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Abstract. We consider a rotating N -centre problem, with N ≥ 3 and
homogeneous potentials of degree −α < 0, α ∈ [1, 2). We prove the
existence of infinitely many collision-free periodic solutions with nega-
tive and small Jacobi constant and small values of the angular velocity,
for any initial configuration of the centres. We will introduce a Mau-
pertuis’ type variational principle in order to apply the broken geodesics
technique developed in Soave and Terracini (Discrete Contin Dyn Syst
32:3245–3301, 2012). Major difficulties arise from the fact that, contrary
to the classical Jacobi length, the related functional does not come from
a Riemaniann structure but from a Finslerian one. Our existence result
allows us to characterize the associated dynamical system with a sym-
bolic dynamics, where the symbols are given partitions of the centres in
two non-empty sets.
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1. Introduction and main results

In the classical N -centre problem it is investigated the motion of a test particle
of null mass under the gravitational force fields of N fixed heavy bodies (the
centres): if ck and mk denote respectively the position and the mass of the
k-th centre, the motion equation is

ẍ(t) = −
N∑

k=1

mk

|x(t) − ck|3 (x(t) − ck) = ∇
(

N∑

k=1

mk

|x− ck|

)∣∣∣∣∣
x=x(t)

, (1)
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where x = x(t) ∈ R
2 denotes the position of the particle at time t ∈ R; basic

references for such a problem are [3,4,6–9,11] and the references therein. In
this paper we consider α-gravitational potentials of type

V (x) =
N∑

k=1

mk

α|x− ck|α α ∈ [1, 2).

Of course, for α = 1 we get the classical Newtonian potential; moreover, we
assume that the centres are not fixed, but rotate according to the law ξk(t) :=
exp {iνt}ck. Under this assumption, the equation for the motion of the test
particle is

ẍ(t) = −
N∑

k=1

mk

|x(t) − eiνtck|α+2

(
x(t) − eiνtck

)
. (2)

We will refer to the research of solutions to this equation as to the rotating
N -centre problem (briefly, the rotating problem). It is convenient to introduce
a different frame of reference for x, taking into account the rotation of the
centres: setting x(t) = exp {iνt}z(t), Eq. (2) becomes

z̈(t) + 2νiż(t) = ν2z(t) −
N∑

k=1

mk

|z(t) − ck|α+2
(z(t) − ck) . (3)

We introduce Φν(z) := ν2|z|2/2 + V (z), so that (3) can be written as

z̈(t) + 2νiż(t) = ∇Φν(z(t)).

Since the terms in z and ż are multiplied by powers of ν, the idea is that if
|ν| is sufficiently small, then Eq. (3) can be regarded as a perturbation of the
planar N -centre problem, which we dealt with in [11]. Note that, contrary to
(1), Eq. (3) is not a conservative system; however, it is possible to find a first
integral defining

Jν(z, ż) :=
1
2
|ż|2 − Φν(z).

The value h = Jν(z(t), ż(t)), which is the same for every t ∈ I, is called the
Jacobi constant, in analogy with the same integral of the circular restricted
(N + 1)-body problem (see the discussion below for the relationship between
the rotating problem and the restricted one). Note the similarity between Jν

and the usual energy function H(z, ż) = |ż|2/2 − V (z): it results H = J0.
In this paper we generalize the approach already developed in [11], proving
the existence of infinitely many collision-free periodic solutions of Eq. (3) with
negative and small (in absolute value) Jacobi constant, provided the angular
velocity |ν| is sufficiently small. As a consequence, for those values of h and ν
we can characterize the dynamical system induced by (3) on the level set

Uh,ν :=
{
(z, v) ∈ R

4 : Jν(z, v) = h
}

with a symbolic dynamics, where the symbols are some selected partitions
of the centres in two different non-empty sets. Coming back to Eq. (2), this
means that for h < 0 and |h|, |ν| sufficiently small we have infinitely many
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collision-free relative periodic solutions (i.e. periodic in the rotating frame of
reference) of the rotating problem; this existence result allows to prove the
occurrence of symbolic dynamics in a proper submanifold of the phase space
(which correspond to Uh,ν through the transformation x � z).

Motivations. The N -centre problem can be considered as a simplified version
of the (N + 1)-body problem, when one of the bodies is much faster then the
others. Therefore, in order to understand if the broken geodesics technique we
introduced in [11] can be somehow extended to find solutions of the (N + 1)-
body problem, it seems reasonable to start considering an “easy test motion”
for the centres, such as the uniformly circular one. This is strictly related to the
study of the circular restricted (N + 1)-body problem, which we briefly recall;
assigned N positive masses m1, . . . ,mN , let us consider any planar central
configuration (c1, . . . , cN ) of the N -body problem. A relative equilibrium of
the N -body problem is a motion of type ξk(t) := exp {iνt}ck (k = 1, . . . , N),
with ν ∈ R, i.e. an equilibrium point in a rotating frame of reference with
angular velocity ν. The restricted problem consists in studying the motion
of a test particle of null mass under the gravitational force field of N bodies
(the primaries) which move according to a motion of relative equilibrium.
This leads to the search of solutions to (3), but now ν cannot be considered
as a free parameter: indeed, each central configuration determines the unique
admissible value of ν through the relation

ν2 =
U(c)
2I(c)

, where U(c) =
∑

1≤j<k≤N

mjmk

|cj − ck| , I(c) =
1
2

N∑

k=1

mk|ck|2, (4)

see Meyer [10]. In particular, letting ν to tend to 0, the relation (4) implies
that either mk → 0 for every k or |ck| → 0 for every k; as a consequence, the
equation of the restricted problem in the limit case ν → 0 tends to z̈ = 0,
which has no relation with the N -centre problem or the N -body problem. As
a toy model towards the real restricted (N + 1)-body problem, we introduce
the rotating N -centre problem; we point out that the motivation for its study
is prevalently mathematical: our goal is to understand if the techniques intro-
duced in [11] are sufficiently robust to survive when we perturb the N -centre
problem by letting the centres move; the answer is yes, but, as we will see, the
extension of our broken geodesics method is not trivial and requires new ideas.
Therefore, the generalization to the real restricted problem seems possible, but
extremely complicated.

1.1. Periodic solutions

Let P be the set of the possible partitions of the centers in two different non-
empty sets. There are exactly 2N−1 − 1 such partitions, and to each of them
we associate a label:

P =
{
Pj : j = 1, . . . , 2N−1 − 1

}
.

We give particular labels to those partitions which isolates one centre with
respect to the others:
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Pj := {{cj}, {c1, . . . , cN} \ {cj}} j = 1, . . . , N.

The collection of these labels is the subset

P1 := {Pj ∈ P : j = 1, . . . , N} ⊂ P. (5)

We define the right shift Tr : Pn → Pn as

Tr((Pj1 , Pj2 , . . . , Pjn
)) = (Pjn

, Pj1 , . . . , Pjn−1),

and we say that (Pj1 , . . . , Pjn
) ∈ Pn is equivalent to (P ′

j1
, . . . , P ′

jn
) ∈ Pn if

there exists m ∈ N such that

(P ′
j1 , . . . , P

′
jn

) = Tm
r ((Pj1 , . . . , Pjn

)) .

To describe the first main result which we are going to prove, let us look
at Theorem 1.1 of [11]; therein we proved the existence of h̄ < 0 such
that for any h ∈ (h̄, 0) we can associate to any finite sequence of partition
(Pj1 , . . . , Pjn

) ∈ Pn a periodic solution x((Pj1 ,...,Pjn ),h) of the N -centre problem
(1) with energy h. Under particular assumptions on (Pj1 , . . . , Pjn

), assump-
tions which are specified in points (ii)-b) or (ii)-c) of the quoted statement, we
have to allow collision solutions, but it is always possible (for every N ≥ 3) to
build infinitely many collision-free solutions. We would like to repeat the game
associating to a finite sequence of partitions, for sufficiently small values of
the absolute value of the Jacobi constant |h| and of the angular velocity |ν|, a
periodic solution of Eq. (3). In this paper we will put some restrictions on the
sequences of partitions which we want to consider; this is motivated by the fact
that the rotation of the centres makes impossible the use of some techniques
employed in the study of the behaviour of collision-solutions. In this sense we
observed in [11] that the study of the collisions requires a distinction among

1) α = 1 and N ≥ 4, 2) α = 1 and N = 3, 3) α ∈ (1, 2).

We start from the first case.

Theorem 1.1. Let α = 1, N ≥ 4, c1, . . . , cN ∈ R
2, m1, . . . ,mN ∈ R

+. There
exists h̄1 such that, given h ∈ (h̄1, 0), there is ν̄1 = ν̄1(h) > 0 such that to
each ν ∈ (−ν̄1, ν̄1), n ∈ N and (Pj1 , . . . , Pjn

) ∈ (P \ P1)n we can associate a
collision-free periodic solution z((Pj1 ,...,Pjn ),h,ν) of

{
z̈(t) + 2νiż(t) = ∇Φν(z(t))
1
2 |ż(t)|2 − Φν(z(t)) = h,

(6)

which depends on (Pj1 , . . . , Pjn
) in the following way. There exist R̄, δ̄ > 0

(depending on h only) such that z((Pj1 ,...,Pjn ),h,ν) crosses 2n times within one
period the circle ∂BR̄(0), at times (tk)k=0,...,2n−1, and
• in (t2k, t2k+1) the solution stays outside BR̄(0) and

|z((Pj1 ,...,Pjn ),h,ν)(t2k) − z((Pj1 ,...,Pjn ),h,ν)(t2k+1)| < δ̄;

• in (t2k+1, t2k+2) the solution lies inside BR̄(0) and separates the centres
according to the partition Pjk

.
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The following picture represents the typical shape of a trajectory in the
rotating frame of reference, moving with angular velocity ν.

Note the analogy with Theorem 1.1 of [11]: if α = 1 and N ≥ 4 we can
easily find a condition on (Pj1 , . . . , Pjn

) in order to ensure that the periodic
solution z((Pj1 ,...,Pjn ),h,0) of the N -centre problem

{
z̈(t) = ∇V (z(t))
1
2 |ż(t)|2 − V (z(t)) = h

is collision-free; it is sufficient to impose that Pjk
∈ (P \ P1) for every k. If

N = 3 then P = P1, so that if in addition α = 1 we have to use a little trick:
let

(P1, P1, P2, P3) = G1, (P2, P2, P3, P1) = G2,

and let G := {G1, G2}. We will observe (Remark 15 below) that no composed
sequence obtained by the juxtaposition of G1 and G2 satisfies the symmetry
conditions of cases (ii)-b) or (ii)-c) of Theorem 1.1 in [11]; this implies that a
solution of the N -centre problem associated to (Pk1 , . . . , Pk4n

) ∈ Gn ⊂ P4n is
collision-free. Coming back to the rotating problem, it results

Theorem 1.2. Replacing the assumption N ≥ 4 in Theorem 1.1 with N = 3,
the same statement holds true replacing (P \ P1)n with Gn.

If α �= 1 this is not necessary, since in such a case z((Pj1 ,...,Pjn ),h,0) was proved
to be always collision-free.

Theorem 1.3. Replacing the assumptions α = 1 and N ≥ 4 in Theorem 1.1
with α ∈ (1, 2) and N ≥ 3, the previous statement holds true, replacing the set
P \ P1 with P.

Remark 1. The assumption “|h| is sufficiently small” is substantial, as we can
immediately realize observing that if z is a solution of (6), then the curve
parametrized by z in the configuration space has to be confined in {Φν(z) ≥
−h}. If h < 0 becomes large in absolute value, we obtain a disconnected set,
so that to find solutions exhibiting the behavior described in the previous
statements becomes impossible.
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1.2. Symbolic dynamics

Similarly to Corollary 1.3 of [11], as a consequence of Theorem 1.1, 1.2, 1.3,
we obtain the following result.

Corollary 1.4. Let α ∈ [1, 2), N ≥ 3, m1, . . . ,mN ∈ R
+ and c1, . . . , cN ∈

R
2. Let h ∈ (h̄1, 0) and ν ∈ (−ν̄1(h), ν̄1(h)), where h̄1 and ν̄1(h) have been

introduced in Theorem 1.1, 1.2, 1.3. There exists a subset Πh,ν of the level set
Uh,ν , a return map R : Πh,ν → Πh,ν for the dynamical system associated to
Eq. (3), a set of symbols P̂ and a continuous and surjective map π : Πh,ν → P̂Z,
such that the diagram

Πh,ν
R ��

π

��

Πh,ν

π

��

P̂Z
Tr �� P̂Z,

commutes (here Tr demotes the right shift in P̂Z); namely for every h ∈ (h̄1, 0)
and ν ∈ (−ν̄1(h), ν̄1(h)), the restriction of the dynamical system associated to
the rotating problem on the level set Uh,ν has a symbolic dynamics.

1.3. Plan of the paper

We follow here the same general strategy already developed for proving The-
orem 1.1 of [11]. In Sect. 2 we will perform a suitable rescaling in order to
pass from problem (6) to an equivalent problem where the parameter Jacobi
constant will be replaced by the parameter given by the maximal distance of
the centres from the origin. This leads to the study of a rotating problem with
a rescaled potential

Vε(y) =
N∑

k=1

mk

|y − c′k|α where max
1≤k≤N

|c′k| = ε, (7)

and a different angular velocity ν′; we will be interested in solutions with
Jacobi constant equal to −1. In this way, outside a ball or radius R > ε > 0,
and for |ν′| sufficiently small, the equivalent problem

⎧
⎨

⎩
ÿ(t) + 2ν′iẏ(t) = ∇

(
(ν′)2

2 |y|2 + Vε(y)
)

1
2 |ẏ(t)|2 − (ν′)2

2 |y(t)|2 − Vε(y(t)) = −1
(8)

is a small perturbation of the Kepler’s problem with homogeneity degree
−α < 0, α ∈ [1, 2). This is why we will face the research of periodic solu-
tions of (8) splitting the study of the dynamics outside/inside a ball BR(0)
(R will be conveniently chosen). As in [11], outside BR(0) we will find arcs of
solutions of (8) connecting two points p0, p1 ∈ ∂BR(0), provided their distance
is sufficiently small, via perturbative techniques. With respect to [11], we have
to take into account the new parameter ν′, but the argument is substantially
the same.
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In Sect. 4 we study the problem inside BR(0), trying again to follow the line
of reasoning of [11]; we will search minimizers of the Jacobi type functional

Lh,ν :=
∫ 1

0

|u̇|
√

Φν(u) − 1 +
ν√
2

∫ 1

0

〈iu, u̇〉

under suitable constraints, in order to connect any pair p1, p2 ∈ ∂BR(0) with
arcs of solution of (8) which separate the centres according to any prescribed
partition in P. The functional Lh,ν , contrary to the classical Jacobi length,
does not come from a Riemaniann structure but from a Finslerian one. A
main consequence is the lack of reversibility of the problem, and this marks
a significant difference in the argument to rule out the possibility of hav-
ing collisions for its minimizers. The alternative “collision less” or “ejection-
collision”, valid for the N -centre problem, does not hold anymore. This is
why we will need an “ad hoc” argument, which will be exposed in Sects. 6
and 7.

The collection of the outer and inner dynamics will be the object of
Sect. 5. Assigned a sequence (Pj1 , . . . , Pjn

) ∈ Pn and ε and ν′ sufficiently small,
the aim will be the construction of a weak periodic solution y((Pj1 ,...,Pjn ),ε,ν′) of
the restricted problem crossing 2n times within one period the circle ∂BR(0),
at times (tk)k=0,...,2n−1, and

• in (t2k, t2k+1) the solution stays outside BR(0) and

|y((Pj1 ,...,Pjn ),ε,ν)(t2k) − y((Pj1 ,...,Pjn ),ε,ν)(t2k+1)| < δ̄.

• in (t2k+1, t2k+2) the solution lies inside BR̄(0) and parametrizes an inner
local minimizer of the functional L−1,ν′ which, up to collisions, separates
the centres according to the partition Pjk

.

This will be achieved glueing the fixed ends trajectories found in Sects. 3 and
4, alternating outer and inner arcs. In order to obtain smooth junctions, we are
going to use the variational argument already carried on in [11] with success.
Finally, in Sects. 6 and 7, we will complete the proof of Theorems 1.1, 1.2 and
1.3, providing sufficient conditions on the sequences (Pj1 , . . . , Pjn

) in order
to have collision-free solutions; we will see that the minimizers of L−1,ν′ are
weakly convergent in H1, as ν′ → 0, to the minimizers of L−1,0, which is
the classical Jacobi functional. Therefore we will exploit the description of the
behaviour of such minimizers given in [11].

Remark 2. If α = 1, the existence of periodic solutions to problem (6) can
be obtained by means of a perturbation argument in the following way: the
Poincaré map associated to the N -center problem (N ≥ 3) admits a compact
hyperbolic invariant set of periodic points on any energy level Jh,0 with h ≥ 0
(see Klein and Knauf [7]); the corresponding closed trajectories are global
minimizers of the Jacobi length, and lies in a bounded region surrounding
the centres. Due to the stability under perturbations of compact hyperbolic
invariant sets, if h < 0 and |h| and |ν| are small enough, periodic solutions of
problem (6) still exist.
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On the other hand, the results of [11] are not achieved through a perturba-
tion argument from the case h = 0. Actually, the periodic solutions we found
tend, as h ↗ 0, to a “concatenation” of parabolic unbounded orbits. In par-
ticular, since they were build by the gluing of constrained minimizers (near
the centres) and perturbed Keplerian ellipses interacting with the boundary of
the Hill’s region (which, clearly, do not carry any hyperbolicity property), the
previous discussion does not apply. This is why we have to adapt step by step
the construction already carried on in [11]. Of course, compared with those
obtained by Klein and Knauf, we obtain different periodic solutions yielding a
new symbolic dynamics.

2. Preliminaries

Let us fix N ≥ 3, α ∈ [1, 2), c1, . . . , cN ∈ R
2 and m1, . . . ,mN > 0, and let

M =
∑N

k=1mk; we fix the origin in the centre of mass. In this section we
prove that to find a periodic solution of the rotating problem (3) with Jacobi
constant h < 0 is equivalent to find a periodic solution of a different rotating
problem with Jacobi constant equal to −1. In this perspective the maximal
distance of the centres from the origin replaces h as parameter, and the angular
velocity changes as well. To be precise one can easily prove:

Proposition 2.1. Let z ∈ C2
(
(a, b); R2

)
be a classical solution of (3) with Jacobi

constant h < 0. Then the function

y(t) = (−h) 1
α z

(
(−h)− α+2

2α t
)
, t ∈

(
(−h)α+2

2α a, (−h)α+2
2α b

)
(9)

is a solution of a rotating problem with

c′j = (−h) 1
α cj , j = 1, . . . , N and ν′ = (−h)− α+2

2α ν; (10)

the Jacobi constant of y as solution of the new problem is −1. Conversely: let
y ∈ C2

(
(a′, b′) ,R2

)
be a classical solution with Jacobi constant −1 of a rotating

problem with initial configuration of the centres {c′j} and angular velocity ν′.
Let us set

cj = (−h)− 1
α c′j , j = 1, . . . , N and ν = (−h)α+2

2α ν′.

Then

z(t) = (−h)− 1
α y

(
(−h)α+2

2α t
)
, t ∈

(
(−h)− α+2

2α a′, (−h)− α+2
2α b′

)

is a classical solution of (3) with Jacobi constant h < 0.

Corollary 2.2. For every ε > 0 and for every ν̃ ∈ R there exist ζ1(ε) and
ζ2(ε, ν̃) ∈ R such that if h = ζ1(ε) and ν = ζ2(ε, ν̃) then

max
1≤k≤N

|c′k| = ε, ν′ = ν̃.

The function ζ1 is strictly decreasing in ε, the function ζ2 is strictly increasing
both in ε and ν̃.
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Remark 3. Problem (8) for (ε, ν′) ∈ (0, ε̄) × (−ν̄′, ν̄′) is equivalent, through
Proposition 2.1 and Corollary 2.2, to Eq. (3) associated with Jacobi constant
h < 0 and angular velocity ν for (h, ν) ∈ (−ζ1(ε̄), 0)×(−ζ2(ε̄, ν̄), ζ2(ε̄, ν̄)). Two
corresponding solutions exhibit the same topological behaviour, as showed by
Eq. (9). Note that more the Jacobi constant is small, more the admissible
angular velocities have to be small.

Let us fix ε > 0, ν′ ∈ R, and K := BR2(0)\BR1(0), with R2 > R1 > ε. In
K we can consider the new problem as a small perturbation of the α-Kepler’s
problem, whose potential is

V0(y) :=
M

α|y|α y ∈ R
2 \ {0}.

Indeed, setting

Φν′,ε(y) :=
(ν′)2

2
|y|2 + Vε(y),

(Vε has been already defined in (7)), it is not difficult to check that

‖Φν′,ε − V0‖C1(K) = o(ε) + o(ν′) for ε → 0+, ν′ → 0. (11)

Let us observe that if y is a solution of ÿ+2ν′iẏ = ∇Φν′,ε(y) with Jacobi
constant −1 over an interval I ⊂ R, then

Φν′,ε(y(t)) ≥ 1 ∀t ∈ I.

To exploit the perturbative nature of the problem outside a ball BR(0), we
have to check that, for ε > 0 sufficiently small and for ν′ in a neighbourhood
of 0, there exists R > 0 such that

Bε(0) ⊂ BR(0) ⊂ {
y ∈ R

2 : Φν′,ε(y) ≥ 1
}
. (12)

Then, considering any compact set BR(0) ⊂ A ⊂ {Φν′,ε(y) ≥ 1}, we will be
able to use (11) in A \BR(0).

Proposition 2.3. Let ε > 0, ν′ ∈ R. Let R > 0 such that ε < R <
(

M
α

)1/α − ε.
Then (12) holds true. There exists ε1 > 0 such that, for every 0 < ε < ε1, this
choice is possible.

Actually, we will make the further request ε < R/2 < R <
(

M
α

)1/α − ε. which
is satisfied for every ε ∈ (0, ε1/2). As in [11], we select R so that ∂BR(0) is the
image of the circular solution of the α-Kepler’s problem with energy −1:

R :=
(

(2 − α)M
2α

) 1
α

. (13)

This is consistent with the previous restriction on R, if ε1 is sufficiently small
(if this was not true, it is sufficient to replace ε1 with a smaller quantity).
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Remark 4. For future convenience, note that for every y ∈ BR(0)

Vε(y) − 1 ≥ M

α

((
(2−α)M

2α

) 1
α

+ ε

)α − 1 ≥ M

α

((
(2−α)M

2α

) 1
α

+ ε1

)α − 1

=: M1 > 0, (14)

and hence Φν′,ε(y)−1 ≥ M1. This value is independent on ε ∈ (0, ε1/2). From
now on we will use M1 to denote this positive constant.

3. Outer dynamics

We are going to use a perturbative approach in order to find solutions of
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ÿ(t) + 2ν′iẏ(t) = ∇Φν′,ε(y(t)) t ∈ [0, T ]
1
2 |ẏ(t)|2 − Φν′,ε(y(t)) = −1 t ∈ [0, T ]

|y(t)| > R t ∈ (0, T )

y(0) = p0 y(T ) = p1

(15)

when the distance between p0, p1 ∈ ∂BR(0) is sufficiently small; T has to be
determined. To be precise we will prove the following proposition.

Proposition 3.1. There exist δ > 0, ε2 > 0 and ν′
1 > 0 such that for every

(ε, ν′) ∈ (0, ε2)×(−ν′
1, ν

′
1), for every p0, p1 ∈ ∂BR(0) : |p1−p0| < 2δ, there exist

a unique solution yext(· ; p0, p1; ε, ν′) of (15) with T = Text(p0, p1; ε, ν′) > 0.
This solution depends in a C1 way on the endpoints p0 and p1, and

max
t∈[0,Text(p0,p1;ε,ν′)]

|yext(t; p0, p1; ε, ν′)| ≤ 2
(
M

α

) 1
α

max
t∈[0,Text]

|ẏext(t; p0, p1; ε, ν′)| ≤ 2

√

2
(

−1 +
M

αRα

)
(16)

for every (p0, p1) ∈ {(p0, p1) ∈ (∂BR(0))2 : |p0 − p1| < 2δ}, ε ∈ (0, ε2) and
ν′ ∈ (−ν′

1, ν
′
1).

We will follow the same line of reasoning of the proof of Theorem 3.1 of [11],
with the only difference that here we add the parameter ν′. For the reader’s
convenience, we will review the main steps. For every p0 = R exp {iϑ0} ∈
∂BR(0), the unperturbed problem (ε = 0 and ν′ = 0) is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ÿ(t) = −M y(t)
|y(t)|α+2 t ∈ [0, T ]

1
2 |ẏ(t)|2 − M

α|y(t)|α = −1 t ∈ [0, T ]

|y(t)| > R t ∈ (0, T )

y(0) = p0, y(T ) = p0.

(17)
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Let us solve the Cauchy problem
⎧
⎨

⎩
ÿ(t) = −M y(t)

|y(t)|α+2

y(0) = p0, ẏ(0) =
√

2
(−1 + M

αRα

) (
p0
R

)
.

The trajectory returns at the point p0 after a certain time T̄ > 0, having swept
the portion of the rectilinear brake orbit of energy −1 starting from p0 and
lying in R

2 \BR(0). Our aim is to catch the behaviour of the solutions under
small variations of the initial conditions. We consider

{
ÿ(t) = −M y(t)

|y(t)|α+2

y(0) = p0, ẏ(0) = ṙ0e
iϑ0 +Rϑ̇0ie

iϑ0 ,
(18)

where ṙ0 is assigned as function of ϑ̇0 by means of the energy integral. We
denote as y(· ;ϑ0, ϑ̇0) the solution of (18). For the brake orbit y (· ;ϑ0, 0), it
results

ϑ(t;ϑ0, 0) ≡ ϑ0 ∀t ∈ [0, T̄ ].

We introduce ψ : Θ × I → R
2 as

ψ(ϑ̇0, T ) := y(T ;ϑ0, ϑ̇0),

where Θ× I ⊂ S1 × R is a neighbourhood of (0, T̄ ) on which ψ is well defined.
The following result is Lemma 3.2 of [11], see the proof therein.

Lemma 3.2. The Jacobian of ψ in (0, T̄ ) is invertible.

Now we introduce the parameters ε and ν′: let us define

Ψ :Θ × I × ∂BR(0) ×
[
0,
ε1
2

)
× R → R

2

(ϑ̇0, T, p1, ε, ν
′) �→ y(T ;ϑ0, ϑ̇0; ε, ν′) − p1,

where y(· ;ϑ0, ϑ̇0; ε, ν′) is the solution of
{
ÿ(t) + 2ν′iẏ(t) = ∇Φν′,ε(y(t))

y(0) = p0, ẏ(0) = ṙν′,εe
iϑ0 +Rϑ̇0ie

iϑ0 ,
(19)

and ṙν′,ε is assigned as function of ϑ̇0, ε, ν
′ by means of the Jacobi constant.

The proof of the following statement is a straightforward generalization of the
proof of Lemma 3.3 in [11].

Lemma 3.3. There exist δ > 0, 0 < ε2 < ε1/2 and ν′
1 > 0 such that for every

(ε, ν′) ∈ (0, ε2) × (−ν′
1, ν

′
1), for every p1 ∈ ∂BR(0) : |p1 − p0| < 2δ, there

exists a unique solution y(· ;ϑ0, ϑ̇0; ε, ν′) of (19) defined in [0, T ] for a certain
T > 0, and satisfying also (15). Moreover, it is possible to choose δ, ε2 and ν′

1

independent on p0 ∈ ∂BR(0).

Proposition 3.1 follows. The solutions obtained are uniquely determined and
depends in a smooth way on the ends p0 and p1, and on the parameters ε
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and ν′ (by the implicit function theorem). Since a brake solution ybr(·) =
y(· ; p0, p0; 0, 0) of the Kepler’s problem is such that

max
t∈[0,T̄ ]

|ybr(t)| =
(
M

α

) 1
α

and max
t∈[0,T̄ ]

|ẏbr(t)| =

√

2
(

−1 +
M

αRα

)
,

it is possible, if necessary, to replace ε2 and ν′
1 with smaller quantities in such

a way that (16) is satisfied.

The picture represents the comparison between the rectilinear brake solu-
tion for the α-Kepler problem and a “close to brake” solution obtained for the
perturbed problem with potential Φν′,ε via the implicit function theorem.

Definition 1. For any ε ∈ (0, ε2) we pose

OSε := {yext(· ; p0, p1; ε, ν′) : p0, p1 ∈ ∂BR(0), |ν′| < ν′
1},

i.e. OSε is the set of the outer solutions corresponding to a fixed value of ε.

Lemma 3.4. For every ε ∈ (0, ε2) there exist C1, C2 > 0 such that

C1 ≤ Text(p0, p1; ε, ν′) ≤ C2 ∀(p0, p1, ν
′) ∈ (∂BR(0))2 × (−ν̃′, ν̃′).

Also, there exists C3 > 0 such that

‖yext(· ; p0, p1; ε, ν′)‖H1([0,Text(p0,p1;ε,ν′)]) ≤ C3

for every (p0, p1, ν
′) ∈ (∂BR(0))2 × (−ν̃′, ν̃′).

Proof. The boundedness of Text(p0, p1; ε, ν′) is a consequence of the continuous
dependence of the solutions with respect to variations of initial data. As far as
the bound in the H1 norm is concerned, we can use (16) and the first part. �

Remark 5. We could make the boundedness properties described above uni-
form in ε. But we will use this lemma in Sects. 5, 6 and 7, where ε will be
fixed.
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4. Inner dynamics

In contrast with the previous one, this section is not a direct generalization of
Section 4 of [11]; however, it is convenient to summarize the main ideas that
we developed therein. Our goal was to find solutions of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ÿ(t) = ∇Vε(y(t)) t ∈ [0, T ]
1
2 |ẏ|2 − Vε(y(t)) = −1 t ∈ [0, T ]

|y(t)| < R t ∈ (0, T )

y(0) = p1, y(T ) = p2.

(20)

satisfying particular topological requirements; T was not determined a pri-
ori, while the energy was fixed to −1; hence, in order to give a variational
formulation of (20), it was convenient to adopt the Maupertuis’ principle
rather then the minimal action principle. Let [a, b] ⊂ R and p1, p2 ∈ ∂BR(0),
p1 = R exp {iϑ1}, p2 = R exp {iϑ2} (the case p1 = p2 is admissible). We intro-
duced the set of collision-free H1 paths

Ĥp1p2 ([a, b]) :=
{
u ∈ H1

(
[a, b],R2

)
: u(a) = p1, u(b) = p2,

u(t) �= cj for every t ∈ [a, b], for every j ∈ {1, . . . , N}} , (21)

the set of colliding H1 functions

Collp1p2 ([a, b]) :=
{
u ∈ H1

(
[a, b],R2

)
: u(a) = p1, u(b) = p2,

∃t ∈ [a, b] : u(t) = cj for some j ∈ {1, . . . , N}} ,
and their union

Hp1p2 ([a, b]) = Ĥp1p2 ([a, b]) ∪ Collp1p2 ([a, b]) .

Briefly, we will write Ĥ, Coll and H when there will not be possibility of
misunderstanding. Note that H is the closure of Ĥ in the weak topology of
H1. A path u ∈ Ĥ can be characterized according to its winding number with
respect to each centre. This number can be computed by artificially closing
the path itself, in the following way:

Γ(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

{
u(t) t ∈ [a, b]

Rei(t−b+ϑ2) t ∈ (b, b+ ϑ1 + 2π − ϑ2)
if ϑ1 < ϑ2

u(t) t ∈ [a, b] if ϑ1 = ϑ2
{
u(t) t ∈ [a, b]

Rei(t−b+ϑ2) t ∈ (b, b+ ϑ1 − ϑ2)
if ϑ1 > ϑ2,

i.e. if p1 �= p2 we close the path u with the arc of ∂BR(0) connecting p2 and
p1 in counterclockwise sense. Then it is well defined the usual winding number
Ind (u([a, b]), cj). Given l = (l1, . . . , lN ) ∈ Z

N , a connected component of Ĥ is
of the form

Ĥp1p2
l ([a, b]) :=

{
u ∈ Ĥp1p2([a, b]) : Ind (u([a, b]), cj) = lj ∀j = 1, . . . , N

}
.
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We needed classes containing self-intersections-free paths, so that we consid-
ered l ∈ Z

N
2 instead of l ∈ Z

N , and set

Ĥl = Ĥp1p2
l ([a, b]) :=

{
u ∈ Ĥp1p2([a, b]) : Ind (u([a, b]), cj) ≡ lj mod 2

∀j = 1, . . . , N
}

;

namely we collected together the components with winding numbers having
the same parity with respect to each centre. We also assumed that

∃j, k ∈ {1, . . . , N} , j �= k, such that lj �= lk mod 2. (22)

In this way, each u ∈ Ĥl has to pass through the ball Bε(0), and cannot be
constant even if p1 = p2. Actually we proved that the functions in Ĥl are
uniformly non-constant, in the sense that there exists C > 0 such that

‖u̇‖L2 ≥ C ∀u ∈ Ĥl.

Furthermore, the constant C can be chosen independently on p1 and p2 (see
Lemma 5.2 of the quoted paper) and also on l (the proof is the same).
We said that l ∈ Z

N
2 is a winding vector, and we term IN := {l ∈ Z

N
2 :

l satisfies (22)}. In order to apply variational methods, we needed to consider
Hl = Hp1p2

l ([a, b]), the closure of Ĥl with respect to the weak topology of H1;
of course, in Hl there are collision-function. Since we searched functions whose
images are in BR(0), we considered the subsets

K̂l = K̂p1p2
l ([a, b]) := {u ∈ Ĥl : |u(t)| ≤ R ∀t ∈ [a, b]}

Kl = Kp1p2
l ([a, b]) := {u ∈ Hl : |u(t)| ≤ R ∀t ∈ [a, b]} .

The set Kl is weakly closed in H1. Recall the definition of the Maupertuis’
functional associated to problem (20):

M−1(u) = M−1([a, b];u) :=
1
2

∫ b

a

|u̇|2
∫ b

a

(Vε(u) − 1) ; (23)

It is well known that solutions of the fixed energy problem given by the first
two equations in (20) are obtained as re-parametrizations of critical points of
M−1 at positive level in the space Ĥ (see, e.g. [1]). It is also possible to consider
re-parametrizations of critical points of the functional

L−1(u) = L−1([a, b];u) :=
∫ b

a

√
(Vε(u) − 1) |u̇|2, (24)

which is defined in the closure with respect to the weak topology of H1 of

H−1 = Hp1p2
−1 ([a, b]) := {u ∈ Hp1p2([a, b]) : V (u(t)) > 1, |u̇(t)| > 0

for a.e. t ∈ [a, b]} .
Actually local minimizers ofM−1 are local minimizers of L−1, and the converse
is true up to a re-parameterization. The functional L−1 has a useful geomet-
ric meaning, since for u ∈ H−1 the value L−1(u) is the length of the curve
parametrized by u with respect to the Jacobi metric gij(y) = (Vε(y) − 1) δij ,
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where δij is the Kronecker’s delta; this metric makes the set {Vε(u) > 1} a
Riemannian manifold.
Let us look at Theorem 4.12 of [11]. We proved that there exists ε3 > 0
such that for every ε ∈ (0, ε3), p1, p2 ∈ ∂BR(0) and l ∈ IN problem (20)
has a solution yl(· ; p1, p2; ε) ∈ Kp1p2

l ([0, T ]) (T = T (p1, p2; ε; l)) which is a
re-parametrization of a local minimizer of the Maupertuis’ functional M−1 in
Kp1p2

l ([0, 1]), for some T > 0. If p1 = p2 and

l1 = · · · = lj−1 = lj+1 = · · · = lN �= lj mod 2, (25)

then this solution can be an ejection–collision solution with a unique collision in
cj , otherwise it has to be self-intersection-free and collision-free. The successive
step consisted in the translation of Theorem 4.12 in the language of partitions.
This is possible since if u ∈ K̂l is self-intersection-free then it separates the
centres in two different groups, which are determined by the particular choice
of l ∈ IN ; namely, a self-intersection-free path in a class K̂l induces a partition
of the centres in two non-empty sets. Hence we could define the application
A : IN → P which associates to a winding vector

l = (l1, . . . , lN ) with

{
lk ≡ 0 mod 2 k ∈ A0 ⊂ {1, . . . , N}
lk ≡ 1 mod 2 k ∈ A1 ⊂ {1, . . . , N}

the partition

A(l) := {{ck : lk ∈ A0}, {ck : lk ∈ A1}}.
It is then natural to set

K̂Pj
= K̂p1p2

Pj
([a, b]) :=

{
u ∈ K̂p1p2

l ([a, b]) : l ∈ A−1(Pj)
}
,

KPj
= Kp1p2

Pj
([a, b]) :=

{
u ∈ Kp1p2

l ([a, b]) : l ∈ A−1(Pj)
}
.

In comparison with [11], note that we don’t require that a path in KPj
has no

self-intersection; for the N -centre problem such a requirement was proved to be
natural, in the sense that every minimizer of the Maupertuis’ functional in K̂l

is necessarily self-intersection-free, unless it is an ejection–collision minimizer;
for the rotating problem this is not necessarily true, therefore we drop this
condition in the definition of K̂Pj

.
From Theorem 4.12, we obtained, for every ε ∈ (0, ε3), p1, p2 ∈ ∂BR(0) and
Pj ∈ P, the existence of a solution yPj

(· ; p1, p2; ε) of problem (20), which is a
re-parametrization of a local minimizer of the Maupertuis’ functional M−1 in
Kp1p2

Pj
([0, 1]). If p1 = p2 and Pj ∈ P1 then yPj

(· ; p1, p2; ε) can be an ejection–
collision solution with a unique collision in ci, otherwise it is always collision-
free (recall the definition of P1, Eq. (5)).

Let’s come back to our “fixed Jacobi constant problem”
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ÿ(t) + 2ν′iẏ(t) = ∇Φν′,ε(y(t)) t ∈ [0, T ]
1
2 |ẏ(t)|2 − Φν′,ε(y(t)) = −1 t ∈ [0, T ]

|y(t)| < R t ∈ [0, T ]

y(0) = p1 y(T ) = p2.

(26)
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The variational formulation of (26) will be the object of Sect. 4.1. We will
state the main result of this section in Sect. 4.2.

4.1. The variational formulation

Let us consider a general problem of type
⎧
⎪⎪⎨

⎪⎪⎩

z̈(t) + 2νiż(t) = ∇Φν(z(t)) t ∈ [0, T ]
1
2 |ż(t)|2 − Φν(z(t)) = h t ∈ [0, T ]

z(0) = p1 z(T ) = p2.

(27)

with T > 0 to be determined and p1, p2 ∈ R
2. In order to solve it, we cannot

use the Maupertuis’ functional because it is suited for fixed energy problems.
However, exploiting the existence of the Jacobi constant, we can study the
Maupertuis-type functional

Mh,ν([a, b];u) :=
√

2

(∫ b

a

|u̇|2
) 1

2
(∫ b

a

Φν(u) + h

) 1
2

+ ν

∫ b

a

〈iu, u̇〉.

We will briefly write Mh,ν instead of Mh,ν([a, b]; ·) when there is no possibility
of misunderstanding. The domain of Mh,ν is the closure in the weak topology
of H1 of

Hp1p2
h,ν ([a, b]) := {u ∈ Hp1p2(a, b]) : Φν(u(t)) > −h, |u̇(t)|>0 for a.e. t ∈ [a, b]} .

If

√
2

(∫ b

a

|u̇|2
) 1

2
(∫ b

a

Φν(u) + h

) 1
2

> 0, (28)

we can set

ω2 :=

∫ b

a
Φν(u) + h

1
2

∫ b

a
|u̇|2

> 0 (29)

and it makes sense to consider the re-parametrization z(t) = u(ωt), defined

in [a/ω, b/ω]. The functional Mh,ν is differentiable over Ĥ ∩ Hh,ν
σ(H1,(H1)∗)

(seen as an affine space on H1
0 ). We will consider [a, b] = [0, 1] for the sake of

simplicity.

Theorem 4.1. Let u ∈ Ĥp1p2([0, 1])∩(Hp1p2
h,ν ([0, 1])

σ(H1,(H1)∗)
be a critical point

of Mh,ν , i.e. dMh,ν (u) [v] = 0 for every v ∈ H1
0 ([0, 1]), and assume that (28)

is satisfied. Let ω be defined by (29). Then z(t) := u(ωt) is a classical solution
of (27) with T = 1/ω, while u itself is a classical solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω2ü(t) + 2νωiu̇(t) = ∇Φν(u(t)) t ∈ [0, 1],

1
2 |u̇(t)|2 − Φ(u(t))

ω2 = h
ω2 t ∈ [0, 1],

u(0) = p1, u(1) = p2.

(30)
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Proof. It is not difficult to check that if dMh,ν(u)[v] = 0 for every v ∈ H1
0 ([0, 1])

then z(t) = u(ωt) is a classical solution the first equation in (27). The Jacobi
constant for z reads

1
2
|ż(t)|2 − Φν(z(t)) = k ∀t ⇔ ω2

2
|u̇(s)|2 − Φν(u(s)) = k ∀s,

where k ∈ R. We deduce

ω2 =

∫ 1

0
Φν(u) + k

1
2

∫ 1

0
|u̇|2

;

comparing with (29), we obtain k = h. �

The previous statement says that the functional Mh,ν plays, for problem (27),
the role that the classical Maupertuis’ functional Mh plays for a fixed energy
problem of type (20). In order to apply variational methods it is worthwhile
working in H rather then in Ĥ, since Ĥ is not weakly closed. As a consequence,
it is not possible to rule out the occurrence of collisions from the beginning.
This leads to the concept of weak solution for the problem (27).

Definition 2. Let u be a local minimizer of Mh,ν in Hp1,p2
h,ν ([0, 1]) such that

(28) holds true, and let ω be defined by (29). We say that z(t) = u(ωt) is a
weak solution of (27) in the time interval [0, 1/ω].

If z is a weak solution, we can define the collision set as:

Tc(z) :=
{
t ∈

[
0,

1
ω

]
: z(t) = cj for some j = 1, . . . , N

}
.

It is not difficult to check that if z is a weak solution and (a, b) ⊂ [0, 1] \Tc(z),
then z is a classical solution of the restricted problem in (a, b), with Jacobi
constant h: indeed for every ϕ ∈ C∞

c (a, b) it results

d

dλ
Mh,ν(u+ λϕ)

∣∣∣∣
λ=0

= 0. (31)

One can verify that the set Tc(z) is discrete and finite, so that z is a classical
solution almost everywhere in [0, 1/ω]. On the other hand, a local minimizer
in Kl of Mh,ν does not satisfy the motion equation in every time interval [c, d]
such that |u(t)| = R for every t ∈ [c, d]; indeed, in such a situation it is not true
anymore that (31) holds true for every variation ϕ ∈ C∞

c ([c, d]). Nevertheless,
the conservation of the Jacobi constant still holds true.

Proposition 4.2. If u ∈ (Hp1p2
h,ν ([0, 1])

σ(H1,(H1)∗)
is a local minimizer of Mh,ν ,

then

1
2
|u̇(t)|2 − Φν(u(t))

ω2
=

h

ω2
for a.e. t ∈ [0, 1]

Proof. It is a consequence of the extremality of u with respect to time
re-parametrization keeping the ends fixed. For every ϕ ∈ C∞

c ((0, 1),R), let us
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consider uλ(t) := u(t+λϕ(t)). For λ sufficiently small the function t �→ t+λϕ(t)
is increasing in [0, 1], so that in particular it is invertible; the minimality of u
implies

d

dλ
Mh,ν(uλ)

∣∣∣∣
λ=0

= 0.

�

Remark 6. Note that, if ν = 0, the functional Mh,ν reduces to

Mh,0(u) :=
√

2

(∫ b

a

|u̇|2
) 1

2
(∫ b

a

(V (u) + h)

) 1
2

= 2
√
Mh(u),

where Mh is the classical Maupertuis’ functional of type (23). This reflects
the perturbed nature of problem (26). Actually, due to the monotonicity of
the square root for positive values of its argument it is immediate to deduce
that u is a (local) minimizer of Mh at a positive level if and only if it is a
(local) minimizer of Mh,0 such that (28) is satisfied. Therefore, if we work in
a set in which Mh is bounded below by a positive constant, it is equivalent to
minimize Mh or Mh,0. In particular, since in Lemma 4.16 of [11] we proved
that for every p1, p2 ∈ ∂BR(0) and for every l ∈ IN there exists C > 0 such
that

M−1(u) ≥ C > 0 ∀u ∈ Kp1p2
l ([0, 1]),

the characterization of the minimizers of M−1 in Kl (and consequently also in
KPj

) described in Theorem 4.12 of [11] (or Corollary 4.14 of [11]) applies for
the minimizers of M−1,0; this will be crucial in Sect. 6.

As announced in Sect. 1, there is an analogue counterpart for the functional

Lh. We introduce Lh,ν([a, b]; ·) : Hh,ν
σ(H1,(H1)∗) → R ∪ {+∞} as

Lh,ν([a, b];u) :=
∫ b

a

√
(Φν(u) + h)|u̇| +

1√
2
ν

∫ b

a

〈iu, u̇〉.

For u ∈ H1 ([a, b]) let us consider the following class of orientation-preserving
re-parametrizations

Γu :=
{
([c, d], f) : f : [c, d] → [a, b], f ∈ C1 ([c, d],R) and increasing, such that

u ◦ f ∈ H1 ([c, d])
}
.

It is not difficult to check that Lh,ν is invariant under re-parametrizations of
Γu. We point out that this is false if we consider re-parametrizations which do
not preserve the orientation. In particular, differently from Lh, Lh,ν is not a
length. It is possible to check that if |ν| is sufficiently small then

√
Φν(z) + h|ż| + ν〈iu, u̇〉

is a Finsler function which makes the “Hill’s region” {Φν(z) > −h} a Finsler
manifold.
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Theorem 4.3. Let u ∈ Hp1p2
h,ν ([0, 1]) ∩ Ĥp1p2([0, 1]) be a non-constant critical

point of Lh,ν . Then there exist a re-parametrization z of u which is a classical
solution of (27) for some T > 0.

Proof. We can adapt the proof of Theorem 4.5 of [11] with minor changes. �

The relationship between minimizers of Mh,ν and Lh,ν is given by the
following statement.

Proposition 4.4. Let u ∈ Hh,ν ∩Ĥ be a non-constant (local) minimizer of Mh,ν

such that (28) holds true. Then u is a (local) minimizer of Lh,ν in Hh,ν ∩ Ĥ.
On the other hand, let u ∈ Hh,ν ∩ Ĥ be a non-constant (local) minimizer of
Lh,ν . Then, up to a re-parametrization, u is a (local) minimizer of Mh,ν in
Hh,ν ∩ Ĥ such that (28) holds true.

Proof. Due to the Hölder inequality we have
√

2Lh,ν(u) ≤ Mh,ν(u) ∀u ∈ Hh,ν ∩ Ĥ,
with equality if and only if there exists C > 0 such that

|u̇(t)|2 = C (Φν(u(t)) − 1) ∀t ∈ [0, 1].

Now we can follow step by step the proofs of Proposition 4.6 and Proposition
4.7 of [11]. �

4.2. Existence of inner solutions

The following result is a partial counterpart of Theorem 4.12 of [11].

Proposition 4.5. There exist ε4 > 0 and ν′
2 > 0 such that for every

(p1, p2, ε, ν
′, l) ∈ (∂BR(0))2 × (0, ε4) × (−ν′

2, ν
′
2) × IN , problem (26) has a

weak solution yl(· ; p1, p2; ε, ν′) ∈ Kp1p2
l ([0, T ]) which is a re-parametrization

of a local minimizer ul( ;̇ p1, p2; ε, ν′) of the Maupertuis’ functional M−1,ν′ in
Kp1p2

l ([0, 1]).

Before proceeding with the proof of Theorem 4.5, we state the translation of
this result in terms of partitions.

Corollary 4.6. For every (p1, p2, ε, ν
′, Pj) ∈ (∂BR(0))2×(0, ε4)×(−ν′

2, ν
′
2)×P,

problem (26) has a weak solution yPj
(· ; p1, p2; ε, ν′) ∈ Kp1p2

Pj
([0, T ]) which is a

re-parametrization of a local minimizer uPj
( ;̇ p1, p2; ε, ν′) of the Maupertuis’-

type functional M−1,ν′ in Kp1p2
Pj

([0, 1]).

We fix [a, b] = [0, 1] and the Jacobi constant to −1, so we will write Mν′

instead of M−1,ν′ . Also, we fix p1, p2 ∈ ∂BR(0) and l ∈ IN .

Remark 7. In the statement of Theorem 4.5 the values ε4 and ν′
2 depend

neither on p1, p2 ∈ ∂BR(0), nor on l ∈ IN . But here we fixed p1, p2 and l
before finding ε4 and ν′

2. Actually, once we will find ε4 and ν′
2, we will see that

they are independent on the previous quantities.
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We aim at applying the direct methods of the calculus of variations in
order to find a minimizer of Mν′ in Kl. Assuming that we can find such a
minimizer ul(· ; p1, p2; ε, ν′), in order to obtain a weak solution of (26) we have
to show that

1) ul(· ; p1, p2; ε, ν′) satisfies (28), 2) |ul(t; p1, p2; ε, ν′)| < R ∀t ∈ (0, 1).

Note that the first requirement is satisfied: for every u ∈ ⋃
p1,p2,lK

p1p2
l ([0, 1]),

it results |u| ≤ R; therefore we can use the bound of Remark 4. We will discuss
about the second condition after the minimization.

Lemma 4.7. The functional Mν′ is coercive in Kl.

Proof. Let (un) ⊂ Kl such that ‖u̇n‖H1 → ∞ for n → ∞. Since ‖un‖L2 ≤ R,
necessarily ‖u̇n‖L2 → +∞ as n → ∞. As Vε(y) − 1 ≥ M1 > 0 in BR(0),

Mν′(un) ≥
√

2‖u̇n‖L2

(
M1 +

(ν′)2

2

∫ 1

0

|un|2
) 1

2

− |ν′|
∫ 1

0

|un||u̇n|

=
√

2‖u̇n‖L2

( |ν′|√
2
‖un‖L2 + λ

)
− |ν′|‖un‖L2‖u̇n‖L2

for some λ > 0. Hence Mν′(un) ≥ √
2λ‖u̇n‖L2 . �

Lemma 4.8. The functional Mν′ is weakly lower semi-continuous in Kl.

Proof. Let (un) ⊂ Kl such that un ⇀ u weakly in H1. It is by now standard
the proof of
(∫ 1

0

|u̇|
) 1

2
(∫ 1

0

Φν′,ε(u) − 1
) 1

2

≤ lim inf
n→∞

(∫ 1

0

|u̇n|
) 1

2
(∫ 1

0

Φν′,ε(un) − 1
) 1

2

,

see for instance [2,13]. It remains to show that

ν′
∫ 1

0

〈iu, u̇〉 ≤ lim inf
n→∞ ν′

∫ 1

0

〈iun, u̇n〉. (32)

The weak convergence of un to u implies that un → u uniformly in [0, 1] and
u̇n ⇀ u̇ weakly in L2, as n → ∞. We have

ν′
∫ 1

0

〈iun, u̇n〉 = ν′
∫ 1

0

〈i(un − u), u̇n〉 + ν′
∫ 1

0

〈iu, u̇n〉.

The first term tends to 0 and the second term tends to ν′ ∫ 1

0
〈iu, u̇〉 as n → ∞;

(32) follows. �

Remark 8. The term ν
∫ 1

0
〈iu, u̇〉 is not only weakly lower semi-continuous in

H1, but also continuous in the weak topology of H1.

Due to the coercivity and the weak lower semi-continuity of Mν′ , we can apply
the direct methods of the calculus of variations on the functional Mν′ in the
weakly closed set Kl. For every (ε, ν′) ∈ (0, ε1/2) × R, we obtain a minimizer
ul(·; p1, p2; ε, ν′) for which (28) is satisfied. The following result concludes the
proof of Proposition 4.5.
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Lemma 4.9. There are ε4, ν
′
2 > 0 such that for every (p1, p2, ε, ν

′, l) ∈
(∂BR(0))2 × (0, ε4) × (−ν′

2, ν
′
2) × IN the minimizer ul(· ; p1, p2; ε, ν′) is such

that

|ul(· ; p1, p2; ε, ν′)| < R ∀t ∈ (0, 1).

Proof. We can follow the same line of reasoning which was used in [11] in
order to prove Proposition 4.22. For the reader’s convenience, we report here
the ingredients of the proof. Let us term

TR(u) := {t ∈ [0, 1] : |u(t)| = R} , T+
R/2(u) :=

{
t ∈ [0, 1] : |u(t)| > R

2

}

A connected component of TR(u) is an interval (possibly a single point) [t1, t2]
with t1 ≤ t2. It is possible to show that u ∈ C1([0, 1]), and if (a, b) is a connected
component of T+

R/2(u) \ TR(u), then u|(a,b) is of class C2 and is a solution of

ω2ü(t) + 2ν′ωiu̇(t) = ∇Φν′,ε(u(t)), where ω2 :=

∫ 1

0
(Φν′ε(u) − 1)
1
2

∫ 1

0
|u̇|2

.

Moreover, there are ε4, ν′
2, τ > 0 such that, if (ε, ν′) ∈ (0, ε4) × (−ν′

2, ν
′
2), then

for every t3, t4 such that

|u(t3)| = R, |u(t4)| =
R

2
,

R

2
< |u(t)| < R ∀t ∈

{
(t3, t4) if t3 < t4

(t4, t3) if t3 > t4
,

there holds |t4 − t3| ≤ τ . Neither ε4 nor ν′
2 depend on p1, p2 or l. Let

[t1, t2] be a connected component of TR(u), let (a, b) be a connected com-
ponent of T+

R/2 such that [t1, t2] ⊂ (a, b). Let us consider y(t) := u(ωt). Since
y ∈ C1 ((a/ω, b/ω)), it must lean against the circle

{
y ∈ R

2 : |y| = R
}

with
tangential velocity, and for every λ > 0 there exists t5 > t2 (or, if t2 = 1,
t5 < t1, and in this case the following inequality has to be changed in obvious
way) such that

∣∣∣∣y
(
t5
ω

)
−Reiϑ(t2/ω)

∣∣∣∣ +
∣∣∣∣ẏ
(
t5
ω

)
−Rϑ̇

(
t2
ω

)
ieiϑ(t2/ω)

∣∣∣∣ < λ.

Thus, recalling that R is the radius of the circular solution of energy −1 for
the α-Kepler’s problem, the theorem of continuous dependence of the solutions
with respect to the vector field and the initial data implies that y cannot enter
(or exit from) the ball BR/2(0) in time τ , provided ε4 and ν′

2 are sufficiently
small (if this was not true, we can replace them with smaller quantities); this
is in contradiction with the choice of l. �
In order to exploit the description of the behavior of the solution which we
obtained for the N -centre problem in Theorem 4.12 of [11], we will replace
ε4 with min{ε3, ε4} (for the reader’s convenience, we recall again that ε3 has
been introduced in Theorem 4.12 of [11]).

Definition 3. Let us fix arbitrarily ν′
3 ∈ (

0,min{ν′
2,

√
2M1/R}). For every

ε ∈ (0, ε4) we term

IMε := {ul(·; p1, p2; ε, ν′) : p1, p2 ∈ ∂BR(0), l ∈ Z
N
2 , |ν′| < ν′

3},
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the set of the inner minimizers of {Mν′}|ν′|<ν′
3

for a fixed value of ε, and

ISε := {yl(·; p1, p2; ε, ν′) : p1, p2 ∈ ∂BR(0), l ∈ Z
N
2 , |ν′| < ν′

3},
the set of the corresponding inner solutions for a fixed value of ε.

We conclude this section with a collection of boundedness properties for
the functions of IMε.

Proposition 4.10. Let ε ∈ (0, ε4). There are C1, C2, C3, C4, C5 > 0 such that

C1 ≤ inf
u∈IMε

‖u̇‖L2 ≤ sup
u∈IMε

‖u̇‖L2 ≤ C2,

C3 ≤ inf
u=ul(· ;p1,p2,ε,ν′)∈IMε

∫ 1

0

Φν′,ε(u) − 1

≤ sup
u=ul(· ;p1,p2,ε,ν′)∈IMε

∫ 1

0

Φν′,ε(u) − 1 ≤ C4,

sup
u=ul(· ;p1,p2,ε,ν′)

Mν′(u) ≤ C5.

Remark 9. Since sup{‖u‖L2 : u ∈ IMε} ≤ R, the set IMε is bounded in the
H1 norm.

Proof. Every u ∈ IMε is of type ul(· ; p1, p2; ε, ν′) for some p1, p2 ∈ ∂BR(0),
l ∈ IN , ν′ ∈ (ν′

3, ν
′
3). Since IN is discrete and finite, we can prove the statement

for a fixed l. In [11] we proved that the functions of
⋃

p1,p2∈∂BR(0)K
p1p2
l ([0, 1])

are uniformly non-constant, which ensures the existence of C1. Furthermore,
as an immediate consequence of the estimate in Remark 4, we obtain C3 = M1.
Now let us fix p̃1, p̃2 ∈ ∂BR(0); there exists ũ ∈ K p̃1p̃2

l ([0, 1]) such that, for
some C6 > 0 and μ = μ(ε) ∈ (0, ε), it results

| ˙̃u(t)| = C6, |ũ(t) − cj | ≥ μ(ε) ∀t ∈ [0, 1],∀j ∈ {1, . . . , N}.
For every ν′ ∈ (−ν′

3, ν
′
3) we have

∫ 1

0

Φν′,ε(ũ) =
∫ 1

0

(
Vε(ũ) +

(ν′)2

2
|ũ|2

)
≤ M

αμα
+

(ν′
3)

2

2
R2 =: C7,

where C7 = C7(ε). Starting from this bound it is possible to obtain a uni-
form bound with respect to p1, p2, ν

′ for the level of the minimizers of Mν′ . If
(p1, p2) �= (p̃1, p̃2), we consider the path

û(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

ζR(3t; p1, p̃1) t ∈ [0, 1/3]

ũ(3t− 1) t ∈ (1/3, 2/3]

ζR (3t− 2; p̃2, p2) t ∈ (2/3, 1],

where, for p∗, p∗∗ ∈ ∂BR(0), ζR(· ; p∗, p∗∗) : [0, 1] → R
2 parametrizes the

shorter (in the Euclidean metric) arc of ∂BR(0) connecting p∗ and p∗∗ with
constant velocity. As far as the velocity of ζR(· ; p∗, p∗∗) is concerned, it is easy
to see that it is uniformly bounded with respect to p∗, p∗∗. This, together with
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the assumptions on ũ, implies that also the velocity of û is bounded in [0, 1],
and

Mν′(û) ≤ C

(∫ 1

0

Φν′,ε(ũ) − 1 + C

) 1
2

+ |ν′|RC ≤ C5.

Again, C5 = C5(ε) > 0, while it does not depend on the ends p1 and p2 or on
the parameter ν′. Consequently, for the family of the minimizers there holds

Mν′(ul(· ; p1, p2; ε, ν′)) ≤ C5 ∀p1, p2 ∈ ∂BR(0), |ν′| < ν′
3. (33)

Using (14), we obtain

‖u̇l(· ; p1, p2; ε, ν′)‖L2 ≤ C5 − ν′ ∫ 1

0
〈iul(· ; p1, p2; ε, ν′), u̇l(· ; p1, p2; ε, ν′)〉√

2M1

≤ C5 + |ν′|R‖u̇l(· ; p1, p2; ε, ν′)‖L2√
2M1

,

for every p1, p2 ∈ ∂BR(0) and |ν′| < ν′
3. Now

(
1 − |ν′|R√

2M1

)
‖u̇l(· ; p1, p2; ε, ν′)‖L2 ≤ C5√

2M1

.

Since |ν′| < ν′
3 <

√
2M1/R, the coefficient on the left hand side is bounded

below by a positive constant; therefore

‖u̇l(· ; p1, p2; ε, ν′)‖L2 ≤ C5√
2M1

(
1 − |ν′

3|R√
2M1

)−1

=: C2(ε)

∀(p1, p2, ν
′) ∈ (∂BR(0))2 × (−ν′

3, ν
′
3).

It remains to find C4; from (33), using the existence of C1, it follows
(∫ 1

0

Φν′,ε(ul(· ; p1, p2; ε, ν′)) − 1
) 1

2

≤ C5 + |ν′|R‖u̇l(· ; p1, p2; ε, ν′)‖L2√
2‖u̇l(· ; p1, p2; ε, ν′)‖L2

≤ C5√
2C1

+
ν′
3R√
2

=: C
1
2
4 .

�

Remark 10. The fact that some constants depend on ε reflects the fact that
more the Jacobi constant is small, more the admissible values of the angular
velocity are small, see Remark 3. This is why we keep ε fixed, letting ν′ vary,
instead of considering both ε and ν′ as parameters.

We termed [0, Tl(p1, p2; ε, ν′)] as the time interval of yl(· ; p1, p2; ε, ν′) ∈ ISε.
It results

Tl(p1, p2; ε, ν′) =
1

ωl(p1, p2; ε, ν′)
, where

ωl(p1, p2; ε, ν′) =

∫ 1

0
Φν′,ε(ul(· ; p1, p2; ε, ν′)) − 1

1
2‖u̇l(· ; p1, p2; ε, ν′)‖2

.
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Corollary 4.11. Let ε ∈ (0, ε4). There exist C1, C2, C3 > 0 such that

C1 ≤ Tl(p1, p2; ε, ν′) ≤ C2

‖yl(· ; p1, p2; ε, ν′)‖H1([Tl(p1,p2;ε,ν′)]) ≤ C3

for every (p0, p1, ν
′, l) ∈ (∂BR(0))2 × (−ν′

3, ν
′
3) × IN .

4.3. Forward normal neighborhoods

In [11], we exploited the geometric interpretation of L: it is the length in
the Riemannian manifold {Vε(y) > −1} endowed with the Jacobi metric. In
particular in section 5 of the quoted paper we used classical results concerning
the existence of totally normal and strongly convex neighborhoods (for the
definitions, see [5]). Now we are not dealing with a length anymore, but with
a Finsler function; so, something similar can be proven. The following is a
known result, but since we cannot find a proper reference we give a sketch of
the proof for completeness.

Proposition 4.12. Let ρ > 0 be small enough, in such a way that Bε(0) ⊂
BR/2−ρ(0) ⊂ BR+ρ(0) ⊂ {Φν′,ε(y) > 1} and R/2 − ρ > ε. There exist ε5 ∈
(0, ε4], ν′

4 ∈ (0, ν′
3] and r̄ ∈ (0, 2ρ) such that if ε ∈ (0, ε5), |ν′| < ν′

4, p1, p2 ∈
BR(0) \BR/2(0) and |p1 − p2| ≤ r̄ then there is a unique minimizer
umin(· ; p1, p2; ε, ν′) of Mν′ in the set

{
u ∈ Hp1p2([0, 1]) : u(t) ∈ BR+ρ(0) \BR/2−ρ(0) ∀t} .

Moreover, it depends in a C1 way on its ends and on the parameters ε and ν′,
and is the unique global minimizer of Mν′ in Hp1p2([0, 1]).

Definition 4. Let ε ∈ (0, ε5), |ν′| < ν′
4, and let us take ρ > 0 as above; let

p ∈ BR(0) \BR/2(0). For every pair p1, p2 ∈ Br̄/2(p) there is a unique (up to
a re-parametrization) local minimizer of Lν′ which starts from p1 and arrives
at p2, depending smoothly on the ends. We will say that Br̄/2(p) is a forward
normal neighborhood of p.

Proposition 4.12 says that every point of BR(0) \BR/2(0) has a forward nor-
mal neighborhood; moreover, the set BR+ρ(0) \BR/2−ρ(0) is “convex”, in the
sense that the minimizers umin(· ; p1, p2; ε, ν′) stay in it.
Forward normal neighborhoods plays the role of totally normal ones of a Rie-
maniann manifold, with the difference that, since our functional Lν′ is not
invariant under orientation-reversing re-parameterizations, a minimizer of Lν′

in Hp1p2([0, 1]) could not be a minimizer of Lν′ in Hp2p1([0, 1]).
Actually for every p ∈ {Φν′,ε(y) > 1} it is possible to prove the existence of a
forward normal neighborhood, but due to the degeneracy of our Finsler func-
tion, which can become even negative if we are close to the boundary of the
“Hill’s region”, the radius of these neighborhood becomes smaller and smaller
and tends to 0 as p approaches {Φν′,ε(y) = 1}.

Proof. Let p1, p2 ∈ BR(0) \BR/2(0), ε ∈ (0, ε4), ν′ ∈ (−ν′
4, ν

′
4). The existence

can be proved applying the direct methods of the calculus of variations. If
p1 = p2, observe that the minimizer is simply the constant function p1.
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Let umin(· ; p1, p2; ε, ν′) be a minimizer in Hp1p2([0, 1]); there exists r̄ >
0 such that if |p1 − p2| ≤ r̄, then umin(· ; p1, p2; ε, ν′) is contained in
BR+ρ(0) \ BR/2−ρ(0): if not, there are sequences (rn) ⊂ R

+ and ((pn
1 , p

n
2 )) ⊂

BR(0) \BR/2(0) such that |pn
1 − pn

2 | ≤ rn and umin(· ; pn
1 , p

n
2 ; ε, ν′) touches

∂
(
BR+ρ(0) \BR/2−ρ(0)

)
. But this is absurd, because if rn → 0 the minimizers

tends to be constant functions in BR(0) \BR/2(0). The value ρ is independent
on ε ∈ (0, ε4) and |ν′| < ν′

4. For the uniqueness and the C1 dependence, we
consider the map
(
BR(0) \BR/2(0)

)2

× (0, ε4) × (−ν′
4, ν

′
4) ×Hp1p2([0, 1]) → (Hp1p2([0, 1]))∗

(p1, p2, ε, ν
′, u) �→ dMν′(u).

Let ū be a minimizer of Mν′ in Hp1p2([0, 1]), whose image is contained in
BR+ρ(0) \ BR/2−ρ(0); an explicit computation shows that, if |p1 − p2| and
ν′ are sufficiently small, the second differential d2Mν′(u) is positive definite,
so that it is invertible. Thus, the implicit function theorem applies to give
uniqueness and smooth dependence. �

Remark 11. In Sect. 3 we prove that, if p1, p2 ∈ ∂BR(0) are sufficiently close
together, we can find a “close to brake” solution of problem 15 which, of course,
passes close to the boundary of the “Hill’s region” {Φν′,ε(y) > 1}. This is not
in contradiction with the previous result, since an outer solution parametrizes
a non-minimal critical point of Lν′ .

5. A finite-dimensional reduction

In this section we glue the fixed ends trajectories previously obtained, alternat-
ing outer and inner arcs in order to construct periodic orbits of the restricted
problem (3) in the whole plane. Since in this procedure we need smooth junc-
tions, we are going to use a variational argument which is essentially the same
we introduced in [11]. Let us set ε̃ := min{ε2, ε5}, ν̃′ := min{ν′

1, ν
′
4}. The

quantities ε2 and ν′
1 have been introduced in Proposition 3.1 (recall also the

definition of δ therein), while ε5 and ν′
4 have been introduced in Proposition

4.12, respectively. This is the main result of this section.

Proposition 5.1. There exist ε̄, ν̄′ > 0 such that for every (ε, ν′) ∈ (0, ε̄) ×
(−ν̄′, ν̄′), for every n ∈ N and (Pj1 , . . . , Pjn

) ∈ Pn there exists a periodic weak
solution γ((Pj1 ,...,Pjn ),ε,ν′) of problem (8), which depends on (Pj1 , . . . , Pjn

) in
the following way: the image of γ((Pj1 ,...,Pjn ),ε,ν′) crosses 2n times within one
period the circle ∂BR(0), at times (tk)k=0,...,2n−1, and
• in (t2k, t2k+1) the solution stays outside BR(0) and

|γ((Pj1 ,...,Pjn ),ε,ν′)(t2k) − γ((Pj1 ,...,Pjn ),ε,ν′)(t2k+1)| < δ;

• in (t2k+1, t2k+2) the solution lies inside BR(0), and, if it does not collide
against any centre, then it separates them according to the partition Pjk

.
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Let us fix ε ∈ (0, ε̃), |ν′| < ν̃′, n ∈ N, (Pk1 , Pk2 , . . . , Pkn
) ∈ Pn. We define

D =
{

(p0, . . . , p2n) ∈ (∂BR(0))2n+1 : |p2j+1 − p2j | ≤ δ for j = 0, . . . , n− 1,

p2n = p0

}
.

Let (p0, . . . , p2n) ∈ D. For every j ∈ {0, . . . , n − 1}, we can apply Proposi-
tion 3.1 to obtain an outer solution y2j(t) := yext(t; p2j , p2j+1; ε, ν′) defined in
[0, T2j ], where T2j := Text(p2j , p2j+1; ε, ν′). We recall that y2j depends on p2j

and p2j+1 in a C1 manner. Also, from Corollary 4.6 we obtain an inner weak
solution y2j+1(t) := yPkj+1

(t; p2j+1, p2j+2; ε, ν′) defined in [0, T2j+1], where
T2j+1 := TPkj+1

(p2j+1, p2j+2; ε, ν′) (recall that ν′
4 < ν′

3). Being Lν′ invariant
under orientation-preserving re-parameterizations, y2j+1 is a local minimizer of
the functional Lν′ ([0, T2j+1] ; ·). We point out that y2j+1 could not be unique;
however, if there is more then one minimizer of Lν′ in KPj

, we can arbitrarily
choose one of them.
We set Tk :=

∑k
j=0 Tj , k = 0, . . . , 2n− 1, and

γ
((Pk1 ,...,Pkn ),ε,ν′)
(p0,...,p2n) (s) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0(s) s ∈ [0,T0]

y1(s− T0) s ∈ [T0,T1]
...

y2n−2 (s− T2n−3) s ∈ [T2n−3,T2n−2]

y2n−1 (s− T2n−2) s ∈ [T2n−2,T2n−1].

(34)

The function γ
((Pk1 ,...,Pkn ),ε,ν′)
(p0,...,p2n) is a piecewise differentiable T2n−1-periodic

function. It is a weak solution of the restricted problem (3) with Jacobi
constant −1 in [0,T2n−1] \ {0,T0, . . . ,T2n−1}, but in general is not C1 in
{0,T0, . . . ,T2n−1}; however, the right and left limits of the derivatives in these

points are finite, so that it is in H1. It is also possible that γ((Pk1 ,...,Pkn ),ε,ν′)
(p0,...,p2n)

has collisions. Thanks to Lemma 3.4 and Corollary 4.11, we are sure that the
time interval of γ((Pk1 ,...,Pkn ),ε,ν′)

(p0,...,p2n) is bounded above and bounded below, uni-
formly with respect to (p0, . . . , p2n) ∈ D, by positive constants; therefore for
every (p0, . . . , p2n) ∈ D the period of the associated function is neither trivial,
nor infinite.

We introduce a function F = F((Pk1 ,...,Pkn ),ε,ν′) : D → R defined by

F (p0, . . . , p2n) := Lν′
(
[0,T2n−1]; γ

((Pk1 ,...,Pkn ),ε,ν′)
(p0,...,p2n)

)

=
2n−1∑

j=0

Lν′ ([0, Tj ]; yj) .

Proposition 5.2. There exists (p̄0, . . . , p̄2n) ∈ D which minimizes F . There
exist ε̄, ν̄′ > 0 such that, for every (ε, ν′) ∈ (0, ε̄) × (−ν̄′, ν̄′), the associated
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function γ((Pk1 ,...,Pkn ),ε,ν′)
(p0,...,p2n) is a periodic weak solution of the restricted problem

(8). The values ε̄ and ν̄′ depends neither on n, nor on (Pk1 , . . . , Pkn
) ∈ Pn.

Remark 12. Proposition 5.1 is an immediate consequence of this statement.

From now on, we will write γ((Pk1 ,...,Pkn ),ε,ν′) to denote the periodic weak
solution associated to an arbitrarily chosen minimizer of F((Pk1 ,...,Pkn ),ε,ν′).

We will reach the result through a series of lemmas. We will follow the
same sketch already used in [11], see also [12].

Lemma 5.3. The function F is continuous, so that there exists a minimizer of
F in the compact set D.

Proof. Repeat the proof of step 1) of Theorem 5.3 of [11]. �

Remark 13. The main existence result of inner solutions, Proposition 4.5, is
stated in terms of winding vectors rather than in terms of partitions. Thus,
it could seem reasonable to prescribe a finite sequence of winding vectors
(l1, . . . , ln) ∈ Z

N
2 and try to prove the existence of a periodic solution asso-

ciated to this sequence in the same way as γ((Pk1 ,...,Pkn ),ε,ν′) is associated to
(Pk1 , . . . , Pkn

). This, clearly, would lead to a larger class of periodic solutions.
But such a generalization does not seem possible, for the following reason. For
the proof of Proposition 5.2 we consider variations of an inner minimizers with
respect to its endpoints p1, p2; the function Ind(u([a, b]), cj) is not continuous
in u with respect to the uniform convergence topology if we let p1 and p2 vary
on ∂BR(0), and this makes impossible to prove the continuity of a function
like F . Note that the discontinuity occurs when p1 = p2:

When p2 moves continuously on ∂BR(0) and crosses p1, although the
two represented arcs remains “close” in the uniform topology, the winding
vector drastically changes, passing from (1, 0, 1, 1, 1) to (0, 1, 0, 0, 0) (recall that
to compute the winding vector we close the arc with the portion of ∂BR(0)
connecting p2 with p1 in counterclockwise sense). On the contrary, the partition
which is determined by the inner arc does not change when p2 crosses p1.
This makes possible to prove Lemma 5.3 only when working with prescribed
sequences of partitions, and not of winding vectors.

Let (p̄0, . . . , p̄2n) be a minimizer of F . We aim at showing that the mini-
mality of (p̄0, . . . , p̄2n) implies smoothness in the junction times for the asso-

ciated periodic function γ
((Pk1 ,...,Pkn ),ε,ν′)
(p̄0,...,p̄2n) . In order to prove it, we would like
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to write explicitly the equation ∇F (p̄0, . . . , p̄2n) = 0. As we noticed in [12], it
is not evident that this can be done, because of the lack of uniqueness of inner
minimizers of Mν′ in KPj

: for this reason it is not immediate that an inner
solution depends smoothly on its ends. In order to overcome the problem, we
can use Proposition 4.12: for any j ∈ {0, . . . , n − 1}, we consider a forward
normal neighborhood U2j+1 of the point p̄2j+1. Let us choose t∗ ∈ (0, T2j+1)
such that

p̃2j+1 := y2j+1(t∗) ∈ U2j+1, |p̃2j+1| < R, y ([0, t∗]) ⊂ (
BR(0) \BR/2(0)

)
;

There exists a unique minimizer ŷ(·; p̄2j+1, p̃2j+1; ε, ν′) of Mν′ , and hence also
of Lν′ (up to a re-parameterization), which connects p2j+1 and p̃2j+1 in time
1, and depends smoothly on its ends. For the uniqueness, ŷ has to be a
re-parametrization of y2j+1. Note that if p2j+1 ∈ U2j+1 ∩BR(0), then there
is a unique minimizer ŷ(·; p2j+1, p̃2j+1; ε, ν′) of Mν′ which connects p2j+1 and
p̃2j+1. We will consider its re-parametrization ỹ(· ; p2j+1, p̃2j+1; ε) such that

⎧
⎨

⎩

¨̃y(t) + 2ν′i ˙̃y(t) = ∇Φν′,ε(ỹ(t))

1
2 | ˙̃y(t)|2 − Φν′,ε(ỹ(t)) = −1,

denoting by [0, T (p2j+1, p̃2j+1)] its domain. Due to the minimality of ŷ(· ; p2j+1,
p̃2j+1; ε, ν′) for Lν′ , such a re-parametrization exists, see Theorem 4.3. In this
way

ỹ(· ; p̄2j+1, p̃2j+1; ε, ν′) ≡ yPkj+1
(· ; p̄2j+1, p̃2j+1; ε, ν′)|[0,T (p̄2j+1,p̃2j+1)]. (35)

Let D2j+1 := {p2j+1 ∈ (
∂BR(0) ∩ Ū2j+1

)
: |p̄2j − p2j+1| ≤ δ}. We define

G2j+1 : D2j+1 → R by

G2j+1(p2j+1) := L ([0, T (p2j+1)]; yext(· ; p̄2j , p2j+1; ε, ν′))
+L ([0, T (p2j+1, p̃2j+1)]; ỹ(· ; p2j+1, p̃2j+1; ε, ν′)) ,

where T (p2j+1) denotes Text(p̄2j , p2j+1; ε, ν′) (we will adopt this notation in
this section). Of course, with minor changes we can also define a function G2j ,
for every j ∈ {0, . . . , 2n}. Note that Gk is continuous (for every k), since it is a
sum of terms which are both continuous with respect to pk. As a consequence,
Gk has a minimum.

Lemma 5.4. If (p̄0, . . . , p̄2n) is a minimizer for F , then p̄k is a minimizer for
Gk.

Proof. The proof is the same of Lemma 1 of [12]. �

The main reason to pass from the study of F to the study of the functions
Gk is that, in contrast with F , Gk is differentiable for every k: let’s think
at k = 2j + 1; L ([0, T (p2j+1)]; yext(· ; p̄2j , p2j+1; ε, ν′)) depends smoothly on
p2j+1 for the differentiable dependence of outer solutions with respect to the
ends, and L ([0, T (p2j+1, p̃2j)]; ỹ(· ; p2j+1, p̃; ε, ν′)) depends smoothly on p2j+1

for Proposition 4.12. Therefore the minimality of p̄2j+1 implies that

if p̄2j+1 ∈ D◦
2j+1 ⇒ ∂G2j+1

∂p2j+1
(p̄2j+1) = 0
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(the notation D◦
2j+1 denotes the inner of D2j+1). This partial derivative is a

linear operator from the tangent space Tp̄2j+1(∂BR(0)) into R. In what follows
we will show that, if ε and ν′ are small enough, p̄k ∈ D◦

k for every k, and
that the stationarity conditions are nothing but regularity conditions for the
functions

ζ2j(t)

:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yPkj−1
(t + T2j−1 − T (p̃2j , p̄2j); p̄2j−1, p̄2j ; ε, ν′) if t ∈ [0, T (p̃2j , p̄2j)]

yext(t − T (p̃2j , p̄2j); p̄2j , p̄2j+1; ε, ν′) if t ∈ [T (p̃2j , p̄2j), T (p̃2j , p̄2j)

+T (p̄2j+1)]

and

ζ2j+1(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

yext(t; p̄2j , p̄2j+1; ε, ν
′) if t ∈ [0, T (p̄2j+1)]

yPkj+1
(t − T (p̄2j+1); p̄2j , p̄2j+1; ε, ν

′) if t ∈ [T (p̄2j+1), T (p̄2j+1)

+T (p̄2j+1, p̃2j+1)].

Taking into account that ζk is (up to a time translation) the restriction of
γ((Pk1 ,...,Pkn ),ε,ν′) on a neighbourhood of the junction time Tk−1, we obtain C1

regularity for γ((Pk1 ,...,Pkn ),ε,ν′) itself.

Lemma 5.5. For every j = 0, . . . , n − 1, p2j ∈ D2j, and for every ϕ ∈
Tp2j

(BR(0)), we have

∂G2j

∂p2j
(p2j)[ϕ] =

1√
2
〈 ˙̃y(T (p̃2j , p2j); p̃2j , p2j ; ε, ν′) − ẏext(0; p2j , p̄2j+1; ε, ν′), ϕ〉.

For every j = 0, . . . , n − 1, p2j+1 ∈ D2j+1, and for every ϕ ∈ Tp2j+1(BR(0)),
we have

∂G2j+1

∂p2j+1
(p2j+1)[ϕ] =

1√
2
〈ẏext(T (p2j+1); p̄2j , p2j+1; ε, ν′)

− ˙̃y(0; p2j+1, p̃2j+1; ε, ν′), ϕ〉.
Proof. It is not restrictive to consider the derivative of G1 to ease the notation.
The same calculations work for the other cases. There holds

∂G1

∂p1
(p1) =

∂

∂p1
Lν′ ([0, T (p1)]; yext(· ; p̄0, p1; ε, ν′))

+
∂

∂p1
Lν′ ([0, T (p1, p̃1)]; ỹ(· ; p1, p̃1; ε, ν′)) . (36)

Let us consider the first term in the right side, writing simply y0 instead of
yext(· ; p̄0, p1; ε, ν′); we consider u0(t) = y0(T0t), defined in [0, 1]. It results

∂

∂p1
Lν′ ([0, T (p1)]; y0)

=
∂

∂p1
Lν′ ([0, 1];u0)

=
1√
2

∫ 1

0

[〈
u̇0

T0
,
d

dt

∂u0

∂p1

〉
+
〈
T0∇Φν′,ε(u0),

∂u0

∂p1

〉]
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+
1√
2
ν′
∫ 1

0

(〈
i
∂u0

∂p1
, u̇0

〉
+
〈
iu0,

d

dt

∂u0

∂p1

)

=
1√
2

∫ 1

0

〈
− ü0

T0
− 2ν′iu̇0 + T0∇Φν′,ε(u0),

∂u0

∂p1

〉

+
1√
2

[〈
u̇0(t)
T0

+ ν′iu0(t),
∂u0

∂p1
(t)

〉]1

0

=
1√
2

[〈
ẏ0(t) + ν′y0(t),

∂y0
∂p1

(t)
〉]T (p1)

0

.

In the second equality we use the Jacobi constant for y0, in the last one we
use the fact that y0 is a classical solution of the motion equation.
As in the step 3) of the proof of Theorem 5.3 of [11], we can compute

∂

∂p1
y0(0) = 0

∂

∂p1
y0(T (p1)) = IdTp1 (∂BR(0)).

Hence
∂

∂p1
Lν′ ([0, T (p1)]; y0) [ϕ] =

1√
2

(〈ẏ0(T (p1)), ϕ〉 + ν′〈ip1, ϕ〉) .

We can repeat the same computations for the second term in the right side of
the (36), with minor changes: terming ỹ1 = ỹ(· ; p1, p̃1; ε, ν′), we obtain

∂

∂p1
Lν′ ([0, T (p1, p̃)1]; ỹ1) [ϕ] = − 1√

2

(
〈 ˙̃y1(0), ϕ〉 + ν′〈ip1, ϕ〉

)
.

�

Lemma 5.6. There exist ε̄ > 0 and ν̄′ > 0 such that if ε ∈ (0, ε̄) and |ν′| < ν̄′

then

p̄k minimizes Gk ⇒ p̄k ∈ D◦
k ∀k.

The values ε̄ and ν̄′ are independent on (Pk1 , . . . , Pkn
) ∈ Pn.

Proof. Adapt the proof of Lemma 3 in [12]. �

Conclusion of the proof of Proposition 5.2. We can follow step 5) of the proof
of Theorem 5.3 of [11] in order to check that each ζk is smooth. Recalling the
construction of γ((Pk1 ,...,Pkn ),ε,ν′), the proof is complete. �

6. Collision-free weak solutions

We will work with ε ∈ (0, ε̄) which is fixed. The aim is to find a threshold
ν̄′

th(ε) such that, if |ν′| < ν̄′
th(ε), then γ((Pj1 ,...,Pjn ),ε,ν′) is collision-free. It is

necessary to distinguish among:

1) α = 1 and N ≥ 4, 2) α = 1 and N = 3, 3) α ∈ (1, 2).
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1) α = 1 and N ≥ 4. We start by looking at Theorem 5.3 of [11]. Since
N ≥ 4, we have a simple way to choose (Pj1 , . . . , Pjn

) so that the weak
solution γ((Pj1 ,...,Pjn ),ε,0) is a collision-free solution of the N -centre prob-
lem ÿ = ∇Vε(y), with energy −1: it is sufficient to take Pjk

∈ P \ P1 for
every k = 1, . . . , n. Indeed in such a situation the conditions (ii)-b) or (ii)-
c) of the quoted statement cannot be satisfied. Note that if N = 3 the set
P \ P1 is empty, and this is way that case deserves a different discussion.
Now, let ε ∈ (0, ε̄), ν′ ∈ (−ν̄′, ν̄′), n ∈ N and (Pj1 , . . . , Pjn

) ∈ (P \ P1)n;
let (p̄0, . . . , p̄2n) be the minimizer of F((Pj1 ,...,Pjn ),ε,ν′) found in Proposition
5.2, and let γ((Pj1 ,...,Pjn ),ε,ν′) be the corresponding periodic weak solution of
(8). Is it true that, for ν′ sufficiently small, such a solution is still collision-
free? The answer is affirmative: the idea is that if ν′ → 0 the “minimizers”
γ((Pj1 ,...,Pjn ),ε,ν′) are weakly convergent in H1 to γ((Pj1 ,...,Pjn ),ε,0), which is
collision-free. This is true in a local sense, and can be considered as a kind of
Gamma-convergence argument.

Continuity Lemma 6.1. Let ε ∈ (0, ε̄), Pj ∈ P, ((pm
1 , p

m
2 )) ⊂ (∂BR(0))2 and

(ν′
m) ⊂ (−ν̄′, ν̄′). Let um = uPj

(· ; pm
1 , p

m
2 ; ε, ν′

m) be a minimizer for the follow-
ing variational problem:

min
{
Mν′

m
(u) : u ∈ K

pm
1 pm

2
Pj

([0, 1])
}
.

Assume that (pm
1 , p

m
2 ) → (p̃1, p̃2), ν′

m → 0, and um ⇀ ũ weakly in H1. Then
ũ is a minimizer for

min
{
M0(u) : u ∈ K p̃1p̃2

Pj
([0, 1])

}
.

We postpone the proof of this continuity lemma in the next section; now,
as announced, we use it in order to prove the following proposition, which is
the last step in the proof of Theorem 1.1 (recall Proposition 2.1 and Remark 3).

Proposition 6.2. Let α = 1 and N ≥ 4. Let ε ∈ (0, ε̄). There exists ν̄′
1(ε) such

that for every ν′ ∈ (−ν̄′
1(ε), ν̄

′
1(ε)), n ∈ N and (Pj1 , . . . , Pjn

) ∈ (P \ P1)n, the
function γ((Pj1 ,...,Pjn ),ε,ν′) is collision-free.

Proof. Let (Pj1 , . . . , Pjn
) ∈ (P \ P1)n and ν′ ∈ (−ν̄′, ν̄′). The key observation

is the following: when γ((Pj1 ,...,Pjn ),ε,ν′) stays inside BR(0), it coincides with a
re-parameterization of an inner minimizer uPj

(· ; p1, p2; ε, ν′), for some p1, p2

and Pj . Therefore the thesis follows if we show that there exist ν̄′
1 = ν̄′

1(ε), β1 =
β1(ε) > 0 such that

min
k∈{1,...,N}

(
min

t∈[0,1]
|uPj

(t; p1, p2; ε, ν′) − ck|
)

≥ β1 (37)

for every (p1, p2, Pj , ν
′) ∈ (∂BR(0))2 × (P \ P1) × (−ν̄′

1, ν̄
′
1).

Assume by contradiction that this claim is not true. Then there are (βm) ⊂ R
+,

(ν′
m) ⊂ (−ν̄′, ν̄′), ((pm

1 , p
m
2 )) ⊂ (∂BR(0))2, (Pm

j ) ⊂ (P \ P1) and (km) ⊂
{1, . . . , N} such that βm → 0, ν′

m → 0 for m → ∞, and

min
t∈[0,1]

|uP m
j

(t; pm
1 , p

m
2 ; ε, ν′

m) − ckm
| = βm ∀m.
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Since {1, . . . , N} and P \ P1 are discrete and finite, we can assume km = k
and Pm

j = Pj for every m. Also, since ∂BR(0) is compact, up to a subsequence
(pm

1 , p
m
2 ) → (p̃1, p̃2) ∈ ∂BR(0). We term um = uPj

(· ; pm
1 , p

m
2 ; ε, ν′

m). The set of
the minimizers IMε is bounded in the H1 norm, therefore up to a subsequence
um ⇀ ũ ∈ K p̃1p̃2

Pj
([0, 1]) weakly in H1 (and hence uniformly). In particular,

the function ũ has at least one collision. The Continuity Lemma 6.1 implies
that ũ is a collision minimizer of M0 in K p̃1p̃2

Pj
([0, 1]); this is in contradiction

with Theorem 4.12 of [11], since Pj /∈ P1 (recall Remark 6). �

Remark 14. The Continuity Lemma permits to restrict the attention on a
unique passage inside BR(0); in particular the argument is independent on n,
which can be arbitrarily large.

2) α = 1 and N = 3. This is the hardest part, since if we look at Theorem 5.3
of [11] we realize that it is not immediate to give conditions on (Pj1 , . . . , Pjn

)
to obtain a collision-free periodic solution γ((Pj1 ,...,Pjn ),ε,0) for the fixed energy
N -centre problem

{
ÿ(t) = ∇Vε(y(t))
1
2 |ẏ(t)|2 − Vε(y(t)) = −1.

In order to work with a set of symbols such that the corresponding solutions
are collision-free, we introduced G (see Sect. 1); for every n and for every
(Pj1 , . . . , Pj4n

) ∈ Gn, the weak solution γ((Pj1 ,...,Pj4n
),ε,0) of the N -centre prob-

lem is actually a classical solution, because no composed sequence of elements
of G has the reflection symmetry which characterizes a collision trajectory
(see the following Remark 15). For ε ∈ (0, ε̄), we aim at showing that, if |ν′|
is sufficiently small, for every n ∈ N and (Pj1 , . . . , Pj4n

) ∈ Gn the function
γ((Pj1 ,...,Pj4n

),ε,ν′) is still collision-free. The idea for the proof is exactly the
same which we have already used in point 1). Unfortunately, while therein
we can simply restrict our attention to the behaviour of any inner minimizer
(that is a local argument), here this approach does not work. Indeed, for every
Pj ∈ P and p1 ∈ ∂BR(0) it is possible that a minimizer of M0 in Kp1p1

Pj
([0, 1])

has collisions. Therefore we have to use an argument which is local, “but not
too much”.

Remark 15. A possible way to check that there aren’t collisions for solutions to
the 3-centre problem associated to sequences of partitions of G is the following.
Let γ((Pk1 ,...,Pk4n

),ε,0) be the periodic solution of the N -centre problem found
in Theorem 5.3 of [11]. Writing (Pk1 , . . . , Pk4n

) ∈ Gn as an infinite periodic
sequence, a group of 5 consecutive partitions is one of the following:

P1P1P2P3P1 P1P1P2P3P2 P1P2P3P1P1 P1P2P3P2P2 P2P3P1P1P2 P2P3P2P2P3

P3P1P1P2P3 P3P2P2P3P1 P2P2P3P1P1 P2P2P3P1P2 P2P3P1P1P1

P2P3P1P2P2 P3P1P1P1P2 P3P1P2P2P3 P1P1P1P2P3 P1P2P2P3P1.

(38)
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Assume that the considered solution has a collision with the centre c1. Accord-
ing to the periodicity of γ((Pk1 ,...,Pk4n

),ε,0) and recalling that any collision solu-
tion is a collision–ejection solution, this means that there exists a group of five
consecutive partitions (Pk1 , . . . , Pk5) in (38) such that
• Pk3 = P1;
• Pk1 = Pk5 and Pk2 = Pk4 .
It is immediate to check that none of the groups in (38) satisfies both the
requirements. Analogously, it is possible to check that γ((Pk1 ,...,Pk4n

),ε,0) does
not collide against c2 or c3.

We collect the possible groups of 5 consecutive partitions in (38) in a set P̃5 ⊂
P. Let us fix ε ∈ (0, ε̄), p1, p10 ∈ ∂BR(0), (Pk1 , . . . , Pk5) ∈ P̃5, ν′ ∈ (−ν̄, ν̄).
Let

B := {(p2, . . . , p9) ∈ (∂BR(0))8 : |p2j − p2j+1| ≤ δ, j = 1, . . . , 4}.
As we associated to each point of D a periodic function, to each point
of B we can associate a (non-periodic) function in the following way. For
each j = 1, . . . , 4 we can connect p2j and p2j+1 with an outer solution
y2j = yext(· ; p2j , p2j+1; ε, ν′) of (15); for each j = 0, . . . , 4 we can connect
p2j+1 and p2j+2 with an inner solution y2j+1 = yPkj+1

(· ; p2j+1, p2j+2; ε, ν′) of

(26). We set t1 := 0, tk :=
∑k−1

j=1 Tj for k = 2, . . . , 10, where [0, Tj ] is the time
interval of yj . We define

σ
((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′)
(p2,...,p9)

(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y1(t) t ∈ [t1, t2]

y2(t− t2) t ∈ [t2, t3]
...

y9(t− t9) t ∈ [t9, t10].

(39)

By the definition σ((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′)
(p2,...,p9)

(tk) = pk. We introduce a function
F((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′) : B → R as

F((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′)(p2, . . . , p9) := Lν′
(
[0, t10];σ

((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′)
(p2,...,p9)

)
.

Note the analogy between the definition of F = F((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′) and
F = F((Pk1 ,...,Pkn ),ε,ν′). The function F is continuous on the compact set B
(apply the same proof already used for the continuity of F ), therefore it has
a minimum. We denote by σ((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′) the glued function associ-
ated to an arbitrarily chosen minimizer.
Let (Pk1 , . . . , Pk4n

) ∈ Gn. The following Lemma relates the minimality prop-
erties of F and of F; in what follows the indexes have to be considered by
periodicity: for instance writing 2j + 5 we mean 2j + 5 mod 8n.

Lemma 6.3. Let (p̄0, . . . , p̄8n) ∈ D be a minimizer of F((Pk1 ,...,Pk4n
),ε,ν′). Then,

for every j = 0, . . . , 4n− 1, the point (p̄2j+2, . . . , p̄2j+9) ∈ B is a minimizer of
F((p̄2j+1,p̄2j+10),(Pkj+1 ,...,Pkj+5 ),ε,ν′). In particular
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γ((Pkj+1 ,...,Pkj+5 ),ε,ν′)|[T2j ,T2j+10] ≡ σ((p̄2j+1,p̄2j+10),(Pkj+1 ,...,Pkj+5 ),ε,ν′).

Proof. It is an immediate consequence of the additivity of the functional Lν′ .
�

As a consequence, the following statement can be proved applying the same
argument already explained in Remark 15.

Lemma 6.4. Let ε ∈ (0, ε̄). For every ((p1, p10), (Pk1 , . . . , Pk5)) ∈ (∂BR(0))2 ×
P̃5 the function σ((p1,p10),(Pk1 ,...,Pk5 ),ε,0) is collision-free during its third passage
inside the ball BR(0).

We denote with T (σ) or T ((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′)
(p2,...,p9)

the maximum of the time
interval of
σ = σ

((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′)
(p2,...,p9)

. We collect the boundedness properties of outer
and inner solutions, see Lemma 3.4 and Corollary 4.11.

Lemma 6.5. Let ε ∈ (0, ε̄). There are C1, C2, C3 > 0 such that

C1 ≤ T
((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′)
(p2,...,p9)

≤ C2

‖σ((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′)
(p2,...,p9)

‖H1([0,T (σ)]) ≤ C3

for every ((p2, . . . , p9), (p1, p10), (Pk1 , . . . , Pk5), ν
′) ∈ B × (∂BR(0))2 × P̃5 ×

(−ν̄′, ν̄′).

It is preferable to deal with functions defined in the same time inter-
val. Therefore, for every σ = σ

((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′)
(p2,...,p9)

we introduce the re-

parameterization v(t) := v
((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′)
(p2,...,p9)

(t) = σ
((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′)
(p2,...,p9)

(T (σ)t), for t ∈ [0, 1].

Definition 5. We collect the “glued function” v in

GFε :=
{
v = v

((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′)
(p2,...,p9)

for some (p2, . . . , p9) ∈ B,

(p1, p10) ∈ (∂BR(0))2 , (Pk1 , . . . , Pk5) ∈ P̃5, |ν′| < ν̄′
}
.

For each v ∈ GFε we term

ω(v)2 :=

∫ 1

0
Φν′,ε(v) − 1
1
2

∫ 1

0
|v̇|2

.

Note that, if v(t) = σ(T (σ)t), then ω(v) = 1/T (σ). Note also that for every
ε ∈ (0, ε̄) there exists C > 0 such that ‖v‖H1 ≤ C for every v ∈ GFε. It
follows from Lemma 6.5, taking into account the boundedness properties for
the time intervals of inner and outer solutions. In order to work with sequences
of functions in GFε, it is convenient to introduce some notation. Fixed
(Pk1 , . . . , Pk5) ∈ P5 and ε ∈ (0, ε̄), assume that we have ((pm

2 , . . . , p
m
9 ))m ⊂ B,

((pm
1 , p

m
10))m ⊂ (∂BR(0))2, (ν′

m) ⊂ (−ν̄′, ν̄′) such that

(pm
2 , . . . , p

m
9 ) → (p̂2, . . . , p̂9) (pm

1 , p
m
10) → (p̂1, p̂10) ν′

m → 0.
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We will use the following notations

vm := v
((pm

1 ,pm
10),(Pk1 ,...,Pk5 ),ε,ν′

m)

(pm
2 ,...,pm

9 ) ωm := ω(vm) (40)

σm := σ
((pm

1 ,pm
10),(Pk1 ,...,Pk5 ),ε,ν′

m)

(pm
2 ,...,pm

9 ) Tm := T (σm); (41)

Subscripts will be replaced by the accent ·̂ for the function corresponding to
the limit points. Recall that σm has been obtained by the juxtaposition of

yPkj+1
(· ; pm

2j+1, p
m
2j+2; ε, ν

′
m) =: ym

2j+1 and yext(· ; pm
2j , p

m
2j+1; ε, ν

′
m) =: ym

2j .

Each ym
j is defined over a time interval [0, Tm

j ]. There are 0 = tm1 < tm2 <
. . . tm9 < tm10 = T (σm) such that σm(tmk ) = pm

k for every k = 1, . . . , 10. We have
Tm

j = tmj+1 − tmj . For j = 0, . . . , 4, recall that

yPkj+1
(· ; pm

2j+1, p
m
2j+2; ε, ν

′
m) = uPkj+1

(
·

Tm
2j+1

· ; pm
2j+1, p

m
2j+2; ε, ν

′
m

)
=: um

2j+1.

Lemma 6.6. Let ε ∈ (0, ε̄), (Pk1 , . . . , Pk5) ∈ P5. Assume that we have sequences
((pm

2 , . . . , p
m
9 ))m ⊂ B, ((pm

1 , p
m
10))m ⊂ (∂BR(0))2, (ν′

m) ⊂ (−ν̄′, ν̄′) such that

(pm
2 , . . . , p

m
9 ) → (p̂2, . . . , p̂9) (pm

1 , p
m
10) → (p̂1, p̂10) ν′

m → 0.

Using the notations previously introduced, assume that exists v ∈ H1([0, 1])
such that vm ⇀ v weakly in H1. Then

v = v
((p̂1,p̂10),(Pk1 ,...,Pk5 ),ε,0)

(p̂2,...,p̂9)
.

Proof. Under the convergence of the ends and of ν′
m, inner and outer solutions

ym
k are weakly convergent to inner and outer solutions ŷk (see Propositions 3.1

and the Continuity Lemma 6.1); the thesis follows easily. �

To each ((p1, p10), (Pk1 , . . . , Pk5), ν
′) ∈ (∂BR(0))2×P̃5×(−ν̄′

1, ν̄
′
1) we can asso-

ciate an element of GFε in the following way: it is well defined the function
F((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′), and we know that it has a minimum. To a mini-
mum we associated the function σ((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′), which can be re-
parametrized obtaining v((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′). We are ready to state the
counterpart of the Continuity Lemma 6.1.

Continuity Lemma 6.7. Let ε ∈ (0, ε̄), (Pk1 , . . . , Pk5) ∈ P5, ((pm
1 , p

m
10)) ⊂

(∂BR(0))2 and (ν′
m) ⊂ (−ν̄′, ν̄′). Let vm = v((pm

1 ,pm
10),(Pk1 ,...,Pk5 ),ε,ν′

m) be a func-
tion of GFε associated to a minimizer of the following variational problem:

min
{

F((pm
1 ,pm

10),(Pk1 ,...,Pk5 ),ε,ν′
m)(p2, . . . , p9) : (p2, . . . , p9) ∈ B

}
.

Assume (pm
1 , p

m
10) → (p̃1, p̃10), ν′

m → 0, and vm ⇀ ṽ weakly in H1. Then ṽ is
the function associated to a minimizer for

min
{

F((p̃1,p̃10),(Pk1 ,...,Pk5 ),ε,0)(p2, . . . , p9) : (p2, . . . , p9) ∈ B
}
.

This continuity result permits to prove the following proposition, which is the
last step in the proof of Theorem 1.2.



406 N. Soave NoDEA

Proposition 6.8. Let α = 1 and N = 3. Let ε ∈ (0, ε̄). There exists ν̄′
2(ε)

such that for every ν′ ∈ (−ν̄′
2(ε), ν̄

′
2(ε)), n ∈ N and (Pj1 , . . . , Pj4n

) ∈ Gn, the
function γ((Pj1 ,...,Pj4n

),ε,ν′) is collision-free.

Proof. Let (Pj1 , . . . , Pj4n
) ∈ Gn and ν′ ∈ (−ν̄′, ν̄′). Let us consider the restric-

tion of
γ = γ((Pj1 ,...,Pj4n

),ε,ν′) in a time interval [s1, s2], chosen in such a way that
γ|[s1,s2] describes one passage of γ inside BR(0). The goal is to show that
γ|[s1,s2] is collision-free. There are

• tk ∈ R and pk ∈ ∂BR(0) such that γ(tk) = pk, for every k = 1, . . . , 10.
• (Pk1 , . . . , Pk5) ∈ P5,

such that γ|[t1,t10] = σ((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′) = σ and γ|[s1,s2] = σ|[t5,t6],
where t5 and t6 have been defined in (39). This means that each pas-
sage of γ inside ∂BR(0) is the third passage inside ∂BR(0) of a function
σ((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′), for some p1, p10 ∈ ∂BR(0) and (Pk1 , . . . , Pk5) ∈ P5.
This observation is the key point of the proof: it implies that our thesis follows
if we show that there are ν̄′

2, β2 > 0 such that

min
k∈{1,...,N}

(
min

t∈[ t5
T (σ) ,

t6
T (σ) ]

|v((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′)(t) − ck3 |
)

≥ β2 (42)

for every ((p1, p10), (Pk1 , . . . , Pk5), ν
′) ∈ (∂BR(0))2×P̃5×(−ν̄′

2, ν̄
′
2); this implies

that v((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′) (and hence σ((p1,p10),(Pk1 ,...,Pk5 ),ε,ν′)) cannot have
a collision in its third passage inside BR(0), independently on (p1, p10) and
(Pk1 , . . . , Pk5).
Assume by contradiction that (42) is not true. Then there are (βm) ⊂ R

+,
(ν′

m) ⊂ (−ν̄′, ν̄′), ((pm
1 , p

m
2 )) ⊂ (∂BR(0))2, ((Pk1 , . . . , Pk5)

m) ⊂ P̃5 such that
βm → 0, ν′

m → 0 for m → ∞, and

min
t∈

[
tm
5

T (σm) ,
tm
6

T (σm)

] |v((pm
1 ,pm

10),(Pk1 ,...,Pk5 )m,ε,ν′
m)(t) − ckm

3
| = βm ∀m.

Since P̃5 is discrete and finite, we can assume (Pk1 , . . . , Pk5)
m = (Pk1 , . . . , Pk5)

for every m. Also, since ∂BR(0) is compact, up to a subsequence (pm
1 , p

m
2 ) →

(p̂1, p̂2) ∈ ∂BR(0). We term vm = v((pm
1 ,pm

10),(Pk1 ,...,Pk5 )m,ε,ν′
m). The image of

vm intersects the circle ∂BR(0) in 8 points (pm
2 , . . . , p

m
9 ) ∈ B in succession. Up

to a subsequence (pm
2 , . . . , p

m
9 ) → (p̂2, . . . , p̂9). We observed that the set GFε is

bounded in the H1 norm, therefore up to a subsequence vm ⇀ v̂ ∈ H1([0, 1])
weakly in H1 (and hence uniformly). The image of v̂ intersects the circle in
the 8 points (p̂2, . . . , p̂9) in succession. To be precise

v̂ = v
((p̂1,p̂10),(Pk1 ,...,Pk5 ),ε,0)

(p̂2,...,p̂9)
∈ GFε,

see Lemma 6.6. By the Continuity Lemma 6.7, the point (p̂2, . . . , p̂9) minimizes
F((p̂1,p̂10),(Pk1 ,...,Pk5 ),ε,0) in B. But the uniform convergence implies that v̂ has
a collision in its third passage inside BR(0), and this is in contradiction with
Lemma 6.4. �
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3) α ∈ (1, 2). This is the easiest case, since for every ε ∈ (0, ε̄), n ∈ N,
(Pj1 , . . . , Pjn

) ∈ Pn the weak solution γ((Pj1 ,...,Pjn ),ε,0) is collision-free (Theo-
rem 5.3 of [11]). Thus, we can simply follows the sketch already developed for
point 1) with minor changes.

Proposition 6.9. Let α ∈ (1, 2). Let ε ∈ (0, ε̄). There exists ν̄′
3(ε) such that

for every ν′ ∈ (−ν̄′
3(ε), ν̄

′
3(ε)), n ∈ N and (Pj1 , . . . , Pjn

) ∈ Pn, the function
γ((Pj1 ,...,Pjn ),ε,ν′) is collision-free.

7. Proofs of the continuity lemmas

7.1. Proof of Continuity Lemma 6.1

Let u0 be a minimizer of M0 in K p̃1p̃2
Pj

([0, 1]). We aim at proving that M0(ũ) =
M0(u0). We will briefly write Lm for Lν′

m
and Mm for Mν′

m
.

The following statement is a continuity property for the functionals {Mm} in
the set of the minimizers {um}.

Lemma 7.1. The family {Mm}m tends to M0 as m → ∞, uniformly in the set
{um : m ∈ N}. This means that for every λ > 0 exists m1 ∈ N such that

m > m1 ⇒ |Mm(um̄) −M0(um̄)| ≤ λ ∀m̄ ∈ N.

Proof. Let m̄ ∈ N. For every m we have

|Mm(um̄) −M0(um̄)|

≤ |ν′
m|

∫ 1

0

|um̄||u̇m̄|

+
√

2
(∫ 1

0

|u̇m̄|
) 1

2
∣∣∣∣∣

(∫ 1

0

Vε(um̄)−1+
(ν′

m)2

2
|um̄|2

) 1
2

−
(∫ 1

0

Vε(um̄)−1
) 1

2
∣∣∣∣∣

Let ϕm̄(ν) :=
(∫ 1

0
Vε(um̄) − 1 + (ν2)

2 |um̄|2
)1/2

. It results

|ϕm̄(ν′
m) − ϕm̄(0)| ≤ 1

2

(∫ 1

0

Vε(um̄) − 1
)− 1

2 ∫ 1

0

|um̄|2(ν′
m)2 ≤ R2

2
√
M1

(ν′
m)2,

so that

|Mm(um̄) −M0(um̄)| ≤ R‖u̇m̄‖L2 |ν′
m| +

R2

√
2M1

‖u̇m̄‖L2(ν′
m)2

≤ C(|ν′
m| + (ν′

m)2),

where C is a constant independent on m̄ (see Proposition 4.10). �

We want to compare Mm(um) with Mm(u0). Because of the minimality
property of um it seems reasonable to think that Mm(um) ≤ Mm(u0). This is
not immediate, and not necessarily true, since um is a minimizer of Mm for the
fixed ends problem min{Mm(u) : u ∈ K

pm
1 pm

2
Pj

([0, 1])}, while u0 connects p̃1 and
p̃2. However, the fact that pm

1 → p̃1 and pm
2 → p̃2 suggests that maybe we can

prove something similar (which in fact will be Eq. (45)). For every p∗, p∗∗ ∈
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∂BR(0) we consider again the function ζR(· ; p∗, p∗∗) which parametrizes the
shorter arc of ∂BR(0) connecting p∗ and p∗∗ in time 1 with constant angular
velocity. It is easy to check that

∀λ > 0 ∃ρ > 0 : |p∗ − p∗∗| < ρ ⇒ M0(ζR(· ; p∗, p∗∗)) < λ,

so that

∀λ > 0 ∃m2 ∈ N : m > m2 ⇒
{
M0(ζR(t; pm

1 , p̃1)) < λ

M0(ζR(t; p̃2, p
m
2 )) < λ.

(43)

Furthermore, the following continuity property holds true.

Lemma 7.2. The family {Mm}m tends to M0 as m → ∞, uniformly in the set
{ζR(· ; p∗, p∗∗) : p∗, p∗∗ ∈ ∂BR(0)}. This means that for every λ > 0 exists
m3 ∈ N such that

m > m3 ⇒ |Mm(ζR(· ; p∗, p∗∗)) −M0(ζR(· ; p∗, p∗∗))| ≤ λ ∀p∗, p∗∗ ∈ ∂BR(0).

Proof. We can adapt the proof of Lemma 7.1 with minor changes. �
Conclusion of the proof of the Continuity Lemma 6.1. Because of the mini-
mality of u0 and the weak lower semi-continuity of M0 it results

M0(u0) ≤ M0(ũ) ≤ lim inf
m→∞ M0(um). (44)

For every m ∈ N ∪ {0} we have

ω2
m

2
|u̇m|2 − Φν′

m,ε(um) = −1 a.e. in [0, 1] ⇒
√

2Lm(um) = Mm(um),

where ωm = ωPj
(pm

1 , p
m
2 ; ε, ν′

m). The variational characterization of um implies
that

Mm(um) =
√

2Lm(um) ≤
√

2Lm(ζR(· ; pm
1 , p̃1)) +

√
2Lm(u0)

+
√

2Lm(ζR(· ; p̃2, p
m
2 ))

≤ Mm(ζR(· ; pm
1 , p̃1)) +Mm(u0) +Mm(ζR(· ; p̃2, p

m
2 )). (45)

We passed to the functional Lm in order to exploit its additivity property,
which does not hold for Mm. Lemmas 7.1, 7.2 and Eq. (43) imply that for
every λ > 0 if m > max{m1,m2,m3} then

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Mm(um) > M0(um) − λ

Mm(ζR(· ; pm
1 , p̃1)) < M0(ζR(· ; pm

1 , p̃1)) + λ < 2λ

Mm(ζR(· ; p̃2, p
m
2 )) < M0(ζR(· ; p̃2, p

m
2 )) + λ < 2λ

Mm(u0) < M0(u0) + λ.

Hence, from Eq. (45), for every λ > 0 if m > max{m1,m2,m3} then

M0(um) − λ ≤ M0(u0) + 5λ ⇒ lim sup
m→∞

M0(um) ≤ M0(u0).

This, together with (44), says that the sequence (M0(um))m has a limit and
M0(u0) = M0(ũ) = limmM0(um); in particular ũ is a minimizer of M0 in
K p̃1p̃2

Pj
([0, 1]). �
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7.2. Proof of the Continuity Lemma 6.7

Let σ0 = σ((p̃1,p̃10),(Pk1 ,...,Pk5 ),ε,0) = σ
((p̃1,p̃10),(Pk1 ,...,Pk5 ),ε,0)

(p̂2,...,p̂9)
, where (p̂2, . . . , p̂9)

is a minimizer of F((p̃1,p̃10),(Pk1 ,...,Pk5 ),ε,0), and let v0(t) = σ0(T (σ0t)). We aim
at proving that M0(ṽ) = M0(v0). We need two intermediate results. The first
one is a generalization of Lemma 7.1 for the glued functions.

Lemma 7.3. Let (vm) ⊂ GFε, where each vm is a glued function defined by
(40). The family {Mm}m tends to M0 for m → ∞, uniformly in {vm}m. This
means that for every λ > 0 exists m1 ∈ N such that

m > m1 ⇒ |Mm(vm̄) −M0(vm̄)| < λ ∀m̄.
Proof. We can adapt the proof of Lemma 7.3; the only difference is that we
used the uniform bounds

‖u‖L2 ≤ R ‖u̇‖L2 ≤ C

∫ 1

0

Vε(u) − 1 ≥ M1 ∀u ∈ IMε.

Now we are considering glued functions, so we need similar properties for
the function of GFε. We have already noticed that there is C > 0 such that
‖v̇m̄‖H1 ≤ C for every m̄; furthermore,

∫ 1

0

Vε(vm̄) − 1 ≥ 1
T (σm̄)

4∑

j=1

∫ T2j+1

0

(Vε(y2j+1) − 1) ≥ 4M1

C
.

�

Lemma 7.4. Let p2j , p2j+1 ∈ ∂BR(0) be such that |p2j − p2j+1| ≤ δ, let (ν′
m) ⊂

(−ν̄′, ν̄′) be such that ν′
m → 0 as m → ∞.

For every λ > 0 there exists m4 = m4(p2j , p2j+1) ∈ N such that

|Lν ′̄
m

(yext(· ; p2j , p2j+1; ε, ν′
m)) − Lν ′̄

m
(yext(· ; p2j , p2j+1; ε, 0))| < λ

for every m̄ ∈ N.

Proof. We will write ym instead of yext(· ; p2j , p2j+1; ε, ν′
m) to ease the notation.

Let Tm be such that ym(Tm) = p2j+1.

|Lm̄(ym) − Lm̄(y0)| ≤
∣∣∣∣∣

∫ Tm

0

√
Φν ′̄

m,ε(ym(t)) − 1|ẏm(t)| dt

−
∫ T0

0

√
Φν ′̄

m,ε(y0(t)) − 1|ẏ0(t)| dt
∣∣∣∣∣

+

∣∣∣∣∣

∫ Tm

0

〈iym(t), ẏm(t)〉 dt−
∫ T0

0

〈iy0(t), ẏ0(t)〉 dt
∣∣∣∣∣ . (46)

We have already observed (Remark 8) that
∫ 1

0
〈iu, u̇〉 is continuous in the weak

topology of H1. We know that ym → y0 C1-uniformly; it is not difficult to
check that consequently

ym(Tmt) → y0(T0t) C1-uniformly in [0, 1], (47)



410 N. Soave NoDEA

so that the second term in the right hand side of (46) tends to 0 as m → ∞
(independently on m̄). As far as the first term on the right hand side of (46)
is concerned, it results

∣∣∣∣∣

∫ Tm

0

√
Φν ′̄

m,ε(ym(t)) − 1|ẏm(t)| dt−
∫ T0

0

√
Φν ′̄

m,ε(y0(t)) − 1|ẏ0(t)| dt
∣∣∣∣∣

≤
∫ 1

0

∣∣∣
√

Φν ′̄
m,ε(ym(Tmt)) − 1 −

√
Φν ′̄

m,ε(y0(T0t)) − 1
∣∣∣ |ẏm(Tmt)| dt

+
∫ 1

0

√
Φν ′̄

m,ε(y0(T0t)) − 1 ||ẏ0(T0t)| − |ẏm(Tmt)|| dt. (48)

The function
√· is 1/2-Hölder continuous, so that for every m̄

∫ 1

0

∣∣∣
√

Φν ′̄
m,ε(ym(Tmt)) − 1 −

√
Φν ′̄

m,ε(y0(T0t)) − 1
∣∣∣ |ẏm(Tmt)| dt

≤
(∫ 1

0

∣∣∣
√

Φν ′̄
m,ε(ym(Tmt)) − 1−

√
Φν ′̄

m,ε(y0(T0t)) − 1
∣∣∣
2

dt

) 1
2

‖ẏm(Tm·)‖L2

≤ C

(∫ 1

0

|Φν ′̄
m,ε(ym(Tmt)) − Φν ′̄

m,ε(y0(T0t))| dt
) 1

2

; (49)

In the last inequality, we took advantage of the uniform bound for the L2 norm
of outer solutions. Both ym and y0 are outer solutions, therefore we can exploit
the fact that Vε is C∞ with bounded derivatives outside ∂BR(0); using also
(47) and the first estimate (16), we obtain

sup
t∈[0,1]

|Φν ′̄
m,ε(ym(Tmt)) − Φν ′̄

m,ε(y0(T0t))| ≤ C(1 + |ν′
m̄|2)

× sup
t∈[0,1]

|ym(Tmt) − y0(T0t)| → 0 (50)

as m → ∞, independently on m̄ (recall that |ν′
m̄| ≤ ν̄′). Furthermore, using

again (47) it is easy to check
∫ 1

0

√
Φν ′̄

m,ε(y0(T0t)) − 1 ||ẏ0(T0t)| − |ẏm(Tmt)|| dt → 0, (51)

as m → ∞, independently on m̄. Collecting (49), (50), (51) and comparing
with (48) we deduce that also the first term on the right hand side of (46)
tends to 0, uniformly in m̄. �

Conclusion of the proof of the Continuity Lemma 6.7. The conservation of
the Jacobi constant holds true both for v0 and ṽ (recall that ṽ ∈ GFε, as
showed in Lemma 6.6); using this property, the minimality of σ0 and the weak
lower semi-continuity of M0, we have

M0(v0) = L0(v0) ≤ L0(ṽ) = M0(ṽ) ≤ lim inf
m→∞ M0(vm). (52)
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We pose p̂1 := p̃1 and p̂10 := p̃10. The minimality of (pm
2 , . . . , p

m
9 ) for

F((pm
1 ,pm

10),(Pk1 ,...,Pk5 ),ε,ν′
m) implies that

Mm(σm) =
√

2Lm(σm) ≤
√

2Lm(σ((pm
1 ,pm

10),(Pk1 ,...,Pk5 ),ε,ν′
m)

(p̂2,...,p̂9)
)

≤
√

2
(
Lm(σ((p̂1,p̂10),(Pk1 ,...,Pk5 ),ε,ν′

m)

(p̂2,...,p̂9)
) + Lm(ζR(· ; pm

1 , p̂1))

+Lm(ζR(· ; p̂10, p
m
10))

)

=
√

2

⎛

⎝
4∑

j=0

Lm(yPkj+1
(· ; p̂2j+1, p̂2j+2; ε, ν′

m))

+
4∑

j=1

Lm(yext(· ; p̂2j , p̂2j+1; ε, ν′
m))

+Lm(ζR(· ; pm
1 , p̂1)) + Lm(ζR(· ; p̂10, p

m
10))

)
(53)

The variational characterization of yPkj+1
(· ; p̂2j , p̂2j+1; ε, ν′

m) implies that

Lm(yPkj+1
(· ; p̂2j+1, p̂2j+2; ε, ν′

m)) ≤ Lm(yPkj+1
(· ; p̂2j+1, p̂2j+2; ε, 0)).

Also, let us collect the uniform estimates of Eq. (43), Lemmas 7.2, 7.3 and 7.4:
for every λ > 0 exists m5 := max{m1, . . . ,max{m4(p̂2j , p̂2j+1) : j = 1, . . . , 4}}
such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mm(vm) > M0(vm) − λ
√

2Lm(ζR(· ; pm
1 , p̂1)) ≤ Mm(ζR(· ; pm

1 , p̂1)) < 2λ
√

2Lm(ζR(· ; p̂10, p
m
10)) ≤ Mm(ζR(· ; p̂10, p

m
10)) < 2λ

Lm(yext(· ; p̂2j , p̂2j+1; ε, ν′
m)) < Lm(yext(· ; p̂2j , p̂2j+1; ε, 0)) + λ

Mm(v0) < M0(v0) + λ

for every m > m5. Therefore, for every λ > 0 the chain of inequalities (53)
gives

M0(σm) − λ ≤
√

2

⎛

⎝
4∑

j=0

Lm(yPkj+1
(· ; p̂2j+1, p̂2j+2; ε, 0))

+
4∑

j=1

Lm(yext(· ; p̂2j , p̂2j+1; ε, 0))

⎞

⎠

+ (1 +
√

2)4λ =
√

2Lm(σ0) + Cλ ≤ Mm(σ0) + Cλ

if m > m5. With a change of variable, we can see that the previous inequality
is equivalent to

M0(vm) − λ ≤ Mm(v0) + Cλ ⇒ M0(vm) ≤ M0(v0) + (C + 1)λ
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if m > m5; since λ has been arbitrarily chosen, it results lim supmM0(vm) ≤
M0(v0); comparing with (52) we deduce that M0(v0) = M0(ṽ), and the proof
is complete. �
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