1 are isolated in
∑

K , the curve that we obtained in Sect. 2
is the first nontrivial curve and give the variational characterization of second
eigenvalue of −LK . In Sect. 4 we prove some properties of the first curve. A
nonresonance problem with respect to the Fučik spectrum is also studied in
Sect. 5.

We shall throughout use the function space X0 with the norm ‖.‖X0 and
we use the standard Lp(Ω) space whose norms are denoted by ‖u‖Lp . Also φ1

is the eigenfunction of −LK corresponding to λ1.

2. Fučik spectrum
∑

K for −LK

In this section we study the existence of the first nontrivial curve in the Fučik
spectrum

∑
K of −LK . We find that the points in

∑
K are associated with the

critical value of some restricted functional.
For this we fix p ∈ R and for p ≥ 0, consider the functional Jp : X0 → R

by

Jp(u) =
∫

Q

(u(x) − u(y))2K(x − y)dxdy − p

∫
Ω

(u+)2dx.

Then Jp ∈ C1(X0, R) and for any φ ∈ X0

〈J ′
p(u), φ〉= 2

∫
Q

(u(x) − u(y))(φ(x) − φ(y))K(x − y)dxdy − 2p

∫
Ω

u+(x)φ(x)dx.

Also J̃p := Jp|P is C1(X0, R), where P is defined as

P =
{

u ∈ X0 : I(u) :=
∫

Ω

u2dx = 1
}

.

We first note that u ∈ P is a critical point of J̃p if and only if there exists
t ∈ R such that∫

Q

(u(x) − u(y))(v(x) − v(y))K(x − y)dxdy − p

∫
Ω

u+vdx = t

∫
Ω

uvdx, (2.1)

for all v ∈ X0. Hence u ∈ P is a nontrivial weak solution of the problem

−LKu = (p + t)u+ − tu− in Ω;

u = 0 on R
n\Ω,

which exactly means (p+ t, t) ∈ ∑
K . Putting v = u in (2.1), we get t = J̃p(u).

Thus we have the following result, which describes the relationship between
the critical points of J̃p and the spectrum

∑
K .

Lemma 2.1. For p ≥ 0, (p+ t, t) ∈ R
2 belongs to the spectrum

∑
K if and only

if there exists a critical point u ∈ P of J̃p such that t = J̃p(u), a critical value.

Now we look for the minimizers of J̃p.
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Proposition 2.2. The first eigenfunction φ1 is a global minimum for J̃p with
J̃p(φ1) = λ1 − p. The corresponding point in

∑
K is (λ1, λ1 − p) which lies on

the vertical line through (λ1, λ1).

Proof. It is easy to see that J̃p(φ1) = λ1 − p and

J̃p(u) =
∫

Q

(u(x) − u(y))2K(x − y)dxdy − p

∫
Ω

(u+)2dx

≥λ1

∫
Ω

u2dx − p

∫
Ω

(u+)2dx ≥ λ1 − p.

Thus φ1 is a global minimum of J̃p with J̃p(φ1) = λ1 − p. �

Now we have a second critical point of J̃p at −φ1 corresponding to a
strict local minimum.

Proposition 2.3. The negative eigenfunction −φ1 is a strict local minimum for
J̃p with J̃p(−φ1) = λ1. The corresponding point in

∑
K is (λ1 + p, λ1), which

lies on the horizontal line through (λ1, λ1).

Proof. Let us suppose by contradiction that there exists a sequence uk ∈ P,
uk �= −φ1 with J̃p(uk) ≤ λ1, uk → −φ1 in X0. Firstly, we show that uk changes
sign for sufficiently large k. Since uk �= −φ1, it must be ≤ 0 for some x ∈ X0.
If uk ≤ 0 for a.e x ∈ Ω, then

J̃p(uk) =
∫

Q

(uk(x) − uk(y))2K(x − y)dxdy > λ1,

since uk �= ±φ1 and we get contradiction as J̃p(uk) ≤ λ1. So uk changes sign

for sufficiently large k. Define wk := u+
k

‖u+
k ‖L2

and

rk :=
∫

Q

(wk(x) − wk(y))2K(x − y)dxdy.

Now we claim that rk → ∞. Let us suppose by contradiction that rk is
bounded. Then there exists a subsequence of wk still denoted by wk and w ∈ X0

such that wk ⇀ w weakly in X0 and wk → w strongly in L2(Rn). Therefore∫
Ω

w2dx = 1, w ≥ 0 a.e. and so for some ε > 0, δ = |{x ∈ X0 : w(x) ≥ ε}| > 0.
As uk → −φ1 in X0 and hence in L2(Ω). Therefore |{x ∈ Ω : uk(x) ≥ ε}| → 0
as k → ∞ and so |{x ∈ Ω : wk(x) ≥ ε}| → 0 as k → ∞ which is a contradiction
as δ > 0 . Hence the claim. Next,

(uk(x) − uk(y))2 = ((u+
k (x) − u+

k (y)) − (u−
k (x) − u−

k (y)))2

=(u+
k (x) − u+

k (y))2 + (u−
k (x) − u−

k (y))2 − 2(u+
k (x) − u+

k (y))(u−
k (x) − u−

k (y))

= (u+
k (x) − u+

k (y))2 + (u−
k (x) − u−

k (y))2 + 2u+
k (x)u−

k (y) + 2u−
k (x)u+

k (y),

where we have used u+
k (x)u−

k (x) = 0. Using K(x) = K(−x) we have∫
Q

u+
k (x)u−

k (y)K(x − y)dxdy =
∫

Q

u+
k (y)u−

k (x)K(x − y)dxdy. (2.2)
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Then from above estimates, we get

J̃p(uk) =

∫
Q

(uk(x) − uk(y))2K(x − y)dxdy − p

∫
Ω

(u+
k )2dx

=

∫
Q

(u+
k (x) − u+

k (y))2K(x − y)dxdy +

∫
Q

(u−
k (x) − u−

k (y))2K(x − y)dxdy

+ 4

∫
Q

u+
k (x)u−

k (y)K(x − y)dxdy − p

∫
Ω

(u+
k )2dx

≥ (rk − p)

∫
Ω

(u+
k )2dx + λ1

∫
Ω

(u−
k )2dx + 4

∫
Q

u+
k (x)u−

k (y)K(x − y)dxdy

≥ (rk − p)

∫
Ω

(u+
k )2dx + λ1

∫
Ω

(u−
k )2dx.

As uk ∈ P, we get

J̃p(uk) ≤ λ1 = λ1

∫
Ω

(u+
k )2dx + λ1

∫
Ω

(u−
k )2dx.

Combining both the inequalities we have,

(rk − p)
∫

Ω

(u+
k )2dx + λ1

∫
Ω

(u−
k )2dx ≤ λ1

∫
Ω

(u+
k )2dx + λ1

∫
Ω

(u−
k )2dx.

This implies (rk − p − λ1)
∫
Ω
(u+

k )2dx ≤ 0, and hence rk − p ≤ λ1, which
contradicts the fact that rk → +∞, as required. �

We will now find the third critical point based on the mountain pass
theorem by Ambrosetti–Robinowitz. A norm of derivative of the restriction J̃p

of Jp at u ∈ P is defined as

‖J̃p(u)‖∗ = min{‖J ′
p(u) − tI ′(u)‖X0 : t ∈ R}.

Definition 2.4. We say that Jp satisfies the Palais–Smale [in short, (P.S)] con-
dition on P if for any sequence uk ∈ P such that Jp(uk) is bounded and
‖J̃ ′

p(uk)‖∗ → 0, then there exists a subsequence that converges strongly in X0.

Now we state here the version of mountain pass theorem which will be
used later:

Proposition 2.5. [1] Let E be a Banach space, g, f ∈ C1(E, R), M = {u ∈
E | g(u) = 1} and u0, u1 ∈ M . Let ε > 0 such that ‖u1 − u0‖ > ε and

inf{f(u) : u ∈ M and ‖u − u0‖E = ε} > max{f(u0), f(u1)}.

Assume that f satisfies the (P.S) condition on M and that

Γ = {γ ∈ C([−1, 1],M) : γ(−1) = u0 and γ(1) = u1}
is non empty. Then c = infγ∈Γ maxu∈γ[−1,1] f(u) is a critical value of f |M .

Lemma 2.6. Jp satisfies the (P.S) condition on P.
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Proof. Let {uk} be a (P.S) sequence. i.e., there exists K > 0 and tk such that

|Jp(uk)| ≤ K, (2.3)∫
Q

(uk(x) − uk(y))(v(x) − v(y))K(x − y)dxdy − p

∫
Ω

u+
k v

− tk

∫
Ω

ukv = ok(1)‖v‖X0 . (2.4)

From (2.3), we get uk is bounded in X0. So we may assume that up to a
subsequence uk ⇀ u0 weakly in X0, and uk → u0 strongly in L2(Ω). Putting
v = uk in (2.4), we get tk is bounded and up to a subsequence tk converges to
t. We now claim that uk → u0 strongly in X0. As uk ⇀ u0 weakly in X0, we
have ∫

Q

(uk(x) − uk(y))(v(x) − v(y))K(x − y)dxdy

→
∫

Q

(u0(x) − u0(y))(v(x) − v(y))K(x − y)dxdy (2.5)

for all v ∈ X0. Also J̃ ′
p(uk)(uk − u0) = ok(1). Therefore we get∣∣∣∣

∫
Q

(uk(x) − uk(y))2 K(x − y)dxdy −
∫

Q

(uk(x) − uk(y))(u0(x) − u0(y))K(x − y)dxdy

∣∣∣∣
≤ ok(1) + p‖u+

k ‖L2‖uk − u0‖L2 + |tk|‖uk‖L2‖uk − u0‖L2

→ 0 as k → ∞.

Taking v = u0 in (2.5), we get∫
Q

(uk(x) − uk(y))(u0(x) − u0(y))K(x − y)dxdy

→
∫

Q

(u0(x) − u0(y))2K(x − y)dxdy.

From above two equations, we have∫
Q

(uk(x) − uk(y))2K(x − y)dxdy →
∫

Q

(u0(x) − u0(y))2K(x − y)dxdy.

Thus ‖uk‖2
X0

→ ‖u0‖2
X0

. Now using this and v = u0 in (2.5), we get

‖uk − u0‖2
X0

= ‖uk‖2
X0

+ ‖uk‖2
X0

− 2

∫
Q

(uk(x) − uk(y))(u0(x) − u0(y))K(x − y)dxdy

−→ 0 as k → ∞.

Hence uk → u0 strongly in X0. �

Lemma 2.7. Let ε0 > 0 be such that

J̃p(u) > J̃p(−φ1) (2.6)

for all u ∈ B(−φ1, ε0) ∩ P with u �= −φ1, where the ball is taken in X0. Then
for any 0 < ε < ε0,

inf{J̃p(u) : u ∈ P and ‖u − (−φ1)‖X0 = ε} > J̃p(−φ1). (2.7)
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Proof. Assume by contradiction that the infimum in (2.7) is equal to J̃p(−φ1) =
λ1 for some ε with 0 < ε < ε0. Then there exists a sequence uk ∈ P with
‖uk − (−φ1)‖X0 = ε such that

J̃p(uk) ≤ λ1 +
1

2k2
.

Consider the set C = {u ∈ P : ε − δ ≤ ‖u − (−φ1)‖X0 ≤ ε + δ}, where δ
is chosen such that ε − δ > 0 and ε + δ < ε0. In view of our contradiction
hypothesis and (2.6), it follows that inf{J̃p(u) : u ∈ C} = λ1. Now for each k,
we apply Ekeland’s variational principle to the functional J̃p on C to get the
existence of vk ∈ C such that

J̃p(vk) ≤ J̃p(uk), ‖vk − uk‖X0 ≤ 1
k

,

J̃p(vk) ≤ J̃p(u) +
1
k

‖v − vk‖X0 ∀ v ∈ C

(2.8)

We claim that vk is a (P.S) sequence for J̃p on P i.e. J̃p(vk) is bounded and
‖J̃ ′

p(vk)‖∗ → 0. Once this is proved we get by Lemma 2.6, up to a subsequence
vk → v strongly in X0. Clearly v ∈ P and satisfies ‖v − (−φ1)‖X0 ≤ ε+ δ < ε0
and J̃p(v) = λ1 which contradicts the given hypotheses. Clearly J̃p(vk) is a
bounded. So we only need to prove that ‖J̃ ′

p(vk)‖∗ → 0. Let k > 1
δ and take

w ∈ X0 tangent to P at vk i.e ∫
Ω

vkwdx = 0,

and for t ∈ R, define

ut :=
vk + tw

‖vk + tw‖L2
.

For sufficiently small t, ut ∈ C and take v = ut in (2.8), we get

|〈J ′
p(vk), w〉| ≤ 1

k
‖w‖X0 . (2.9)

For complete details refer to Lemma 2.9 of [4].
Since w is arbitrary in X0, we choose αk such that

∫
Ω

vk(w−αkvk)dx = 0.
Replacing w by w − αkvk in (2.9), we have

∣∣〈J ′
p(vk), w〉 − αk〈J ′

p(vk), vk〉∣∣ ≤ 1
k

‖w − αkvk‖X0 ,

since ‖αkvk‖X0 ≤ C‖w‖X0 , we get∣∣∣∣〈J ′
p(vk), w〉 − tk

∫
Ω

vkwdx

∣∣∣∣ ≤ C

k
‖w‖X0

where tk = 〈J ′
p(vk), vk〉. Hence

‖J̃ ′
p(vk)‖∗ → 0 as k → ∞,

as we required. �
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Proposition 2.8. Let ε > 0 such that ‖φ1 − (−φ1)‖X0 > ε and

inf{J̃p(u) : u ∈ P and ‖u − (−φ1)‖X0 = ε} > max{J̃p(−φ1), J̃p(φ1)}.

Then Γ = {γ ∈ C([−1, 1],P) : γ(−1) = −φ1 and γ(1) = φ1} is non
empty and

c(p) = inf
γ∈Γ

max
u∈γ[−1,1]

Jp(u) (2.10)

is a critical value of J̃p. Moreover c(p) > λ1.

Proof. Let φ ∈ X0 be such that φ �∈ Rφ1 and consider the path γ(t) =
tφ1+(1−|t|)φ

‖tφ1+(1−|t|)φ‖L2
, then γ(t) ∈ Γ . Moreover by Lemmas 2.6 and 2.7, J̃p sat-

isfies (P.S) condition and the geometric assumptions. Then by Proposition
2.5, c(p) is a critical value of J̃p. Using the definition of c(p) we have c(p) >

max{J̃p(−φ1), J̃p(φ1)} = λ1. �

Thus we have proved the following:

Theorem 2.9. For each p ≥ 0, the point (p + c(p), c(p)), where c(p) > λ1 is
defined by the minimax formula (2.10), then the point (p + c(p), c(p)) belongs
to

∑
K .

It is a trivial fact that
∑

K is symmetric with respect to the diagonal.
The whole curve, which we obtain using Theorem 2.9 and symmetrizing, is
denoted by

C := {(p + c(p), c(p)), (c(p), p + c(p)) : p ≥ 0}.

3. First nontrivial curve

We start this section by establishing that the lines R × {λ1} and {λ1} × R are
isolated in

∑
K . Then we state some topological properties of the functional

J̃p and finally we prove that the curve C constructed in the previous section is
the first nontrivial curve in the spectrum

∑
K .

Proposition 3.1. The lines R×{λ1} and {λ1}×R are isolated in
∑

K . In other
words, there exists no sequence (αk, βk) ∈ ∑

K with αk > λ1 and βk > λ1 such
that (αk, βk) → (α, β) with α = λ1 or β = λ1.

Proof. Suppose by contradiction that there exists a sequence (αk, βk) ∈ ∑
K

with αk, βk > λ1 and (αk, βk) → (α, β) with α or β = λ1. Let uk ∈ X0 be a
solution of

−LKuk = αku+
k − βku−

k in Ω, uk = 0 on R
n \ Ω (3.1)

with ‖uk‖L2 = 1. Then we have∫
Q

(uk(x) − uk(y))2K(x − y)dxdy = αk

∫
Ω

(u+
k )2dx − βk

∫
Ω

(u−
k )2dx ≤ αk,
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which shows that uk is bounded sequence in X0. Therefore up to a subsequence
uk ⇀ u weakly in X0 and uk → u strongly in L2(Ω). Then the limit u satisfies∫

Q

(u(x) − u(y))2K(x − y)dxdy = λ1

∫
Ω

(u+)2dx − β

∫
Ω

(u−)2dx,

since uk ⇀ u weakly in X0 and 〈J̃ ′
p(uk), uk −u〉 → 0 as k → ∞. i.e u is a weak

solution of

−LKu = αu+ − βu− in Ω, u = 0 on R
n \ Ω (3.2)

where we have considered the case α = λ1. Multiplying by u+ in (3.2), inte-
grate, using

(u(x) − u(y))(u+(x) − u+(y))=(u+(x) − u+(y))2 + u+(x)u−(y) + u+(y)u−(x)

and (2.2), we get∫
Q

(u+(x) − u+(y))2K(x − y)dxdy + 2
∫

Q

u+(x)u−(y)K(x − y)dxdy

= λ1

∫
Ω

(u+)2dx.

Using this we have,

λ1

∫
Ω

(u+)2dx ≤
∫

Q

(u+(x) − u+(y))2K(x − y)dxdy ≤ λ1

∫
Ω

(u+)2dx

Thus ∫
Q

(u+(x) − u+(y))2K(x − y)dxdy = λ1

∫
Ω

(u+)2dx,

so that either u+ ≡ 0 or u = φ1. If u+ ≡ 0 then u ≤ 0 and (3.2) implies that u
is an eigenfunction with u ≤ 0 so that u = −φ1. So in any case uk converges
to either φ1 or −φ1 in L2(Ω). Thus for every ε > 0

either |{x ∈ Ω : uk(x) ≤ ε}| → 0 or |{x ∈ Ω : uk(x) ≥ ε}| → 0. (3.3)

On the other hand, taking u+
k as test function in (3.1), we get∫

Q

(u+
k (x) − u+

k (y))2K(x − y)dxdy + 2
∫

Q

u+
k (x)u−

k (y)K(x − y)dxdy

= αk

∫
Ω

(u+
k )2dx.

Using this, Hölders inequality and Sobolev embeddings we get∫
Q

(u+
k (x) − u+

k (y))2K(x − y)dxdy

≤
∫

Q

(u+
k (x) − u+

k (y))2K(x − y)dxdy + 2
∫

Q

u+
k (x)u−

k (y)K(x − y)dxdy

= αk

∫
Ω

(u+
k )2dx

≤ αkC|{x ∈ Ω : uk(x) > 0}|1− 2
q ‖u+

k ‖2
X0
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with a constant C > 0, 2 < q ≤ 2∗ = 2n
n−2s . Then we have

|{x ∈ Ω : uk(x) > 0}|1− 2
q ≥ α−1

k C−1.

Similarly, one can show that

|{x ∈ Ω : uk(x) < 0}|1− 2
q ≥ β−1

k C−1.

Since (αk, βk) does not belong to the trivial lines λ1 ×R and R×λ1 of
∑

K , by
using (3.1) we have that uk changes sign. Hence, from the above inequalities,
we get a contradiction with (3.3). Hence the trivial lines λ1 × R and R × λ1

are isolated in
∑

K . �

Lemma 3.2. [4] Let P = {u ∈ X0 :
∫
Ω

u2 = 1} then
1. P is locally arcwise connected.
2. Any open connected subset O of P is arcwise connected.
3. If O′

is any connected component of an open set O ⊂ P, then ∂O′ ∩O = ∅.
Lemma 3.3. Let O = {u ∈ P : J̃p(u) < r}, then any connected component of
O contains a critical point of J̃p.

Proof. Proof follows in the same lines as Lemma 3.6 of [4] by replacing ‖.‖1,p

by ‖.‖X0 . �

Theorem 3.4. Let p ≥ 0 then the point (p + c(p), c(p)) is the first nontrivial
point in the intersection between

∑
K and the line (p, 0) + t(1, 1).

Proof. Assume by contradiction that there exists μ such that λ1 < μ < c(p)
and (p+μ, μ) ∈ ∑

K . Using the fact that {λ1}×R and R×{λ1} are isolated in∑
K and

∑
K is closed we can choose such a point with μ minimum. In other

words J̃p has a critical value μ with λ1 < μ < c(p), but there is no critical
value in the open interval (λ1, μ). If we construct a path connecting from −φ1

to φ1 such that J̃p ≤ μ, then we get a contradiction with the definition of c(p),
which completes the proof.

Let u ∈ P be a critical point of J̃p at level μ. Then u satisfies,∫
Q

(u(x) − u(y))(v(x) − v(y))K(x − y)dxdy = (p + μ)
∫

Ω

u+vdx − μ

∫
Ω

u−vdx.

for all v ∈ X0. Replacing v by u+ and u−, we have∫
Q

(u+(x) − u+(y))2K(x − y)dxdy + 2
∫

Q

u+(x)u−(y)K(x − y)dxdy

= (p + μ)
∫

Ω

(u+)2dx,

and ∫
Q

(u−(x) − u−(y))2K(x − y)dxdy + 2
∫

Q

u+(x)u−(y)K(x − y)dxdy

= μ

∫
Ω

(u−)2dx.
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Thus we obtain,

J̃p(u) = μ, J̃p

(
u+

‖u+‖L2

)
= μ −

2
∫

Q
u+(x)u−(y)K(x − y)dxdy

‖u+‖2
L2

,

J̃p

(
u−

‖u−‖L2

)
= μ − p −

2
∫

Q
u+(x)u−(y)K(x − y)dxdy

‖u−‖2
L2

,

and

J̃p

(
− u−

‖u−‖L2

)
= μ −

2
∫

Q
u+(x)u−(y)K(x − y)dxdy

‖u−‖2
L2

.

Since u changes sign, the following paths are well-defined on P:

u1(t) =
(1 − t)u + tu+

‖(1 − t)u + tu+‖L2
, u2(t) =

tu− + (1 − t)u+

‖tu− + (1 − t)u+‖L2
,

u3(t) =
−tu− + (1 − t)u

‖ − tu− + (1 − t)u‖L2
.

Then by using the above calculation one can easily get that for all t ∈ [0, 1],

J̃p(u1(t)) =

∫
Q

[(u+(x) − u+(y))2 + (1 − t)2(u−(x) − u−(y))2]K(x − y)dxdy

‖u+ − (1 − t)u−‖2
L2

+
4(1 − t)

∫
Q

u−(x)u−(y)K(x − y)dxdy − p
∫
Ω
(u+)2dx

‖u+ − (1 − t)u−‖2
L2

= μ −
2t2

∫
Q

u+(x)u−(y)K(x − y)dxdy

‖u+ − (1 − t)u−‖2
L2

.

J̃p(u2(t)) =

∫
Q

[(1 − t)2(u+(x) − u+(y))2 + t2(u−(x) − u−(y))2]K(x − y)dxdy

‖(1 − t)u+ + tu−‖2
L2

−
4t(1 − t)

∫
Q

u+(x)u−(y)K(x − y)dxdy + p(1 − t)2
∫
Ω(u+)2 + pt2

∫
Ω(u−)2

‖(1 − t)u+ + tu−‖2
L2

= μ −
2

∫
Q

u+(x)u−(y)K(x − y)dxdy

‖(1 − t)u+ + tu−‖2
L2

− pt2
∫
Ω(u−)2dx

‖(1 − t)u+ + tu−‖2
L2

.

J̃p(u3(t)) =

∫
Q

[(1 − t)2(u+(x) − u+(y))2 + (u−(x) − u−(y))2]K(x − y)dxdy

‖(1 − t)u+ − u−‖2
L2

+
4(1 − t)

∫
Q

u+(x)u−(y)K(x − y)dxdy − p(1 − t)2
∫
Ω
(u+)2dx

‖(1 − t)u+ − u−‖2
L2

= μ −
2t2

∫
Q

u+(x)u−(y)K(x − y)dxdy

‖(1 − t)u+ − u−‖2
L2

.

Let O = {v ∈ P : J̃p(v) < μ − p}. Then clearly φ1 ∈ O, while −φ1 ∈ O if
μ − p > λ1. Moreover φ1 and −φ1 are the only possible critical points of J̃p in
O because of the choice of μ.
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We note that J̃p

(
u−

‖u−‖L2

)
≤ μ − p, u−

‖u−‖L2
does not change sign and

vanishes on a set of positive measure, it is not a critical point of J̃p. Therefore
there exists a C1 path η : [−ε, ε] → P with η(0) = u−

‖u−‖L2
and d

dt J̃p(η(t))|t=0 �=
0. Using this path we can move from u−

‖u−‖L2
to a point v with J̃p(v) < μ − p.

Taking a connected component of O containing v and applying Lemma 3.3 we
have that either φ1 or −φ1 is in this component. Let us assume that it is φ1.
So we continue by a path u4(t) from

(
u−

‖u−‖L2

)
to φ1 which is at level less than

μ. Then the path −u4(t) connects
(
− u−

‖u−‖L2

)
to −φ1. We observe that

|J̃p(u) − J̃p(−u)| ≤ p.

Then it follows that

J̃p(−u4(t)) ≤ J̃p(u4(t)) + p ≤ μ − p + p = μ ∀ t.

Connecting u1(t), u2(t) and u4(t), we get a path from u to φ1 and joining
u3(t) and −u4(t) we get a path from u to −φ1. These yields a path γ(t) on P
joining from −φ1 to φ1 such that J̃p(γ(t)) ≤ μ for all t, which concludes the
proof. �
Corollary 3.5. The second eigenvalue λ2 of (1.2) has the variational charac-
terization given as

λ2 = inf
γ∈Γ

max
u∈γ[−1,1]

∫
Q

(u(x) − u(y))2K(x − y)dxdy,

where Γ is as in Proposition 2.8.

Proof. Take p = 0 in Theorem 3.4. Then we have c(0) = λ2 and (2.10) con-
cludes the proof. �

4. Properties of the curve

In this section we prove that the curve C is Lipschitz continuous, has a certain
asymptotic behavior and is strictly decreasing.

Proposition 4.1. The curve p → (p+c(p), c(p)), p ∈ R
+ is Lipschitz continuous.

Proof. Proof follows as in Proposition 4.1 of [4]. For completeness we give
details. Let p1 < p2 then J̃p1(u) > J̃p2(u) for all u ∈ P. So we have c(p1) ≥
c(p2). Now for every ε > 0 there exists γ ∈ Γ such that

max
u∈γ[−1,1]

J̃p2(u) ≤ c(p2) + ε,

and so

0 ≤ c(p1) − c(p2) ≤ max
u∈γ[−1,1]

J̃p1(u) − max
u∈γ[−1,1]

J̃p2(u) + ε.

Let u0 ∈ γ[−1, 1] such that

max
u∈γ[−1,1]

J̃p1(u) = J̃p1(u0)
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then

0 ≤ c(p1) − c(p2) ≤ J̃p1(u0) − J̃p2(u0) + ε ≤ p2 − p1 + ε,

as ε > 0 is arbitrary so the curve C is Lipschitz continuous with constant
≤ 1. �
Lemma 4.2. Let A, B be two bounded open sets in R

n, with A � B and B is
connected then λ1(A) > λ1(B).

Proof. From the Proposition 4 of [25] and Theorem 2 of [24], we see that φ1

is continuous and is a solution of (1.2) in viscosity sense. Then from Lemma
12 of [13], φ1 > 0. Now from the variational characterization, we see that for
A ⊂ B, λ1(A) ≥ λ1(B). Since φ1(B) > 0 in B, we get the strict inequality as
claimed. �
Lemma 4.3. Let (α, β) ∈ C, and let α(x), β(x) ∈ L∞(Ω) satisfying

λ1 ≤ α(x) ≤ α, λ1 ≤ β(x) ≤ β. (4.1)

Assume that

λ1 < α(x) and λ1 < β(x) on subsets of positive measure. (4.2)

Then any non-trivial solution u of

−LKu = α(x)u+ − β(x)u− in Ω, u = 0 in R
n\Ω. (4.3)

changes sign in Ω and

α(x) = α a.e. on {x ∈ Ω : u(x) > 0}, β(x) = β a.e. on {x ∈ Ω : u(x) < 0}.

Proof. Let u be a nontrivial solution of (4.3). Replacing u by −u if necessary.
we can assume that the point (α, β) in C is such that α ≥ β. We first claim
that u changes sign in Ω. Suppose by contradiction that this is not true, we
first consider the case u ≥ 0 (the case u ≤ 0 can be prove similarly). Then u
solves

−Lku = α(x)u in Ω u = 0 on R
n \ Ω.

This implies that the first eigenvalue of −LK on X0 with respect to weight
α(x) is equal to 1. i.e

inf

{∫
Q

(v(x) − v(y))2K(x − y)dxdy∫
Ω

α(x)v2dx
: v ∈ X0, v �= 0

}
= 1. (4.4)

We deduce from (4.1), (4.2) and (4.4) that

1 =

∫
Q

(φ1(x) − φ1(y))2K(x − y)dxdy

λ1
>

∫
Q

(φ1(x) − φ1(y))2K(x − y)dxdy∫
Ω

α(x)φ2
1dx

≥ 1,

a contradiction and hence the claim.
Again we assume by contradiction that either

|{x ∈ X0 : α(x) < α and u(x) > 0}| > 0 (4.5)

or

|{x ∈ X0 : β(x) < β and u(x) < 0}| > 0. (4.6)
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Suppose that (4.5) holds [a similar argument will hold for (4.6)]. Put α − β =
p ≥ 0. Then β = c(p), where c(p) is given by (2.10). We show that there exists
a path γ ∈ Γ such that

max
u∈γ[−1,1]

J̃p(u) < β, (4.7)

which yields a contradiction with the definition of c(p).
In order to construct γ we show that there exists a function v ∈ X0 such

that it changes sign and satisfies
∫
Q(v+(x) − v+(y))2K(x − y)dxdy∫

Ω(v+)2dx
< α and

∫
Q(v−(x) − v−(y))2K(x − y)dxdy∫

Ω(v−)2dx
< β.

(4.8)

For this let O1 be a component of {x ∈ Ω : u(x) > 0} satisfying

|x ∈ O1 : α(x) < α| > 0,

which is possible by (4.5). Let O2 be a component of {x ∈ Ω : u(x) < 0}
satisfying

|x ∈ O1 : β(x) < β| > 0,

which is possible by (4.6). Then we claim that

λ1(O1) < α and λ1(O2) ≤ β, (4.9)

where λ1(Oi) denotes the first eigenvalue of −Lk on X0|Oi
= {u ∈ X|Oi

: u =
0 on R

n \ Oi}. Clearly u|Oi
∈ X0|Oi

then we have
∫

Q|O1
(u(x) − u(y))2K(x − y)dxdy∫

O1
u2dx

< α

∫
Q|O1

(u(x) − u(y))2K(x − y)dxdy∫
O1

α(x)u2dx
= α

which implies that λ1(O1) < α. The other inequality in (4.9) is proved sim-
ilarly. Now with some modification on the sets O1 and O2, we construct the
sets Õ1 and Õ2 such that Õ1 ∩ Õ2 = ∅ and λ1(Õ1) < α and λ1(Õ2) < β. For
this, we consider for ν ≥ 0, O1(ν) = {x ∈ O1 : dist(x,Oc

1) > ν}. Then clearly
λ1(O1(ν)) ≥ λ1(O1) and moreover λ1(O1(ν)) → λ1(O1) as ν → 0. Then there
exists ν0 > 0 such that

λ1(O1(ν)) < α for all 0 ≤ ν ≤ ν0. (4.10)

Let x0 ∈ ∂O2 ∩ Ω (is not empty as O1 ∩ O2 = ∅) and choose 0 < ν <

min{ν0, dist(x0,Ωc)} and Õ1 = O1(ν) and Õ2 = O2∪B(x0,
ν
2 ). Then Õ1∩Õ2 =

∅ and by (4.10), λ1(Õ1) < α. Since Õ2 is connected then by (4.9) and Lemma
4.2, we get λ1(Õ2) < β. Now we define v = v1 − v2, where vi are the extension
by zero outside Õi of the eigenfunctions associated to λi(Õi). Then v satisfies
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(4.8). Thus there exist v ∈ X0 which changes sign and satisfies condition (4.8),
and moreover we have

J̃p

(
v

‖v‖L2

)
=

∫
Q

(v+(x) − v+(y))2K(x − y)dxdy

‖v‖2
L2

+

∫
Q

(v−(x) − v−(y))2K(x − y)dxdy

‖v‖2
L2

− 2

∫
Q

v+(x)v−(y)K(x − y)dxdy

‖v‖2
L2

− p

∫
Ω(v+)2dx

‖v‖2
L2

< (α − p)

∫
Ω(v+)2dx

‖v‖2
L2

+ β

∫
Ω(v−)2dx

‖v‖2
L2

− 2

∫
Q

v+(x)v−(y)K(x − y)dxdy

‖v‖2
L2

< β.

J̃p

(
v+

‖v+‖L2

)
< α − p = β, J̃p

(
v−

‖v−‖L2

)
< β − p.

Using Lemma 3.3, we have that there exists a critical point in the connected
component of the set O = {u ∈ P : J̃p(u) < β − p}. As the point (α, β) ∈ C,
the only possible critical point is φ1, then we can construct a path from −φ1

to φ1 exactly in the same manner as in Theorem 3.4 only by taking v in place
of u. Thus we have constructed a path satisfying (4.7), and hence the result
follows. �

Corollary 4.4. Let (α, β) ∈ C and let α(x), β(x) ∈ L∞(Ω) satisfying λ1 ≤
α(x) ≤ α a.e, λ1 ≤ β(x) ≤ β a.e. Assume that λ1 < α(x) and λ1 < β(x) on
subsets of positive measure. If either α(x) < α a.e in Ω or β(x) < β a.e. in Ω,
then (4.3) has only the trivial solution.

Lemma 4.5. The curve p → (p + c(p), c(p)) is strictly decreasing, (in the sense
that p1 < p2 implies p1 + c(p1) < p2 + c(p2) and c(p1) > c(p2)).

Proof. Let p1 < p2 and suppose by contradiction that either (i) p1 + c(p1) ≥
p2 + c(p2) or (ii) c(p1) ≤ c(p2). In case (i) we deduce from p1 + c(p1) ≥
p2 +c(p2) > p1 +c(p2) that c(p1) ≥ c(p2). If we take (α, β) = (p1 +c(p1), c(p1))
and (α(x), β(x)) = (p2 + c(p2), c(p2)), then by Corollary 4.4, the only solution
of (4.3) with (α(x), β(x)) is the trivial solution which contradicts the fact that
(p2 +c(p2), c(p2)) ∈ ∑

K . If (ii) holds then p1 +c(p1) ≤ p1 +c(p2) < p2 +c(p2),
if we take (α, β) = (p2+c(p2), c(p2)) and (α(x), β(x)) = (p1+c(p1), c(p1)), then
the only solution of (4.3) with (α(x), β(x)) is the trivial one which contradicts
the fact that (p1 + c(p1), c(p1)) ∈ ∑

K and hence the result follows. �

As c(p) is decreasing and positive so the limit of c(p) exists as p → ∞.
In the next Theorem we find the asymptotic behavior of the first nontrivial
curve.

Theorem 4.6. If n ≥ 2s then the limit of c(p) as p → ∞ is λ1.

Proof. For n ≥ 2s, we can choose a function φ ∈ X0 such that there does
not exist r ∈ R such that φ(x) ≤ rφ1(x) a.e. in Ω. For this it suffices to take
φ ∈ X0 such that it is unbounded from above in a neighborhood of some point
x ∈ X0. Then by contradiction argument, one can similarly show c(p) → λ1

as p → ∞ as in Proposition 4.4 of [4]. �
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5. Nonresonance between (λ1, λ1) and C
In this section we study the following problem{−LKu = f(x, u) in Ω

u = 0 on R
n \ Ω,

(5.1)

where f(x, u)/u lies asymptotically between (λ1, λ1) and (α, β) ∈ C. Let f :
Ω × R → R be a function satisfying L∞(Ω) Caratheodory conditions. Given a
point (α, β) ∈ C, we assume following:

γ±(x) ≤ lim inf
s→±∞

f(x, s)
s

≤ lim sup
s→±∞

f(x, s)
s

≤ Γ±(x) (5.2)

hold uniformly with respect to x, where γ±(x) and Γ±(x) are L∞ functions
which satisfy {

λ1 ≤ γ+(x) ≤ Γ+(x) ≤ α a.e. in Ω
λ1 ≤ γ−(x) ≤ Γ−(x) ≤ β a.e. in Ω.

(5.3)

Write F (x, s) =
∫ s

0
f(x, t)dt, we also assume the following inequalities:

δ±(x) ≤ lim inf
s→±∞

2F (x, s)
s2

≤ lim sup
s→±∞

2F (x, s)
s2

≤ Δ±(x) (5.4)

hold uniformly with respect to x, where δ±(x) and Δ±(x) are L∞ functions
which satisfy⎧⎪⎪⎨

⎪⎪⎩

λ1 ≤ δ+(x) ≤ Δ+(x) ≤ α a.e. in Ω
λ1 ≤ δ−(x) ≤ Δ−(x) ≤ β a.e. in Ω
δ+(x) > λ1 and δ−(x) > λ1 on subsets of positive measure,
either Δ+(x) < α a.e. in Ω or Δ−(x) < β a.e. in Ω.

(5.5)

Theorem 5.1. Let (5.2), (5.3), (5.4), (5.5) hold and (α, β) ∈ C. Then problem
(5.1) admits at least one solution u in X0.

Define the energy functional Ψ : X0 → R as

Ψ(u) =
1
2

∫
Q

(u(x) − u(y))2K(x − y)dxdy −
∫

Ω

F (x, u)dx

Then Ψ is a C1 functional on X0 and ∀v ∈ X0

〈Ψ′(u), v〉 =
∫

Q

(u(x) − u(y))(v(x) − v(y))K(x − y)dxdy −
∫

Ω

f(x, u)vdx

and critical points of Ψ are exactly the weak solutions of (5.1).

Lemma 5.2. Ψ satisfies the (P.S) condition on X0.

Proof. Let uk be a (P.S) sequence in X0, i.e

|Ψ(uk)| ≤ c,

|〈Ψ′(uk), v〉| ≤ εk‖v‖X0 , ∀ v ∈ X0,
(5.6)

where c is a constant and εk → 0 as k → ∞. It suffices to show that uk is a
bounded sequence in X0. Assume by contradiction that uk is not a bounded
sequence. Then define vk = uk

‖uk‖X0
which is a bounded sequence. Therefore
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there exists a subsequence vk of vk and v0 ∈ X0 such that vk ⇀ v0 weakly
in X0, vk → v0 strongly in L2(Ω) and vk(x) → v0(x) a.e. in R

n. Also by
using (5.2) and (5.3), we have f(x, uk)/‖uk‖X0 ⇀ f0(x) weakly in L2(Ω).
Take v = vk − v0 in (5.6) and divide by ‖uk‖X0 we get vk → v0. In particular
‖v0‖X0 = 1. One can easily see from (5.6) that∫

Q

(v0(x) − v0(y))(v(x) − v(y))K(x − y)dxdy −
∫

Ω

f0(x)vdx = 0 ∀ v ∈ X0.

Now by a standard argument based on assumption (5.2), f0(x) = α(x)v+
0 −

β(x)v−
0 for some L∞ functions α(x), β(x) satisfying (4.1). In the expression of

f0(x), the value of α(x) (resp.β(x)) on {x : v0(x) ≤ 0} (resp. {x : v0(x) ≥ 0})
are irrelevant, and consequently we can assume that

α(x) > λ1 on {x : v0(x) ≤ 0} and β(x) > λ1 on {x : v0(x) ≥ 0}. (5.7)

So v0 is a nontrivial solution of Eq. (4.3). It then follows from Lemma 4.3
that either (i) α(x) = λ1 a.e in Ω or (ii) β(x) = λ1 a.e in Ω, or (iii) v0 is an
eigenfunction associated to the point (α, β) ∈ C. We show that in each case
we get a contradiction. If (i) holds then by (5.7), v0 > 0 a.e. in Ω and (4.3)
gives

∫
Q

(v0(x) − v0(y))2K(x − y)dxdy = λ1

∫
Ω

v2
0 , which implies that v0 is a

multiple of φ1. Dividing (5.6) by ‖uk‖2
X0

and taking limit we get,

λ1

∫
Ω

v2
0 =

∫
Q

(v0(x) − v0(y))2K(x − y)dxdy

= lim
k→∞

∫
Ω

2F (x, uk)
‖uk‖2

X0

≥
∫

Ω

δ+(x)v2
0dx.

This contradicts assumption (5.5). The case (ii) is treated similarly. Now if
(iii) holds, we deduce from (5.4) that∫

Ω

α(v+
0 )2 + β(v−

0 )2 =
∫

Q

(v0(x) − v0(y))2K(x − y)dxdy = lim
k→∞

∫
Ω

2F (x, uk)
‖uk‖2

X0

≤
∫

Ω

Δ+(x)(v+
0 )2 + Δ−(x)(v−

0 )2.

This contradicts assumption (5.5), since v0 changes sign. Hence uk is a bounded
sequence in X0. �

Now we study the geometry of Ψ.

Lemma 5.3. There exists R > 0 such that

max{Ψ(Rφ1),Ψ(−Rφ1)} < max
u∈γ[−1,1]

Ψ(u) (5.8)

for any γ ∈ Γ1 := {γ ∈ C([−1, 1],X0) : γ(±1) = ±Rφ1}.
Proof. From (5.4), we have for any ε > 0 there exists aε(x) ∈ L2(Ω) such that
for a.e x,{

(δ+(x) − ε) s2

2 − aε(x) ≤ F (x, s) ≤ (Δ+(x) + ε) s2

2 + aε(x) ∀ s > 0
(δ−(x) − ε) s2

2 − aε(x) ≤ F (x, s) ≤ (Δ−(x) + ε) s2

2 + aε(x) ∀ s < 0.
(5.9)
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Now consider the following functional associated to the functions Δ±(x) as

Φ(u) =
∫

Q

(u(x) − u(y))2K(x − y)dxdy −
∫

Ω

Δ+(x)(u+)2dx

−
∫

Ω

Δ−(x)(u−)2dx.

Then we claim that

d = inf
γ∈Γ

max
u∈γ[−1,1]

Ψ(u) > 0 (5.10)

where Γ is the set of all continuous paths from −φ1 to φ1 in P. Write p =
α − β ≥ 0. we can choose (α, β) ∈ C such that α ≥ β (by replacing u by −u if
necessary), we have for any γ ∈ Γ

max
u∈γ[−1,1]

J̃p(u) ≥ c(p) = β.

i.e. max
u∈γ[−1,1]

(∫
Q

(u(x) − u(y))2 K(x − y)dxdy −
∫
Ω

α(u+)2dx −
∫
Ω

β(u−)2dx

)
≥ 0

which implies

max
u∈γ[−1,1]

Φ(u) ≥ 0,

by (5.5). So d ≥ 0. On the other hand, since δ±(x) ≤ Δ±(x),

Φ(±φ1) ≤
∫

Ω

(λ1 − δ±(x))φ2
1dx < 0

by (5.5). Thus we have a mountain pass geometry for the restriction Φ̃ of Φ
to P,

max{Φ̃(φ1), Φ̃(−φ1)} < 0 ≤ max
u∈γ[−1,1]

Φ̃(u)

for any path γ ∈ Γ and moreover one can verify exactly as in Lemma 2.6 that
Φ satisfies the (P.S.) condition on X0. Then d is a critical value of Φ̃ i.e there
exists u ∈ P and μ ∈ R such that{

Φ(u) = d
〈Φ′(u), v〉 = μ〈I ′(u), v〉 ∀ v ∈ X0.

Assume by contradiction that d = 0. Taking v = u in above, we get μ = 0 so
u is a nontrivial solution of

−LKu = Δ+(x)u+ − Δ−(x)u− in Ω, u = 0 in R
n \ Ω.

Using (5.5), we get a contradiction with Lemma 4.3 . This completes the proof
of the claim.

Next we show that (5.8) holds. From the left hand side of inequality (5.9),
we have for R > 0 and η > 0,

Ψ(±Rφ1) ≤ R2

2

∫
Ω

(λ1 − δ±(x))φ2
1 +

ηR2

2
+ ‖aη‖L1 ,



586 S. Goyal and K. Sreenadh NoDEA

Then, Ψ(±Rφ1) → −∞ as R → +∞, by (5.5) and letting η to be sufficiently
small. Fix ε with 0 < ε < d. We can choose R = R(ε) so that

Ψ(±Rφ1) < −‖aε‖L1 , (5.11)

where aε is associated to ε using (5.9). Consider a path γ ∈ Γ1. Then if
0 ∈ γ[−1, 1], then by (5.11),

Ψ(±Rφ1) < −‖aε‖L1 ≤ 0 = Ψ(0) ≤ max
u∈γ[−1,1]

Ψ(u),

so the Lemma is proved in this case. If 0 �∈ γ[−1, 1], then we take the normalized
path γ̃(t) = γ(t)

‖γ(t)‖L2
belonging to Γ. Since by (5.9) we have

Ψ(u) ≥ Φ(u) − ε‖u‖2
L2

2
− ‖aε‖L1 .

Then we obtain

max
γ∈[−1,1]

2Ψ(u) + ε‖u‖2
L2 + 2‖aε‖L1

‖u‖2
L2

≥ max
γ̃∈[−1,1]

Φ(v) ≥ d,

and consequently, by the choice of ε, we have

max
γ∈[−1,1]

2Ψ(u) + 2‖aε‖L1

‖u‖2
L2

≥ d − ε > 0.

This implies that

max
u∈γ[−1,1]

Ψ(u) > −‖aε‖L1 > Ψ(±Rφ1),

by (5.11) and hence the Lemma. �

Proof of Theorem 5.1: Lemmas 5.2 and 5.3 complete the proof.
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[18] Perera, K.: On the Fučik spectrum of the p-Laplacian. NoDEA 11(2), 259–
270 (2004)

[19] Ruf, B.: On nonlinear elliptic problems with jumping nonlinearities. Ann. Mat.
Pura Appl. 4(128), 133–151 (2004)
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