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Abstract. Theorems for the existence of periodic solutions for diverse mod-
els of population dynamics are obtained as corollaries of a few basic the-
orems, thus unifying the analysis of a broad class of scalar models in a
single setting. The latter mechanism allows to obtain existence condi-
tions for a broad class of nonlinear, non-autonomous models and models
with state-dependent delays. The technique fulfills multiple roles: it can
be used to expand on well-known results as well as to shorten existing
proofs. We provide some examples which illustrate the applicability of
our results.
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1. Background and related results

The problem of the existence of periodic solutions in population dynamics is a
well-trodden venue, however, the results are scattered in the different sources,
obtained via different mechanisms and are not unified. In the literature, we
found (in historical order) the studies for general non-autonomous models [7,
10,14–16,18,22–24,28,31,34–37,39–43] with some applications for the particu-
lar models. The results obtained separately for some classical models described
in the Appendix were presented in [1–6,8,9,11,13,17,19–21,26,37,38].
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We begin with the most celebrated class of semilinear models:

dx

dt
= −a(t)x(t) + λb(t)g(x(t − τ(t))). (1.1)

Most of the criteria involve the quantities g0 = limu→0+
g(t,u)

u and g∞ =
limu→∞

g(t,u)
u ; and the methods are based on Krasnoselskii fixed point theo-

rem on cones in Banach spaces and its generalizations, e.g. Leggett-Williams
theorem, and the use of the fixed point index.

Firstly, we quote some useful results. For (1.1), in [42] (2002) it was
assumed that a, b > 0 and τ are continuous and T -periodic, g is continuous
and positive, λ > 0 and

a =
1
T

∫ T

0

a(t)dt.

The method of upper and lower solutions was used. In particular, [42, Theorem
5] it was shown that if g is nondecreasing on [0,+∞) with g(0) > 0 and
g(u)

u → +∞ as u → +∞, then there exists a constant λ∗ > 0 such that
the equation has a positive T -periodic solution for 0 < λ < λ∗, while there
exists no such positive T -periodic solution if λ > λ∗. Under the same assump-
tions a similar result holds for the equation with reversed signs or a “mirror”
equation

dx

dt
= a(t)x(t) − λb(t)g(x(t − τ(t))).

In [42] there are no explicit estimates (bounds) for λ∗ and no applica-
tions. Technically speaking, this paper was published in 2002, but all the
results could be seen already in the earlier paper [10] (2001), where the
basic assumptions are: g, a, b, τ are continuous and nonnegative; a, b and
τ are T -periodic functions; a(t0) > 0 for some t0 in [0, T ]. Under cer-
tain explicit conditions, intervals for λ where the equation has one, two
or no positive periodic solutions were obtained in [10]. All conditions for
the existence of at least one/two positive periodic solutions, are expressed
via different behaviors of the ratio g(t,u)

u , however, no applications are
given.
For the special case of (1.1)

dx

dt
= −a(t)x(t) + g(t, x(t − τ(t))), (1.2)

the existence of a positive periodic solution is guaranteed in [34, Theorem 2.1]
(2004), if one of the following conditions holds:

(H1) lim inf
u→0

min
t∈[0,T ]

g(t, u)
a(t)u

> 1, lim sup
u→+∞

max
t∈[0,T ]

g(t, u)
a(t)u

< 1,

or

(H2) lim sup
u→0

max
t∈[0,T ]

g(t, u)
a(t)u

< 1, lim inf
u→+∞ min

t∈[0,T ]

g(t, u)
a(t)u

> 1,
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with applications to (4.8) and (4.10). However, for the models (4.5) and (4.11)
the special condition b(t) > a(t) for all t is required. The following modification
of the Eq. (1.2)

dx

dt
= −a(t)x(t) + g(t, x(t − τ1(t)), . . . , x(t − τn(t))) (1.3)

was studied in [41] (2007) where the existence of single and multiple peri-
odic solutions was obtained. For example [41, Theorem 3.3], the existence of a
positive periodic solution is proven by conditions analogous to (H1) and (H2)
in [34]. Multiple corollaries provide existence results for the biological models
(4.2), (4.8) and (4.10) for which at least one positive periodic solution exists.
It was also proven that for models (4.5) and (4.11) a positive periodic solution
exists if b(t) > a(t) for all t. Also, the existence of positive periodic solutions
for the logistic model (4.1) with several delays was proven. In a related work
[40] (2005) a slightly different form of model (1.3) is under study:

dx

dt
= −a(t)x(t) + g(t, u(t)),

where the vector u is defined by

u(t) =
(

x(τ1(t)), . . . , x(τn−1(t)),
∫ t

−∞
k(t − s)x(s)ds

)
.

As particular applications, the author claims the existence of periodic solutions
for models (4.2), (4.8) and (4.10). For models (4.5) and (4.11) the special con-
dition min0≤t≤T b(t) > 1−H

H2T is required, where H = e− ∫ T
0 a(t) dt. The existence

of positive periodic solutions for the logistic model (4.1) with several delays
was proven as well (see also [41]).
In [36] (2004), the nonlinear model

dx

dt
= a(t)f(x(t))x(t) − λb(t)g(x(t − τ(t))).

was examined. The existence, multiplicity and nonexistence of positive T -peri-
odic solutions were proven, under the assumptions: a, b, τ are T -periodic
functions, a > 0, b > 0, f, g ∈ C([0,+∞), [0,+∞)) with g(u) > 0 for u >
0, 0 < l ≤ f(u) < L < +∞, λ > 0. Explicit intervals for the parameter λ such
that equation has one, two or no positive T -periodic solutions were obtained,
and no applications were given. All results obtained in [36] are applicable to
a “mirror” equation. In the interesting paper [14] (2011) (see also [28]) the
boundedness condition on f was relaxed, and the existence of three periodic
solutions under appropriate assumptions was obtained via the method of lower
and upper solutions.

In this paper, we obtain existence results for certain class of abstract mod-
els. This, in turn, will lead to sufficient conditions for the existence of periodic
solutions for diverse models originated from biological applications, unifying
the analysis of a broad class of models of population dynamics in a single
setting. It includes: nonlinear, non-autonomous models; models with multiple
and state-dependent delays. Our technique is twofold: it can be used to expand
on well-known existence results as well as to shorten existing proofs. We also
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study some qualitative properties of these solutions. We provide a variety of
different examples, which shall explicate the applicability of our results.

2. Main results

2.1. Continuation theorem for the abstract model

We begin our study with an abstract existence theorem for the functional
differential equation

x′(t) = Φ(x)(t), (2.1)

where Φ maps the space of continuous T -periodic functions into itself. In more
precise terms, set

X := {x ∈ C(R, R) : x(t + T ) = x(t) for all t}
and assume that Φ : X → X is continuous and maps bounded sets into
bounded sets. For convenience, we define, for r < s,

Xs
r := {x ∈ X : r < x(t) < s for all t}.

The closure of Xs
r shall be denoted by cl(Xs

r ). For x ∈ X, its absolute maxi-
mum and minimum values and its average 1

T

∫ T

0
x(t) dt are denoted by xmax,

xmin and x, respectively. If U is an open and bounded subset of X and K :
cl(U) → X is compact with Ku �= u for all u ∈ ∂U , then the Leray–Schau-
der degree of the Fredholm operator F = Id − K at 0 shall be denoted by
degLS(F , U, 0). For a detailed definition and properties of the degree see for
example [12,27]; here, only the following basic properties shall be used:

1. (Solution) If degLS(F , U, 0) �= 0, then F has at least one zero in U .
2. (Homotopy invariance) If Fλ = Id − Kλ with Kλ : cl(U) → X compact

such that Kλu �= u for all u ∈ ∂U , λ ∈ [0, 1] and K : cl(U) × [0, 1] → X
given by K(u, λ) := Kλ(u) continuous, then degLS(Fλ, U, 0) does not
depend on λ.

3. If K(cl(U)) ⊂ V , with V ⊂ X a finite dimensional subspace, then

degLS(F , U, 0) = degB(F|cl(U)∩V , U ∩ V, 0),

where degB denotes Brouwer’s degree.
4. If φ : [r, s] → R is continuous and φ(r), φ(s) �= 0, then

degB(φ, (r, s), 0) =
sgn(φ(s)) − sgn(φ(r))

2
.

Finally, we consider the natural inclusion R ⊂ X and define a mapping
φ : R → R as follows. For γ ∈ R, let xγ ∈ X be the constant function given by
xγ(t) = γ for all t; thus Φ(xγ) is an element of X and we may set

φ(γ) := Φ(xγ) =
1
T

∫ T

0

Φ(xγ)(t) dt.

In the sequel, we shall ignore the isomorphism γ 	→ xγ ; hence, the same sym-
bol γ shall be used to denote both a real number and the constant function
xγ ≡ γ.
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We establish the following continuation theorem, that will be the key for
the further studies.

Theorem 2.1. Assume there exist constants r < s such that

1. If x′(t) = λΦ(x)(t) for some x ∈ cl(Xs
r ) and 0 < λ < 1, then x ∈ Xs

r .
2. φ(r)φ(s) < 0.

Then (2.1) has at least one solution x ∈ cl(Xs
r ).

Proof. For ϕ ∈ X, define Pϕ(t) :=
∫ t

0
ϕ(u) du and

Kϕ(t) := Pϕ(t) − Pϕ +
(

T

2
− t

)
ϕ.

In other words, Kϕ is defined as the unique element x ∈ X such that x′(t) =
ϕ(t) − ϕ for all t and x = 0.

Next define, for λ ∈ [0, 1], the compact operator Kλ : X → X given by

Kλx(t) := x + Φ(x) + λKΦ(x)(t).

For λ > 0, it is readily seen that

x′(t) = λΦ(x)(t) for all t ⇐⇒ x(t) = Kλx(t) for all t.

Indeed, if x ∈ X is such that x′(t) = λΦ(x)(t) for all t, then integration at both
sides and the fact that λ �= 0 yield Φ(x) = 0. It follows that x − x = λKΦ(x)
and hence x = x + λKΦ(x) = x + Φ(x) + λKΦ(x). Conversely, if x ∈ X
satisfies the equality x(t) = KλΦ(x)(t) for all t, then x′(t) = λ[KΦ(x)]′(t) =
λ[Φ(x)(t) − Φ(x)]. Moreover, as x = KλΦ(x) = x + Φ(x), we deduce that
Φ(x) = 0 and the claim is proven.

Thus, it suffices to verify that the function Fλ := Id − Kλ vanishes in
cl(Xs

r ) for λ = 1. Assumption 1 implies that Fλ does not vanish on ∂Xs
r for

0 < λ < 1; on the other hand, observe that Im(K0) ⊂ R and thus assumption
2 implies that F0 does not vanish on ∂Xs

r . Furthermore, if γ ∈ R ⊂ X then
F0(γ) = γ − [γ + Φ(γ)] = −φ(γ). It follows that

degLS(F0,X
s
r , 0) = −degB(φ, (r, s), 0) =

{
1 if φ(r) > 0 > φ(s)

−1 if φ(r) < 0 < φ(s).

From the homotopy invariance of the Leray–Schauder degree, we conclude that
degLS(F1,X

s
r , 0) = ±1 and the result follows. �

In particular, the previous continuation theorem applies to the following
problems with state-dependent delay:

x′(t) = F (t, x(t), x(t − τ(t, x(t)))) (2.2)

and the integro-differential equation

x′(t) = F

(
t, x(t),

∫ t

t−τ(t,x(t))

h(s, x(s)) ds

)
(2.3)
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where τ, h : R
2 → R and F : R

3 → R are continuous and T -periodic in the first
coordinate. Indeed, it suffices to consider the Nemitskii operators Φ : X → X
given by

Φ(x)(t) := F (t, x(t), x(t − τ(t, x(t))))

and

Φ(x)(t) := F

(
t, x(t),

∫ t

t−τ(t,x(t))

h(s, x(s)) ds

)

respectively. The next section is devoted to the study of some specific cases of
Eqs. (2.2) and (2.3).

2.2. Applications to general equations with delay

Motivated by the applications (see Appendix), let us firstly consider the fol-
lowing abstract problems:

x′(t) = −a(t) + h(t, x(t), x(t − τ(t, x(t)))), (2.4)

and

x′(t) = −a(t)x(t) + g(t, x(t), x(t − τ(t, x(t)))) (2.5)

or, more generally,

x′(t) = −f(t, x(t)) + g(t, x(t), x(t − τ(t, x(t)))) (2.6)

along with the corresponding “mirror” equations. Throughout this section we
shall assume that h : R

3 → [0,+∞), g : R × [0,+∞)2 → [0,+∞) and f, τ :
R × [0,+∞) → [0,+∞) are continuous and T -periodic in the first coordinate
and that a ∈ X satisfies a(t) > 0 for all t. All the results in this section can
be established analogously for their “mirror” versions. The following results
should be considered just as general applications of the abstract continuation
theorem, but they might be improved in some specific cases, if the nonlineari-
ties satisfy for example certain local or global monotonicity conditions. For con-
venience, let us define the quantities aτ (x) := maxt∈[0,T ]

∫ t

t−τ(t,x)
a(s) ds, aT :=∫ T

0
a(t) dt and a0 := supx∈R

min{aτ (x), aT }.

Theorem 2.2. Assume there exist constants r < s such that

[h(t, r, r + u) − a(t)] . [h(t, s, s − v) − a(t)] < 0 (2.7)

for all t ∈ R and any u, v such that 0 ≤ u ≤ a0 and 0 ≤ v ≤ aT . Then (2.4)
admits at least one T -periodic solution in Xs

r .

Proof. In the setting of Theorem 2.1, observe that

φ(γ) =
1
T

∫ T

0

[h(t, γ, γ) − a(t)] dt.

In particular, using (2.7) with u = v = 0, it is clear that the functions h(·, r, r)−
a and h(·, s, s) − a do not vanish and have opposite signs; thus φ(r)φ(s) < 0.
Furthermore, if x ∈ cl(Xs

r ) satisfies

x′(t) = λ[−a(t) + h(t, x(t), x(t − τ(t, x(t))))]
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for some λ ∈ (0, 1], then x′(t) ≥ −λa(t) ≥ −a(t) and hence x(t1) − x(t2) ≤∫ t2
t1

a(t) dt for any t1 ≤ t2. As x is T -periodic the previous inequality implies,
in particular, that x(t) ≤ xmin + aT for all t. Moreover, if x reaches its abso-
lute minimum at t = ξ, then x(ξ − τ(ξ, x(ξ))) ≤ xmin + aτ (x(ξ)) and thus
x(ξ − τ(ξ, x(ξ))) ≤ xmin + a0. Suppose that xmin = r, then

0 = x′(ξ) = λ[−a(ξ) + h(ξ, r, r + u)]

for some u such that 0 ≤ u ≤ a0, a contradiction. Similarly, xmax �= s and the
conclusion follows. �

For model (2.5) we obtain the following statement.

Theorem 2.3. Assume there exist positive constants ρ < σ such that[
g(t, ρ, kρ)

ρ
− a(t)

]
.

[
g(t, σ, σ/l)

σ
− a(t)

]
< 0

for all t ∈ R and any k, l such that 1 ≤ k ≤ ea0 and 1 ≤ l ≤ eaT . Then (2.5)
admits at least one positive T -periodic solution in Xσ

ρ .

Proof. Set y(t) = ln(x(t)), then Eq. (2.5) is equivalent to

y′ = −a(t) + h(t, y(t), y(t − τ(t, ey(t)))),

where

h(t, y, z) :=
g(t, ey, ez)

ey
.

Thus, the proof follows from the previous theorem, taking r := ln ρ and s :=
ln σ. �

The preceding theorem is readily adapted to model (2.6):

Theorem 2.4. Assume there exists a ∈ X such that f(t, x) ≤ a(t)x for all t
and all x ≥ 0. Further, assume there exist positive constants ρ < σ such that

[h(t, ρ, kρ) − f(t, ρ)].[h(t, σ, σ/l) − f(t, σ)] < 0

for all t ∈ R and any k, l such that 1 ≤ k ≤ ea0 and 1 ≤ l ≤ eaT . Then (2.6)
admits at least one positive T -periodic solution in Xσ

ρ .

We may also consider the following integro-differential problem

x′(t) = −f(t, x(t)) + g(t, x(t))
∫ t

t−τ(t,x(t))

h(s, x(s)) ds (2.8)

and its “mirror” version, with τ, f, g, h : R × [0,+∞) → [0,+∞) continuous
and T -periodic in the first coordinate. For convenience define, for each α ≥ 0:

hmin(α) := min
0≤t≤T

h(t, α), hmax(α) := max
0≤t≤T

h(t, α).

Then a straightforward imitation of the preceding proofs yields:
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Theorem 2.5. Assume there exists a ∈ X such that f(t, x) ≤ a(t)x for all t
and all x ≥ 0. Further, assume there exist nonnegative constants ρ < σ such
that

τ(t, ρ)g(t, ρ)hmax(kρ) − f(t, ρ) < 0 < τ(t, σ)g(t, σ)hmin(σ/l) − f(t, σ)

or

τ(t, ρ)g(t, ρ)hmin(kρ) − f(t, ρ) > 0 > τ(t, σ)g(t, σ)hmax(σ/l) − f(t, σ)

for all t ∈ R and any k, l such that 1 ≤ k ≤ ea0 and 1 ≤ l ≤ eaT . Then
Eq. (2.8) admits at least one positive T -periodic solution in Xσ

ρ .

2.3. Sublinear models

In this section we shall focus on a special class of sublinear models. Consider

x′(t) = −a(t)x(t) + g(t, x(t − τ(t, x(t)))), (2.9)

with a ∈ X, τ, g : R × [0,+∞) → [0,+∞) continuous and T -periodic in the
first coordinate, and define the limits γ0,∞ ∈ [0,+∞] given by

γ0 := lim inf
u→0+

min
t∈[0,T ]

g(t, u)
u

, γ∞ := lim sup
u→+∞

max
t∈[0,T ]

g(t, u)
u

.

In this setting, the sublinearity condition that shall be assumed throughout
the section can be simply expressed as: γ∞ < ∞. In other words, we shall
assume that the function g(t, ·) grows at most linearly, uniformly for t ∈ R.

Our first result is a direct consequence of Theorem 2.3:

Theorem 2.6. Assume that

γ∞ < a(t) < γ0 for all t.

Then Eq. (2.9) admits at least one positive T -periodic solution.

Proof. Since γ∞ < amin, there exists a constant σ∞ > 0 such that
g(t, σ̃)

σ̃
< amin ∀ σ̃ ≥ σ∞, ∀ t ∈ [0, T ].

Similarly, there exists a constant ρ0 > 0 such that
g(t, ρ̃)

ρ̃
> amax ∀ ρ̃ ∈ (0, ρ0], ∀ t ∈ [0, T ].

Hence, it suffices to take arbitrary positive constants ρ, σ satisfying

ρ ≤ ρ0e
−a0 , σ ≥ σ∞eaT

and apply Theorem 2.3. �
In a similar fashion, a generalization of this result for a sublinear case of

Eq. (2.6) can be obtained from Theorem 2.4.
It is worth noticing that the assumption in Theorem 2.6 implies, in par-

ticular, that a(t) > 0 for all t. The next theorem for model (2.9) assumes a
weaker condition on a, provided that the nonlinearity is strictly sublinear. In
this case, the proof does not follow from Theorem 2.3, which is no longer valid
when a �> 0, so we shall introduce a direct fixed point argument.
For the reader’s convenience, let us recall the well known Schaefer’s Theorem:
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Theorem 2.7. [33] Let E be a Banach space and let K : E → E be a compact
operator. Assume there exists a constant M such that

x = λKx for some λ ∈ (0, 1] ⇒ ‖x‖ ≤ M.

Then K has at least one fixed point.

Remark 2.8. In some texts, Schaefer’s theorem is known as Leray–Schauder
fixed point theorem, although the latter is more general. Its proof can be eas-
ily deduced from the properties of the Leray–Schauder degree and it has the
advantage of simplicity, in the sense that the assumptions do not involve the
concept of degree. However, the degree method is more powerful, in the sense
that it can be applied to some situations that are not covered by Schaefer’s
theorem.

Theorem 2.9. Assume that a > 0, γ∞ = 0 and

g(t, 0) �= 0 for some t (2.10)

or

a(t) < γ0 for all t. (2.11)

Then (2.9) admits at least one positive T -periodic solution.

Proof. Since a > 0, for any ϕ ∈ X the linear problem x′(t) + a(t)x(t) = ϕ(t)
has a unique T -periodic solution. In particular, the open mapping theorem
implies the existence of a constant c such that ‖x‖∞ ≤ c‖x′ + ax‖∞ for every
x ∈ X ∩ C1(R, R). Thus, we may define K : X → X as the compact operator
given by Kw(t) := x(t), where x ∈ X is the unique T -periodic solution of the
linear problem

x′(t) + a(t)x(t) = g(t, |w(t − τ(t, x(t)))|).
We seek a positive fixed point of K. Let us firstly assume that (2.10) holds.
We claim that if x is a fixed point of K, then x(t) > 0 for all t. Indeed, let
A(t) :=

∫ t

0
a(s) ds, then

(
eAx

)′
(t) = eA(t)g(t, |x(t − τ(t, x(t)))|) ≥ 0.

Suppose that equality holds for all t, then g(t, |x(t − τ(t, x(t)))|) = 0 for all t
which, in turn, implies that x ≡ 0. Thus g(·, 0) ≡ 0, a contradiction. Hence
the previous inequality is strict for some t, and then integration on [t, t + T ]
yields

eA(t+T )x(t + T ) > eA(t)x(t).

Due to the periodicity we deduce:

eA(t)
(
eA(T ) − 1

)
x(t) > 0,

and therefore x(t) > 0 for all t. Thus, from Schaefer’s Theorem, it suffices to
establish the existence of a constant M such that all the T -periodic solutions
of the problem

x′(t) + a(t)x(t) = λg(t, |x(t − τ(t, x(t)))|)
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with λ ∈ (0, 1] satisfy the inequality ‖x‖∞ ≤ M . As before, it is seen that
x(t) > 0 for all t, so it suffices to find a uniform bound for xmax. With this
aim, fix a constant ε > 0 to be specified. Since γ∞ = 0, there exists a constant
k > 0 such that g(t, u) ≤ εu + k for all u ≥ 0. Then

xmax = ‖x‖∞ ≤ c‖x′ + ax‖∞ = cλ max
t∈[0,T ]

g(t, x(t − τ(t, x(t)))) ≤ c(εxmax + k).

Thus, choosing ε < 1
c it follows that xmax < k

1−εc := M .
Next, assume that (2.11) holds. Let ρ0 > 0 be chosen as in Theorem 2.6

and fix a positive α0 ≤ ρ0e
− ∫ T

0 |a(t)| dt. As α0 < ρ0 and amax > 0, then
g(t, α0) > 0 for all t. Let us define

g̃(t, u) :=
{

g(t, u) if u ≥ α0

g(t, α0) if u < α0.

From the preceding case, we deduce the existence of a positive T -periodic
solution x of (2.9) with g̃ instead of g.

We claim that xmin ≥ α0. Indeed, in first place let us observe that, as
x′(t) ≥ −a(t)x(t) then xmin ≥ e− ∫ T

0 |a(t)| dtxmax. Now suppose xmin < α0,
then xmax < ρ0 and hence

g(t, x(t − τ(t, x(t)))) > amaxx(t − τ(t, x(t))) ≥ a(t)x(t − τ(t, x(t)))

for all t. Fix t0 such that x(t0) = xmin, then

a(t0)xmin = g(t0, x(t0 − τ(t0, xmin))) ≥ 0

and, in particular, a(t0) ≥ 0. Furthermore,

a(t0)xmin = g(t0, x(t0 − τ(t0, xmin))) > a(t0)x(t0 − τ(t0, xmin)) ≥ a(t0)xmin,

a contradiction. We conclude that xmin ≥ α0; this fact implies that

g̃(t, x(t − τ(t, x(t)))) = g(t, x(t − τ(t, x(t))))

for all t and the proof is complete. �
A more general result may be obtained for model (2.6) as a straightfor-

ward imitation of the proof of Theorem 2.9.

2.4. Monotone case: properties of the solutions

In this section we shall study the behavior of the solutions of (2.9) with a
state-independent delay, namely the equation

x′(t) = −a(t)x(t) + g(t, x(t − τ(t))) (2.12)

under the following conditions:
1. a and τ are continuous and T -periodic functions with τ(t) ≥ 0 for all t

and a > 0.
2. g : R × [0,+∞) → (0,+∞) is continuous, T -periodic in the first coordi-

nate and non-increasing in the second coordinate.
We recall from Theorem 2.9 that these conditions imply the existence of at
least one positive T -periodic solution. Also, it is easy to check that solutions
of the initial value problem with positive initial data ϕ ∈ C([−τmax, 0], R) are
globally defined and positive for all t.
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Proposition 2.10. Let x, y > 0 be solutions of (2.12). If there exists a constant
t0 such that x(t) ≥ y(t) for all t ≥ t0, then limt→+∞[x(t) − y(t)] = 0.

Proof. Let w(t) = x(t) − y(t), then

w′(t) + a(t)w(t) = g(t, x(t − τ(t))) − g(t, y(t − τ(t))) ≤ 0

for t − τmax ≥ t0. Setting A(t) :=
∫ t

0
a(s) ds, yields

(
eAw

)′
(t) ≤ 0

for t ≥ t0 + τmax. In particular,

eA(t)w(t) ≤ eA(t0+τmax)w(t0 + τmax),

that is

w(t) ≤ e
− ∫ t

t0+τmax
a(s) ds

w(t0 + τmax).

Since a > 0, we deduce from periodicity that
∫ t

t0+τmax
a(s) ds → +∞ as t →

+∞ and the conclusion follows. �

Proposition 2.11. If x, y > 0 are T -periodic solutions of (2.12), then there
exist at least two points t1, t2 ∈ [0, T ) such that x(tj) = y(tj).

Proof. From Proposition 2.10, if, for example, x(t) ≥ y(t) for all t, then
limt→+∞[x(t) − y(t)] = 0, therefore x(t) ≡ y(t). The conclusion follows from
periodicity. �

Proposition 2.12. Assume a(t) > 0 for all t and define

M := max
t∈[0,T ]

∫ t+τmax

t

g(s, 0) ds.

Then for any given positive solutions x, y of (2.12) there exists a constant t0
such that |x(t) − y(t)| ≤ M for all t ≥ t0. In particular, positive T -periodic
solutions of (2.12) are stable.

Proof. Let x �= y be two positive solutions of (2.12). If the graph of x intersects
the graph of y at most finitely many times, we deduce from Proposition 2.10
that limt→+∞[x(t) − y(t)] = 0 and the result follows. Next, suppose that the
graph of x intersects the graph of y infinitely many times and let t0 < t1 be
such that w(t) := x(t) − y(t) > 0 on (t0, t1) and w(tj) = 0. In first place, as g
is nonincreasing on its second coordinate and positive we deduce that

w′(t) + a(t)w(t) = g(t, x(t − τ(t))) − g(t, y(t − τ(t))) < g(t, 0),

which implies

w(t) <

∫ t

t0

g(s, 0)e− ∫ t
s

a(r) dr ds <

∫ t

t0

g(s, 0) ds

for all t ≥ t0. Let η ∈ (t0, t1) be such that w(η) = maxt0≤t≤t1 w(t). We claim
that η ≤ t0 + τmax. Indeed, if t0 + τmax ≥ t1 then the result is obvious;
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otherwise, for every t ∈ (t0 + τmax, t1] we have that x(t − τ(t)) > y(t − τ(t))
and consequently w′(t) + a(t)w(t) ≤ 0. As before,

w(t) ≤ e
− ∫ t

t0+τmax
a(s) ds

w(t0 + τmax) < w(t0 + τmax) ≤ w(η)

for t ∈ (t0 + τmax, t1] and the claim is proven. Hence,

max
t0≤t≤t1

w(t) ≤ max
t0≤t≤t0+τmax

w(t) ≤
∫ t0+τmax

t0

g(s, 0) ds ≤ M.

�

3. Examples and discussion

In this section we shall discuss and give some examples concerning the results
in Sects. 2.2 and 2.3 and the applications to the different models presented in
the Appendix.

In first place, observe that Theorems 2.2, 2.3, 2.4 and 2.5 can be readily
adapted to a model with a finite number of delays τ1, . . . , τN : R

2 → [0,+∞)
continuous and T -periodic in the first coordinate. For example, existence of
positive T -periodic solutions of model (4.1) follows easily, provided that a > 0
and bi > 0 for i = 1, . . . , N continuous and T -periodic. Direct application of
Theorem 2.2 shows the existence of a positive T -periodic solution for models
(4.8) and (4.10), and also for (4.5) and (4.11), provided that b(t) > a(t) > 0
for all t (see also [34]). Another application of Theorem 2.2 is given in the next
example.

Example. Consider the problems

x′(t) = −a(t) + b(t)xk(t)
xm(t − τ(t))

c(t) + xn(t − τ(t))
and

x′(t) = a(t) − b(t)xk(t)
xm(t − τ(t))

c(t) + xn(t − τ(t))
with a, b, c > 0 continuous T -periodic functions, m,n ≥ 0 and k > 0. Then:

1. If k + m > n, then there exists at least one positive T -periodic solution.
2. If k + m = n, then there exists at least one positive T -periodic solution,

provided that b(t) > a(t) for all t.
3. If k + m < n, then there exist at least two positive T -periodic solutions,

provided that a(t) < M(t)b(t) for all t, where

M := max
|w|≤aT ≤s

sk(s + w)m

c(t) + (s + w)n
.

In particular, model (4.9) is contained in case 1 with k = 1 and m = n.
This case also contains the equation considered in [8], which is a “mirror”
equation for (4.9). Model (4.12) is included into the three previous cases with
k = 1,m = 0 and n < 1, n = 1, n > 1 respectively.

The following two examples are direct applications of Theorem 2.3.
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Example. The Michaelis–Menten Model (4.14)

x′(t) = x(t)
[
a(t) − b(t)x(t − τ(t))

1 + c(t)x(t − τ(t))

]

admits at least one T -periodic positive solution, provided that a, b, c > 0 are
continuous and T -periodic and b(t) > a(t) for all t. Similar conclusions hold for
models (4.2) and (4.3) for arbitrary positive continuous T -periodic functions
a, b, c and for (4.13), provided that a, b and c are positive T -periodic functions
and ln c(t) < a(t)

b(t) for all t.

Example. Consider the equation

x′(t) = −α(t)x(t) − β(t)x(t)
A(t) + xn(t)

+ 2e−δ(t)τ β(t)x(t − τ)
A(t) + xn(t − τ)

(3.1)

with α, β, δ, A : R → (0,+∞) continuous and T -periodic and τ > 0 a constant.
Set f(t, x) := α(t)x + β(t)x

A(t)+xn and a(t) := α(t) + β(t)
A(t) , then by Theorem 2.4

existence of a positive T -periodic solution follows under the condition

2e−δ(t)τ >
α(t)A(t)

β(t)
+ 1 (3.2)

for all t. In particular, (3.2) implies that β(t) > α(t)A(t) for all t.
This equation was studied in [30] for

α ≡ α0, β ≡ β0, A ≡ 1, δ ≡ δ0.

Note that the condition

τ < − 1
δ0

ln
α0 + β0

2β0
,

required in [30, p. 169] for the existence of a positive equilibrium x∗, is exactly
the same as (3.2) applied to this particular case. Using the contraction map-
ping theorem, the authors prove, for some appropriate η > 0, that if n is large
enough then there exists a unique positive T -periodic solution x (for some
period T ) such that x(t) ≥ 1 + η for t ∈ [−τ, 0]. As x∗ → 1 for n → ∞,
it follows that x is non-constant. This shows, in particular, that the solution
obtained as an application of Theorem 2.3 is not unique. The problem of prov-
ing uniqueness or multiplicity of positive T -periodic solutions for arbitrary n
remains open.

The next example shows that Theorem 2.4 can be improved if one takes
advantage of the monotonicity properties of the nonlinearity.

Example. Consider the following Nicholson’s blowflies model with a nonlinear
density-dependent mortality term, introduced in [3]:

x′(t) = − a(t)x(t)
b(t) + x(t)

+ c(t)x(t − τ(t, x(t)))e−d(t)x(t−τ(t,x(t)))

with a, b, c, d > 0 continuous and T -periodic and τ : R×,+∞) → [0,+∞) con-
tinuous and T -periodic in its first coordinate. Here, a sufficient condition (not
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deduced from Theorem 2.4) for the existence of positive T -periodic solutions
is that a(t) < b(t)c(t) for all t. Indeed, in the setting of Theorem 2.1 we have

φ(γ) =
1
T

∫ T

0

[
c(t)γe−d(t)γ − γa(t)

b(t) + γ

]
dt

so φ(s) < 0 < φ(r) for s � 0 and 0 < r � 1. Moreover, if

x′(t) = λ

(
− a(t)x(t)

b(t) + x(t)
+ c(t)x(t − τ(t, x(t)))e−d(t)x(t−τ(t,x(t)))

)

for some 0 < λ < 1 then x′(t) > −a(t) and hence xmax − xmin <
∫ T

0
a(t) dt. If

x(η) = xmax = s then

a(η)s
b(η) + s

= c(η)(s − v)e−d(η)(s−v)

for some v such that 0 ≤ v ≤ ∫ T

0
a(t) dt. This yields a contradiction when

s � 0. On the other hand, if x(ξ) = xmin = r > 0 then

x(ξ − τ(ξ, x(ξ)))e−d(ξ)x(ξ−τ(ξ,x(ξ))) ≥ re−d(ξ)r

when r is small enough. This implies

a(ξ)
b(ξ) + r

≥ c(ξ)e−d(ξ)r,

a contradiction for r � 1.

Next, we will illustrate an application of Theorem 2.5.

Example. Consider the Nicholson integro-differential Eq. (4.6)

x′(t) = −a(t)x(t) + b(t)
∫ t

t−τ(t)

c(s)x(s)e−d(s)x(s) ds

for some positive, continuous and T -periodic functions a, b, c, d and τ . If

cmin >
a(t)

τ(t)b(t)
for all t,

then the second condition in Theorem 2.5 is fulfilled. Indeed, here f(t, x) =
a(t)x, g(t, x) = b(t) and h(t, x) = c(t)xe−d(t)x and

τ(t)g(t, ρ)hmin(kρ) − f(t, ρ) ≥ (
τ(t)b(t)cmine−dmaxkρ − a(t)

)
ρ > 0

τ(t)g(t, σ)hmax(σ/k) − f(t, σ) ≤
(
τ(t)b(t)cmaxe−dminσ/k − a(t)

)
σ < 0

if the positive constants ρ, σ satisfy ρ � 1, σ � 0. Similar results may be
easily obtained for model (4.4).

The techniques developed in the present paper can be also regarded as a
tool to shorten existing proofs. For example, the assumption of Theorem 2.3
is fulfilled if g satisfies the condition (H1) or (H2) in [34, Theorem 2.1] (see
Sect. 1 of the present paper).
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A less trivial example is the main theorem in [23] for the state-dependent
model

x′(t) = −F (t, x(t − τ(t, x(t))))

with F, τ : R
2 → R continuous and T -periodic in the first coordinate, which

establishes: if there exists a constant B > 0 such that xF (t, x) > 0 for all
t, x ∈ R with |x| > B, and F is either bounded from below or from above,
then the problem has at least one T -periodic solution. This result can be
seen as an immediate consequence of Theorem 2.2: indeed, if for example
F (t, x) ≥ −M for all t, x ∈ R, then it suffices to take a ≡ M and h(t, x(t−τ)) =
M +F (t, x(t− τ)) and condition (2.7) is satisfied for arbitrary r < −(B +M),
s > B + M .

In the same way, we may obtain a shorter proof of the result in [42]
(mentioned in the introduction of the present paper) for the model

x′(t) = −a(t)x(t) + λb(t)g(x(t − τ(t)))

with continuous T -periodic a, b > 0 and continuous g : [0,+∞) → (0,+∞)
nondecreasing and superlinear, namely g(u)

u → +∞ as u → +∞. Indeed, it
suffices, as in Theorem 2.9, to consider the problem

x′(t) = −a(t)x(t) + λb(t)g(|x(t − τ(t))|).
Firstly, observe that if the problem has no positive T -periodic solutions for
some λ∗, then, by Theorem 2.7, it has at least one positive T -periodic solution
for some λ̂ < λ∗. Nonexistence for large values of λ is immediate since g(u)

u is
bounded from below: if x is a positive T -periodic solution, then xmax

xmin
≤ eaT

and hence

(ln x)′(t) + a(t) = λb(t)
g(x(t − τ(t)))
x(t − τ(t))

x(t − τ(t))
x(t)

≥ λb(t)e−Ta min
u≥0

g(u)
u

.

The latter implies that λb minu≥0
g(u)

u < aeTa. Finally, if x̂ is a positive
T -periodic solution for some λ̂ and λ ∈ (0, λ̂), then it is easy to verify that
the operator K defined by Kw(t) := x(t), where x is the unique T -periodic
solution of the linear problem x′(t)+a(t)x(t) = λb(t)g(|w(t− τ(t))|) maps the
set {x ∈ X : 0 ≤ x(t) ≤ x̂(t) for all t } into itself, and hence, by Schauder
theorem (see e.g. [27]), it has a fixed point. Thus, there exists λ∗ > 0 such that
the problem has at least one positive T -periodic solution for λ ∈ (0, λ∗) and
no positive T -periodic solutions for λ > λ∗.

As a final remark, it is worth to observe that Theorems 2.2, 2.3 and 2.4
are valid for an arbitrary delay, even for τ ≡ 0. However, this is not necessarily
true if we allow the equations to depend on τ . This is obviously the case of
Theorem 2.5. Also, we may consider for example the modified problem (2.4):

x′(t) = −a(t) + τh(t, x(t), x(t − τ))

with a and h as in Sect. 2.2. Similarly to Theorem 2.2, existence of T -periodic
solutions is proven if

[τh(t, r, r + u) − a(t)] . [τh(t, s, s − v) − a(t)] < 0
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for some r < s, for all t ∈ R and 0 ≤ u, v ≤ a0. When τ = 0, the problem has
no T -periodic solutions and the previous condition clearly fails.

In contrast with these examples, some problems may have no solutions
when τ is large. For example, condition (3.2) ensures that, if α(t)A(t) < β(t)
for all t, then problem (3.1) has at least one positive T -periodic solution for
any τ ∈ [0, τ∗), where

τ∗ :=
(

1
δ

ln
2β

αA + β

)
min

.

On the other hand, the periodic problem has no positive solutions if τ is large.
Indeed, if x is such a solution, then setting a(t) := α(t) + β(t)

A(t) it is seen that
x′(t) > −a(t)x(t) and hence xmax < xmineaT . If x(η) = xmax, then

α(η) =
β(η)x(η − τ)

A(η) + xn(η − τ)

(
2e−δ(η)τ x(η − τ)

xmax
− A(η) + xn(η − τ)

A(η) + xn
max

)

and we obtain:

α(η) <
β(η)x(η − τ)

A(η) + xn(η − τ)

(
2e−δ(η)τ − e−nTa

)
.

This implies that the problem has no T -periodic positive solutions when

τ ≥ ln 2 + nTa

δmin
.

Likewise, the results of Sect. 2.4 hold when τ ≡ 0, although they become triv-
ial: in this case, it is immediate that trajectories of the ordinary differential
Eq. (2.12) do not intersect; thus, the positive T -periodic solution obtained
from Theorem 2.9 is unique and globally asymptotically stable. The situation
is different when τ �≡ 0. For example, consider the particular case of Eq. (4.8)
with a ≡ 1

e , b = c ≡ 1 and τ ≡ 2e:

x′(t) +
x(t)
e

= e−x(t−2e).

This equation has an equilibrium x∗ = 1; however, if x is a solution with
x(0) = 2 and x(t) ≥ 2 for t ≤ 0, then x(t − 2e) ≥ 2 for t ≤ 2e. Suppose
that the graph of x does not cross the equilibrium, then x(t) > 1 for all t and
x′(t) < 1−e

e2 for 0 ≤ t ≤ 2e. This implies x(2e) < 2
e < 1, a contradiction.

Appendix: basic scalar models of population dynamics

Logistic models:

ẋ = x(t)

[
a(t) −

n∑
i

bi(t)x(t − τi(t))

]
(4.1)

ẋ = a(t)x(t)

[
1 −

(
x(t − τ(t))

b(t)

)θ
]

(4.2)

ẋ = x(t)[a(t) − b(t)x(t) + c(t)x(t − τ(t))] (4.3)
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ẋ = x(t)

(
a(t) − b(t)

∫ t

t−τ(t)

c(s)x(s)ds

)
(4.4)

Nicholson models:

ẋ = −a(t)x(t) + b(t)x(t − τ(t))e−c(t)x(t−τ(t)) (4.5)

ẋ = −a(t)x(t) + b(t)
∫ t

t−τ(t)

c(s)x(s)e−d(s)x(s) ds (4.6)

(4.7)

Lasota–Wazewska model.

ẋ = −a(t)x(t) + c(t)e−b(t)x(t−τ(t)) (4.8)

Mackey–Glass models:

ẋ = a(t) − b(t)
x(t)xm(t − τ(t))
1 + xn(t − τ(t))

(4.9)

ẋ = −a(t)x(t) +
b(t)

1 + xn(t − τ(t))
(4.10)

ẋ = −a(t)x(t) +
b(t)x(t − τ(t))

1 + xn(t − τ(t))
(4.11)

ẋ = −a(t)x(t) +
b(t)x(t)

1 + xn(t − τ(t))
(4.12)

Gompertz (Fox production) model.

ẋ = −a(t)x(t) + b(t)x(t) ln
c(t)

x(t − τ(t))
(4.13)

Michaelis–Menten model.

ẋ = x(t)
[
a(t) − b(t)x(t − τ(t))

1 + c(t)x(t − τ(t))

]
(4.14)
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