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Abstract. In this paper we consider the following Hamiltonian system

Ju̇ + B(t)u + ∇W (t, u) = 0. (HS)

Under a new superquadratic assumption on the potential, we prove that
(HS) has a sequence of subharmonics. This will be done using a minimax
result in critical point theory. Also, we study the asymptotic behavior of
these subharmonics and we establish the existence of a homoclinic orbit
for (HS). Previous results in the topic, mainly those due to Rabinowitz
and Tanaka, are significantly improved.
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1. Introduction and main results

This paper deals with the existence of subharmonic solutions (i.e. kT -periodic
solutions, k ∈ N) and their asymptotic behavior for the following first order
Hamiltonian system

Ju̇ + B(t)u + ∇W (t, u) = 0, (HS)

where W ∈ C1(R × R
2N , R) is T -periodic in the t-variable, B is a continuous

T -periodic and symmetric 2N × 2N -matrix function, and J is the standard
symplectic matrix

J =
(

0 −IN

IN 0

)
.

Recall that a solution u of (HS) is said to be homoclinic to 0 if u �≡ 0 and
u(t) −→ 0 as |t| −→ ∞.
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The problem of finding subharmonic and homoclinic solutions for (HS)
has been the object of many works under different assumptions on the growth
of W at infinity (see [4–9,12,14,15,17] and references therein). Most of them
treat the superquadratic case using the so-called Ambrosetti–Rabinowitz con-
dition, that is, there exists μ > 2 such that

0 < μW (t, x) ≤ (∇W (t, x), x), for all t ∈ R and x ∈ R
2N\{0}. (AR)

Here, the superquadraticity condition (AR) will be replaced by a new weaker
one firstly introduced in [1] to establish the existence of a sequence of subhar-
monics for (HS). Also, the existence of a homoclinic orbit for (HS) is proved
when the matrix B satisfies

B is independent of t and σ(JB) ∩ iR = ∅, (1.1)

where σ(B) denotes the spectrum of B. This work is motivated by the results
of [12,15] mainly.

Definition 1.1. A vector field V defined on R
2N is called positive if (V x, x) > 0,

for all x ∈ R
2N \ {0}. We call V is a normalized positive vector field if V is

positive, linear and satisfies the following conditions:
(V1) JV = V J
(V2) (V x, x) = (x, x), ∀x ∈ R

2N .

Throughout this paper (·, ·) denotes the standard inner product in R
2N

and | · | is the induced norm.

Definition 1.2. Let V a normalized positive vector field on R
2N and {φs} its

flow, μ > 0 be a constant and h ∈ C(R2N , R). We call h a positive homogenous
function of degree μ with respect to V if h(x) > 0 for all x ∈ R

2N\{0} and

h(φsx) = esμh(x) ∀ x ∈ R
2N ,∀ s ∈ R.

If V x = x then φsx = esx and we obtain the classical definition of
homogenous function of degree μ.

Theorem 1.3. We assume that W satisfies the following assumptions:

There exist a normalized positive vector field V, constants
(H1) μ > 2 and R > 1 such that

0 < μW (t, x) ≤ (∇W (t, x), V x), ∀ |x| ≥ R,

(H2) W (t, x) = o(|x|2)as x −→ 0 uniformly in t
(H3) W (t, x) ≥ 0, ∀ (t, x) ∈ R × R

2N ,
there exists

(H4) c > 0 such that

|∇W (t, x)| ≤ c(∇W (t, x), V x), ∀ |x| ≥ R.

Then there is a sequence (kj) ⊂ N, kj −→ ∞, and corresponding distinct
kjT periodic solutions of the system (HS).
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The assumption (H4) is new, as far as the author is aware, and it
can be replaced by the following one firstly introduced by Xu in [16].

(H5) lim inf
|x|→∞

Wt(t, x)
|x|μW (t, x)

= 0 , or lim sup
|x|→∞

Wt(t, x)
|x|μW (t, x)

= 0.

Precisely, assume that B is of class C1, we have

Theorem 1.4. Under the assumptions (H1)−(H3) and (H5), the conclusion of
Theorem 1.3 holds.

In the case where W is independent of t, the assumption (H5) is naturally
satisfied, so, we obtain

Theorem 1.5. Suppose W is independent of t and satisfies (H1)−(H3), then
the conclusion of Theorem 1.3 holds.

Corollary 1.6. [2, Theorem 1.3]. Suppose W is independent of t, satisfies (H1)−
(H3) and B = 0, then the system (HS) possesses a nonconstant T -periodic
solution.

In recent years many authors studied the existence of homoclinic orbits for
Hamiltonian systems. Most of them treat the second order systems. The first
order systems (HS) is studied by Coti-Zelati et al. in [5] under an assumption
of strict convexity on W (t, x) with respect to x and using a dual variational
formulation. Also, the problem was considered by Hofer and Wysocki in [9],
where they made the following assumptions essentially

(H ′
3) there exist α ≥ μ, k1 > 0 such that

W (t, x) ≥ k1|x|α, ∀ (t, x) ∈ R × R
2N ,

(H ′
4) there exists c > 0 such that

|∇W (t, x)| ≤ c|x|μ−1, ∀ (t, x) ∈ R × R
2N .

In their approach, they used first order elliptic system and nonlinear Fredholm
operator theory. Later, Tanaka in [15], kept the assumption (H ′

3) and changed
(H ′

4) by a weaker condition similar to (H4). He used a minimax result in criti-
cal point theory to establish the existence of a sequence of subharmonics which
converges to a nontrivial homoclinic orbit. In all above works, the assumption
(AR) is fundamental. In this paper, we use a globally version of the assump-
tion (H1) which is weaker than (AR), (see Remark 1.9), we drop the restrictive
assumption (H ′

3) and we assume that all the eigenvalues of the constant matrix
JB are not purely imaginary. Furthermore, the following technical condition
is needed:

(H6) There exists a normalized positive vector field V such that

(Bx, V x) ≥ (Bx, x), ∀ x ∈ R
2N .

The existence of a nontrivial homoclinic solution for (HS) will be proved as it
was done in [15]. Precisely we have:



1350 A. Daouas NoDEA

Theorem 1.7. Suppose B satisfies (1.1) and (H6) and W satisfies
(H ′

1) there exists a constant μ > 2 such that

0 < μW (t, x) ≤ (∇W (t, x), V x), ∀ x ∈ R
2N\{0},

(H ′
2) ∇W (t, x) = o(|x|) as x −→ 0 uniformly in t, and (H4) or (H5). Then

the system (HS) possesses a nontrivial homoclinic solution emanating
from 0.

An interesting class of Hamiltonians satisfying the assumption (H1) are
the homogenous ones in the sense of Definition 1.2. This class was studied in
[3] in the autonomous case, where a result of existence of periodic solution
for (HS) was proved [3, Theorem 1.5]. The following theorem completes and
improves the result in [3].

Theorem 1.8. Suppose W is a positive homogenous function of degree μ > 2
with respect to a normalized positive vector field V , then there exist a sequence
(kj) ⊂ N, kj −→ ∞, and corresponding distinct kjT periodic solutions of the
system (HS). Moreover, if B satisfies the assumptions (1.1) and (H6), then
the system (HS) possesses a nontrivial homoclinic solution emanating from 0.

Remark 1.9. It is obvious that if V x = x, then (H1) becomes the classical
condition (AR) and (H6) is naturally satisfied. Example 1.4 in [2] shows that
(H1) is weaker than (AR) essentially. Moreover, let N = 1,

V =
(

1 1
−1 1

)
and B =

(
0 1
−1 0

)
.

A straightforward computation shows that V and B satisfy the assumptions
(1.1) and (H6). Therefore the above theorems improve the results in [12,15,17]
mainly.

Remark 1.10. In [15], it is shown that condition (1.1) implies that, in an appro-
priate function space, the operator −J d

dt −B is invertible , i.e., σ(−J d
dt −B)∩

(−α, α) = ∅ for some α > 0. In a recent work, Ding and Willem [7] relaxed
the above condition. They allowed the matrix B to be t-dependent, periodic
and such that σ(−J d

dt − B) ∩ (0, α) = ∅ for some α > 0 and they established
the existence of a homoclinic orbit for (HS). We note that our approach can
be modified so that it includes systems with the more general linear term like
in [8]. As it is mentioned in [17], this needs to change our functional setting.
So, in order to minimize technicalities, we restrict our attention to the case of
systems with invertible linear part.

2. Functional framework and variational formulation

Let ST = R/(TZ) and ET = H1/2(ST , R2N ) be the Sobolev space of all
T -periodic R

2N -valued functions u in L2(ST , R2N ) whose Fourier series

u(t) =
j=+∞∑
j=−∞

exp
(

2jπtJ

T

)
aj , aj ∈ R

2N
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satisfies

||u||2ET
:= T |a0|2 + T

j=+∞∑
j=−∞

|j| · |aj |2 < +∞.

The inner product on ET is defined by

(u, v)ET
= T (a0, b0) + T

j=+∞∑
j=−∞

|j|(aj , bj)

where

v(t) =
j=+∞∑
j=−∞

exp
(

2jπtJ

T

)
bj , bj ∈ R

2N .

It is well known that ET is compactly embedded in Lγ(ST , R2N ) for every
γ ∈ [1,+∞) and there exists a constant cγ such that

‖u‖Lγ ≤ cγ‖u‖ET
, ∀ u ∈ ET . (2.1)

Define two self-adjoint operators A,B ∈ L(ET ) by extending the bilinear forms

(Au, v) =
∫ T

0

(−Ju̇, v) dt, (Bu, v) =
∫ T

0

(B(t)u, v) dt, ∀ u, v ∈ ET .

By [10] and the standard spectral theory, B is compact on ET . Denote the
eigenvalues of A − B on E by

· · · ≤ λ−2 ≤ λ−1 < 0 = (λ0) < λ1 ≤ λ2 · · ·
where when dim ker (A − B) = 0, λ0 /∈ σ(A − B). Let {e±j}j∈N be the eigen-
vectors of A − B corresponding to {λ±j}, respectively. Define E+ = span
{e1, e2, . . .}, E− = span {e−1, e−2, . . .}, E0 = ker(A − B). Hence there exist
an orthogonal decomposition ET = E+ ⊕ E− ⊕ E0 with dim E0 < ∞, dim
E+ = dim E− = ∞ and an equivalent inner product in ET , denoted by (·, ·)
and defined by

(u, v) = ((A − B)u+, v+)ET
− ((A − B)u−, v−)ET

+ (u0, v0)ET
.

for all u = u+ + u− + u0, v = v+ + v− + v0 in E+ ⊕ E− ⊕ E0. Hence, we have
∫ T

0

(−Ju̇ − B(t)u, u) dt = ((A − B)u, u)ET
= ||u+||2 − ||u−||2

where || · || is the norm induced by (·, ·). Let V be the normalized vector field in
(H1), then V is an invertible endomorphism on R

2N and there exist constants
a, b > 0 such that

a|x| ≤ |V x| ≤ b|x|, ∀ x ∈ R
2N . (2.2)

Define a vector field Ṽ on ET by (Ṽ u)(t) = (V u)(t). Using conditions (V1), (V2)
and the Fourier series, a direct computation gives
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Lemma 2.1. [1] For all u ∈ ET , we have

i) (Au, Ṽ u)ET
= (Au, u)ET

,
ii) a||u||ET

≤ ||Ṽ u||ET
≤ b||u||ET

.

Since the growth rate of the the function W at ∞ is not restricted, we
introduce modification of W as follows. Let K ≥ 1 and χK ∈ C∞(R, R) such
that χK(s) = 1 for s ≤ K,χK(s) = 0 for s ≥ K + 1, and χ′

K(s) ≤ 0. Define

WK(t, x) = χK(|x|)W (t, x) + (1 − χK(|x|))rK |x|μ,

where

rK = max
K≤|x|≤K+1

W (t, x)
|x|μ .

Lemma 2.2. WK satisfies all assumption satisfied by W . Furthermore, by (H1),
there are constants a1, a2 > 0 independent of K such that

WK(t, x) ≥ a1|x|μ − a2, ∀ (t, x) ∈ R × R
2N . (2.3)

Proof. The properties (H2), (H ′
2), (H3) and (H5) are easy to prove. For the

proof of (H1) and (2.3) see [2]. It remains only to prove the new condition (H4).
Indeed, by the definition of χK and rK we have χ′

K(|x|)(W (t, x)−rK |x|μ) ≥ 0
and therefore

|∇WK(t, x)| ≤ χ′
K(|x|)(W (t, x) − rK |x|μ) + χK(|x|)|∇W (t, x)|

+μ(1 − χK(|x|))rK |x|μ−1.

On the other hand, for |x| ≥ R,

(∇WK(t, x), V x) ≥ χ′
K(|x|)(W (t, x) − rK |x|μ) + χK(|x|)(∇W (t, x), V x)

+μ(1 − χK(|x|))rK |x|μ−1.

So, by (H4), we obtain

|∇WK(t, x)| ≤ c̃(∇WK(t, x), V x),

where c̃ = c + 1. �

Now, to prove Theorem 1.3, it suffices to find a nontrivial solution for

Ju̇ + B(t)u + ∇WK(t, u) = 0, (HSK)

with ||u||L∞ ≤ K. Define the functional IK : ET −→ R, by

IK(u) =
1
2

∫ T

0

(−Ju̇ − B(t)u, u) dt −
∫ T

0

WK(t, u) dt

=
1
2
(||u+||2 − ||u−||2) −

∫ T

0

WK(t, u) dt.

By the form of WK at infinity, we know that IK ∈ C1(ET , R), and the critical
points of the functional IK are the T -periodic solutions of (HS)K (see [11,13]).
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Moreover,

I ′
K(u)(v) =

∫ T

0

(−Ju̇ − B(t)u, v)dt −
∫ T

0

(∇WK(t, u), v)dt,

= (u+ − u−, v) −
∫ T

0

(∇WK(t, u), v)dt, ∀u, v ∈ ET . (2.4)

Using the ideas of [16], we have the following two Lemmas on the C0 bound
of the periodic solutions of (HS)K .

Lemma 2.3. Suppose W satisfies (H1) and (H4). If uK is a T -periodic solution
of (HS)K such that

∫ T

0

WK(t, uK)dt ≤ M,

∫ T

0

(∇WK(t, uK), Ṽ uk)dt ≤ M (2.5)

then there is a constant L independent of K and dependent on M only such
that

||uK ||L∞ ≤ L.

Proof. Let uK a T -periodic solution of (HS)K satisfying (2.5). By (2.3), we
have

M ≥
∫ T

0

WK(t, uK)dt ≥ a1

∫ T

0

|uK(t)|μdt − a2T ≥ a1T
(

min
t∈ST

|uK(t)|
)μ

− a2T,

which implies

min
t∈ST

|uK(t)| ≤ C0, (2.6)

where C0 is independent of K. We claim that there exists a constant L indepen-
dent of K and depends on M only verifying ||uK ||L∞ ≤ L. If not, without loss
of generality, using (2.6), we may assume that there are Kn, Ln ∈ R, tn ∈ ST

such that ⎧⎨
⎩

Ln −→ +∞ as n −→ +∞,
|un(t)| ≥ R, ∀ t ∈ [0, tn),
|un(0)| = R, |un(tn)| = Ln,

where un := uKn
.

Now, since un is a solution of (HS)Kn
we have

|un(tn)| − |un(0)| =
∫ tn

0

d

ds
|un(s)| ds

=
∫ tn

0

(un(s), u̇n(s))
|un(s)| ds

≤
∫ tn

0

|u̇n(s)| ds

≤
∫ tn

0

(|B(s)un(s)| + |∇WKn
(s, un(s))|) ds. (2.7)
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and by (H4) we get

Ln ≤ ||B||L∞

∫ tn

0

|un(s)|μ ds + c

∫ tn

0

(∇WKn
(s, un(s)), Ṽ (un(s))) ds + R.

(2.8)

From the proof of Lemma 2.2, we know that

WK(t, x) ≥ a1|x|μ, ∀ |x| ≥ R. (2.9)

So, by (2.5), (2.8) and (2.9), we obtain

Ln ≤ ||B||L∞

a1

∫ tn

0

WKn
(s, un(s)) ds + c

∫ tn

0

(∇WKn
(s, un(s)), Ṽ (un(s))) ds+R,

≤ ||B||L∞

a1
M + cM + R.

but this contradicts the fact Ln −→ ∞ as n −→ ∞. �

Lemma 2.4. Suppose W satisfies (H1) and (H5). If uK is a T -periodic solution
of (HS)K verifying (2.5), then there is a constant L independent of K and
dependent on M only such that

||uK ||L∞ ≤ L.

Proof. Define

σ(r) = sup
|x|≥r,t∈ST

Wt(t, x)
|x|μW (t, x)

, δ(r) = inf
|x|≥r,t∈ST

Wt(t, x)
|x|μW (t, x)

.

By (H5), we have

lim
r−→+∞ σ(r) = 0 or lim

r−→+∞ δ(r) = 0.

Case I: Suppose that lim
r−→+∞ σ(r) = 0. By definition, σ(r) decreases to 0. Fix

r0 > R large enough such that a1 −σ(r0)M > 0. Let uK a T -periodic solution
of (HS)K verifying (2.5). Note that uK satisfies (2.6). We claim that there
exists L independent of K and depend on M only such that ||uK || ≤ L. If not,
there exist Kn, Ln, an, bn ∈ R such that Ln −→ +∞ as n −→ +∞,

(an, bn) ⊂ {t ∈ ST ; r0 < |un(t)| < Ln},

|un(an)| = r0 and |un(bn)| = Ln for all n large enough, where un := uKn
.

Denote

HK(t, x) =
1
2
(B(t)x, x) + WK(t, x), H(t, x) =

1
2
(B(t)x, x) + W (t, x).
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In the following, Bt and WK,t denote respectively the derivative of B and WK

with respect to the t-variable. Since un is a solution of (HS)Kn
, we have

HKn
(bn, un(bn)) − HKn

(an, un(an)) =
∫ bn

an

d

dt
HKn

(t, un(t)) dt

=
∫ bn

an

[(∇HKn
(t, un(t)), u̇n(t)) + HKn,t(t, un(t)] dt

=
∫ bn

an

[
1
2
(Bt(t)un(t), un(t)) + WKn,t(t, un(t))

]
dt

≤ 1
2
||Bt||L∞

∫ bn

an

|un(t)|2 dt +
∫ bn

an

σ(|un(t)|)|un(t)|μWKn
(t, un(t)) dt

≤ d

∫ bn

an

WKn
(t, un(t)) dt + σ(r0)Lμ

n

∫ bn

an

WKn
(t, un(t)) dt

≤ dM + σ(r0)MLμ
n, (2.10)

where d is a positive constant.On the other hand, by (2.3), we get

HKn
(bn, un(bn)) − HKn

(an, un(an)) − max
|x|≤r0,t∈ST

|HKn
(t, x)|

≥ a1|un(bn)|μ − a2 − 1
2
||B||L∞ |un(bn)|2

≥ a1L
μ
n − a2 − 1

2
||B||L∞L2

n − max
|x|≤r0,t∈ST

|H(t, x)|. (2.11)

Combine the inequalities (2.10) and (2.11), we obtain(
a1 − σ(r0)M

)
Lμ

n − 1
2
||B||L∞L2

n ≤ a2 + cM + max
|x|≤r0,t∈ST

|H(t, x)|.

Since a1 − σ(r0)M > 0, μ > 2 and Ln −→ ∞ as −→ +∞, the last inequality
leads to a contradiction and our claim is true.

Case II: Suppose that lim
r−→+∞ δ(r) = 0. We modify slightly the proof of

Case I to obtain the following inequality

(a1 + δ(r0)M)Lμ
n − 1

2
||B||L∞L2

n ≤ a2 + cM + max
|x|≤r0,t∈ST

|H(t, x)|.

Using the same argument as in the above, we obtain a contradiction. �

In order to prove our main results, we state the following critical point
theorem.

Theorem 2.5. [13] Let E be a real Hilbert space with E = E1⊕E2 and E2 = E⊥
1 .

Suppose f ∈ C1(E, R), satisfies (PS) condition, and
(f1) f(x) = 1

2 (Lx, x)E + φ(x), where L = L1P1 + L2P2 and Li : Ei −→ Ei is
bounded and self-adjoint, i = 1, 2,

(f2) φ ′ is compact, and
(f3) thereexistasubsequenceẼ ⊂ E, sets S ⊂ E,Q ⊂ Ẽ and constants α > ω

such that
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(i) S ⊂ E1 and f |S ≥ α,
(ii) Q is bounded and f |∂Q ≤ ω,
(iii) S and ∂Q link.

Then

c = inf
h∈Γ

sup
x∈Q

f(h(1, x))

is a critical value of f and c ≥ α, where Γ is defined by Γ = {h ∈ C([0, 1] ×
E,E)|h(0, x) = x, h(1, x)|∂Q = x, h(t, x) = eθ(t,x)L + K(t, x)}.
Here, θ ∈ C([0, 1] × E,E) and K is compact.

3. Proof of main results

To find a nontrivial critical point of IK , we use the above theorem with E1 =
E+, E2 = E− ⊕E0. As shown in [13], the functional IK satisfies (f1) and (f2).

Lemma 3.1. IK satisfies the (PS) condition, i.e., if {un} ⊂ E, with I ′
K(un) −→

0 and |IK(un)| ≤ M , for some constant M > 0, then {un} has a convergent
subsequence.

Proof. In this proof Ck, k = 1, . . . , 10, are positive constants. By the equiva-
lence of norms on ET , for n large enough, we have

M + C1‖un‖ ≥ M + ‖Ṽ un‖E ≥ IK(un) − 1
2
I ′
K(un)(Ṽ un).

From Lemma 2.1, we receive∫ T

0

(−Ju̇n, un) dt =
∫ T

0

(−Ju̇n, Ṽ un) dt.

Then, we obtain

M + C1‖un‖ ≥ 1
2

∫ T

0

(B(t)un, Ṽ un − un) dt −
∫ T

0

WK(t, un) dt

+
1
2

∫ T

0

(∇WK(t, un), Ṽ un) dt.

By (H1) and (2.3), we get

M + C1‖un‖ ≥ 1
2

∫ T

0

(B(t)un, Ṽ un − un) dt +
(μ

2
− 1
)∫ T

0

WK(t, un)dt − C2

≥ 1
2

∫ T

0

(B(t)un, Ṽ un − un) dt +
(μ

2
− 1
)

a1

∫ T

0

|un|μ dt − C3.

(3.1)

On the other hand, by (2.2) and Hölder inequality, there is a constant C4 > 0
such that ∣∣∣

∫ T

0

(B(t)un, Ṽ un − un) dt
∣∣∣ ≤ C4‖un‖2

Lμ . (3.2)
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From (3.1) and (3.2), we obtain

M + C1‖un‖ ≥ −C4

2
‖un‖2

Lμ +
(μ

2
− 1
)

a1‖un‖μ
Lμ − C3,

which implies

‖un‖μ
Lμ ≤ C5(1 + ‖un‖). (3.3)

Writing un = u+
n + u−

n + u0
n ∈ E+ ⊕ E− ⊕ E0, since E0 is a finite-dimensional

space, it follows from (3.3) that

‖u0
n‖ ≤ C6(1 + ‖un‖1/μ). (3.4)

Now, taking v = u+
n in (2.4), yields

I ′
K(un)(u+

n ) = ‖u+
n ‖2 −

∫ T

0

(∇WK(t, un), u+
n )dt.

For n large enough, by Hölder inequality and the form of ∇WK at infinity, we
get

‖u+
n ‖2 ≤ ‖u+

n ‖ +

(∫ T

0

|∇WK(t, un)| μ
μ−1 dt

)μ−1
μ
(∫ T

0

|u+
n |μdt

) 1
μ

≤ ‖u+
n ‖ + C7

(
1 + ‖un‖μ−1

Lμ

)
‖u+

n ‖Lμ

≤ C8

(
1 + ‖un‖μ−1

Lμ

)
‖u+

n ‖.

Thus, by (3.3)

‖u+
n ‖ ≤ C8

(
1 + ‖un‖μ−1

Lμ

)
≤ C9

(
1 + ‖un‖μ−1

μ

)
. (3.5)

Analogously, with v = u−
n in (2.4), yields

‖u−
n ‖ ≤ C9

(
1 + ‖un‖μ−1

μ

)
. (3.6)

The inequalities (3.4)–(3.6) imply

‖un‖ ≤ ‖u+
n ‖ + ‖u−

n ‖ + ‖u0
n‖ ≤ C10

(
1 + ‖un‖μ−1

μ + ‖un‖1/μ
)

.

This shows that the sequence {un} is bounded in ET . Then by a standard
argument (see [13]), {un} has a convergent subsequence. �

Lemma 3.2. IK satisfies the condition (f3).

Proof. By (H2) and the form of WK , for any ε > 0, there exists M > 0 such
that

WK(t, x) ≤ ε|x|2 + M |x|μ, ∀ x ∈ R
2N . (3.7)

Using the norm ‖ · ‖ instead of ‖ · ‖E , (2.1) and (3.7), we get for u ∈ E1,

IK(u) =
1
2
‖u‖2 −

∫ T

0

WK(t, u)dt ≥ 1
2
‖u‖2 − (εc2‖u‖2 + Mcμ‖u‖μ)

≥ 1
2
‖u‖2 − (εc2 + Mcμ‖u‖μ−2)‖u‖2.
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Choose ε =
1

6c2
, ρ = (

1
6Mcμ

)
1

μ−2 and denote by Bρ the closed ball in ET of

radius ρ centered at origin. Let S = ∂Bρ ∩ E1, then IK(u) ≥ α =
ρ2

6
for all

u ∈ S, and (i) of (f3) holds.
The proof of (ii) of (f3) is slightly different from that in [13]. Indeed,

to obtain Q with r1 and r2 independent of K, we let e ∈ ∂B1 ∩ E1 and
u = u0 + u− ∈ E2, then

IK(u + re) =
1
2
(r2 − ‖u−‖2) −

∫ T

0

WK(t, u + re)dt. (3.8)

By (H3), it is obvious that IK(u) ≤ 0 on E2. Since E0 is finite dimensional,
there exists a3 > 0 such that

‖e‖ ≤ a3‖e‖L2 , ‖u0‖ ≤ a3‖u0‖L2 (3.9)

for all u0 ∈ E0. Moreover, by (2.3), there is a4 > 0 independent of K such
that

WK(t, x) ≥ a2
3|x|2 − a4, ∀ (t, x) ∈ R × R

2N . (3.10)

The orthogonality of u0, u− and e in L2 and (3.10) imply
∫ T

0

WK(t, u + re)dt ≥ a2
3‖u + re‖2

L2 − a4T

≥ a2
3(‖u−‖2

L2 + ‖u0‖2
L2 + r2‖e‖2

L2) − a4T. (3.11)

By (3.8), (3.9) and (3.11), we get

IK(u + re) ≤ 1
2
(r2 − ‖u−‖2) − (‖u0‖2 + r2) + a4T

≤ −1
2
r2 − 1

2
‖u‖2 + a4T (3.12)

for all r > 0 and u ∈ E2. Let r1 = r2 =
√

2a4T , then IK(u + re) ≤ 0 either
r ≥ r1 or ‖u‖ ≥ r2. Consequently IK ≤ 0 ≡ ω on ∂Q, where Q = {re ; r ∈
[0, r1]} ⊕ (Br2 ∩ E2). By Lemma 6.27 of [13], S and ∂Q link and (ii) and (iii)
of (f3) hold. �

Proof of Theorem 1.3. The functional IK satisfies the assumptions of Theo-
rem 2.5, so, it possesses a critical value cK > 0 and corresponding nontrivial
critical point uK . It remains to prove that uK satisfies (HS) for appropriately
chosen K. Since h(t, x) ≡ x belongs to Γ, one has

cK = IK(uK) ≤ sup
x∈Q

IK(x)

≤ sup
0≤r≤r1,‖u−+u0‖≤r2

1
2
(r2−‖u−‖2)−

∫ T

0

WK(t, u0 + u− + re) dt

≤ 1
2
r2
1. (3.13)
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Note that r1 and r2 are independent of K. Arguing as in (3.1)– (3.2), we get
1
2
r2
1 ≥ cK = IK(uK) − 1

2
I ′
K(uK)(Ṽ uk)

≥ −C4

2
‖uK‖2

Lμ +
(

1
2

− 1
μ

)∫ T

0

(∇WK(t, uK), Ṽ uk) dt − C2 (3.14)

≥ −C4

2
‖uK‖2

Lμ +
(μ

2
− 1
)∫ T

0

WK(t, uK) dt − C2 (3.15)

≥ −C4

2
‖uK‖2

Lμ +
(μ

2
− 1
)

a1‖uK‖μ
Lμ − C3.

Since C3 and C4 are independent of K and μ > 2, the last inequality gives

‖uK‖Lμ ≤ M1. (3.16)

Also, by (3.14) and (H4) for WK , we get∫ T

0

|∇WK(t, uK)| dt ≤ M2. (3.17)

The inequalities (3.16) and (3.17) yield

‖u̇K‖L1 ≤ ‖B(t)uK‖L1 + ‖∇W (t, uK)‖L1 ≤ M3. (3.18)

Denote ūK = 1
T

∫ T

0
uK(t) dt, ũK = uK − ūK . The inequality ‖u‖L∞ ≤ c‖u̇‖L1

(see [11, Proposition 1.1]) for ũK , (3.16) and (3.18) provide K-independent L∞

bounds for ūK and ũK respectively. Hence, for some K0 > 0, ‖uK‖L∞ ≤ K0.
Taking K > K0, it follows that uK is a T -periodic solution of (HS).

Now, we show that in fact there are infinitely many distinct solutions
for (HS). Substituting kT for T in the above, it is easy to see that the prob-
lem (HS) possesses a sequence (uk)k∈N of kT -periodic solutions. Since any
T -periodic solution is also kT -periodic, an additional argument is required to
distinguish them. Let ck = Ik(uk), where Ik is the functional defined on EkT by

Ik(u) =
1
2

∫ kT

0

(−Ju̇ − B(t)u, u)dt −
∫ kT

0

WK(t, u) dt (3.19)

where K depends on k. Next we prove that ck is bounded from above inde-
pendently of k. Indeed, by (3.13), the corresponding critical point ck satisfies

ck ≤ 1
2
r2
1(k), (3.20)

where r1(k) is determined by the condition

Ik(u + re) =
1
2
(r2 − ‖u−‖2) −

∫ kT

0

WK(t, u + re)dt ≤ 0 (3.21)

for all r ≥ r1(k) with u and e adequately chosen. Let EkT = E+
k ⊕E−

k ⊕E0
k be an

orthogonal decomposition defined as above for ET . Take u = u0+u− ∈ E0
k⊕E−

k

and e ∈ E+
k be constructed as follows: For φ ∈ E+

1 = E+ with ||φ|| = 1, let

e(t) =
{

φ(t), if t ∈ [0, T )
0, if t ∈ [T, kT )
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and regard e as kT -periodic function defined on R. Then e ∈ E+
k , ||e|| = 1 and

particulary e �≡ 0. Moreover, by (H3) and (2.3), we have∫ kT

0

WK(t, u + re) dt ≥
∫ T

0

WK(t, u + re) dt

≥ a1

∫ T

0

|u(t) + re(t)|μ dt − a2T. (3.22)

On the other hand, by Hölder’s inequality
∫ T

0

|u(t) + re(t)|2 dt ≤
[∫ T

0

|u(t) + re(t)|μ dt

]2/μ

(T )
μ−2

μ . (3.23)

Using the orthogonality of u and e in L2 and combining (3.21)–(3.23), we get

Ik(u + re) ≤ 1
2
(r2 − ‖u−‖2) − a1T

2−μ
2 rμ

(∫ T

0

|e(t)|2dt

)μ/2

+ a2T. (3.24)

Since μ > 2, it follows from (3.24) that there exists r0 independent of k such
that

Ik(u + re) ≤ 0, for all r ≥ r0.

Then r1(k) ≤ r0 and it follows from (3.20) that

ck ≤ r2
0

2
. (3.25)

Now, if for some k > m, uk(t) ≡ u(t) = um(t). So u is kT -periodic, denote kT
lk

its minimal period. By a simple change of variables (see (2.2) in [12]), we obtain

ck = Ik(uk) = lkI k
lk

(u).

Also, u is mT -periodic, then we have k
lk

= m
lm

for some positive integer lm and

cm = Im(um) = lmI m
lm

(u),

thus

ck =
k

m
cm.

Since cm > 0 and the sequence (ck) is bounded, it follows that there can be at
most finitely many k > m such that uk = um for any given m ∈ N. �
Proof of Theorem 1.4. In the proof of Theorem 1.3 the assumption (H4) is
used only in (3.17) to show that uK is bounded in C0(R, R2n) independently
of K. Now, by combining (3.14)–(3.16), we obtain the assumption (2.5). Hence,
replacing (H4) by (H5) in the proof of Theorem 1.3 and using Lemma 2.4, we
obtain the same result.
Proof of Theorem 1.7. Let L := −(J d

dt +B) be the self-adjoint operator acting
on L2(SkT , R), k ∈ N, under periodic boundary conditions and X = D(|L|1/2)
with the norm

||u||X = |||L|1/2u||L2 , ∀ u ∈ X.
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In [15], it is shown that the condition (1.1) implies X = EkT , the norms
|| · ||X and || · ||EkT

are equivalents and X has an orthogonal decomposition
X = X+ ⊕ X− where the quadratic form u �−→ (Lu, u)L2 is positive (resp.
negative) definite on X+ (resp. X−). Moreover,

(Lu, u)L2 = ||u+||2 − ||u−||2 for all u = u+ + u− ∈ X = X+ ⊕ X−.

Recall that ck = Ik(uk) is a critical value of the functional Ik defined in (3.19)
and uk is the corresponding critical point.

Lemma 3.3. There is a constant C1 > 0 independent of K and k such that

||uk||C1 ≤ C1

for all k ∈ N and K ≥ 1.

Proof. By (3.25) we know that ck is bounded independently of K and k. More-
over, using (H6) and (H ′

1), there is a constant C such that

C ≥ Ik(uk) = Ik(uk) − 1
2
Ik

′(uk)(Ṽ uk)

=
∫ kT

0

(Buk, Ṽ uk − uk) dt −
∫ kT

0

WK(t, uk)dt

+
1
2

∫ kT

0

(∇WK(t, uk), Ṽ uk) dt

≥
(

1
2

− 1
μ

)∫ kT

0

(∇WK(t, uk), Ṽ uk) dt

≥
(μ

2
− 1
)∫ kT

0

WK(t, uk) dt.

which implies for certain constant M > 0∫ kT

0

(∇WK(t, uk), Ṽ uk)dt ≤ M,

∫ kT

0

WK(t, uk)dt ≤ M. (3.26)

Note that since WK ≥ 0, by (2.3) and (3.26), we have

M ≥
∫ kT

0

WK(t, uk)dt

≥
∫ T

0

WK(t, uk)dt

≥ a1

∫ T

0

|uk(t)|μdt − a2T

≥ a1T
(

min
t∈ST

|uk(t)|
)μ

− a2T

≥ a1T
(

min
t∈SkT

|uk(t)|
)μ

− a2T.

So, inequality (2.6) holds independently of K and k and the proof of Lemma
2.3 goes through with kT replacing T . From Lemmas 2.3 and 2.4, we know
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that uk must be bounded in C0 independently of K and k. Then, for a suffi-
ciently large K0 such that ||uk||L∞ < K0 , uk is a C1 solution of the original
problem (HS) and therefore is bounded in || · ||C1 . �

Lemma 3.4. There is a constant δ > 0 independent of k such that

||uk||L∞ ≥ δ for all k ∈ N.

Proof. From the above we may assume that uk is a critical point of the func-
tional defined on X by

Jk(u) =
1
2

∫ kT

0

(−Ju̇ − Bu, u) dt −
∫ kT

0

WK0(t, u) dt.

Let ε > 0, by the assumption (H ′
2), there exists δε > 0 such that

|∇WK0(t, x)| ≤ ε|x| for |x| ≤ δε. (3.27)

Suppose that ||uk||L∞ < δε. Writing uk = u+
k + u−

k ∈ X+ ⊕ X− and using the
definition of uk, we obtain

0 = J ′
k(uk)(u+

k − u−
k ) = ||uk||2 −

∫ kT

0

(∇WK0(t, uk), u+
k − u−

k )dt.

Therefore, by (3.26), we get

||uk||2 =
∫ kT

0

(∇WK0(t, uk), u+
k − u−

k ) dt.

≤ ε

∫ kT

0

|uk||u+
k − u−

k | dt

≤ ε||uk||2L2 .

By (2.1) and the equivalence of norms, there exists a constant denoted also by
c2 such that

||uk||2 ≤ εc2||uk||2.
Choosing ε < 1/c2, we get uk = 0. But this contradicts the fact Jk(uk) > 0.
Then we have ||uk||L∞ ≥ δε. �

Now, we can find a sequence (jk)k∈N of integers such that

max
t∈[0,T ]

|uk(t + jkT )| = max
t∈R

|uk(t)| ∈ [δ, C1].

Let ũk(t) := uk(t + jkT ). It is easy to see that ũk is a solution of (HS) and
Jk(ũk) = Jk(uk). By Lemma 3.3, we can extract a subsequence from any given
sequence of integers kn −→ ∞ such that

ũkn
−→ u0 as n −→ ∞ in C1

loc(R, R2N ),

where u0 ∈ C1(R, R2N ) is a solution of (HS). To conclude the proof of Theo-
rem 1.7, we use the following [15, Lemma 2.9].
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Lemma 3.5. [15] u0 satisfies the following

(a) u0 �≡ 0.
(b) u0 ∈ Lp(R, R2N ) for all p ∈ [2,∞].
(c) u0 −→ 0 as t −→ ±∞.

Proof of Theorem 1.8. The proof is based on the following [3, Lemma 1.3].

Lemma 3.6. [3] Suppose h ∈ C1(R2N , R) a positive homogenous function of
degree μ with respect to a normalized positive vector field V , then for any
x ∈ R

2N ,

a) ∇h(φsx) = e(μ−2)sφs∇h(x),
b) (∇h(x), V x) = μh(x),
c) h(x) ≥ a1|x|μ,
d) |∇h(x)| ≤ a2|x|μ−1,

where a1, a2 are positive constants.

Let W a positive homogenous function of degree μ > 2 with respect to a
normalized positive vector field V , then, W satisfies (H ′

1) via property b) and
(H ′

2) via property d) of Lemma 3.6. Also, by combining properties b), c) and
d), it is easy to see that W satisfies (H4). On the other hand, the assumptions
(H ′

1) and (H ′
2) imply (H1) and (H2) respectively. So, all the hypothesis of

Theorem 1.3 are satisfied. Furthermore, if B satisfies the assumptions (1.1)
and (H6), the conclusion of Theorem 1.7 holds.
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